
WebSphere® Application Server - Express for IBM i, Version 7.0

Securing applications and their environment

���

Note

Before using this information, be sure to read the general information under “Notices” on page 1303.

Compilation date: September 24, 2008

© Copyright International Business Machines Corporation 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . xi

Changes to serve you more quickly . xiii

Chapter 1. Overview and new features for securing applications and their environment 1

Security planning overview . 1

Chapter 2. Task overview: Securing resources . 11

Chapter 3. Setting up and enabling security . 13

Migrating, coexisting, and interoperating – Security considerations 13

Interoperating with previous product versions . 14

Migrating custom user registries . 16

Migrating trust association interceptors . 18

Migrating Common Object Request Broker Architecture programmatic login to Java Authentication

and Authorization Service (CORBA and JAAS) . 21

Migrating from the CustomLoginServlet class to servlet filters 23

Migrating Java 2 security policy . 24

Migrating with Tivoli Access Manager for authentication enabled 27

Migrating Java thin clients that use the password encoding algorithm 28

Enabling security . 28

Administrative security . 30

Application security . 31

Java 2 security . 32

Enabling security for the realm . 41

Testing security after enabling it . 54

The Security Configuration Wizard . 55

Chapter 4. Configuring multiple security domains 57

Multiple security domains . 60

Creating new multiple security domains . 75

Deleting multiple security domains . 77

Copying multiple security domains . 78

Configuring inbound trusted realms for multiple security domains 81

Configure security domains . 81

Name . 82

Description . 82

Assigned Scopes . 82

Application Security: . 83

Enable application security . 83

Java 2 security: . 83

Use global security settings . 83

Customize for this domain . 83 84

Use Java 2 security to restrict application access to local resources 84

Warn if applications are granted custom permissions 84

Restrict access to resource authentication data . 84

User Realm: . 84

Trust Association: . 85

Interceptors . 85

Enable trust association . 85

SPNEGO Web Authentication: . 85

RMI/IIOP Security: . 86

CSIv2 inbound communications . 86

© Copyright IBM Corp. 2008 iii

CSIv2 outbound communications . 86

JAAS Application logins . 86

Use global and domain-specific logins . 87

JAAS System Logins: . 87

System Logins . 87

JAAS J2C Authentication Data: . 87

Use global and domain-specific entries . 87

Authentication Mechanism Attributes: . 87

Authorization Provider: . 87

Custom properties . 87

Web Services Bindings . 88

External realm name . 88

External realm name . 88

Trust all realms . 88

Trust all realms (including those external to this cell) 88

Trust realms as indicated below . 88

Add External Realm... 88

Security domains collection . 89

Maximum rows . 89

Retain filter criteria . 89

Copy selected domain . 89

Copy global security . 89

Authentication cache settings . 89

Enable authentication cache . 89

Cache timeout: . 90

Initial cache size: . 90

Maximum cache size . 90

Use basic authentication cache keys (password one-way hashed): 90

Use custom cache keys: . 91

Chapter 5. Authenticating users . 93

Selecting a registry or repository . 93

Standalone custom registries . 96

Configuring local operating system registries . 97

Configuring Lightweight Directory Access Protocol user registries 100

Configuring standalone custom registries . 123

Managing the realm in a federated repository configuration 151

Local operating system registries . 218

Standalone Lightweight Directory Access Protocol registries 219

Federated repositories . 223

Selecting an authentication mechanism . 225

Lightweight Third Party Authentication . 227

Configuring the Lightweight Third Party Authentication mechanism 228

Kerberos (KRB5) authentication mechanism support for security 237

Configuring Kerberos as the authentication mechanism using the administrative console 244

Configuring a Java client for Kerberos authentication 258

RSA token authentication mechanism . 260

Configuring the RSA token authentication mechanism 261

Simple WebSphere authentication mechanism (deprecated) 266

Message layer authentication . 266

Trust associations . 267

Integrating third-party HTTP reverse proxy servers . 271

Trust association settings . 271

Trust association interceptor collection . 272

Trust association interceptor settings . 272

Single sign-on . 272

iv Securing applications and their environment

Single sign-on using LTPA cookies . 273

Enterprise Identity Mapping . 274

Global single sign-on principal mapping . 274

Implementing single sign-on to minimize Web user authentications 275

Creating a single sign-on for HTTP requests using SPNEGO Web authentication 279

Creating a single sign-on for HTTP requests using the SPNEGO TAI (deprecated) 295

Configuring single sign-on capability with Enterprise Identity Mapping 330

Configuring single sign-on capability with Tivoli Access Manager or WebSEAL 343

Configuring administrative authentication . 357

Java Authentication and Authorization Service . 358

Java Authentication and Authorization Service authorization 358

Using the Java Authentication and Authorization Service programming model for Web authentication 361

Developing custom login modules for a system login configuration 363

Customizing application login with Java Authentication and Authorization Service 376

Performing identity mapping for authorization across servers in different realms 422

Configuring inbound identity mapping . 423

Configuring outbound mapping to a different target realm 431

Security attribute propagation . 436

Default authentication token . 439

Propagating security attributes among application servers 440

Using the default authorization token . 443

Using the default propagation token . 447

Using the default single sign-on token with default or custom token factory 452

Configuring the authentication cache . 453

Configuring Common Secure Interoperability Version 2 (CSIV2) inbound and outbound communication

settings . 454

Configuring Common Secure Interoperability Version 2 inbound communications 455

Configuring Common Secure Interoperability Version 2 outbound communications 460

Configuring inbound transports . 466

Configuring outbound transports . 470

Configuring inbound messages . 473

Configuring outbound messages . 474

Common Secure Interoperability Version 2 and Security Authentication Service (SAS) client

configuration . 475

Example 1: Configuring basic authentication and identity assertion 480

Example 2: Configuring basic authentication, identity assertion, and client certificates 482

Example 3: Configuring client certificate authentication and RunAs system 483

Example 4: Configuring TCP/IP transport using a virtual private network 484

Authentication protocol for EJB security . 486

Authentication protocol support . 489

Common Secure Interoperability Version 2 features 490

Identity assertion to the downstream server . 490

Identity assertions with trust validation . 492

Message layer authentication . 492

Chapter 6. Authorizing access to resources . 495

Authorization technology . 495

Administrative roles and naming service authorization 496

Role-based authorization . 502

Administrative roles . 504

Authorization providers . 508

Delegations . 521

Authorizing access to J2EE resources using Tivoli Access Manager 523

Using the built-in authorization provider . 524

Enabling an external JACC provider . 528

Authorizing access to administrative roles . 546

Contents v

Administrative user roles settings and CORBA naming service user settings 547

Administrative group roles and CORBA naming service groups 549

Assigning users to naming roles . 550

Propagating administrative role changes to Tivoli Access Manager 551

migrateEAR utility for Tivoli Access Manager . 552

Assigning users from a foreign realm to the admin-authz.xml 554

Fine-grained administrative security . 555

New Administrative Authorization Group . 557

Administrative Authorization Group collection . 558

Creating a fine-grained administrative authorization group using the administrative console 559

Editing a fine-grained administrative authorization group using the administrative console 562

Fine-grained administrative security in heterogeneous and single-server environments 564

Example: Using fine-grained security . 565

Chapter 7. Securing communications . 573

Secure communications using Secure Sockets Layer 573

Secure Sockets Layer configurations . 579

Keystore configurations . 588

Dynamic outbound selection of Secure Sockets Layer configurations 591

Central management of Secure Sockets Layer configurations 591

Secure Sockets Layer node, application server, and cluster isolation 593

Default chained certificate configuration . 597

Dynamic configuration updates . 607

Certificate management using iKeyman . 608

Certificate management . 609

Using the retrieveSigners command to enable server to server trust 612

Creating a Secure Sockets Layer configuration . 614

SSL certificate and key management . 617

SSL configurations for selected scopes . 618

SSL configurations collection . 619

SSL configuration settings . 619

Certificate authority (CA) client configuration . 620

Certificate authority (CA) client configuration collections 621

Create chained personal certificate . 622

Recovering deleted certificates . 623

Renewing a certificate . 623

Revoke a CA certificate . 624

Using a CA client to create a personal certificate to be used as the default personal certificate 625

Create a CA certificate . 626

Developing the WSPKIClient interface for communicating with a certificate authority 627

Creating a custom trust manager configuration . 628

Creating a custom key manager . 634

Associating a Secure Sockets Layer configuration dynamically with an outbound protocol and

remote secure endpoint . 640

Quality of protection (QoP) settings . 649

ssl.client.props client configuration file . 651

Create a CA client . 658

Delete a CA client . 658

View or modify a CA client . 659

Creating a keystore configuration for a preexisting keystore file 660

Recreating the .kdb keystore internal password record 661

Configuring a hardware cryptographic keystore . 661

Managing keystore configurations remotely . 662

Keystores and certificates collection . 663

Key store settings . 665

Key managers collection . 667

vi Securing applications and their environment

Key managers settings . 667

Creating a self-signed certificate . 668

Replacing an existing self-signed certificate . 669

Creating a certificate authority request . 670

Certificate request settings . 671

Personal certificates collection . 671

Self-signed certificates settings . 672

Personal certificate requests collection . 675

Personal certificate requests settings . 676

Extract certificate request . 677

Receiving a certificate issued by a certificate authority 677

Replace a certificate . 681

Extracting a signer certificate from a personal certificate 682

Extract certificate . 682

Extract signer certificate . 683

Retrieving signers using the retrieveSigners utility at the client 683

Changing the signer auto-exchange prompt at the client 684

Retrieving signers from a remote SSL port . 686

Retrieve from port . 686

Adding a signer certificate to a keystore . 687

Add signer certificate settings . 688

Signer certificates collection . 688

Signer certificate settings . 689

Adding a signer certificate to the default signers keystore 690

Exchanging signer certificates . 691

Keystores and certificates exchange signers . 692

Configuring certificate expiration monitoring . 693

Manage certificate expiration settings . 694

Notifications . 695

Notifications settings . 696

Key management for cryptographic uses . 697

Creating a key set configuration . 698

Active key history collection . 700

Add key alias reference settings . 700

Key sets collection . 701

Key sets settings . 701

Creating a key set group configuration . 703

Example: Retrieving the generated keys from a key set group 704

Example: Developing a key or key pair generation class for automated key generation 705

Key set groups collection . 708

Key set groups settings . 709

Chapter 8. Developing extensions to the WebSphere security infrastructure 711

Developing standalone custom registries . 711

Creating a classes subdirectory in your profile for custom classes 712

Example: Standalone custom registries . 713

Result.java file . 714

UserRegistry.java files . 714

Implementing custom password encryption . 721

Developing applications that use programmatic security 722

Protecting system resources and APIs (Java 2 security) 722

Developing with programmatic security APIs for Web applications 744

Developing with programmatic APIs for EJB applications 749

Customizing Web application login . 753

Example: Form login . 756

Developing servlet filters for form login processing 758

Contents vii

Secure transports with JSSE and JCE programming interfaces 763

Configuring Federal Information Processing Standard Java Secure Socket Extension files 767

Implementing tokens for security attribute propagation 769

Implementing a custom propagation token . 769

Implementing a custom authorization token . 778

Implementing a custom single sign-on token . 786

Implementing a custom authentication token . 796

Propagating a custom Java serializable object . 805

Enabling a plugpoint for custom password encryption 808

Plug point for custom password encryption . 809

Chapter 9. Auditing the security infrastructure . 813

Enabling the security auditing subsystem . 814

Security Auditing detail . 816

Context object fields . 817

Creating security auditing event type filters . 820

Auditable security events . 821

Event type filter settings . 821

Event type filters collection . 822

Example: Generic Event Interface . 823

Context objects for security auditing . 824

Context object fields . 824

Configuring security audit subsystem failure notifications 827

Audit monitor collection . 828

Audit notification settings . 829

Configuring the default audit service providers for security auditing 830

Audit service provider collection . 831

Audit service provider settings . 831

Example: Base Generic Emitter Interface . 832

Configuring a third party audit service providers for security auditing 832

Example: Base Generic Emitter Interface . 833

Configuring audit event factories for security auditing 834

Audit event factory configuration collection . 835

Audit event factory settings . 835

Example: Generic Event Factory Interface . 836

Protecting your security audit data . 837

Encrypting your security audit records . 838

Signing your security audit records . 839

Audit encryption keystores and certificates collection 840

Audit record encryption configuration settings . 840

Audit record signing configuration settings . 841

Audit record keystore settings . 842

Using the audit reader . 843

Example: Audit Event Outcome Codes . 845

Chapter 10. Configuring security with scripting . 849

Enabling and disabling security using scripting . 849

Enabling and disabling Java 2 security using scripting 851

Configuring multiple security domains using scripting 852

Configuring security domains using scripting . 853

Configuring local operating system user registries using scripting 854

Configuring custom user registries using scripting 856

Configuring JAAS login modules using scripting . 858

Configuring Common Secure Interoperability authentication using scripting 860

Configuring trust association using scripting . 862

Mapping resources to security domains using scripting 862

viii Securing applications and their environment

Removing resources from security domains using scripting 863

Removing security domains using scripting . 864

Removing user registries using scripting . 864

SecurityDomainCommands command group for the AdminTask object 865

SecurityConfigurationCommands command group for the AdminTask object 872

SecurityRealmInfoCommands command group for the AdminTask object 912

NamingAuthzCommands command group for the AdminTask object 918

Utility scripts . 923

Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility 928

Securing communications using the wsadmin tool . 930

Creating an SSL configuration at the node scope using scripting 930

Automating SSL configurations using scripting . 933

Updating default key store passwords using scripting 935

Configuring certificate authority client objects using the wsadmin tool 936

Administering certificate authority clients using the wsadmin tool 937

Setting a certificate authority certificate as the default certificate using the wsadmin tool 939

Creating certificate authority (CA) personal certificates using the wsadmin tool 942

Revoking certificate authority personal certificates using the wsadmin tool 944

CAClientCommands command group for the AdminTask object 945

Creating self-signed certificates using scripting . 949

keyManagerCommands command group for the AdminTask object 950

KeyStoreCommands command group for the AdminTask object 954

SSLConfigCommands command group for the AdminTask object 963

SSLConfigGroupCommands group for the AdminTask object 973

TrustManagerCommands command group for the AdminTask object 977

KeySetCommands command group for the AdminTask object 980

KeyReferenceCommands command group for the AdminTask object 986

KeySetGroupCommands command group for the AdminTask object 990

DynamicSSLConfigSelections command group for the AdminTask object 993

PersonalCertificateCommands command group for the AdminTask object 995

WSCertExpMonitorCommands command group for the AdminTask object 1011

SignerCertificateCommands command group for the AdminTask object 1016

CertificateRequestCommands command group of the AdminTask object 1021

Enabling authentication in the file transfer service using scripting 1025

Propagating security policy of installed applications to a JACC provider using wsadmin scripting 1026

JACCUtilityCommands command group for the AdminTask object 1027

Configuring custom adapters for federated repositories using wsadmin 1029

Disabling embedded Tivoli Access Manager client using wsadmin 1031

Configuring security auditing using scripting . 1032

Configuring audit service providers using scripting 1033

Configuring audit event factories using scripting 1034

Configuring auditable events using scripting . 1036

Enabling security auditing using scripting . 1037

Configuring security audit notifications using scripting 1039

Encrypting security audit data using scripting . 1040

Signing security audit data using scripting . 1042

AuditKeyStoreCommands command group for the AdminTask object 1043

AuditEmitterCommands for the AdminTask object 1049

AuditSigningCommands command group for the AdminTask object 1059

AuditEncryptionCommands command group for the AdminTask object 1065

AuditEventFactoryCommands for the AdminTask object 1081

AuditFilterCommands command group for the AdminTask object 1089

AuditNotificationCommands command group for the AdminTask object 1103

AuditPolicyCommands command group for the AdminTask object 1114

AuditEventFormatterCommands command group for the AdminTask object 1123

AuditReaderCommands command group for the AdminTask object 1124

Contents ix

SSLMigrationCommands command group for the AdminTask object 1126

IdMgrConfig command group for the AdminTask object 1130

IdMgrRepositoryConfig command group for the AdminTask object 1135

IdMgrRealmConfig command group for the AdminTask object 1182

WIMManagementCommands command group for the AdminTask object 1190

DescriptivePropCommands command group for the AdminTask object 1202

ManagementScopeCommands command group for the AdminTask object 1205

AuthorizationGroupCommands command group for the AdminTask object 1207

ChannelFrameworkManagement command group for the AdminTask object 1219

SpnegoTAICommands group for the AdminTask object (deprecated) 1222

The Kerberos configuration file . 1227

SPNEGO Web authentication configuration commands 1230

SPNEGO Web authentication filter commands . 1231

Kerberos authentication commands . 1234

Chapter 11. Tuning, hardening, and maintaining 1239

Tuning security configurations . 1239

Secure Sockets Layer performance tips . 1242

Tuning security . 1244

Hardening security configurations . 1244

Securing passwords in files . 1245

Password encoding and encryption . 1245

Encoding passwords in files . 1248

Enabling custom password encryption . 1255

Backing up security configuration files . 1257

Chapter 12. Troubleshooting security configurations 1259

Security components troubleshooting tips . 1259

Security configuration and enablement errors . 1270

Security enablement followed by errors . 1273

Access problems after enabling security . 1278

Secure Sockets Layer errors . 1283

Single sign-on configuration troubleshooting tips . 1286

Enterprise Identity Mapping troubleshooting tips . 1288

Security authorization provider troubleshooting tips 1290

Password decoding troubleshooting tips . 1294

SPNEGO trust association interceptor (TAI) troubleshooting tips (deprecated) 1294

Appendix. Directory conventions . 1301

Notices . 1303

Trademarks and service marks . 1305

x Securing applications and their environment

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail

form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax

them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information

in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2008 xi

xii Securing applications and their environment

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The

information center is the official delivery format for IBM WebSphere Application Server documentation. If

you use the PDF books primarily for convenient printing, it is now easier to print various parts of the

information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon

is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation

tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a

separate browser window as one HTML file. The HTML file includes each of the topics in the section,

with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your

selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a

preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book

delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF

format more frequently. During a temporary transition phase, you might experience broken links. During

the transition phase, expect the following link behavior:

v Links to Web addresses beginning with http:// work

v Links that refer to specific page numbers within the same PDF book work

v The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2008 xiii

xiv Securing applications and their environment

Chapter 1. Overview and new features for securing

applications and their environment

Use the links provided in this topic to learn more about the security infrastructure.

What is new for security specialists

 This topic provides an overview of new and changed features in security.

Security

 This topic describes how IBM® WebSphere® Application Server provides security infrastructure and

mechanisms to protect sensitive Java™ Platform, Enterprise Edition (Java EE) resources and

administrative resources and to address enterprise end-to-end security requirements on

authentication, resource access control, data integrity, confidentiality, privacy, and secure

interoperability.

“Security planning overview”

 Several communication links are provided from a browser on the Internet, through Web servers

and product servers, to the enterprise data at the back-end. This topic examines some typical

configurations and common security practices. WebSphere Application Server security is built on a

layered security architecture. This section also examines the security protection offered by each

security layer and common security practice for good quality of protection in end-to-end security.

Samples

 The Samples Gallery offers:

v Login - Form Login

The Form Login Sample demonstrates a very simple

example of how to use the login facilities for

WebSphere Application Server to implement and

configure login applications. The Sample uses the Java

Platform, Enterprise Edition (Java EE) form-based login

technology to customize the look and feel of the login

screens. It uses servlet filters to log the user

information and the date information. The Sample

finishes the session by using the form-based logout

function, an IBM extension to the Java EE specification.

v Login - JAAS Login

The JAAS Login Sample demonstrates how to use the

Java Authentication and Authorization Service (JAAS)

with WebSphere Application Server. The Sample uses

server-side login with JAAS to authenticate a real user

to the WebSphere security run time. Based upon a

successful login, the WebSphere security run time uses

the authenticated Subject to perform authorization

checks on a protected stateless session enterprise

bean. If the Sample runs successfully, it displays all the

principals and public credentials of the authenticated

user.

Security planning overview

When you access information on the Internet, you connect through Web servers and product servers to

the enterprise data at the back end. This section examines some typical configurations and common

security practices.

© IBM Corporation 2003, 2008 1

This section also examines the security protection that is offered by each security layer and common

security practice for good quality of protection in end-to-end security. The following figure illustrates the

building blocks that comprise the operating environment for security within WebSphere Application Server:

WebSphere Application Server resources

Access control

WebSphere Application Server security

Java security

Platform security

WebSphere security

J2EE security API

CORBA security (CSIv2)

Java 2 security

Java virtual machine (JVM) Version 5.0

Operating system security

- Naming

- User r egistry

- JMX m essage

beans

- HTML

- Servlet or JSP file

- Enterprise beans

- Web services

WebSphere security layers

Network security

The following information describes each of the components of WebSphere Application Server security,

Java security, and Platform security that are illustrated in the previous figure.

WebSphere Application Server security

WebSphere security

WebSphere Application Server security enforces security policies and services in a unified

manner on access to Web resources, enterprise beans, and JMX administrative resources.

It consists of WebSphere Application Server security technologies and features to support

the needs of a secure enterprise environment.

Java security

Java Platform, Enterprise Edition (Java EE) security application programming interface

(API) The security collaborator enforces Java Platform, Enterprise Edition (Java EE)-based

security policies and supports Java EE security APIs.

CORBA security (CSIv2)

Any calls made among secure Object Request Brokers (ORB) are invoked over the

Common Security Interoperability Version 2 (CSIv2) security protocol that sets up the

security context and the necessary quality of protection. After the session is established,

the call is passed up to the enterprise bean layer.

Java 2 security

The Java 2 Security model offers fine-grained access control to system resources

including file system, system property, socket connection, threading, class loading, and so

on. Application code must explicitly grant the required permission to access a protected

resource.

Java Virtual Machine (JVM) 5.0

The JVM security model provides a layer of security above the operating system layer. For

example, JVM security protects the memory from unrestricted access, creates exceptions

when errors occur within a thread, and defines array types.

2 Securing applications and their environment

Platform security

Operating system security

 The security infrastructure of the underlying operating system provides certain security

services for WebSphere Application Server. These services include the file system security

support that secures sensitive files in the product installation for WebSphere Application

Server. The system administrator can configure the product to obtain authentication

information directly from the operating system user registry.

Network security

The Network Security layers provide transport level authentication and message integrity

and confidentiality. You can configure the communication between separate application

servers to use Secure Sockets Layer (SSL). Additionally, you can use IP Security and

Virtual Private Network (VPN) for added message protection.

Each product application server consists of a Web container, an Enterprise Java Beans (EJB) container,

and the administrative subsystem.

The administrative console is a special Java EE Web application that provides the interface for performing

administrative functions. WebSphere Application Server configuration data is stored in XML descriptor files,

which must be protected by operating system security. Passwords and other sensitive configuration data

can be modified using the administrative console. However, you must protect these passwords and

sensitive data. For more information, see “Encoding passwords in files” on page 1248.

The administrative console Web application has a setup data constraint that requires access to the

administrative console servlets and JavaServer Pages (JSP) files only through an SSL connection when

administrative security is enabled.

In WebSphere Application Server Version 6.0.x and earlier, the administrator console HTTPS port was

configured to use DummyServerKeyFile.jks and DummyServerTrustFile.jks with the default self- signed

certificate. The dummy certificates and keys must be replaced immediately after WebSphere Application

Server installation; the keys are common in all of the installation and are therefore insecure. WebSphere

Application Server Version 6.1 provides integrated certificate and key management, which generate distinct

private key and self-signed certificate with embedded server host name to enable host name verification.

WebSphere Application Server Version 6.1 also enables integration with external certificate (CA) authority

to use CA-issued certificates. The WebSphere Application Servers Version 6.1 installation process

provides an option to enable administrative security during installation. As a result, a WebSphere

Application Server process is secured immediately after installation. WebSphere Application Server Version

7.0 extends the embedded certificate management capabilities by creating a chained certificate (personal

certificate signed by a root certificate) to enable refresh of the personal certificate without affecting the

trust established. It also enables tailoring of the certificate during profile creation (you can import your own

or change the distinguished name (DN) of the one created by default) as well as the ability to change the

default keystore password.

Administrative security

WebSphere Application Servers interact with each other through CSIv2 and Secure Authentication

Services (SAS) security protocols as well as the HTTP and HTTPS protocols.

Note: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

You can configure these protocols to use Secure Sockets Layer (SSL) when you enable WebSphere

Application Serveradministrative security. The WebSphere Application Server administrative subsystem in

every server uses SOAP, Java Management Extensions (JMX) connectors and Remote Method Invocation

Chapter 1. Overview and new features: Securing 3

over the Internet Inter-ORB Protocol (RMI/IIOP) JMX connectors to pass administrative commands and

configuration data. When administrative security is disabled, the SOAP JMX connector uses the HTTP

protocol and the RMI/IIOP connector uses the TCP/IP protocol. When administrative security is enabled,

the SOAP JMX connector always uses the HTTPS protocol. When administrative security is enabled, you

can configure the RMI/IIOP JMX connector to either use SSL or to use TCP/IP. It is recommended that

you enable administrative security and enable SSL to protect the sensitive configuration data.

Security for Java EE resources

Security for Java EE resources is provided by the Web container and the EJB container. Each container

provides two kinds of security: declarative security and programmatic security.

In declarative security, an application security structure includes network message integrity and

confidentiality, authentication requirements, security roles, and access control. Access control is expressed

in a form that is external to the application. In particular, the deployment descriptor is the primary vehicle

for declarative security in the Java EE platform. WebSphere Application Server maintains Java EE security

policy, including information that is derived from the deployment descriptor and specified by deployers and

administrators in a set of XML descriptor files. At runtime, the container uses the security policy that is

defined in the XML descriptor files to enforce data constraints and access control.

When declarative security alone is not sufficient to express the security model of an application, you might

use programmatic security to make access decisions. When administrative security is enabled and

application server security is not disabled at the server level, Java EE applications security is enforced.

When the security policy is specified for a Web resource, the Web container performs access control when

the resource is requested by a Web client. The Web container challenges the Web client for authentication

data if none is present according to the specified authentication method, ensures that the data constraints

are met, and determines whether the authenticated user has the required security role. The Web security

collaborator enforces role-based access control by using an access manager implementation. An access

manager makes authorization decisions that are based on security policy derived from the deployment

descriptor. An authenticated user principal can access the requested servlet or JSP file if the user principal

has one of the required security roles. Servlets and JSP files can use the HttpServletRequest methods,

isUserInRole and getUserPrincipal.

When administrative security and application security are enabled, and the application server level

application security is not disabled, the EJB container enforces access control on EJB method invocation.

The authentication occurs regardless of whether method permission is defined for the specific EJB

method. The EJB security collaborator enforces role-based access control by using an access manager

implementation. An access manager makes authorization decisions that are based on security policy

derived from the deployment descriptor. An authenticated user principal can access the requested EJB

method if it has one of the required security roles. EJB code can use the EJBContext methods,

isCallerInRole and getCallerPrincipal. Use the Java EE role-based access control to protect valuable

business data from access by unauthorized users through the Internet and the intranet. Refer to Securing

Web applications using an assembly tool, and Securing enterprise bean applications.

Role-based security

WebSphere Application Server extends the security, role-based access control to administrative resources

including the JMX system management subsystem, user registries, and Java Naming and Directory

Interface (JNDI) name space. WebSphere administrative subsystem defines four administrative security

roles:

Monitor role

A monitor can view the configuration information and status but cannot make any changes.

4 Securing applications and their environment

Operator role

An operator can trigger run-time state changes, such as start an application server or stop an

application but cannot make configuration changes.

Configurator role

A configurator can modify the configuration information but cannot change the state of the runtime.

Administrator role

An operator as well as a configurator, which additionally can modify sensitive security configuration

and security policy such as setting server IDs and passwords, enable or disable administrative

security and Java 2 security, and map users and groups to the administrator role.

iscadmins

The iscadmins role has administrator privileges for managing users and groups from within the

administrative console only.

WebSphere Application Server defines two additional roles that are available when you use wsadmin

scripting only.

Deployer

A deployer can perform both configuration actions and run-time operations on applications.

Adminsecuritymanager

An administrative security manager can map users to administrative roles. Also, when fine grained

admin security is used, users granted this role can manage authorization groups.

Auditor

An auditor can view and modify the configuration settings for the security auditing subsystem.

A user with the configurator role can perform most administrative work including installing new applications

and application servers. Certain configuration tasks exist that a configurator does not have sufficient

authority to do when administrative security is enabled, including modifying a WebSphere Application

Server identity and password, Lightweight Third-Party Authentication (LTPA) password and keys, and

assigning users to administrative security roles. Those sensitive configuration tasks require the

administrative role because the server ID is mapped to the administrator role.

Enable WebSphere Application Server administrative security to protect administrative subsystem integrity.

Application server security can be selectively disabled if no sensitive information is available to protect. For

securing administrative security, refer to “Authorizing access to administrative roles” on page 546 and

Assigning users and groups to roles.

Java 2 security permissions

WebSphere Application Server uses the Java 2 security model to create a secure environment to run

application code. Java 2 security provides a fine-grained and policy-based access control to protect

system resources such as files, system properties, opening socket connections, loading libraries, and so

on. The Java EE Version 1.4 specification defines a typical set of Java 2 security permissions that Web

and EJB components expect to have. These permissions are shown in the following table.

 Table 1. Java EE security permissions set for Web components

Security Permission Target Action

java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.io.FilePermission * read, write

java.util.PropertyPermission * read

Chapter 1. Overview and new features: Securing 5

Table 2. Java EE security permissions set for EJB components

Security Permission Target Action

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.util.PropertyPermission * read

The WebSphere Application Server Java 2 security default policies are based on the Java EE Version 1.4

specification. The specification grants Web components read and write file access permission to any file in

the file system, which might be too broad. The WebSphere Application Server default policy gives Web

components read and write permission to the subdirectory and the subtree where the Web module is

installed. The default Java 2 security policies for all Java virtual machines and WebSphere Application

Server processes are contained in the following policy files:

/QIBM/ProdData/Java400/jdk15/lib/security/java.policy

Used as the default policy for the Java virtual machine (JVM).

${USER_INSTALL_ROOT}/properties/server.policy

This file is used as the default policy for all product server processes.

To simplify policy management, WebSphere Application Server policy is based on resource type rather

than code base (location). The following files are the default policy files for a WebSphere Application

Server subsystem. These policy files, which are an extension of the WebSphere Application Server

runtime, are referred to as Service Provider Programming Interfaces (SPI), and shared by multiple Java

EE applications:

v profile_root/config/cells/cell_name/nodes/node_name/spi.policy

Used for embedded resources defined in the resources.xml file, such as the Java Message Service

(JMS), JavaMail, and JDBC drivers.

v profile_root/config/cells/cell_name/nodes/node_name/library.policy

Used by the shared library that is defined by the WebSphere Application Server administrative console.

v profile_root/config/cells/cell_name/nodes/node_name/app.policy

Used as the default policy for Java EE applications.

In general, applications do not require more permissions to run than those recommended by the Java EE

specification to be portable among various application servers. However, some applications might require

more permissions. WebSphere Application Server supports the packaging of a was.policy file with each

application to grant extra permissions to that application.

Note: Grant extra permissions to an application only after careful consideration because of the potential of

compromising the system integrity.

Loading libraries into WebSphere Application Server does allow applications to leave the Java sandbox.

WebSphere Application Server uses a permission filtering policy file to alert you when an application

installation fails because of additional permission requirements. For example, it is recommended that you

not give the java.lang.RuntimePermission exitVM permission to an application so that application code

cannot terminate WebSphere Application Server.

The filtering policy is defined by the filtermask in the profile_root/config/cells/cell_name/filter.policy file.

Moreover, WebSphere Application Server also performs run-time permission filtering that is based on the

run-time filtering policy to ensure that application code is not granted a permission that is considered

harmful to system integrity.

Therefore, many applications developed for prior releases of WebSphere Application Server might not be

Java 2 security ready. To quickly migrate those applications to the latest version of WebSphere Application

6 Securing applications and their environment

Server, you might temporarily give those applications the java.security.AllPermission permission in the

was.policy file. Test those applications to ensure that they run in an environment where Java 2 security is

active. For example, identify which extra permissions, if any, are required, and grant only those

permissions to a particular application. Not granting the AllPermission permission to applications can

reduce the risk of compromising system integrity. For more information on migrating applications, refer to

“Migrating Java 2 security policy” on page 24.

The WebSphere Application Server runtime uses Java 2 security to protect sensitive run-time functions.

Applications that are granted the AllPermission permission not only have access to sensitive system

resources, but also WebSphere Application Server run-time resources and can potentially cause damage

to both. In cases where an application can be trusted as safe, WebSphere Application Server does support

having Java 2 security disabled on a per application server basis. You can enforce Java 2 security by

default in the administrative console and clear the Java 2 security flag to disable it at the particular

application server.

When you specify the Enable administrative security and Use Java 2 security to restrict application

access to local resources options on the Global security panel of the administrative console, the

information and other sensitive configuration data, are stored in a set of XML configuration files. Both

role-based access control and Java 2 security permission-based access control are employed to protect

the integrity of the configuration data. The example uses configuration data protection to illustrate how

system integrity is maintained.

Note: The Enable global security option in previous releases of WebSphere Application Server is the

same as the Enable administrative security option in Version 7.0. Also, the Enable Java 2

security option in previous releases is the same as the Use Java 2 security to restrict

application access to local resources option in Version 7.0.

v When Java 2 security is enforced, the application code cannot access the WebSphere Application

Server run-time classes that manage the configuration data unless the code is granted the required

WebSphere Application Server run-time permissions.

v When Java 2 security is enforced, application code cannot access the WebSphere Application Server

configuration XML files unless the code is granted the required file read and write permission.

v The JMX administrative subsystem provides SOAP over HTTP or HTTPS and a RMI/IIOP remote

interface to enable application programs to extract and to modify configuration files and data. When

administrative security is enabled, an application program can modify the WebSphere Application Server

configuration if the application program has presented valid authentication data and the security identity

has the required security roles.

v If a user can disable Java 2 security, the user can also modify the WebSphere Application Server

configuration, including the WebSphere Application Server security identity and authentication data with

other sensitive data. Only users with the administrator security role can disable Java 2 security.

v Because WebSphere Application Server security identity is given to the administrator role, only users

with the administrator role can disable administrative security, change server IDs and passwords, and

map users and groups to administrative roles, and so on.

Other Runtime resources

Other WebSphere Application Server run-time resources are protected by a similar mechanism, as

described previously. It is very important to enable WebSphere Application Server administrative security

and to use Java 2 security to restrict application access to local resources. Java EE Specification defines

several authentication methods for Web components: HTTP Basic Authentication, Form-Based

Authentication, and HTTPS Client Certificate Authentication. When you use client certificate login, it is

more convenient for the browser client if the Web resources have integral or confidential data constraint. If

a browser uses HTTP to access the Web resource, the Web container automatically redirects the browser

to the HTTPS port. The CSIv2 security protocol also supports client certificate authentication. You can also

use SSL client authentication to set up secure communication among a selected set of servers based on a

trust relationship.

Chapter 1. Overview and new features: Securing 7

If you start from the WebSphere Application Server plug-in at the Web server, you can configure SSL

mutual authentication between it and the WebSphere Application Server HTTPS server. When using a

certificate, you can restrict the WebSphere Application Server plug-in to communicate with only the

selected two WebSphere Application Servers as shown in the following figure. Note that you can use

self-signed certificates to reduce administration and cost.

For example, you want to restrict the HTTPS server in WebSphere Application Server A and in

WebSphere Application Server B to accept secure socket connections only from the WebSphere

Application Server plug-in W.

v To complete this task, you can generate three certificates using the IKEYMAN and the certificate

management utilities. Also, you can use certificate W and trust certificate A and B. Configure the

HTTPS server of WebSphere Application Server A to use certificate A and to trust certificate W.

Configure the HTTPS server of WebSphere Application Server B to use certificate B and to trust certificate

W.

The trust relationship that is depicted in the previous figure is shown in the following table.

 Server Key Trust

WebSphere Application Server plug-in W A, B

WebSphere Application Server A A W

WebSphere Application Server B B W

When WebSphere Application Server is configured to use Lightweight Directory Access Protocol (LDAP)

user registry, you also can configure SSL with mutual authentication between every application server and

the LDAP server with self-signed certificates so that a password is not visible when it is passed from

WebSphere Application Server to the LDAP server.

Browser

In
te

rn
e
t

Demilitarized zone

(DMZ)
DB2 Version

8.2 Fix Pack 3

MQ

CICS

IBM Tivoli

Directory Server

(LDAP)

Intranet

Enterprise

information

systems

D
o
m

a
in

fi
re

w
a
ll

P
ro

to
c
o
l
fi
re

w
a
ll

WebSphere

Application

Server A

Web

server

WebSphere

Application

Server plug-in

Administrative

WebSphere

Application

Server C

Administrative

WebSphere

Application

Server D

Administrative

WebSphere

Application

Server B

Administrative

WebSphere

Application Server

administrative

console

Browse

E

W

8 Securing applications and their environment

WebSphere Application Server does not provide a registry configuration or management utility. In addition,

it does not dictate the registry password policy. It is recommended that you use the password policy

recommended by your registry, including the password length and expiration period.

Before securing your WebSphere Application Server environment, determine which versions of WebSphere

Application Server you are using, review the WebSphere Application Server security architecture, and

review each of the following topics:

v “Authentication protocol support” on page 489

v “Common Secure Interoperability Version 2 features” on page 490

v “Identity assertion to the downstream server” on page 490

v “Selecting an authentication mechanism” on page 225

– “Simple WebSphere authentication mechanism (deprecated)” on page 266

The Simple WebSphere Authentication Mechanism (SWAM) is deprecated in WebSphere Application

Server Version 7.0. It will be removed in a future release. As an alternative, it is recommended that

you use Lightweight Third Party Authentication (LTPA).

– “Lightweight Third Party Authentication” on page 227

– “Trust associations” on page 267

– “Single sign-on using LTPA cookies” on page 273
v “Selecting a registry or repository” on page 93

– “Local operating system registries” on page 218

– “Standalone Lightweight Directory Access Protocol registries” on page 219
v “Java 2 security” on page 32

– “Java 2 security policy files” on page 36
v “Java Authentication and Authorization Service” on page 358

– “Programmatic login” on page 381
v J2EE connector security

v “Access control exception” on page 40

– “Role-based authorization” on page 502

– “Administrative roles and naming service authorization” on page 496

Chapter 1. Overview and new features: Securing 9

10 Securing applications and their environment

Chapter 2. Task overview: Securing resources

WebSphere Application Server supports the Java Platform, Enterprise Edition (Java EE) model for

creating, assembling, securing, and deploying applications. Applications are often created, assembled, and

deployed in different phases and by different teams.

About this task

You can secure resources in a Java EE environment by following the required high-level steps. Consult

the Java EE specifications for complete details.

v Set up and enable security. You must address several issues prior to authenticating users, authorizing

access to resources, securing applications, and securing communications. These security issues include

migration, interoperability, and installation. After installing WebSphere Application Server, you must

determine the proper level of security that is needed for your environment. For more information, see

Chapter 3, “Setting up and enabling security,” on page 13.

v Configure multiple domains. Security domains enable you to define multiple security configurations for

use in your environment. For example, you can define different security (such as a different user

registry) for user applications than for administrative applications. You can also define separate security

configurations for user applications deployed to different servers and clusters. For more information, see

Chapter 4, “Configuring multiple security domains,” on page 57

v Authenticate users. The process of authenticating users involves a user registry and an authentication

mechanism. Optionally, you can define trust between WebSphere Application Server and a proxy server,

configure single sign-on capability, and specify how to propagate security attributes between application

servers. For more information, see Chapter 5, “Authenticating users,” on page 93.

v Authorize access to resources. WebSphere Application Server provides many different methods for

authorizing accessing resources. For example, you can assign roles to users and configure a built-in or

external authorization provider. For more information, see Chapter 6, “Authorizing access to resources,”

on page 495.

v Secure communications. WebSphere Application Server provides several methods to secure

communication between a server and a client. For more information, see Chapter 7, “Securing

communications,” on page 573.

v Develop extensions to the WebSphere security infrastructure. WebSphere Application Server provides

various plug points so that you can extend the security infrastructure. For more information, see

Chapter 8, “Developing extensions to the WebSphere security infrastructure,” on page 711.

v Use the Auditing Facility to track and archive auditable events to ensure the integrity of your system.

For more information, see Chapter 9, “Auditing the security infrastructure,” on page 813

v Secure various types of WebSphere applications. See Securing WebSphere applications for tasks

involving developing, deploying, and administering secure applications, including Web applications, Web

services, and many other types. This section highlights the security concerns and tasks that are specific

to each type of application.

v Tune, harden, and maintain security configurations. After you have installed WebSphere Application

Server, there are several considerations for tuning, strengthening, and maintaining your security

configuration. For more information, see Chapter 11, “Tuning, hardening, and maintaining,” on page

1239.

v Troubleshoot security configurations. For more information, see Chapter 12, “Troubleshooting security

configurations,” on page 1259.

Results

Your applications and production environment are secured.

© Copyright IBM Corp. 2008 11

Example

See Security: Resources for learning for more information on the WebSphere Application Server security

architecture.

12 Securing applications and their environment

Chapter 3. Setting up and enabling security

You must address several issues prior to authenticating users, authorizing access to resources, securing

applications, and securing communications. These security issues include migration, interoperability, and

installation.

About this task

After installing WebSphere Application Server, you can determine the proper level of security that is

needed for your environment. By default, administrative security is enabled and provides the authentication

of users using the WebSphere administration functions, the use of Secure Sockets Layer (SSL), and the

choice of user account repository.

The following information is covered in this section:

Enable security for all your application servers or for specific application servers in your realm.

For more information, see “Enabling security” on page 28.

What to do next

After installing WebSphere Application Server and securing your environment, you must authenticate

users. For more information, see Chapter 5, “Authenticating users,” on page 93.

Migrating, coexisting, and interoperating – Security considerations

Use this topic to migrate the security configuration of previous WebSphere Application Server releases and

its applications to the new installation of WebSphere Application Server.

Before you begin

This information addresses the need to migrate your security configurations from a previous release of

IBM WebSphere Application Server to WebSphere Application Server 7.0 or later. Complete the following

steps to migrate your security configurations:

v If security is enabled in the previous release, obtain the administrative server ID and password of the

previous release. This information is needed in order to run certain migration jobs.

v You can optionally disable security in the previous release before migrating the installation. No logon is

required during the installation.

Follow the steps in ″Migrating product configurations″.

Results

The security configuration of previous WebSphere Application Server releases and its applications are

migrated to the new installation of WebSphere Application Server Version 7.0.

What to do next

If a custom user registry is used in the previous version, the migration process does not migrate the class

files that are used by the standalone custom registry in the previous app_server_root/classes directory.

Therefore, after migration, copy your custom user registry implementation classes to the

app_server_root/classes directory.

If you upgrade from WebSphere Application Server, Version 5.x to WebSphere Application Server Version

7.0, the data that is associated with Version 5.x trust associations is not automatically migrated. To migrate

trust associations, see “Migrating trust association interceptors” on page 18.

© IBM Corporation 2005, 2008 13

If the previous version instance is configured to enable secure connections using digital certificates that

are signed by the Digital Certificate Manager (DCM) local certificate authority, those certificates must be

renewed. For example, they must be renewed for the previous version instance, the WebSphere

Application Server Version 7.0 profile, and all of the Secure Socket Layer-enabled clients and servers that

connect to WebSphere Application Server. For more information, see SSL handshake failure using digital

certificates signed by a Digital Certificate Manager (DCM) local certificate authority.

i5/OS® *SYSTEM certificate stores for applications are deprecated in WebSphere Application Server

Version 5. In WebSphere Application Server Version 7.0, you must migrate your applications to use Java

keystores.

The os400.security.password.validation.list.object property is profile-dependent. If you are migrating from

Version 5, see “Migrating Java thin clients that use the password encoding algorithm” on page 28 for

instructions on how to migrate your client configuration.

Interoperating with previous product versions

IBM WebSphere Application Server inter-operates with the previous product versions. Use this topic to

configure this behavior.

Before you begin

The current release of the Application Server distinguishes the identities of the user who acts as an

administrator, managing the Application Server environment, from the identity of the user that is used for

authenticating between servers. In prior releases, the end user had to specify a server user ID and

password as the user identity for authenticating between servers. In the current release of the Application

Server, the server user ID is generated automatically and internally; however, the end user can specify that

the server user ID and password not be automatically generated. This option is especially important in the

case of a mixed-release cell, where the server user ID and password are specified in a down-level version

of the Application Server. In such a scenario, the end user should opt out of automatically generating the

server user ID and instead use the server user ID and password that is specified in the down-level version

of the Application Server, in order to ensure backwards compatibility.

Interoperability is achieved only when the Lightweight Third Party Authentication (LTPA) authentication

mechanism and a distributed user registry is used such as Lightweight Directory Access Protocol (LDAP)

or a distributed Custom user registry. LocalOS on most platforms is not considered a distributed user

registry (except on z/OS® within the z/OS environment). Also, the Simple WebSphere Authentication

Mechanism (SWAM) cannot be used for interoperability as it does not contain credentials that can be

forwarded outside of the existing process.

Note: SWAM was deprecated in WebSphere Application Server. Version 7.0 and will be removed in a

future release.

1. Configure WebSphere Application Server Version 7.0 with the same distributed user registry (that is,

LDAP or Custom) that is configured with the previous version. Make sure that the same LDAP user

registry is shared by all of the product versions.

a. In the administrative console, select Security > Global security.

b. Choose an available Realm definition and click Configure.

c. Enter a Primary administrative user name. This identity is the user with administrative privileges

that is defined in your local operating system. If you are not using the local OS ad the user registry,

select the Server identity that is stored in the user repository, enter the Server user ID, and the

associated password. The user name is used to log on to the administrative console when

administrative security is enabled. WebSphere Application Server Version 6.1 requires an

administrative user that is distinct from the server user identity so that administrative actions can be

audited.

14 Securing applications and their environment

http://www-1.ibm.com/support/docview.wss?rs=727&uid=swg21198366
http://www-1.ibm.com/support/docview.wss?rs=727&uid=swg21198366

Note: In WebSphere Application Server, Versions 5.x and 6.0.x, a single user identity is required

for both administrative access and internal process communication. When migrating to

Version 7.0, this identity is used as the server user identity. You need to specify another

user for the administrative user identity.

d. When interoperating with Version 6.0.x or previous versions, you must select the Server identity

that is stored in the user repository. Enter the Server user id and the associated Password.

2. Configure the LTPA authentication mechanism. Automatic generation of the LTPA keys should be

disabled. If not, keys used by a previous release are lost. Export the current LTPA keys from

WebSphere Application Server Version 7.0 and import them into the previous release.

a. In the administrative console select Security > Global security.

b. From Authentication mechanisms and expiration, click LTPA.

c. Click the Key set groups link , then click the key set group that displays in the Key set groups

panel.

d. Clear the Automatically generate keys check box.

e. Click OK, then click Authentication mechanisms and expiration in the path at the top of the Key

set groups panel.

f. Scroll down to the Cross-cell single sign-on section, and enter a password to use for encrypting the

LTPA keys when adding them to the file.

g. Enter the password again to confirm the password.

h. Enter the Fully qualified key file name that contains the exported keys.

i. Click Export keys.

j. Follow the instructions provided in the previous release to import the exported LTPA keys into that

configuration.

3. If you are using the default SSL configuration, extract all of the signer certificates from the WebSphere

Application Server Version 7.0 common trust store. Otherwise, extract signers where necessary to

import them into the previous release.

a. In the administrative console, click Security > SSL certificate and key management.

b. Click Key stores and certificates.

c. Click NodeDefaultTrustStore.

d. Click Signer certificates.

e. Select one signer and click Extract.

f. Enter a unique path and filename for the signer. For example, /tmp/signer1.arm.

g. Click OK. Repeat for all of the signers in the trust store.

h. Check other trust stores for other signers that might need to be shared with the other server.

Repeat steps e through h to extract the other signers.

You can also import a signer certificate, which is also called a certificate authority (CA) certificate, from

a truststore on a non-z/OS platform server to a z/OS keyring. the z/OS keyring contains the signer

certificates that originated on the non-z/OS platform server. For more information, see

4. Add the exported signers to DummyServerTrustFile.jks and DummyClientTrustFile.jks in the /etc

directory of the back-level product version. If the previous release is not using the dummy certificate,

the signer certificate(s) from the previous release must be extracted and added into the WebSphere

Application Server Version 7.0 release to enable SSL connectivity in both directions.

a. Open the key management utility, iKeyman, for that product version.

b. Start ikeyman.bat or ikeyman.sh from the ${USER_INSTALL_ROOT}/bin directory.

c. Select Key Database File > Open.

d. Open ${USER_INSTALL_ROOT}/etc/DummyServerTrustFile.jks.

e. Enter WebAS for the password.

Chapter 3. Setting up and enabling security 15

f. Select Add and enter one of the files extracted in step 2. Continue until you have added all of the

signers.

g. Repeat steps c through f for the DummyClientTrustFile.jks file.

5. Verify that the application uses the correct Java Naming and Directory Interface (JNDI) name and

naming bootstrap port for performing a naming lookup.

6. Stop and restart all of the servers.

Migrating custom user registries

If you built your own custom user registry, consider the migration items listed below. If you have a custom

user registry that was provided by a Security Solution Provider, you must contact that provider to ensure

that you have the correct version of their custom user registry to support WebSphere Application Server.

Before you begin

In WebSphere Application Server, in addition to the UserRegistry interface, the custom user registry

requires the Result object to handle user and group information. This file is already provided in the

package and you are expected to use it for the getUsers, getGroups, and the getUsersForGroup methods.

You cannot use other WebSphere Application Server components, for example, data sources, to initialize

the custom registry because other components, like the containers, are initialized after security and are not

available during the registry initialization. A custom registry implementation is a pure custom

implementation, independent of other WebSphere Application Server components.

The getCallerPrincipal enterprise bean method and the getUserPrincipal and getRemoteUser servlet

methods return the security name instead of the display name. For more information, see the API

documentation.

If the migration tool is used to migrate the WebSphere Application Server Version 5 configuration to

WebSphere Application Server Version 6.0.x and later, this migration does not change your existing code.

Because the WebSphere Application Server Version 5 custom registry works in WebSphere Application

Server Version 6.0.x and later without any changes to the implementation, except when using data

sources, you can use the Version 5-based custom registry after the migration without modifying the code.

In WebSphere Application Server Version 6.0.x and later, a case-insensitive authorization can occur when

using an enabled custom user registry.

Setting this flag does not have any effect on the user names or passwords. Only the unique IDs that are

returned from the registry are changed to lower-case before comparing them with the information in the

authorization table, which is also converted to lowercase during runtime.

Before proceeding, look at the UserRegistry interface. See “Developing standalone custom registries” on

page 711 for a description of each of these methods in detail.

About this task

The following steps go through all the changes that are required to move your WebSphere Application

Server Version 4.x custom user registry that implemented the old

com.ibm.websphere.security.CustomRegistry interface to the com.ibm.websphere.security.UserRegistry

interface.

Note: The sample implementation file is used as an example when describing the following steps.

 1. Change your implementation to UserRegistry instead of CustomRegistry. Change:

public class FileRegistrySample implements CustomRegistry

16 Securing applications and their environment

to:

public class FileRegistrySample implements UserRegistry

 2. Create the java.rmi.RemoteException exception in the constructors:

public FileRegistrySample() throws java.rmi.RemoteException

 3. Change the mapCertificate method to take a certificate chain instead of a single certificate. Change

public String mapCertificate(X509Certificate cert)

to:

public String mapCertificate(X509Certificate[]cert)

Having a certificate chain gives you the flexibility to act on the chain instead of one certificate. If you

are interested only in the first certificate, take the first certificate in the chain before processing. In

WebSphere Application Server Version 6.0.x and later, the mapCertificate method is called to map the

user in a certificate to a valid user in the registry when certificates are used for authentication by the

Web or the Java clients.

 4. Remove the getUsers method.

 5. Change the signature of the getUsers(String) method to return a Result object and accept an

additional parameter (int). Change:

public List getUsers(String pattern)

to:

public Result getUsers(String pattern, int limit)

In your implementation, construct the Result object from the list of the users that is obtained from the

user registry (whose number is limited to the value of the limit parameter) and call the setHasMore

method on the Result object if the total number of users in the registry exceeds the limit value.

 6. Change the signature of the getUsersForGroup(String) method to return a Result object and accept

an additional parameter (int) and throw a new exception called NotImplementedException exception.

Change the following code:

public List getUsersForGroup(String groupName)

 throws CustomRegistryException,

 EntryNotFoundException {

to:

public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException {

In WebSphere Application Server Version 6.0.x and later, this method is not called directly by the

WebSphere Application Server security component. However, other components of WebSphere

Application Server, like the WebSphere Business Integration Server Foundation process

choreographer, use this method when staff assignments are modeled using groups. Because this

implementation is supported in WebSphere Application Server Version 6.0.x and later, it is

recommended that you change the implementation similar to the getUsers method as explained in

step 5.

 7. Remove the getUniqueUserIds(String) method.

 8. Remove the getGroups method.

 9. Change the signature of the getGroups(String) method to return a Result object and accept an

additional parameter (int). Change the following code:

public List getGroups(String pattern)

to:

public Result getGroups(String pattern, int limit)

Chapter 3. Setting up and enabling security 17

In your implementation, construct the Result object from the list of the groups that is obtained from

the user registry whose number is limited to the value of the limit parameter. Call the setHasMore

method on the Result object if the total number of groups in the registry exceeds the limit value.

10. Add the createCredential method. This method is not called at this time, so return as null.

public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws CustomRegistryException,

 NotImplementedException,

 EntryNotFoundException {

 return null;

 }

The first and second lines of the previous code example are split onto two lines for illustrative

purposes only.

11. To build the WebSphere Application Server Version 6.0.x and later implementation, make sure you

have the com.ibm.ws.runtime.jar file in your class path.

To set the files in your class path, use the following code as a sample and substitute your

environment values for the variables that are used in the example:

javac -J-Djava.version=1.6 -classpath

app_server_root/plugins/com.ibm.ws.runtime.jar FileRegistrySample.java

Type the previous lines as one continuous line.

To build the WebSphere Application Server Version 5 custom registry (CustomRegistry) in WebSphere

Application Server Version 6.0.x and later, only the com.ibm.ws.runtime.jar file is required.

12. Copy the implementation classes to the product class path.

It is recommended that you copy these implementation classes to the profile_root/classes

directory.

13. Use the administrative console to set up the custom registry.

Follow the instructions in “Configuring standalone custom registries” on page 123 to set up the

custom registry, including the Ignore case for authorization option. Make sure that you add the

WAS_UseDisplayName properties if required.

Results

WebSphere Application Server Version 4.x based custom user registry that implemented the old

com.ibm.websphere.security.CustomRegistry interface is migrated to the

com.ibm.websphere.security.UserRegistry interface.

What to do next

If you are enabling security, see “Enabling security” on page 28 to complete the remaining steps. When

completed, save the configuration and restart all the servers. Try accessing some Java Platform,

Enterprise Edition (Java EE) resources to verify that the custom registry migration is successful.

Migrating trust association interceptors

Use this topic to manually migrate trust associations.

Before you begin

Note: Data sources are not supported for use within a Trust Association Interceptor (TAI). Data sources

are intended for use within J2EE applications and designed to operate within the EJB and Web

containers. Trust Association Interceptors do not run within a container, and while data sources may

function in the TAI environment, they are untested and not guaranteed to function properly.

The following topics are addressed in this document:

v Changes to the product-provided trust association interceptors

18 Securing applications and their environment

v Migrating product-provided trust association interceptors

v Changes to the custom trust association interceptors

v Migrating custom trust association interceptors

Changes to the product-provided trust association interceptors

For the product-provided implementation for the WebSEAL server, a new optional

com.ibm.websphere.security.webseal.ignoreProxy property is added. If this property is set to true or yes,

the implementation does not check for the proxy host names and the proxy ports to match any of the host

names and ports that are listed in the com.ibm.websphere.security.webseal.hostnames and the

com.ibm.websphere.security.webseal.ports property respectively. For example, if the VIA header contains

the following information:

HTTP/1.1 Fred (Proxy), 1.1 Sam (Apache/1.1),

HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

and the com.ibm.websphere.security.webseal.ignoreProxy property is set to true or yes, the host name

Fred, is not used when matching the host names. By default, this property is not set, which implies that

any proxy host names and ports that are expected in the VIA header are listed in the host names and the

ports properties to satisfy the isTargetInterceptor method.

The previous VIA header information was split onto two lines for illustrative purposes only.

For more information about the com.ibm.websphere.security.webseal.ignoreProxy property, see the article

in the information center on configuring single signon using trust association interceptor ++.

Migrating product-provided trust association interceptors

The properties that are located in the webseal.properties and trustedserver.properties files are not

migrated from previous versions of WebSphere Application Server. You must migrate the appropriate

properties to WebSphere Application Server Version 6.0.x using the trust association panels in the

administrative console. For more information, see Configuring trust association interceptors.

Changes to the custom trust association interceptors

If the custom interceptor extends the

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor property, implement the following

new method to initialize the interceptor:

public int init (java.util.Properties props);

WebSphere Application Server checks the return status before using the trust association implementation.

Zero (0) is the default value for indicating that the interceptor is successfully initialized.

However, if a previous implementation of the trust association interceptor returns a different error status,

you can either change your implementation to match the expectations or make one of the following

changes:

Method 1:

Add the com.ibm.websphere.security.trustassociation.initStatus property in the trust association

interceptor custom properties. Set the property to the value that indicates the interceptor is

successfully initialized. All of the other possible values imply failure. In case of failure, the

corresponding trust association interceptor is not used.

Method 2:

Add the com.ibm.websphere.security.trustassociation.ignoreInitStatus property in the trust

association interceptor custom properties. Set the value of this property to true, which tells

WebSphere Application Server to ignore the status of this method. If you add this property to the

Chapter 3. Setting up and enabling security 19

custom properties, WebSphere Application Server does not check the return status, which is

similar to previous versions of WebSphere Application Server.

The public int init (java.util.Properties props method replaces the public int init (String propsFile) method.

The init(Properties) method accepts a java.util.Properties object, which contains the set of properties that

is required to initialize the interceptor. All of the properties set for an interceptor are sent to this method.

The interceptor can then use these properties to initialize itself. For example, in the product-provided

implementation for the WebSEAL server, this method reads the hosts and ports so that a request coming

in can be verified to come from trusted hosts and ports. A return value of Zero (0) implies that the

interceptor initialization is successful. Any other value implies that the initialization is not successful and

the interceptor is not used.

The init(String) method still works if you want to use it instead of implementing the init(Properties) method.

The only requirement is that you enter the file name containing the custom trust association properties

using the Custom Properties link of the interceptor in the administrative console or by using scripts. You

can enter the property using either of the following methods. The first method is used for backward

compatibility with previous versions of WebSphere Application Server.

Method 1:

The same property names used in the previous release are used to obtain the file name. The file

name is obtained by concatenating .config to the

com.ibm.websphere.security.trustassociation.types property value. If the myTAI.properties file is

located in the profile_root/properties directory, set the following properties:

v com.ibm.websphere.security.trustassociation.types = myTAItype

v com.ibm.websphere.security.trustassociation.myTAItype.config = profile_root/
properties/myTAI.properties

Method 2:

You can set the com.ibm.websphere.security.trustassociation.initPropsFile property in the trust

association custom properties to the location of the file. For example, set the following property:

com.ibm.websphere.security.trustassociation.initPropsFile=

profile_root/properties/myTAI.properties

The previous line of code is split into two lines for illustrative purposes only. Type as one

continuous line.

However, it is highly recommended that your implementation be changed to implement the init(Properties)

method instead of relying on the init (String propsfile) method.

Migrating custom trust association interceptors

The trust associations from previous versions of WebSphere Application Server are not automatically

migrated to WebSphere Application Server Version 6.0.x and later. You can manually migrate these trust

associations using the following steps:

1. Recompile the implementation file, if necessary.

For more information, refer to the ″Changes to the custom trust association interceptors″ section

previously discussed in this document.

a. Enter QSH from a command line to start the QShell environment.

b. Change to the directory that contains your Java source file.

c. Enter the command to recompile the implementation file.

javac -Djava.version=1.6 -classpath

app_server_root/plugins/com.ibm.ws.runtime.jar:install_root/lib/j2ee.jar your_implementation_file.java

2. Copy the custom trust association interceptor class files to a location in your product class path. Copy

these class files into the profile_root/classes directory.

3. Start WebSphere Application Server.

20 Securing applications and their environment

4. Enable security to use the trust association interceptor. The properties that are located in your custom

trust association properties file and in the trustedserver.properties file are not migrated from

previous versions of WebSphere Application Server. You must migrate the appropriate properties to

WebSphere Application Server Version 6.0.x and later using the trust association panels in the

administrative console.

For more information, see Configuring trust association interceptors.

Migrating Common Object Request Broker Architecture programmatic

login to Java Authentication and Authorization Service (CORBA and

JAAS)

Use this topic as an example of how to perform programmatic login using the CORBA-based

programmatic login APIs.

Before you begin

This document outlines the deprecated Common Object Request Broker Architecture (CORBA)

programmatic login APIs and the alternatives that are provided by JAAS. WebSphere Application Server

fully supports the Java Authentication and Authorization Service (JAAS) as programmatic login application

programming interfaces (API). Refer to the Securing applications and their environment PDF for more

details on JAAS support.

The following list includes the deprecated CORBA programmatic login APIs.

v profile_root/installedApps/sampleApp.ear/default_app.war/WEB-INF/classes/
ServerSideAuthenticator.java.

v org.omg.SecurityLevel2.Credentials. This API is included with the product, but it is not recommended

that you use the API.

The APIs that are provided in WebSphere Application Server are a combination of standard JAAS APIs

and a product implementation of standard JAAS interfaces.

The following information is only a summary; refer to the JAAS documentation for your platform located at:

http://www.ibm.com/developerworks/java/jdk/security/ .

v Programmatic login APIs:

– javax.security.auth.login.LoginContext

– javax.security.auth.callback.CallbackHandler interface: The WebSphere Application Server product

provides the following implementation of the javax.security.auth.callback.CallbackHandler interface:

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl

Provides a non-prompt CallbackHandler handler when the application pushes basic

authentication data (user ID, password, and security realm) or token data to product login

modules. This API is recommended for server-side login.

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl

Provides a login prompt CallbackHandler handler to gather basic authentication data (user

ID, password, and security realm). This API is recommended for client-side login.

 If this API is used on the server side, the server is blocked for input.
– javax.security.auth.callback.Callback interface:

javax.security.auth.callback.NameCallback

Provided by JAAS to pass the user name to the LoginModules interface.

javax.security.auth.callback.PasswordCallback

Provided by JAAS to pass the password to the LoginModules interface.

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl

Provided by the product to perform a token-based login. With this API, an application can

pass a token-byte array to the LoginModules interface.
– javax.security.auth.spi.LoginModule interface

Chapter 3. Setting up and enabling security 21

http://www.ibm.com/developerworks/java/jdk/security/

WebSphere Application Server provides a LoginModules implementation for client and server-side

login. Refer to the Securing applications and their environment PDF for details.
v javax.security.Subject:

com.ibm.websphere.security.auth.WSSubject

An extension provided by the product to invoke remote J2EE resources using the credentials in

the javax.security.Subject

com.ibm.websphere.security.cred.WSCredential

After a successful JAAS login with the WebSphere Application Server LoginModules interfaces,

a com.ibm.websphere.security.cred.WSCredential credential is created and stored in the

Subject.

com.ibm.websphere.security.auth.WSPrincipal

An authenticated principal that is created and stored in a Subject that is authenticated by the

WebSphere Application Server LoginModules interface.

1. Use the following as an example of how to perform programmatic login using the CORBA-based

programmatic login APIs: The CORBA-based programmatic login APIs are replaced by JAAS login.

Note: The LoginHelper application programming interface (API) that is used in the following example

is deprecated in WebSphere Application Server Version 7.0 and will be removed in a future

release. It is recommended that you use the JAAS programmatic login APIs that are shown in

the next step.
public class TestClient {

...

private void performLogin() {

// Get the ID and password of the user.

String userid = customGetUserid();

String password = customGetPassword();

// Create a new security context to hold authentication data.

LoginHelper loginHelper = new LoginHelper();

try {

// Provide the ID and password of the user for authentication.

org.omg.SecurityLevel2.Credentials credentials =

loginHelper.login(userid, password);

// Use the new credentials for all future invocations.

loginHelper.setInvocationCredentials(credentials);

// Retrieve the name of the user from the credentials

// so we can tell the user that login succeeded.

String username = loginHelper.getUserName(credentials);

System.out.println("Security context set for user: "+username);

} catch (org.omg.SecurityLevel2.LoginFailed e) {

// Handle the LoginFailed exception.

}

}

...

}

2. Use the following example to migrate the CORBA-based programmatic login APIs to the JAAS

programmatic login APIs.

The following example assumes that the application code is granted for the required Java 2 security

permissions. For more information, see the Securing applications and their environment PDF and the

JAAS documentation located at http://www.ibm.com/developerworks/java/jdk/security/.

public class TestClient {

...

private void performLogin() {

// Create a new JAAS LoginContext.

javax.security.auth.login.LoginContext lc = null;

try {

// Use GUI prompt to gather the BasicAuth data.

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

22 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by login prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "

+ e.getMessage());

e.printStackTrace();

// may be javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS Login Configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is an protected EJB

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

// Retrieve the name of the principal from the Subject

// so we can tell the user that login succeeded,

// should only be one WSPrincipal.

java.util.Set ps =

s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class);

java.util.Iterator it = ps.iterator();

while (it.hasNext()) {

com.ibm.websphere.security.auth.WSPrincipal p =

(com.ibm.websphere.security.auth.WSPrincipal) it.next();

System.out.println("Principal: " + p.getName());

}

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

}

...

}

Migrating from the CustomLoginServlet class to servlet filters

Use this topic to allow migration in an application that uses form-based login and servlet filters without the

use of the CustomLoginServlet class.

Before you begin

The CustomLoginServlet class is deprecated in WebSphere Application Server Version 5. Those

applications using the CustomLoginServlet class to perform authentication now need to use form-based

login. Using the form-based login mechanism, you can control the look and feel of the login screen. In

form-based login, a login page is specified and displays when retrieving the user ID and password

information. You also can specify an error page that displays when authentication fails.

If login and error pages are not enough to implement the CustomLoginServlet class, use servlet filters.

Servlet filters can dynamically intercept requests and responses to transform or use the information that is

Chapter 3. Setting up and enabling security 23

contained in the requests or responses. One or more servlet filters attach to a servlet or a group of

servlets. Servlet filters also can attach to JavaServer Pages (JSP) files and HTML pages. All the attached

servlet filters are called before invoking the servlet.

Both form-based login and servlet filters are supported by any Servlet 2.3 specification-compliant Web

container. A form login servlet performs the authentication and servlet filters can perform additional

authentication, auditing, or logging tasks.

To perform pre-login and post-login actions using servlet filters, configure these servlet filters for either

form login page or for /j_security_check URL. The j_security_check is posted by the form login page with

the j_username parameter that contains the user name and the j_password parameter that contains the

password. A servlet filter can use user name and password information to perform more authentication or

meet other special needs.

1. Develop a form login page and error page for the application.

Refer to the Securing applications and their environment PDF for details.

2. Configure the form login page and the error page for the application as described in .

Refer to the Securing applications and their environment PDF for details.

3. Develop servlet filters if additional processing is required before and after form login authentication.

Refer to the Securing applications and their environment PDF for details.

4. Configure the servlet filters that are developed in the previous step for either the form login page URL

or for the /j_security_check URL. Use an assembly tool or development tools like Rational® Application

Developer to configure filters. After configuring the servlet filters, the web-xml file contains two stanzas.

The first stanza contains the servlet filter configuration, the servlet filter, and its implementation class.

The second stanza contains the filter mapping section and a mapping of the servlet filter to the URL.

For more information, see the Securing applications and their environment PDF.

Results

This migration results in an application that uses form-based login and servlet filters without the use of the

CustomLoginServlet class.

What to do next

The new application uses form-based login and servlet filters to replace the CustomLoginServlet class.

Servlet filters also are used to perform additional authentication, auditing, and logging.

Migrating Java 2 security policy

Use this topic for guidance pertaining to migrating Java 2 security policy.

About this task

Previous WebSphere Application Server releases

WebSphere Application Server uses the Java 2 security manager in the server runtime to prevent

enterprise applications from calling the System.exit and the System.setSecurityManager methods. These

two Java application programming interfaces (API) have undesirable consequences if called by enterprise

applications. The System.exit API, for example, causes the Java virtual machine (application server

process) to exit prematurely, which is not a beneficial operation for an application server.

To support Java 2 security properly, all the server runtime must be marked as privileged (with

doPrivileged API calls inserted in the correct places), and identify the default permission sets or policy.

Application code is not privileged and subject to the permissions that are defined in the policy files. The

doPrivileged instrumentation is important and necessary to support Java 2 security. Without it, the

24 Securing applications and their environment

application code must be granted the permissions that are required by the server runtime. This situation is

due to the design and algorithm that is used by Java 2 security to enforce permission checks. Refer to the

Java 2 security check permission algorithm.

The following two permissions are enforced by the Java 2 security manager (hard coded) for WebSphere

Application Server:

v java.lang.RuntimePermission(exitVM)

v java.lang.RuntimePermission(setSecurityManager)

Application code is denied access to these permissions regardless of what is in the Java 2 security policy.

However, the server runtime is granted these permissions. All the other permission checks are not

enforced.

Only two permissions are supported:

v java.net.SocketPermission

v java.net.NetPermission

However, not all the product server runtime is properly marked as privileged. You must grant the

application code all the other permissions besides the two listed previously or the enterprise application

can potentially fail to run. This Java 2 security policy for enterprise applications is liberal.

What changed

Java 2 Security is fully supported in WebSphere Application Server, which means that all permissions are

enforced. The default Java 2 security policy for an enterprise application is the recommended permission

set defined by the Java Platform, Enterprise Edition (Java EE) Version 1.4 specification. Refer to the

profile_root/config/cells/cell_name/nodes/node_name/app.policy file for the default Java 2 security

policy that is granted to enterprise applications. This policy is a much more stringent compared to previous

releases.

All policy is declarative. The product security manager honors all policy that is declared in the policy files.

There is an exception to this rule: enterprise applications are denied access to permissions that are

declared in the profile_root/config/cells/cell_name/filter.policy file.

Note: The default Java 2 security policy for enterprise applications is much more stringent and all the

permissions are enforced in WebSphere Application Server Version 6.0.x and later. The security

policy might fail because the application code does not have the necessary permissions granted

where system resources, such as file I/O, can be programmatically accessed and are now subject

to the permission checking.

In application code, do not use the setSecurityManager permission to set a security manager. When an

application uses the setSecurityManager permission, there is a conflict with the internal security manager

within WebSphere Application Server. If you must set a security manager in an application for RMI

purposes, you also must enable the Use Java 2 security to restrict application access to local

resources option on the Global security page within the WebSphere Application Server administrative

console. WebSphere Application Server then registers a security manager. The application code can verify

that this security manager is registered by using System.getSecurityManager() application programming

interface (API).

Migrating system properties

The following system properties are used in previous releases in relation to Java 2 security:

v java.security.policy. The absolute path of the policy file (action required). This system property

contains both system permissions (permissions granted to the Java virtual machine (JVM) and the

product server runtime) and enterprise application permissions. Migrate the Java 2 security policy of the

Chapter 3. Setting up and enabling security 25

enterprise application to WebSphere Application Server Version 6.0.x. For Java 2 security policy

migration, see the steps for migrating Java 2 security policy.

v enableJava2Security. Used to enable Java 2 security enforcement (no action required). This system

property is deprecated; a flag in the WebSphere configuration application programming interface (API) is

used to control whether to enable Java 2 security. Enable this option through the administrative console.

v was.home. Expanded to the installation directory of WebSphere Application Server (action might be

required). This system property is deprecated; superseded by the ${user.install.root} and

${was.install.root} properties. If the directory contains instance-specific data then ${user.install.root} is

used; otherwise ${was.install.root} is used. Use these properties interchangeably for the WebSphere

Application Server or the Network Deployment environments. See the steps for migrating Java 2

security policy.

Migrating the Java 2 Security Policy

No easy way exists to migrate the Java policy file to WebSphere Application Server Version 6.0.x and later

automatically because of a mixture of system permissions and application permissions in the same policy

file. Manually copy the Java 2 security policy for enterprise applications to a was.policy or app.policy file.

However, migrating the Java 2 security policy to a was.policy file is preferable because symbols or

relative code base is used instead of an absolute code base. This process has many advantages. Grant

the permissions that are defined in the was.policy to the specific enterprise application only, while

permissions in the app.policy file apply to all the enterprise applications that run on the node where the

app.policy file belongs.

Refer to the Securing applications and their environment PDF for more details on policy management.

The following example illustrates the migration of a Java 2 security policy from a previous release. The

contents include the Java 2 security policy file for the app1.ear enterprise application and the system

permissions, which are permissions that are granted to the Java virtual machine (JVM) and the product

server runtime.

The default location for the Java 2 security policy file is profile_root/properties/java.policy. Default

permissions are omitted for clarity:

// For product Samples

 grant codeBase "file:${app_server_root}/installedApps/app1.ear/-" {

 permission java.security.SecurityPermission "printIdentity";

 permission java.io.FilePermission "${app_server_root}${/}temp${/}somefile.txt",

 "read";

 };

For clarity of illustration, all the permissions are migrated as the application level permissions in this

example. However, you can grant permissions at a more granular level at the component level (Web,

enterprise beans, connector or utility Java archive (JAR) component level) or you can grant permissions to

a particular component.

1. Ensure that Java 2 security is disabled on the application server.

2. Create a new was.policy file, if the file is not present, or update the was.policy file for migrated

applications in the configuration repository with the following contents:

grant codeBase "file:${application}" {

 permission java.security.SecurityPermission "printIdentity";

 permission java.io.FilePermission "

 ${user.install.root}${/}temp${/}somefile.txt", "read";

 };

The third and fourth lines in the previous code sample are presented on two lines for illustrative

purposes only.

The was.policy file is located in the profile_root/config/cells/cell_name/applications/app.ear/
deployments/app/META-INF/ directory.

26 Securing applications and their environment

3. Use an assembly tool to attach the was.policy file to the enterprise archive (EAR) file.

You also can use an assembly tool to validate the contents of the was.policy file. For more

information, see the Securing applications and their environment PDF.

4. Validate that the enterprise application does not require additional permissions to the migrated Java 2

security permissions and the default permissions set declared in the ${user.install.root}/config/
cells/cell_name/nodes/node_name/app.policy file. This validation requires code review, code

inspection, application documentation review, and sandbox testing of migrated enterprise applications

with Java 2 security enabled in a preproduction environment. Refer to developer kit APIs protected by

Java 2 security for information about which APIs are protected by Java 2 security. If you use third-party

libraries, consult the vendor documentation for APIs that are protected by Java 2 security. Verify that

the application is granted all the required permissions, or it might fail to run when Java 2 security is

enabled.

5. Perform preproduction testing of the migrated enterprise application with Java 2 security enabled.

Enable trace for the WebSphere Application Server Java 2 security manager in a preproduction testing

environment with the following trace string: com.ibm.ws.security.core.SecurityManager=all=enabled.

This trace function can be helpful in debugging the AccessControlException exception that is created

when an application is not granted the required permission or some system code is not properly

marked as privileged. The trace dumps the stack trace and permissions that are granted to the classes

on the call stack when the exception is created.

For more information, see the Securing applications and their environment PDF.

Note: Because the Java 2 security policy is much more stringent compared with previous releases,

the administrator or deployer must review their enterprise applications to see if extra

permissions are required before enabling Java 2 security. If the enterprise applications are not

granted the required permissions, they fail to run.

Migrating with Tivoli Access Manager for authentication enabled

When Tivoli® Access Manager security is configured for your existing environment and security is enabled,

you can migrate to WebSphere Application Server, Version 7.0.

Before you begin

Your profiles must be migrated using the migration tools to migrate product configurations.

Note: Do not restart the WebSphere Application Server Version 7.0 server until after performing the

following procedure. The migration tools omit some files that enable the server to start correctly.

About this task

After migrating your profiles additional steps are required when Tivoli Access Manager security is

configured.

1. Copy the profile_root1/PolicyDirector directory and it’s contents to profile_root2/PolicyDirector. For this

example:

v profile_root1 is the root directory of the profile being migrated.

v profile_root2 is the root directory of the version 6.1 profile.

a. From an i5/OS command line, type STRQSH and press Enter.

b. Type cp -R profile_root1/PolicyDirector profile_root2 and press Enter.

2. Copy the key file of the profile being migrated to the version 7.0 profile. The location of the key file is

defined in profile_root1/PolicyDirector/PdPerm.properties. For this example:

v The PdPerm.properties file contains pdcert-url=file\:/QIBM/UserData/WebAS51/Base/AppSvr1/etc/
AppSvr1.kdb.

v /QIBM/UserData/WebAS51/Base/AppSvr1 is the root directory of a Version 5.1 profile.

Chapter 3. Setting up and enabling security 27

a. From an i5/OS command line type STRQSH and press Enter.

b. Type cp /QIBM/UserData/WebAS51/Base/AppSvr1/etc/AppSvr1.kdb profile_root2/etc/AppSvr1.kdb

and press Enter.

3. Edit the property values in profile_root2/PolicyDirector/PdPerm.properties and in profile_root2/
PolicyDirector/Pd.properties to replace occurrences of profile_root1 with profile_root2 in the file path

name values.

Migrating Java thin clients that use the password encoding algorithm

To migrate Java thin clients that are enabled for OS400 password encoding, use the following information

to modify the Java client invocation so that the os400.security.password properties are no longer set on

the invocation.

About this task

The password encoding feature offers the following encoding algorithms:

v XOR, which is the default

v OS400

In Version 5 and later, the value of the os400.security.password.validation.list.object property is dependant

upon the property value passed to the thin client using the JAVA_FLAGS environment variable. The

JAVA_FLAGS environment variable is set by the setupClient script. The setupClient script calls the

setupCmdLine script, which is where the value for the os400.security.password.validation.list.object

property is set. For example, if a Version 6.x Base Edition Java client is passed -profileName default,

then the setupClient script calls the profile_root/default/bin/setupCmdLine file.

To migrate Java thin clients that are enabled for OS400 password encoding, modify the Java client

invocation so that the os400.security.password properties are no longer set on the invocation. The

following code sample does not contain the os400.security.password properties:

java -classpath $MY_CLIENT_CLASSES:app_server_root/classes/wsa400.jar:$WAS_CLASSPATH \

 $CLIENTSAS $JAVA_FLAGS \

 -Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory \

 -Djava.naming.provider.url=iiop://server1:10151 \

 MyClientClass $*

Perform the following steps if the following condition is true:

v If the passwords in the sas.client.props file for that profile are encoded with the OS400 password

encoding algorithm

1. Replace all of the OS400 encoded passwords, which have {OS400}) prefixes in the sas.client.props

file for the Application Server profile, with the clear text values of the passwords.

2. Encode the passwords using the PropFilePasswordEncoder Qshell command.

For more information, see “PropFilePasswordEncoder command reference” on page 1251.

Results

Note: You can configure a WebSphere Application Server profile to encode passwords with the XOR

algorithm even though the profile is enabled to decode passwords that were encoded with either

the OS400 algorithm or the XOR algorithm. If you encode these passwords with the XOR algorithm,

then the passwords in the sas.client.props file are encoded with the XOR algorithm.

Enabling security

By enabling security, you protect your server from unauthorized users and are then able to provide

application isolation and requirements for authenticating application users.

28 Securing applications and their environment

Before you begin

It is helpful to understand security from an infrastructure perspective so that you know the advantages of

different authentication mechanisms, user registries, authentication protocols, and so on. Picking the right

security components to meet your needs is a part of configuring security. The following sections help you

make these decisions.

Read the following articles before continuing with the security configuration:

v “Administrative security” on page 30

v Security

After you understand the security components, you can proceed to configure security in WebSphere

Application Server.

 1. Start the WebSphere Application Server administrative console.

If security is currently disabled, you are prompted for a user ID. Log in with any user ID. However, if

security is currently enabled, you are prompted for both a user ID and a password. Log in with a

predefined administrative user ID and password.

 2. Click Security > Global security. Use the Security Configuration Wizard, or configure security

manually. The configuration order is not important. For more information on manual configuration, see

tsec_authusers.dita.

 3. Configure the user account repository. For more information, see “Selecting a registry or repository”

on page 93. On the Global security panel, you can configure user account repositories such as

federated repositories, local operating system, standalone Lightweight Directory Access Protocol

(LDAP) registry, and standalone custom registry.

Note: You can choose to specify either a server ID and password for interoperability or enable a

WebSphere Application Server installation to automatically generate an internal server ID. For

more information about automatically generating server IDs, see “Local operating system

settings” on page 98.

One of the details common to all user registries or repositories is the Primary administrative user

name. This ID is a member of the chosen repository, but also has special privileges in WebSphere

Application Server. The privileges for this ID and the privileges that are associated with the

administrative role ID are the same. The Primary administrative user name can access all of the

protected administrative methods.

In standalone LDAP registries, verify that the Primary administrative user name is a member of the

repository and not just the LDAP administrative role ID. The entry must be searchable.

The Primary administrative user name does not run WebSphere Application Server processes.

Rather, the process ID runs the WebSphere Application Server processes.

In the default configuration, WebSphere Application Server processes run under the QEJBSVR

system-provided user profile.

 4. Select the Set as current option after you configure the user account repository. When you click

Apply and the Enable administrative security option is set, a verification occurs to see if an

administrative user ID has been configured and is present in the active user registry. The

administrative user ID can be specified at the active user registry panel or from the console users

link. If you do not configure an administrative ID for the active user registry, the validation fails.

Note: When you switch user registries, the admin-authz.xml file should be cleared of existing

administrative ids and application names. Exceptions will occur in the logs for ids that exist in

the admin-authz.xml file but do not exist in the current user registry.

 5. Configure the authentication mechanism.

Configure Lightweight Third-Party Authentication (LTPA) or Kerberos, which is new to this release of

WebSphere Application Server, under Authentication mechanisms and expiration. LTPA credentials

can be forwarded to other machines. For security reasons, credential expire; however, you can

configure the expiration dates on the console. LTPA credentials enable browsers to visit different

Chapter 3. Setting up and enabling security 29

tsec_authusers.dita

product servers, which means you do not have to authenticate multiple times. For more information,

see “Configuring the Lightweight Third Party Authentication mechanism” on page 228

Note: You can configure Simple WebSphere Authentication Mechanism (SWAM) as your

authentication mechanism. However, SWAM was deprecated in WebSphere Application Server

Version 7.0 and will be removed in a future release. SWAM credentials are not forwardable to

other machines and for that reason do not expire.

 6. Optional: Import and export the LTPA keys for cross-cell single Sign-on (SSO) between cells. For

more information, see the following articles:

v “Exporting Lightweight Third Party Authentication keys” on page 233.

v “Importing Lightweight Third Party Authentication keys” on page 233

 7. Configure the authentication protocol for special security requirements from Java clients, if needed.

You can configure Common Secure Interoperability Version 2 (CSIv2) through links on the Global

security panel. The Security Authentication Service (SAS) protocol is provided for backwards

compatibility with previous product releases, but is deprecated. Links to the SAS protocol panels

display on the Global security panel if your environment contains servers that use previous versions

of WebSphere Application Server and support the SAS protocol. For details on configuring CSIv2 or

SAS, see the article, “Configuring Common Secure Interoperability Version 2 (CSIV2) inbound and

outbound communication settings” on page 454.

Note: IBM no longer ships or supports the Secure Authentication Service (SAS) IIOP security

protocol. It is recommended that you use the Common Secure Interoperability version 2

(CSIv2) protocol.

 8. Click Security > Global security to configure the rest of the security settings and enable security.

For information about these settings, see “Global security settings” on page 42.

 9. Validate the completed security configuration by clicking OK or Apply. If problems occur, they display

at the top of the console page in red type.

10. If there are no validation problems, click Save to save the settings to a file that the server uses when

it restarts. Saving writes the settings to the configuration repository.

Note: If you do not click Apply or OK in the Global security panel before you click Save, your

changes are not written to the repository. The server must be restarted for any changes to

take effect when you start the administrative console.

11. Start the WebSphere Application Server administrative console.

If security is currently disabled, log in with any user ID. If security is currently enabled, log in with a

predefined administrative ID and password. This ID is typically the server user ID that is specified

when you configured the user registry.

Administrative security

Administrative security determines whether security is used at all, the type of registry against which

authentication takes place, and other values, many of which act as defaults. Proper planning is required

because incorrectly enabling administrative security can lock you out of the administrative console or

cause the server to end abnormally.

Administrative security can be thought of as a ″big switch″ that activates a wide variety of security settings

for WebSphere Application Server. Values for these settings can be specified, but they will not take effect

until administrative security is activated. The settings include the authentication of users, the use of Secure

Sockets Layer (SSL), and the choice of user account repository. In particular, application security, including

authentication and role-based authorization, is not enforced unless administrative security is active.

Administrative security is enabled by default.

Administrative security represents the security configuration that is effective for the entire security domain.

A security domain consists of all of the servers that are configured with the same user registry realm

30 Securing applications and their environment

name. In some cases, the realm can be the machine name of a local operating system registry. In this

case, all of the application servers must reside on the same physical machine. In other cases, the realm

can be the machine name of a standalone Lightweight Directory Access Protocol (LDAP) registry.

The basic requirement for a security domain is that the access ID that is returned by the registry or

repository from one server within the security domain is the same access ID as that returned from the

registry or repository on any other server within the same security domain. The access ID is the unique

identification of a user and is used during authorization to determine if access is permitted to the resource.

The administrative security configuration applies to every server within the security domain.

Why turn on administrative security?

Turning on administrative security activates the settings that protect your server from unauthorized users.

Administrative security is enabled by default during the profile creation time. There might be some

environments where no security is needed such as a development system. On these systems you can

elect to disable administrative security. However, in most environments you should keep unauthorized

users from accessing the administrative console and your business applications. Administrative security

must be enabled to restrict access.

What does administrative security protect?

The configuration of administrative security for a security domain involves configuring the following

technologies:

v Authentication of HTTP clients

v Authentication of IIOP clients

v Administrative console security

v Naming security

v Use of SSL transports

v Role-based authorization checks of servlets, enterprise beans, and mbeans

v Propagation of identities (RunAs)

v The common user registry

v The authentication mechanism

v Other security information that defines the behavior of a security domain includes:

– The authentication protocol (Remote Method Invocation over the Internet Inter-ORB Protocol

(RMI/IIOP) security)

– Other miscellaneous attributes

Note: It is recommended that before registering a node with an administrative agent process, that you first

have administrative security enabled in the administrative agent and base profile. Once you register

a profile with the administrative agent, the state of administrative security enablement cannot be

changed.

Application security

Application security enables security for the applications in your environment. This type of security

provides application isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both

administrative and application security were enabled. In WebSphere Application Server Version 6.1, the

previous notion of global security is split into administrative security and application security, each of which

you can enable separately.

Chapter 3. Setting up and enabling security 31

As a result of this split, WebSphere Application Server clients must know whether application security is

disabled at the target server. Administrative security is enabled, by default. Application security is disabled,

by default. To enable application security, you must enable administrative security. Application security is in

effect only when administrative security is enabled.

An Application Server Enablement Tag, which is specific to WebSphere Application Server, is imported into

the Interoperable Object Reference (IOR) to indicate if application security is disabled for the server where

the object lives. This tag is server-specific and enables clients to know when application security is

disabled at the target server of its request.

For Web resources, when application security is enabled, security constraints on those resources in

web.xml are enforced. When accessing a protected resource, a web client is prompted for authentication.

For enterprise bean resources, when application security is disabled, the client Common Secure

Interoperability version 2 (CSIv2) code ignores the CSIv2 security tags for objects that are unknown

system objects. When pure clients see that application security is disabled, these clients prompt for

naming lookups, but do not prompt for enterprise bean operations.

Java 2 security

Java 2 security provides a policy-based, fine-grain access control mechanism that increases overall

system integrity by checking for permissions before allowing access to certain protected system resources.

Java 2 security guards access to system resources such as file I/O, sockets, and properties. Java 2

Platform, Enterprise Edition (J2EE) security guards access to Web resources such as servlets, JavaServer

Pages (JSP) files and Enterprise JavaBeans™ (EJB) methods.

Because Java 2 security is relatively new, many existing or even new applications might not be prepared

for the very fine-grain access control programming model that Java 2 security is capable of enforcing.

Administrators need to understand the possible consequences of enabling Java 2 security if applications

are not prepared for Java 2 security. Java 2 security places some new requirements on application

developers and administrators.

Note: Java 2 security only restricts Java programs that run in a Java virtual machine that has Java 2

security enabled. It does not protect system resources if Java 2 Security is disabled or if system

resources are accessed from other programs or commands. Therefore, if you want to protect your

system resources, you need to use operating system security.

Java 2 security for deployers and administrators

Although Java 2 security is supported, it is disabled by default. You can configure Java 2 security and

administrative security independently of one another. Disabling administrative security does not disable

Java 2 security automatically. You need to explicitly disable it.

If your applications, or third-party libraries are not ready, having Java 2 security enabled causes problems.

You can identify these problems as Java 2 security AccessControlExceptions in the system log or trace

files. If you are unsure about the Java 2 security readiness of your applications, disable Java 2 security

initially to get your application installed and verify that it is working properly.

The policy embodied by these policy files cannot be made more restrictive because the product might not

have the necessary Java 2 security doPrivileged APIs in place. The restrictive policy is the default policy.

You can grant additional permissions, but you cannot make the default more restrictive because

AccessControlExceptions exceptions are generated from within WebSphere Application Server. The

product does not support a more restrictive policy than the default that is defined in the policy files

previously mentioned.

32 Securing applications and their environment

Several policy files are used to define the security policy for the Java process. These policy files are static

(code base is defined in the policy file) and in the default policy format provided by the IBM Developer Kit,

Java Technology Edition. For enterprise application resources and utility libraries, WebSphere Application

Server provides dynamic policy support. The code base is dynamically calculated based on deployment

information and permissions are granted based on template policy files during runtime. Refer to the “Java

2 security policy files” on page 36 for more information.

Syntax errors in the policy files cause the application server process to fail, so edit these policy files

carefully.

Note: Edit these policy files using the Policy Tool that is provided by the IBM Developer Kit, Java

Technology Edition. See “Using PolicyTool to edit policy files” on page 724 for more information.

If an application is not prepared for Java 2 security, if the application provider does not provide a

was.policy file as part of the application, or if the application provider does not communicate the expected

permissions the application is likely to cause Java 2 security access control exceptions at runtime. It might

not be obvious that an application is not prepared for Java 2 security. Several run-time debugging aids

help troubleshoot applications that might have access control exceptions. See the Java 2 security

debugging aids for more details. See “Handling applications that are not Java 2 security ready” on page 34

for information and strategies for dealing with such applications.

It is important to note when Java Security is enabled in the administrative security settings, the installed

security manager does not currently check modifyThread and modifyThreadGroup permissions for

non-system threads. Allowing Web and Enterprise JavaBeans (EJB) application code to create or modify a

thread can have a negative impact on other components of the container and can affect the capability of

the container to manage enterprise bean life cycles and transactions.

Java 2 security for application developers

Application developers must understand the permissions that are granted in the default WebSphere policy

and the permission requirements of the SDK APIs that their application calls to know whether additional

permissions are required. The Permissions in the Java 2 SDK reference in the resources section describes

which APIs require which permission.

Application providers can assume that applications have the permissions granted in the default policy

previously mentioned. Applications that access resources not covered by the default WebSphere policy are

required to grant the additional Java 2 security permissions to the application.

While it is possible to grant the application additional permissions in one of the other dynamic WebSphere

policy files or in one of the more traditional java.policy static policy files, the was.policy file, which is

embedded in the EAR file ensures the additional permissions are scoped to the exact application that

requires them. Scoping the permission beyond the application code that requires it can permit code that

normally does not have permission to access particular resources.

If an application component is being developed, like a library that might actually be included in more than

one .ear file, then the library developer needs to document the required Java 2 permissions that are

required by the application assembler. There is no was.policy file for library-type components. The

developer must communicate the required permissions through application programming interface (API)

documentation or some other external documentation.

If the component library is shared by multiple enterprise applications, the permissions can be granted to all

enterprise applications on the node in the app.policy file.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the

app.policy file belongs.

Chapter 3. Setting up and enabling security 33

If the permission is only used internally by the component library and the application is never granted

access to resources that are protected by the permission, it might be necessary to mark the code as

privileged. Refer to the, AccessControlException, topic for more details. However, improperly inserting a

doPrivileged call might open up security holes. Understand the implication of doPrivileged call to make a

correct judgement.

The section on Dynamic policy files in “Java 2 security policy files” on page 36 describes how the

permissions in the was.policy files are granted at runtime.

Debugging Aids

The WebSphere Application Server SYSOUT file and the com.ibm.websphere.java2secman.norethrow

property are the two primary aids for debugging.

The WebSphere System Log or Trace Files

The AccessControl exception that is logged in the system log or trace files contains the permission

violation that causes the exception, the exception call stack, and the permissions granted to each stack

frame. This information is usually enough to determine the missing permission and the code requiring the

permission.

The com.ibm.websphere.java2secman.norethrow property

When Java 2 security is enabled in WebSphere Application Server, the security manager component

creates a java.security.AccessControl exception when a permission violation occurs. This exception, if not

handled, often causes a run-time failure. This exception is also logged in the SYSOUT file.

However, when the Java virtual machine com.ibm.websphere.java2secman.norethrow property is set and

has a value of true, the security manager does not create the AccessControl exception. This information is

logged.

This property is intended for a sandbox or debug environment because it instructs the security manager

not to create the AccessControl exception. Java 2 security is not enforced. Do not use this property in a

production environment where a relaxed Java 2 security environment weakens the integrity that Java 2

security is intended to produce.

This property is valuable in a sandbox or test environment where the application can be thoroughly tested

and where the system log or trace files can be inspected for AccessControl exceptions. Because this

property does not create the AccessControl exception, it does not propagate the call stack and does not

cause a failure. Without this property, you have to find and fix AccessControl exceptions one at a time.

Handling applications that are not Java 2 security ready

If the increased system integrity that Java 2 security provides is important, then contact the application

provider to have the application support Java 2 security or at least communicate the required additional

permissions beyond the default WebSphere Application Server policy that must be granted.

The easiest way to deal with such applications is to disable Java 2 security in WebSphere Application

Server. The downside is that this solution applies to the entire system and the integrity of the system is not

as strong as it might be. Disabling Java 2 security might not be acceptable depending on the organization

security policies or risk tolerances.

Another approach is to leave Java 2 security enabled, but to grant either just enough additional

permissions or grant all permissions to just the problematic application. Granting permissions however,

might not be a trivial thing to do. If the application provider has not communicated the required

permissions in some way, no easy way exists to determine what the required permissions are and granting

34 Securing applications and their environment

all permissions might be the only choice. You minimize this risk by locating this application on a different

node, which might help isolate it from certain resources. Grant the java.security.AllPermission permission

in the was.policy file that is embedded in the application .ear file, for example:

grant codeBase "file:${application}" {

 permission java.security.AllPermission;

 };

The server.policy file

The server.policy file is located in the profile_root/properties directory.

This policy defines the policy for the WebSphere Application Server classes. At present, all the server

processes on the same installation share the same server.policy file. However, you can configure this file

so that each server process can have a separate server.policy file. Define the policy file as the value of

the java.security.policy Java system properties . For details of how to define Java system properties, refer

to the Process definition section of the Manage application servers file.

The server.policy file is not a configuration file managed by the repository and the file replication service.

Changes to this file are local and do not get replicated to other machines. Use the server.policy file to

define Java 2 security policy for server resources. Use the app.policy file (per node) or the was.policy file

(per enterprise application) to define Java 2 security policy for enterprise application resources.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the

app.policy file belongs.

The java.policy file

The file represents the default permissions that are granted to all classes. The policy of this file applies to

all the processes launched by the Java Virtual Machine in the WebSphere Application Server.

The java.policy file is located in the${java.home}/lib/security/ directory where ${java.home} is the

path to the Software Development Kit (SDK) that you are using. The policy file is used throughout the

operating system. Do not edit the java.policy file.

Troubleshooting

Symptom:

Error message CWSCJ0314E: Current Java 2 security policy reported a potential violation of Java 2 security

permission. Refer to Problem Determination Guide for further information.{0}Permission\:{1}Code\
:{2}{3}Stack Trace\:{4}Code Base Location\:{5} Current® Java 2 security policy reported a potential violation

of Java 2 Security Permission. Refer to Problem Determination Guide for further information.{0}Permission\
:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5}

Problem:

The Java security manager checkPermission method reported a security exception on the subject

permission with debugging information. The reported information can be different with respect to the

system configuration. This report is enabled by either configuring a Reliability Availability Service Ability

(RAS) trace into debug mode or specifying a Java property.

See Enabling trace for information on how to configure RAS trace in debug mode.

Specify the following property in the JVM Settings panel from the administrative console:

java.security.debug. Valid values include:

Chapter 3. Setting up and enabling security 35

access

Print all debug information including: required permission, code, stack, and code base location.

stack Print debug information including: required permission, code, and stack.

failure Print debug information including: required permission and code.

Recommended response:

The reported exception might be critical to the secure system. Turn on security trace to determine the

potential code that might have violated the security policy. After the violating code is determined, verify if

the attempted operation is permitted with respect to Java 2 security, by examining all applicable Java 2

security policy files and the application code.

If the application is running with Java Mail, this message might be benign. You can update the was.policy

file to grant the following permissions to the application:

permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Messages

 Message: CWSCJ0313E: Java 2 security manager debug message

flags are initialized\: TrDebug: {0}, Access: {1}, Stack: {2},

Failure: {3}

Problem: Configured values of the valid debug message flags for

security manager.

 Message: CWSCJ0307E: Unexpected exception is caught when trying

to determine the code base location. Exception: {0}

Problem: An unexpected exception is caught when the code base

location is determined.

Java 2 security policy files

The Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 and later specifications have a well-defined

programming model of responsibilities between the container providers and the application code. Using

Java 2 security manager to help enforce this programming model is recommended. Certain operations are

not supported in the application code because such operations interfere with the behavior and operation of

the containers. The Java 2 security manager is used in the product to enforce responsibilities of the

container and the application code.

This product provides support for policy file management. A number of policy files in the product are either

static or dynamic. Dynamic policy is a template of permissions for a particular type of resource. No relative

code base is defined in the dynamic policy template. The code base is dynamically calculated from the

deployment and run-time data.

Static policy files

 Policy file Location

java.policy

server.policy profile_root/properties/server.policy. Default permissions are granted to all the product

servers.

36 Securing applications and their environment

Policy file Location

client.policy profile_root/properties/client.policy. Default permissions are granted for all of the product

client containers and applets on a node.

The static policy files are not managed by configuration and file replication services. Changes made in

these files are local and are not replicated to other nodes in the Network Deployment cell.

Dynamic policy files

 Policy file Location

spi.policy profile_root/config/cells/cell_name

/nodes/node_name/spi.policy

This template is for the Service Provider Interface (SPI) or the third-party resources that are

embedded in the product. Examples of SPI are the Java Message Service (JMS) in MQ

Series and Java database connectivity (JDBC) drivers. The code base for the embedded

resources are dynamically determined from the configuration (resources.xml file) and run-time

data, and permissions that are defined in the spi.policy files are automatically applied to

these resources and JAR files that are specified in the class path of a resource adapter. The

default permission of the spi.policy file is java.security.AllPermissions.

library.policy profile_root/config/cells/cell_name/nodes

/node_name/library.policy

This template is for the library (Java library classes). You can define a shared library to use in

multiple product applications. The default permission of the library.policy file is empty.

app.policy profile_root/config/cells/cell_name

/nodes/node_name/app.policy

The app.policy file defines the default permissions that are granted to all of the enterprise

applications running on node_name in cell_name.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to

which the app.policy file belongs.

was.policy profile_root/config/cells/cell_name

/applications/ear_file_name/deployments/

application_name/META-INF/was.policy

This template is for application-specific permissions. The was.policy file is embedded in the

enterprise archive (EAR) file.

ra.xml rar_file_name/META-INF/was.policy.RAR.

This file can have a permission specification that is defined in the ra.xml file. The ra.xml file

is embedded in the RAR file.

Grant entries that are specified in the app.policy and was.policy files must have a code base defined. If

grant entries are specified without a code base, the policy files are not loaded properly and the application

can fail. If the intent is to grant the permissions to all applications, use file:${application} as a code base in

the grant entry.

Syntax of the policy file

A policy file contains several policy entries. The following example depicts each policy entry format:

grant [codebase <Codebase>] {

permission <Permission>;

 permission <Permission>;

permission <Permission>;

};

Chapter 3. Setting up and enabling security 37

<CodeBase>: A URL.

 For example, "file:${java.home}/lib/tools.jar"

 When [codebase <Codebase>] is not specified, listed

 permissions are applied to everything.

 If URL ends with a JAR file name, only the classes in the

 JAR file belong to the codebase.

 If URL ends with "/", only the class files in the specified

 directory belong to the codebase.

 If URL ends with "*", all JAR and class files in the specified

 directory belong to the codebase.

 If URL ends with "-", all JAR and class files in the specified

 directory and its subdirectories belong to the codebase.

<Permissions>: Consists from

 Permission Type : class name of the permission

 Target Name : name specifying the target

 Actions : actions allowed on target

 For example,

 java.io.FilePermission "/tmp/xxx", "read,write"

Refer to developer kit specifications for the details of each permission.

Syntax of dynamic policy

You can define permissions for specific types of resources in dynamic policy files for an enterprise

application. This action is achieved by using product-reserved symbols. The reserved symbol scope

depends on where it is defined. If you define the permissions in the app.policy file, the symbol applies to

all the resources on all of the enterprise applications that run on node_name. If you define the permissions

in the META-INF/was.policy file, the symbol applies only to the specific enterprise application. Valid

symbols for the code base are listed in the following table:

 Symbol Meaning

file:${application} Permissions apply to all the resources within the

application

file:${jars} Permissions apply to all the utility Java archive (JAR) files

within the application

file:${ejbComponent} Permissions apply to the Enterprise JavaBeans (EJB)

resources within the application

file:${webComponent} Permissions apply to the Web resources within the

application

file:${connectorComponent} Permissions apply to the connector resources within the

application

You can specify the module name for a granular setting, except for these entries that are specified by the

code base symbols. For example:

grant codeBase "file:DefaultWebApplication.war" {

 permission java.security.SecurityPermission "printIdentity";

 };

grant codeBase "file:IncCMP11.jar" {

permission java.io.FilePermission

"${user.install.root}${/}bin${/}DefaultDB${/}-",

"read,write,delete";

};

The sixth and seventh lines in the previous code sample are one continuous line. You can use a relative

code base only in the META-INF/was.policy file. Several product-reserved symbols are defined to

associate the permission lists to a specific type of resources.

38 Securing applications and their environment

Symbol Meaning

file:${application} Permissions apply to all the resources within the

application

file:${jars} Permissions apply to all the utility JAR files within the

application

file:${ejbComponent} Permissions apply to the enterprise beans resources

within the application

file:${webComponent} Permissions apply to the Web resources within the

application

file:${connectorComponent} Permissions apply to the connector resources both within

the application and in the standalone connector

resources.

Five embedded symbols are provided to specify the path and the name for the java.io.FilePermission

permission. These symbols enable flexible permission specification. The absolute file path is fixed after the

installation of the application.

 Symbol Meaning

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

Note: Do not use the ${was.module.path} in the ${application} entry.

Carefully determine where to add a new permission. An incorrectly specified permission causes an

AccessControlException exception. Because dynamic policy resolves the code base at runtime,

determining which policy file has a problem is difficult. Add a permission only to the necessary resources.

For example, use ${ejbcomponent}, and etc instead of ${application}, and update the was.policy file

instead of the app.policy file, if possible.

Static policy filtering

Limited static policy filtering support exists. If the app.policy file and the was.policy file have permissions

that are defined in the filter.policy file with thefilterMask keyword, the runtime removes the permissions

from the applications and an audit message is logged. However, if the permissions that are defined in the

app.policy and the was.policy files are compound permissions, for example, java.security.AllPermission,

the permission is not removed, but a warning message is written to the log file. The policy filtering only

supports Developer Kit permissions; the permissions package name begins with java or javax.

Run-time policy filtering support is provided to force stricter filtering. If the app.policy file and the

was.policy file have permissions that are defined in the filter.policy file with the runtimeFilterMask

keyword, the runtime removes the permissions from the applications no matter what permissions are

granted to the application. For example, even if a was.policy file has the java.security.AllPermission

permission granted to one of its modules, specified permissions such as the runtimeFilterMask permission

are removed from the granted permission during runtime.

Policy file editing

Using the policy tool that is provided by the Developer Kit (app_server_root/java/jre/bin/policytool), to

edit the previous policy files is recommended. For Network Deployment, extract the policy files from the

repository before editing. After the policy file is extracted, use the policy tool to edit the file. Check the

Chapter 3. Setting up and enabling security 39

modified policy files into the repository and synchronize them with other nodes.

Troubleshooting

To debug the dynamic policy, choose one of three ways to generate the detail report of the

AccessControlException exception.

v Trace (Configured by RAS trace). Enables traces with the trace specification:

Note: The following command is one continuous line

com.ibm.ws.security.policy.*=all=enabled:

com.ibm.ws.security.core.SecurityManager=all=enabled

v Trace (Configured by property). Specifies a Java java.security.debug property. Valid values for the

java.security.debug property are as follows:

– Access. Print all debug information including required permission, code, stack, and code base

location.

– Stack. Print debug information including, required permission, code, and stack.

– Failure. Print debug information including required permission and code.
v ffdc. Enable ffdc, modify the ffdcRun.properties file by changing Level=4 and LAE=true. Look for an

Access Violation keyword in the log file.

Access control exception

The Java 2 security behavior is specified by its security policy. The security policy is an access-control

matrix that specifies which system resources certain code bases can access and who must sign them. The

Java 2 security policy is declarative and it is enforced by the

java.security.AccessController.checkPermission method.

The following example depicts the algorithm for the java.security.AccessController.checkPermission

method. For the complete algorithm, refer to the Java 2 security check permission algorithm in Resources

for learning.

i = m;

while (i > 0) {

 if (caller i’s domain does not have the permission)

 throw AccessControlException;

 else if (caller i is marked as privileged)

 return;

 i = i - 1;

};

The algorithm requires that all the classes or callers on the call stack have the permissions when a

java.security.AccessController.checkPermission method is performed or the request is denied and a

java.security.AccessControlException exception is created. However, if the caller is marked as privileged

and the class (caller) is granted these permissions, the algorithm returns and does not traverse the entire

call stack. Subsequent classes (callers) do not need the required permission granted.

A java.security.AccessControlException exception is created when certain classes on the call stack are

missing the required permissions during a java.security.AccessController.checkPermission method. Two

possible resolutions to the java.security.AccessControlException exception are as follows:

v If the application is calling a Java 2 security-protected application programming interface (API), grant the

required permission to the application Java 2 security policy. If the application is not calling a Java 2

security-protected API directly, the required permission results from the side-effect of the third-party APIs

accessing Java 2 security-protected resources.

v If the application is granted the required permission, it gains more access than it needs. In this case, it

is likely that the third party code that accesses the Java 2 security-protected resource is not properly

marked as privileged.

40 Securing applications and their environment

Example call stack

This example of a call stack indicates where application code is using a third-party API utility library to

update the password. The following example is presented to illustrate the point. The decision of where to

mark the code as privileged is application-specific and is unique in every situation. This decision requires

great depth of domain knowledge and security expertise to make the correct judgement. A number of well

written publications and books are available on this topic. Referencing these materials for more detailed

information is recommended.

You can use the PasswordUtil utility to change the password of a user. The utility types in the old

password and the new password twice to ensure that the correct password is entered. If the old password

matches the one stored in the password file, the new password is stored and the password file updates.

Assume that none of the stack frame is marked as privileged. According to the

java.security.AccessController.checkPermission algorithm, the application fails unless all the classes on the

call stack are granted write permission to the password file. The client application does not have

permission to write to the password file directly and to update the password file at will.

However, if the PasswordUtil.updatePasswordFile method marks the code that accesses the password file

as privileged, then the check permission algorithm does not check for the required permission from

classes that call thePasswordUtil.updatePasswordFile method for the required permission as long as the

PasswordUtil class is granted the permission. The client application can successfully update a password

without granting the permission to write to the password file.

The ability to mark code privileged is very flexible and powerful. If this ability is used incorrectly, the overall

security of the system can be compromised and security holes can be exposed. Use the ability to mark

code privileged carefully.

Resolution to the java.security.AccessControlException exception

As described previously, you have two approaches to resolve a java.security.AccessControlException

exception. Judge these exceptions individually to decide which of the following resolutions is best:

1. Grant the missing permission to the application.

2. Mark some code as privileged, after considering the issues and risks.

Enabling security for the realm

Use this topic to enable IBM WebSphere Application Server security. You must enable administrative

security for all other security settings to function.

AccessController.checkPermission()

SecurityManager..checkPermission()

SecurityManager..checkWrite()

java.io.FileOutputStream()

PasswordUtil.updatePasswordFile()

Client Code ...

PasswordUtil.getPassword()

System domain

Application domain

Utility library domain

Chapter 3. Setting up and enabling security 41

About this task

WebSphere Application Server uses cryptography to protect sensitive data and to ensure confidentiality

and integrity of communications between WebSphere Application Server and other components in the

network. Cryptography is also used by Web services security when certain security constraints are

configured for the Web Services application.

1. Enable security in the WebSphere Application Server. Make sure that all node agents within the cell

are active beforehand.

For more information, see “Enabling security” on page 28. It is important to click Security > Global

security. Select an available realm definition from the list, and then click Set as current so that

security is enabled upon a server restart.

Note: In previous releases of WebSphere Application Server, the Set as current option is known as

the Enable global security option.

2. Before restarting the server, log off the administrative console. You can log off by clicking Logout at

the top menu bar.

3. Stop the server by going to the command line in the WebSphere Application Server

app_server_root/bin directory and issue a stopServer server_name command.

4. Restart the server in secure mode by issuing the command startServer server_name. Once the server

is secure, you cannot stop the server again without specifying an administrative user name and

password. To stop the server once security is enabled, issue the command, stopServer server_name

-username user_id -password password. Alternatively, you can edit the soap.client.props file in the

profile_root/properties directory, and edit the com.ibm.SOAP.loginUserid or

com.ibm.SOAP.loginPassword properties to contain these administrative IDs.

If you have any problems restarting the server, review the output logs in the profile_root/logs/
server_name directory. Check the Chapter 12, “Troubleshooting security configurations,” on page 1259

article for any common problems.

The app_server_root variable refers to the app_server_root/bin/ default directory.

Global security settings

Use this panel to configure administration and the default application security policy. This security

configuration applies to the security policy for all administrative functions and is used as a default security

policy for user applications. Security domains can be defined to override and customize the security

policies for user applications.

To view this administrative console page, click Security > Global security.

Security has some performance impacts on your applications. The performance impacts can vary

depending upon the application workload characteristics. You must first determine that the needed level of

security is enabled for your applications, and then measure the impact of security on the performance of

your applications.

When security is configured, validate any changes to the user registry or authentication mechanism

panels. Click Apply to validate the user registry settings. An attempt is made to authenticate the server ID

or to validate the admin ID (if internalServerID is used) to the configured user registry. Validating the user

registry settings after enabling administrative security can avoid problems when you restart the server for

the first time.

Security configuration wizard:

Launches a wizard that enables you to configure the basic administrative and application security settings.

This process restricts administrative tasks and applications to authorized users.

42 Securing applications and their environment

Using this wizard, you can configure application security, resource or Java 2 Connector (J2C) security, and

a user registry. You can configure an existing registry and enable administrative, application, and resource

security.

When you apply changes made by using the security configuration wizard, administrative security is turned

on by default.

Security configuration report:

Launches a security configuration report that displays the core security settings of the application server.

The report also displays the administrative users and groups and the CORBA naming roles.

 A current limitation to the report is that it does not display application level security information. The report

also does not display information on Java Message Service (JMS) security, bus security, or Web Services

security.

When multiple security domains are configured, the report displays the security configuration associated

with each domain.

Enable administrative security:

Specifies whether to enable administrative security for this application server domain. Administrative

security requires users to authenticate before obtaining administrative control of the application server.

 For more information, see the related links for administrative roles and administrative authentication.

When enabling security, set the authentication mechanism configuration and specify a valid user ID and

password (or a valid admin ID when internalServerID feature is used) in the selected registry configuration.

Note: There is a difference between the user ID (which is normally called the admin ID), which identifies

administrators who manage the environment, and a server ID, which is used for server-to-server

communication. You do not need to enter a server ID and password when you are using the

internal server ID feature. However, optionally, you can specify a server ID and password. To

specify the server ID and password, complete the following steps:

1. Click Security > Global security.

2. Under User accounts repository, select the repository and click Configure.

3. Specify the server ID and password in the Server user identity section.

 Default: Enabled

Enable application security:

Enables security for the applications in your environment. This type of security provides application

isolation and requirements for authenticating application users

 In previous releases of WebSphere Application Server, when a user enabled global security, both

administrative and application security were enabled. In WebSphere Application Server Version 6.1, the

previous notion of global security is split into administrative security and application security, each of which

you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is

disabled at the target server. Administrative security is enabled, by default. Application security is disabled,

by default. To enable application security, you must enable administrative security. Application security is in

effect only when administrative security is enabled.

Chapter 3. Setting up and enabling security 43

Default: Disabled

Use Java 2 security to restrict application access to local resources:

Specifies whether to enable or disable Java 2 security permission checking. By default, access to local

resources is not restricted. You can choose to disable Java 2 security, even when application security is

enabled.

 When the Use Java 2 security to restrict application access to local resources option is enabled and

if an application requires more Java 2 security permissions than are granted in the default policy, the

application might fail to run properly until the required permissions are granted in either the app.policy file

or the was.policy file of the application. AccessControl exceptions are generated by applications that do

not have all the required permissions. See the related links for more information about Java 2 security.

 Default: Disabled

Warn if applications are granted custom permissions:

Specifies that during application deployment and application start, the security runtime issues a warning if

applications are granted any custom permissions. Custom permissions are permissions that are defined by

the user applications, not Java API permissions. Java API permissions are permissions in the java.* and

javax.* packages.

 The application server provides support for policy file management. A number of policy files are available

in this product, some of them are static and some of them are dynamic. Dynamic policy is a template of

permissions for a particular type of resource. No code base is defined and no relative code base is used in

the dynamic policy template. The real code base is dynamically created from the configuration and

run-time data. The filter.policy file contains a list of permissions that you do not want an application to have

according to the J2EE 1.4 specification. For more information on permissions, see the related link about

Java 2 security policy files.

Note: You cannot enable this option without enabling the Use Java 2 security to restrict application

access to local resources option.

 Default: Disabled

Restrict access to resource authentication data:

Enable this option to restrict application access to sensitive Java Connector Architecture (JCA) mapping

authentication data.

 Consider enabling this option when both of the following conditions are true:

v Java 2 security is enforced.

v The application code is granted the accessRuntimeClasses WebSphereRuntimePermission permission

in the was.policy file found within the application enterprise archive (EAR) file. For example, the

application code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses";

The Restrict access to resource authentication data option adds fine-grained Java 2 security

permission checking to the default principal mapping of the WSPrincipalMappingLoginModule

implementation. You must grant explicit permission to Java 2 Platform, Enterprise Edition (J2EE)

applications that use the WSPrincipalMappingLoginModule implementation directly in the Java

Authentication and Authorization Service (JAAS) login when Use Java 2 security to restrict application

44 Securing applications and their environment

access to local resources and the Restrict access to resource authentication data options are

enabled.

 Default: Disabled

Current realm definition:

Specifies the current setting for the active user repository.

 This field is read-only.

Available realm definitions:

Specifies the available user account repositories.

 The selections appear in a drop-down list containing:

v Local operating system

v Standalone LDAP registry

v Standalone custom registry

Configure...:

Select to configure the global security settings.

Web and SIP security:

Under Authentication, expand Web and SIP security to view links to:

v General settings

v Single sign-on (SSO)

v SPNEGO web authentication

v Trust association

General settings:

Select to specify the settings for Web authentication.

Single sign-on (SSO):

Select to specify the configuration values for single sign-on (SSO).

 With SSO support, Web users can authenticate once when accessing both WebSphere Application Server

resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans, and Lotus® Domino®

resources.

SPNEGO web authentication:

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) provides a way for Web clients and

the server to negotiate the web authentication protocol that is used to permit communications.

 Trust association:

Select to specify the settings for the trust association. Trust association is used to connect reversed proxy

servers to the application servers.

Chapter 3. Setting up and enabling security 45

You can use the global security settings or customize the settings for a domain.

Note: The use of trust association interceptors (TAIs) for SPNEGO authentication is now deprecated. The

SPNEGO web authentication panels now provide a much easier way to configure SPNEGO.

RMI/IIOP security:

Under Authentication, expand RMI/IIOP security to view links to:

v CSIv2 inbound communications

v CSIv2 outbound communications

CSIv2 inbound communications:

Select to specify authentication settings for requests that are received and transport settings for

connections that are accepted by this server using the Object Management Group (OMG) Common

Secure Interoperability (CSI) authentication protocol.

 Authentication features include three layers of authentication that you can use simultaneously:

v CSIv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the

message layer, and then the transport layer. If a client sends all three, only the identity layer is used.

The only way to use the SSL client certificate as the identity is if it is the only information that is

presented during the request. The client picks up the interoperable object reference (IOR) from the

namespace and reads the values from the tagged component to determine what the server needs for

security.

v CSIv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets

Layer (SSL) client certificate as the identity.

v CSIv2 message layer. The message layer might contain a user ID and password or an authenticated

token with an expiration.

CSIv2 outbound communications:

Select to specify authentication settings for requests that are sent and transport settings for connections

that are initiated by the server using the Object Management Group (OMG) Common Secure

Interoperability (CSI) authentication protocol.

 Authentication features include three layers of authentication that you can use simultaneously:

v CSIv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the

message layer, and then the transport layer. If a client sends all three, only the identity layer is used.

The only way to use the SSL client certificate as the identity is if it is the only information that is

presented during the request. The client picks up the interoperable object reference (IOR) from the

namespace and reads the values from the tagged component to determine what the server needs for

security.

v CSIv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets

Layer (SSL) client certificate as the identity.

v CSIv2 message layer. The message layer might contain a user ID and password or an authenticated

token with an expiration.

Java authentication and authorization service:

Under Authentication, expand Java authentication and authorization service to view links to:

v Application logins

v System logins

v J2C authentication data

46 Securing applications and their environment

Application logins:

Select to define login configurations that are used by JAAS.

 Do not remove the ClientContainer, DefaultPrincipalMapping, and WSLogin login configurations because

other applications might use them. If these configurations are removed, other applications might fail.

System logins:

Select to define the JAAS login configurations that are used by system resources, including the

authentication mechanism, principal mapping, and credential mapping.

 J2C authentication data:

Select to specify the settings for the Java Authentication and Authorization Service (JAAS) Java 2

Connector (J2C) authentication data.

 You can use the global security settings or customize the settings for a domain.

LTPA:

Select to encrypt authentication information so that the application server can send the data from one

server to another in a secure manner.

 The encryption of authentication information that is exchanged between servers involves the Lightweight

Third-Party Authentication (LTPA) mechanism.

Kerberos and LTPA:

Select to encrypt authentication information so that the application server can send the data from one

server to another in a secure manner.

 The encryption of authentication information that is exchanged between servers involves the Kerberos

mechanism.

Note: Kerberos must be configured before this option can be selected.

Kerberos configuration:

Select to encrypt authentication information so that the application server can send data from one server

to anther in a secure manner.

 The encryption of the authentication information that is exchanged between servers involves the KRB5 of

LTPA mechanism.

Authentication cache settings:

Select to set your authentication cache settings.

Use realm-qualified user names:

Specifies that user names that are returned by methods, such as the getUserPrincipal() method, are

qualified with the security realm in which they reside.

Security domains:

Use the Security Domain link to configure additional security configurations for user applications.

Chapter 3. Setting up and enabling security 47

For example, if you want use a different user registry for a set of user applications than the one used at

the global level, you can create a security configuration with that user registry and associate it with that set

of applications. These additional security configurations can be associated with various scopes (cell,

clusters/servers, SIBuses). Once the security configurations have been associated with a scope all of the

user applications in that scope use this security configuration. Read about “Multiple security domains” on

page 60 for more detailed information.

For each security attribute, you can use the global security settings or customize settings for the domain.

External authorization providers:

Select to specify whether to use the default authorization configuration or an external authorization

provider.

 The external providers must be based on the Java uthorization Contract for Containers (JACC)

specification to handle the Java(TM) 2 Platform, Enterprise Edition (J2EE) authorization. Do not modify

any settings on the authorization provider panels unless you have configured an external security provider

as a JACC authorization provider.

Custom properties:

Select to specify name-value pairs of data, where the name is a property key and the value is a string.

Specify extent of protection wizard settings

Use this security wizard page to determine whether to enable application security and restrict access to

local resources. When you use the wizard, admin security is enabled by default.

To view this security wizard page, click Security > Global security > Security configuration wizard.

Enable application security:

Enables security for the applications in your environment. This type of security provides application

isolation and requirements for authenticating application users

 In previous releases of WebSphere Application Server, when a user enabled global security, both

administrative and application security were enabled. In WebSphere Application Server Version 6.1, the

previous notion of global security is split into administrative security and application security, each of which

you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is

disabled at the target server. Administrative security is enabled, by default. Application security is disabled,

by default. To enable application security, you must enable administrative security. Application security is in

effect only when administrative security is enabled.

 Default: Disabled

Use Java 2 security to restrict application access to local resources:

Specifies whether to enable or disable Java 2 security permission checking. By default, access to local

resources is not restricted. You can choose to disable Java 2 security, even when application security is

enabled.

 When the Use Java 2 security to restrict application access to local resources option is enabled and

if an application requires more Java 2 security permissions than are granted in the default policy, the

application might fail to run properly until the required permissions are granted in either the app.policy file

or the was.policy file of the application. AccessControl exceptions are generated by applications that do

48 Securing applications and their environment

not have all the required permissions. See the related links for more information about Java 2 security.

 Default: Disabled

Security custom properties

Use this page to understand the predefined custom properties that are related to security.

To view this administrative console page, click Security > Global security > Custom properties. You can

click New to add a new custom property and its associated value.

com.ibm.CSI.rmiInboundLoginConfig:

This property specifies the Java Authentication and Authorization Service (JAAS) login configuration that is

used for Remote Method Invocation (RMI) requests that are received inbound.

 By knowing the login configuration, you can plug in a custom login module that can handle specific cases

for RMI logins.

 Default system.RMI_INBOUND

com.ibm.CSI.rmiOutboundLoginConfig:

This property specifies the JAAS login configuration that is used for RMI requests that are sent outbound.

 Primarily, this property prepares the propagated attributes in the Subject to be sent to the target server.

However, you can plug in a custom login module to perform outbound mapping.

 Default system.RMI_OUTBOUND

com.ibm.CSI.supportedTargetRealms:

This property enables credentials that are authenticated in the current realm to be sent to any realm that is

specified in the Trusted target realms field. The Trusted target realms field is available on the CSIv2

outbound authentication panel. This property enables those realms to perform inbound mapping of the

data from the current realm.

 It is not recommended that you send authentication information to an unknown realm. Thus, this provides

a way to specify that the alternate realms are trusted. To access the CSIv2 outbound authentication panel,

complete the following steps:

1. Click Security > Global security.

2. Under RMI/IIOP security, click CSIv2 outbound authentication.

com.ibm.CSI.disablePropagationCallerList:

This property completely disables the caller list and will not allow the caller list to change. This property

prevents the creation of multiple sessions.

 This property completely disables adding a caller or host list in the propagation token. Setting this property

can be a benefit when the caller or host list in the propagation token is not needed in the environment.

Note: If this property is set to true as well as com.ibm.CSI.propagateFirstCallerOnly, then

com.ibm.CSI.disablePropagationCallerList takes precedence.

 Default false

Chapter 3. Setting up and enabling security 49

com.ibm.CSI.propagateFirstCallerOnly:

This property will not allow the caller list to change and thus prevent the creation of multiple session

entries. This property specifically limits the caller list to the first caller only.

 This property logs the first caller in the propagation token that stays on the thread when security attribute

propagation is enabled. Without setting this property, all caller switches get logged, which affects

performance. Typically, only the first caller is of interest.

Note: If this property is set to true as well as com.ibm.CSI.disablePropagationCallerList, then

com.ibm.CSI.disablePropagationCallerList takes precedence.

 Default false

com.ibm.security.useFIPS:

Specifies that Federal Information Processing Standard (FIPS) algorithms are used. The application server

uses the IBMJCEFIPS cryptographic provider instead of the IBMJCE cryptographic provider.

 Default false

com.ibm.websphere.security.krb.canonical_host:

This property specifies whether (true) or (false) the WebSphere Application Server uses the canonical form

of the URL/HTTP host name in authenticating a client.

 If this property is set to “false”, a Kerberos ticket can contain a host name that differs from the HTTP host

name header. An error can occur as follows:

CWSPN0011E: An invalid SPNEGO token has been encountered while authenticating a HttpServletRequest

You can avoid an error message by setting this property to “true” and allowing WebSphere Application

Server to authenticate using the canonical form of the URL/HTTP host name.

 Default false

com.ibm.ws.security.createTokenSubjectForAsynchLogin:

In this release, the actual LTPA token data is not available from a WSCredential.getCredentialToken() call

when called from an asynchronous bean. For an existing configuration, you can add the custom property

com.ibm.ws.security.createTokenSubjectForAsynchLogin to allow the LTPAToken to be forwarded to

asynchronous beans. This property allows portlets to successfully perform LTPA token forwarding.

 Using the administrative console, create this custom property as follows:

1. Click Security > Global security.

2. Under Additional property, click Custom properties.

3. Click New.

4. In the Name field, type com.ibm.ws.security.createTokenSubjectForAsynchLogin

Note: This custom property name is case sensitive.

5. In the Value field, type true

6. Click Apply and Save, then restart the WebSphere Application Server.

50 Securing applications and their environment

Note: This custom property applies only to system conditions where Server A makes EJB calls from

asynchronous beans to Server B. This property does not apply for JAAS login situations.

 Default not applicable

com.ibm.ws.security.defaultLoginConfig:

This property is the JAAS login configuration that is used for logins that do not fall under the

WEB_INBOUND, RMI_OUTBOUND, or RMI_INBOUND login configuration categories.

 Internal authentication and protocols that do not have specific JAAS plug points call the system login

configuration that is referenced by com.ibm.ws.security.defaultLoginConfig configuration.

 Default system.DEFAULT

com.ibm.ws.security.ssoInteropModeEnabled:

This property determines whether to send LtpaToken2 and LtpaToken cookies in the response to a Web

request (interoperable).

 When this property value is false, the application server just sends the new LtpaToken2 cookie which is

stronger, but not interoperable with some other products and Application Server releases prior to Version

5.1.1. In most cases, the old LtpaToken cookie is not needed and you can set this property to false.

 Default true

com.ibm.ws.security.webChallengeIfCustomSubjectNotFound:

This property determines the behavior of a single sign-on LtpaToken2 login.

 If the token contains a custom cache key and the custom Subject cannot be found, then the token is used

to log in directly as the custom information needs to be regathered if this property value is set to true. A

challenge also occurs so that the user is required to login again. When this property value is set to false

and the custom Subject is not found, the LtpaToken2 is used to login and gather all of the registry

attributes. However, the token might not obtain any of the special attributes that downstream applications

might expect.

 Default true

com.ibm.ws.security.webInboundLoginConfig:

This property is the JAAS login configuration that is used for Web requests that are received inbound.

 By knowing the login configuration, you can plug in a custom login module that can handle specific cases

for Web logins.

 Default system.WEB_INBOUND

com.ibm.ws.security.webInboundPropagationEnabled:

This property determines whether a received LtpaToken2 cookie should search for the propagated

attributes locally before searching the original login server that is specified in the token. After the

propagated attributes are received, the Subject is regenerated and the custom attributes are preserved.

Chapter 3. Setting up and enabling security 51

Default true

com.ibm.wsspi.security.ltpa.tokenFactory:

This property specifies the Lightweight Third Party Authentication (LTPA) token factories that can be used

to validate the LTPA tokens.

 Validation occurs in the order in which the token factories are specified because LTPA tokens do not have

object identifiers (OIDs) that specify the token type. The Application Server validates the tokens using each

token factory until validation is successful. The order that is specified for this property is the most likely

order of the received tokens. Specify multiple token factories by separating them with a pipe (|) without

spaces before or following the pipe.

 Default com.ibm.ws.security.ltpa.LTPATokenFactory |

com.ibm.ws.security.ltpa.LTPAToken2Factory |

com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.authenticationTokenFactory:

This property specifies the implementation that is used for an authentication token in the attribute

propagation framework. The property provides an old LTPA token implementation for use as the

authentication token.

 Default com.ibm.ws.security.ltpa.LTPATokenFactory

com.ibm.wsspi.security.token.authorizationTokenFactory:

This property specifies the implementation that is used for an authorization token. This token factory

encodes the authorization information.

 Default com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.propagationTokenFactory:

This property specifies the implementation that is used for a propagation token. This token factory encodes

the propagation token information.

 The propagation token is on the thread of execution and is not associated with any specific user Subjects.

The token follows the invocation downstream wherever the process leads.

 Default com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.singleSignonTokenFactory:

This property specifies the implementation that is used for a Single Sign-on (SSO) token. This

implementation is the cookie that is set when propagation is enabled regardless of the state of the

com.ibm.ws.security.ssoInteropModeEnabled property.

 By default, this implementation is the LtpaToken2 cookie.

 Default com.ibm.ws.security.ltpa.LTPAToken2Factory

security.enablePluggableAuthentication:

52 Securing applications and their environment

This property is no longer used. Instead, use WEB_INBOUND login configuration.

 Complete the following steps to modify the WEB_INBOUND login configuration:

1. Click Security > Global security.

2. Under Java Authentication and Authorization Service, click System logins.

 Default true

security.useDefaultPolicyWhenJ2SDisabled:

The NullDynamicPolicy.getPermissions method provides an option to delegate a default policy class to

construct a Permissions object when this custom security is set to true. When this property is set to false,

an empty Permissions object is returned.

 Complete the following steps to set this property:

1. Log in to the administrative console.

2. Click Security > Secure administration, applications, and infrastructure > Custom properties.

3. Click New and add the following values:

Name field

security.useDefaultPolicyWhenJ2SDisabled

Value field

true

4. Click OK, then Save

 Default false

com.ibm.websphere.lookupRegistryOnProcess:

This property can be set when realm registry lookups are performed via an MBean on a remote server if

the realm is local OS security.

 By default, the user registry tasks listRegistryUsers and listRegistryGroups perform lookups from the

current process. In the case of Network Deployment (ND), that is the dmgr.

When dealing with a local OS user registry, lookup should occur on the actual server where the registry

resides. In an ND environment that could be a remote machine. To perform lookup on the server process

where the registry resides, the com.ibm.websphere.lookupRegistryOnProcess custom property should be

set to true.

If com.ibm.websphere.lookupRegistryOnProcess is not set, or set to false, then the lookup is performed

on the current process. The custom property can be set using the setAdminActiveSecuritySettings task for

global security or the setAppActiveSecuritySettings task for a security domain.

Security custom property collection

Use this page to view and manage arbitrary name-value pairs of data, where the name is a property key

and the value is a string value that can be used to set internal system configuration properties.

The administrative console contains several custom properties pages that work similarly. To view one of

these administrative pages, click a Custom properties link.

Name:

Specifies the name (or key) for the property.

Chapter 3. Setting up and enabling security 53

Each property name must be unique. If the same name is used for multiple properties, the value specified

for the first property is used.

Do not start your property names with was. because this prefix is reserved for properties that are

predefined in the application server.

Value:

Specifies the value paired with the specified name.

Description:

Provides information about the name-value pair.

Security custom property settings

Use this page to configure arbitrary name-value pairs of data, where the name is a property key and the

value is a string value that can be used to set internal system configuration properties. Defining a new

property enables you to configure a setting beyond that which is available in the administrative console.

The administrative console contains several custom property settings pages that work similarly. To view

one of these administrative pages, click Custom properties.

Name:

Specifies the name (or key) for the property.

 Each property name must be unique. If the same name is used for multiple properties, the value specified

for the first property is used.

Do not start your property names with was. because this prefix is reserved for properties that are

predefined in the product.

 Data type String

Value:

Specifies the value paired with the specified name.

 Data type String

Description:

Provides information about the name and value pair.

 Data type String

Testing security after enabling it

Basic tests are available that show whether the fundamental security components are working properly.

Use this task to validate your security configuration.

Before you begin

After configuring administrative security and restarting all of your servers in a secure mode, validate that

security is properly enabled.

54 Securing applications and their environment

There are a few techniques that you can use to test the various security login types. For example, you can

test the Web-based BasicAuth login, Web-based form login, and the Java client BasicAuth login.

Basic tests are available that show whether the fundamental security components are working properly.

Complete the following steps to validate your security configuration:

1. After enabling security, verify that your system comes up in secure mode.

2. Test the Web-based BasicAuth with Snoop, by accessing the following URL: http://
hostname.domain:9080/snoop.

3. Test the Web-based form login by starting the administrative console: http://
hostname.domain:port_number/ibm/console. A form-based login page is displayed. If a login page does

not appear, try accessing the administrative console by typing https://myhost.domain:9043/ibm/
console.

Type in the administrative user ID and password that are used for configuring your user registry when

configuring security.

4. Test Java Client BasicAuth with dumpNameSpace.

Use the app_server_root/bin/dumpNameSpace file. A login panel appears. If a login panel does not

appear, there is a problem. Type in any valid user ID and password in your configured user registry.

5. Test all of your applications in secure mode.

6. If all the tests pass, proceed with more rigorous testing of your secured applications. If you have any

problems, review the SYSOUT and SYSPRINT logs. For more information on common problems, see

Chapter 12, “Troubleshooting security configurations,” on page 1259.

Results

The results of these tests, if successful, indicate that security is fully enabled and working properly.

The Security Configuration Wizard

The Security Configuration Wizard guides you through the process of completing the basic requirements to

secure your application serving environment.

This wizard is available from the Security menu from the left pane of the admin console. To get to the

wizard, navigate to Security → Global security → Security Configuration Wizard.

Step one of the configuration wizard allows you to choose the level of security desired. application-level

security is selected by default. You also have the option of selecting Java 2 security.

Step two of the configuration wizard allows you to select a user repository. You have the following options:

v “Federated repository wizard settings” on page 158

v “Local operating system wizard settings” on page 99

v “Standalone custom registry wizard settings” on page 126

v “Standalone LDAP registry wizard settings” on page 106

Step three of the configuration wizard allows you to specify the local operating system user and group

definitions as the repository, and, if necessary, to provide the name of a user with administrator privileges.

Step four of the configuration wizard provides a summary of the results of the configuration process.

Chapter 3. Setting up and enabling security 55

56 Securing applications and their environment

Chapter 4. Configuring multiple security domains

By default, all administrative and user applications in WebSphere Application Server use the global

security configuration. For example, a user registry defined in global security is used to authenticate users

for every application in the cell. Out-of-the-box, this behavior is the same as it was in previous releases of

WebSphere Application Server. You can create additional WebSphere security domains if you want to

specify different security attributes for some or all of your user applications. This section describes how to

configure a security domain by using the administrative console.

Before you begin

Only users assigned to the administrator role can configure or create new multiple security domains.

Enable global security in your environment before configuring multiple security domains.

Read about “Multiple security domains” on page 60 for a better understanding of what multiple security

domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains enable you to define multiple security configurations for use in your environment. For

example, you can define different security (such as a different user registry) for user applications than for

administrative applications. You can also define separate security configurations for user applications

deployed to different servers and clusters.

Perform the following steps to configure a new security domain by using the administrative console:

1. Click Security > Security domains.

2. If you are creating a new multiple security domain, click New. Supply a unique name and description

for the domain and click Apply. If you want to configure an existing multiple security domain, select

one to edit. Once you click Apply the domain name and additional sections are displayed. One section

enables you to define the security attributes for the domain, and another section enables you to select

the scopes to which the domain applies.

3. Under Assigned Scopes, select whether you want to assign the security domain to the entire cell or if

you want to select the specific servers, clusters, and service integration buses to be included in the

security domain. The Assigned Scopes section has two views. The default view is a cell topology. To

assign the security domain to the entire cell, click the check box for the cell and then click Apply or

OK.

The name of the security domain appears next to the cell name, which indicates that the domain is

now assigned to the cell. You can expand the topology and assign the domain to one or more servers

and clusters. When an item in the topology is already assigned to another security domain, the check

box is disabled and the name of the assigned domain is displayed to the right of the scope name. If

you want to assign one of these scopes to the domain, you must first disassociate it with its current

domain.

Select All assigned scopes to view a list of only those resources that are currently assigned to the

security domain.

4. Customize your security configuration by specifying security attributes for your new domain. Attributes

that are not listed can not be customized at the domain level. Domains inherit attributes from the global

security configuration.

There are twelve individually configurable security attribute sections. You can expand and collapse

each section. In the collapsed state, the name and a summary value for the section are displayed.

Additionally, the summary value text indicates whether the attribute is defined in global security and is

reused by the domain (as indicated by gray text) or if it is customized for the domain (as indicated by

black text prefixed by the word “Customized”).

© IBM Corporation 2008 57

Initially, each security attribute is set to use the global security settings. When an attribute is set to use

global security, there is no domain-specific configuration for that attribute. Applications that use the

domain use the global configuration for these security attributes.

Only configure the security attributes that you want to change. To configure a security attribute for a

domain, expand the security attribute section. The key properties of the global configuration display

beneath the Use global security option. These properties are provided for convenience.

To customize the configuration for the domain, select Customize for this domain. Configure the

property and then click OK or Apply.

Note: In general, when you select Customize for this domain, you override all of the security

configurations that are defined for that section in global security. Application logins, system

logins, and J2C authentication data entries are some exceptions. When you define entries for a

domain, applications in the domain are able to access the global entries in addition to the

domain-specific entries.

For example, you might want to use a different user registry for applications that use the security

domain but also want to use the global security configuration for all of the other security properties. In

this case, expand the User Realm section and select Customize for this domain. Select a user

registry type, click Configure, and provide the appropriate configuration details on the subsequent

panel.

You can change security attributes such as the following:

Application Security

Specifies the settings for application security and Java 2 security. You can use the global

security settings or customize the settings for a domain.

 Select Enable application security to enable or disable security this choice for user

applications. When this selection is disabled, all of the EJBs and Web applications in the

security domain are no longer protected. Access is granted to these resources without user

authentication. When you enable this selection, the J2EE security is enforced for all of the

EJBs and Web applications in the security domain. The J2EE security is only enforced when

Global Security is enabled in the global security configuration, (that is, you cannot enable

application security without first enabling Global Security at the global level).

Java 2 Security

Select Java 2 security to enable or disable Java 2 security at the domain level. This choice

enables or disables Java 2 security at the process (JVM) level so that all applications (both

administrative and user) can enable or disable Java 2 security.

User realm

 This section enables you to configure the user registry for the security domain. You can

separately configure any registry except the federated registry that is used at the domain level.

The federated repository can only be configured at the global level but can be used at the

domain level. Read about “Multiple security domains” on page 60 for more information.

Trust association

When you configure the trust association interceptor (TAI) at a domain level, the interceptors

configured at the global level are copied to the domain level for convenience. You can modify

the interceptor list at the domain level to fit your needs. Only configure those interceptors that

are to be used at the domain level.

SPNEGO Web Authentication

The SPNEGO Web authentication, which enables you to configure SPNEGO for Web resource

authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate

HTTP requests for secured resources was introduced. In WebSphere Application Server

58 Securing applications and their environment

7.0, this function is now deprecated. SPNEGO Web authentication has taken its place

to provide dynamic reload of the SPNEGO filters and to enable fallback to the

application login method.

RMI/IIOP Security

 The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version 2)

protocol properties. When you configure these attributes at the domain level, the RMI/IIOP

security configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport

layer settings for CSIv2 inbound communications should be the same for both the global and

the domain levels. If they are different, the domain level attributes are applied to all of the

application in the process.

JAAS application logins

Specifies the configuration settings for the Java Authentication and Authorization Service

(JAAS) application logins. You can use the global security settings or customize the settings for

a domain.

Note: The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication

data aliases can all be configured at the domain level. By default, all of the applications

in the system have access to the JAAS logins configured at the global level. The

security runtime first checks for the JAAS logins at the domain level. If it does not find

them, it then checks for them in the global security configuration. Configure any of these

JAAS logins at a domain only when you need to specify a login that is used exclusively

by the applications in the security domain.

JAAS system logins

Specifies the configuration settings for the JAAS system logins. You can use the global

security settings or customize the configuration settings for a domain.

JAAS J2C authentication

Specifies the configuration settings for the JAAS J2C authentication data. You can use the

global security settings or customize the settings for a domain.

Authentication Mechanism Attributes

 Specifies the various cache settings that need to applied at the domain level.

Select Authentication cache settings to specify your authentication cache settings. The

configuration specified on this panel is applied only to this domain.

Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The

default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set

at the domain level, any token that is created in the security domain when accessing user

applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such as

getUserPrincipal() are qualified with the security realm (user registry) used by applications

in the security domain.

Authorization Provider

 You can configure an external third party JACC (Java Authorization Contract for Containers)

provider at the domain level. Tivoli Access Manager’s JACC provider can only be configured at

the global level. Security domains can still use it if they do not override the authorization

provider with another JACC provider or with the built-in native authorization.

Custom properties

Set custom properties at the domain level that are either new or different from those at the

global level. By default, all of the custom properties at the global security configuration can be

Chapter 4. Configuring multiple security domains 59

accessed by all of the applications in the cell. The security runtime code first checks for the

custom property at the domain level. If it does not find it, it then attempts to obtain the custom

property from the global security configuration.

5. Once you have configured the security attributes and assigned the domain to one or more scopes,

click Apply or OK.

6. Restart all servers and clusters for your changes to take effect.

Multiple security domains

The WebSphere Security Domains (WSD) provide the flexibility to use different security configurations in

WebSphere Application Server. The WSD is also referred to as multiple security domains, or simply,

security domains. You can configure different security attributes, such as the UserRegistry, for different

applications.

Note: Multiple security domain support is new in this release of WebSphere Application Server. You can

create different security configurations and assign them to different applications in WebSphere

Application Server processes. By creating multiple security domains, you can configure different

security attributes for both administrative and user applications within a cell environment. You can

configure different applications to use different security configurations by assigning the servers or

clusters or service integration buses that host these applications to the security domains. Only

users assigned to the administrator role can configure multiple security domains.

The following sections describe multiple security domains in more detail:

v “Why security domains are useful”

v “Relationship between global security and security domains” on page 61

v “Contents of a security domain” on page 62

v “Creating security domains” on page 63

v “Configuring attributes for security domains” on page 64

v “Associating scopes to security domains” on page 65

v “Relationship between old server level security and the new security domains” on page 66

v “How domain level security attributes are used by security runtime and applications” on page 66

v “Client and application security programming model when using security domains” on page 68

v “Application deployment in multiple domains configurations” on page 70

v “Cross realm communication” on page 71

v “Federating a node with security domains” on page 73

v “Security domains in a mixed-version environment” on page 74

v “Modifying security domains” on page 74

Why security domains are useful

WebSphere Security Domains provide two major benefits:

v WebSphere Application Server administrative applications can be configured with a different set of

security configurations from those for user applications.

v They enable one set of applications to have a different set of security configurations from another set of

applications.

For example, WebSphere Application Server administration can be configured to a user registry of

federated repository while the applications can be configured to a user registry of LDAP.

In previous versions of WebSphere Application Server, all administrative and user applications use security

attributes different from those attributes that are defined in global security. All administrative and user

60 Securing applications and their environment

applications in WebSphere Application Server use global security attributes by default. For example, a user

registry defined in global security is used to authenticate a user for every application in the cell.

In this release of WebSphere Application Server, however, you can use multiple security attributes for user

applications other than the global security attributes, create a security domain for those security attributes

that must differ, and associate them with the servers and clusters that host those user applications. You

also can associate a security domain with the cell. All of the user applications in the cell use this security

domain if they do not have a domain previously associated with them. However, global security attributes

are still required for administrative applications such as the administrative console, naming resources and

MBeans.

If you have used server level security in previous releases of WebSphere Application Server, you should

now use multiple security domains since they are more flexible and easier to configure.

Server level security is deprecated in this release. Read “Relationship between global security and security

domains” for more information.

Relationship between global security and security domains

Global Security applies to all administrative functions and the default security configuration for user

applications. Security domains can be used to define a customized configuration for user applications.

You must have a global security configuration defined before you can create security domains. The global

security configuration is used by all of the administrative applications such as the administrative console,

naming resources, and Mbeans. If no security domains are configured, all of the applications use

information from the global security configuration. User applications such as Enterprise JavaBeans (EJBs),

servlets and administrative applications use the same security configuration.

When you create a security domain and associate it with a scope, only the user applications in that scope

use the security attributes that are defined in the security domain. The administrative applications as well

as the naming operations in that scope use the global security configuration. Define the security attributes

at the domain level that need to be different from those at the global level. If the information is common,

the security domain does not need to have the information duplicated in it. Any attributes that are missing

in the domain are obtained from the global configuration. The global security configuration data is stored in

the security.xml file, which is located in the $WAS_HOME/profiles/$ProfileName/cells/$CellName

directory.

The following figure provides an example of a security multiple domain where the cell, a server and a

cluster are associated with different security domains. As shown in the figure, the user applications in

server S1.1 as well as the cluster use security attributes that are defined in Domain2 and Domain3

respectively (since these scopes are associated with these domains). Server S2.2 is not associated with a

domain. As a result, the user application in S2.2 uses the domain that is associated with the cell (Domain1)

by default . Security attributes that are missing from the domain level are obtained from the global

configuration.

Chapter 4. Configuring multiple security domains 61

The following figure shows the various high-level security attributes that can be defined at the global

security configuration and those that can be overridden at the domain level.

Contents of a security domain

A security domain is represented by two configuration files. One configuration file contains the list of

attributes that are configured in the security domain. The other configuration file contains the scopes that

Current Global security configuration

(security.xml)
Cell

Node 1

Node 2

WSD configuration (Domain3)

(domain -security.xml)

WSD configuration (Domain1)

(domain -security.xml)

User applications

in S1.1 will use the security attributes defined in
Domain2.

in cluster will use the security attributes defined in

Domain3.

in S2.2 will use the security attributes defined in
Domain1.

Any attributes that are missing in a domain are
obtained from global security.xml

WSD configuration (Domain2)

(domain -security.xml)

Cluster

S1.1

S1.2

S2.1

S2.2

Figure 1. Scopes that can be associated to a security domain

Global security configuration (security.xml)
• Application security enablement

Java 2 security
User realm (registry)
Trust Association Interceptor (TAI)
SPNEGO Web Authentication

JAAS

Authorization Provider

•
•
•
•
• RMI/IIOP Security (CSIv2 Protocol)
•
• Authentication mechanism attributes
•
• Custom properties
• Web attributes (SSO)
• SSL
• Audit
• LTPA Authentication mechanism
• Kerberos Authentication mechanism

The WSD configuration can override (domain-security.xml)
•
• Java 2 security
• User realm (registry)
• Trust Association Interceptor (TAI)
• SPNEGO Web Authentication
• RMI/IIOP Security (CSIv2 Protocol)
• JAAS
• Authentication mechanism attributes
• Authorization Provider
• Custom properties

Application security enablement

Note: Only high level attributes shown.

Figure 2. Security attributes that can be configured at the security domain

62 Securing applications and their environment

use the security domain. The security domain information is stored in the $WAS_HOME/profiles/
$ProfileName/config/waspolicies/default/securitydomains/$SecurityDomainName directory. For every

security domain that is configured, a $SecurityDomainName directory is created with two files in it: the

security-domain.xml file contains the list of security attributes configured for the security domain, and the

security-domain-map.xml file contains the scopes that use the security domain.

The following figure indicates the location of the main security domain related files and the contents of

those files.

Note: You should not modify these files manually. Use administrative console tasks or scripting

commands to modify the files instead. For a complete list of administrative tasks and scripting

commands, see the links in ″Related tasks″ at the bottom of this document.

Creating security domains

Use the administrative console tasks or scripting commands to create security domains. In the

administrative console, access security domains by clicking Security > Security domains. Help is

available for each administrative console panel.

For a complete list of administrative console tasks and scripting commands, see the links in ″Related

tasks″ at the bottom of this document.

When you create a security domain you must supply a unique name for the domain, the security attributes

you want to configure for the security domain, and the scopes that need to use the security domain. Once

configured, the servers that use the security domain must be restarted. The user applications in those

scopes then use the attributes that are defined in the security domain. Any attributes that are not

configured at the domain level are obtained from the global security configuration. Administrative

applications and naming operations in the scopes always use the security attributes from the global

security configuration. You must actively manage these attributes.

Any new security domain attributes must be compatible with those global security attributes that are

inherited by the user applications that are assigned to the domain.

Other than for JAAS and custom properties, once global attributes are customized for a domain they are

no longer used by user applications.

The security domains panel in the administrative console enables you to assign resources and to select

the appropriate security attributes for your domain. The panel displays the key security attributes at the

global configuration; you can make the decision to override them at the domain level if necessary. Once

These files are located in the

$WAS_HOME/profiles/$ProfileName/config/waspolicies/default/securitydomains/$SecurityDomainName directory

domain-security.xml

Can contain one or more of the security attributes like User Registry, Login Configurations, Authorization,
TAI , etc.

domain-security-map.xml

Contains the list of WebSphere resources that use the security attributes listed above. For example, a
cluster name here indicates that all the user applications in that cluster will use these security attributes.

Figure 3. Location and contents of the main security domain related files

Chapter 4. Configuring multiple security domains 63

you have configured and saved the attributes at the domain level, the summary value on the panel

displays the customized value for the domain (tagged with the word ″customized″ in black text).

A scope (a server, cluster, SIBus or a cell) can be associated with only one domain. For example, you

cannot define two domains that both have the cell-wide scope. Multiple scopes, however, can be defined

in the same security domain. For example, a domain can be scoped to Server1 and to Server2 only within

the cell.

The assigned scopes section on the security domain panel displays two views: one view that enables you

to select and assign scopes to the domain, and another view that enables you to see a list of the currently

assigned scopes. For convenience, you also have the flexibility to copy all of the security attributes from

an existing security domain or the global configuration into a new security domain, and then modify only

those attributes that must be different. You must still associate the scopes to these copied domains.

Scripting commands also provide you with the ability to create, copy and modify security domains. Once

you create a domain, you must run the appropriate commands to associate security attributes and scopes

to it.

Configuring attributes for security domains

Security attributes that can be configured at the domain level in WebSphere Application Server Version 7.0

are:

v Application security

v Java 2 security

v User realm (registry)

v Trust association

v Simple and Protected GSS-API Negotiation (SPNEGO) Web authentication

v RMI/IIOP security (CSIv2)

v JAAS logins (Application, System and J2C Authentication Data)

v Authentication mechanism attributes

v Authorization provider

v Custom properties

The security domains panels in the administrative console display all of these security attributes.

Some of the other well-known attributes that you cannot override at the domain level are Kerberos, Audit,

Web Single Sign-on (SSO), Tivoli Access Manager (TAM), and federated repositories. The Secure Socket

Layer (SSL) attribute already supports different scopes, but it is not part of the domain configuration. For

all of the attributes that are not supported at the domain level, user applications in a domain share their

configuration from the global level.

Any new security domain attributes must be compatible with those global security attributes that are

inherited by the user applications that are assigned to the domain. You must actively manage these

attributes. For example, if you customize only a JAAS configuration at the domain level you must make

sure that it works with the user registry configured at the global level (if the user registry is not customized

at the domain level).

Other than for JAAS and custom properties, once global attributes are customized for a domain they are

no longer used by user applications.

Tivoli Access Manager is used to provide authentication (TrustAssociationInterceptor, PDLoginModule) and

authorization (JACC). You can configure these Tivoli Access Manager attributes at the global level. You

cannot have a different Tivoli Access Manager configuration at the domain level to override the

64 Securing applications and their environment

configuration at the global level. However, you can override these Tivoli Access Manager attributes at the

domain level with different Authentication and Authorization security attributes. For example, you can use a

different Trust Association Interceptor (TAI) or a different authorization provider.

The federated repositories user registry can only be configured at the global level. There can only be one

instance of federated repositories in WebSphere Application Server. Any security domain can use this

configuration for its user registry. A security domain can override the configuration with its own user

registry. However, it cannot configure a different instance of the federated repository.

Associating scopes to security domains

In WebSphere Application Server Version 7.0, you can associate a security domain at the cell level, the

server level, the cluster level and the SIBus level.

Note: For more information about SIBus and bus security in multiple security domains for WebSphere

Application Server Version 7.0, read about ″Bus security in multiple security domains″ in the

InfoCenter.

When a security domain is associated with a server that is not part of a cluster, all user applications in that

server use the attributes from the security domain. Any missing security attributes are obtained from the

global security configuration. If the server is part of a cluster, you can associate the security domain with

the cluster but not with the individual members in that cluster. The security behavior then remains

consistent across all of the cluster members.

If a server is to be part of a cluster, create a cluster first and associate the security domain to it. You might

have associated a domain to a server before it was a member of a cluster. If so, even though the domain

is associated with the server directly, the security runtime code does not look at the domain. When a

server is a cluster member, the security runtime disregards any security domains associated directly to the

server. Remove the server scope from the security domain and associate the cluster scope to it instead.

A security domain can also be associated to the cell. This is usually done when you want to associate all

user applications in WebSphere Application Server to a security domain. In this scenario, all of the

administrative applications and the naming operations use the global security configuration while all of the

user applications use the domain level configuration. If you want to split the security configuration

information for administrative and user applications, this is all that is needed.

If you have a mixed-version environment, or plan to have one in future, and you want to associate security

domains at the cell level, read “Security domains in a mixed-version environment” on page 74 for more

information.

If you are on a base profile server that has its own security domain defined, which is then federated to a

deployment manager, associate the server scope to the security domain and not the cell scope. When you

federate that node, the security domain information is propagated to the deployment manager. If the cell

scope is associated to it, the network deployment configuration uses this security configuration, which

might impact existing applications. During federation, the cell scope is changed to the server scope that is

being federated. If the server scope is associated with the security domain, only that server uses the

security domain after the federation. Other applications in other servers and clusters are not impacted.

However, if this base profile server is registered to the Administrative Agent process you can associate the

cell scope to the security domain if you want all of the servers from the base profile to use the same

security domain for all of their user applications. Read about “Federating a node with security domains” on

page 73 for more information.

You can have a security domain associated at the cell level and also other security domains associated to

various clusters or individual servers (those that are not part of any clusters). In this case, the security

runtime first checks if any security domains are associated with the server or a cluster. If there is a

security domain associated with the server or a cluster, the security attributes defined in it are used for all

Chapter 4. Configuring multiple security domains 65

of the applications in that server or cluster. Any security attributes missing from this server or cluster

domain are obtained from the global security configuration, and not from the domain configuration

associated with the cell.

If the server or cluster does not have its own domain defined, the security runtime code uses the security

attributes from the domain associated with the cell (if one is defined). Any security attributes missing from

the cell domain are inherited from the global security configuration.

Relationship between old server level security and the new security domains

In previous releases of WebSphere Application Server, you could associate a small set of security

attributes at a server level. These attributes were used by all of the applications at the server level. The

previous way of configuring the security attributes is deprecated in WebSphere Application Server 7.0, and

will be removed in a future release.

You should now use the new security domains support in WebSphere Application Server 7.0, as these

security domains are more easily managed and much more flexible. For example, in previous versions of

WebSphere Application Server, you must manually associate the same security configuration to all of the

cluster members by configuring the same security attributes for every server in a cluster.

The migration tool migrates the existing server level security configuration information to the new security

domain configuration when the script compatibility mode is false (-scriptCompatibility=″false″). A new

security domain is created for every server security configuration if it is not part of a cluster. If it is part of a

cluster, a security domain is associated with the cluster instead of with all of the servers in that cluster. In

both cases, all of the security attributes that were configured at the server level in previous releases are

migrated to the new security domain configuration, and the appropriate scope is assigned to the security

domains.

If the script compatibility mode is set to true, the server level security configuration is not migrated to the

new security domains configuration. The old server security configuration is migrated without any changes.

The security runtime detects that the old security configuration exists and uses that information, even if a

security domain is associated either directly or indirectly to the server. If the script compatibility mode is set

to true, remove the security configuration from the server level and then create a security domain with the

same set of security attributes.

How domain level security attributes are used by security runtime and

applications

This section describes how the individual attributes at the domain level are used by the security runtime

and how that impacts the user application security. Since all of these security attributes are also defined at

the global level, more information about these attributes can be obtained elsewhere. For the purposes of

this section, the emphasis is on domain level behavior.

 1. Application Security:

Select Enable application security to enable or disable security for user applications. When this

selection is disabled, all of the EJBs and Web applications in the security domain are no longer

protected. Access is granted to these resources without user authentication. When you enable this

selection, the J2EE security is enforced for all of the EJBs and Web applications in the security

domain. The J2EE security is only enforced when Global Security is enabled in the global security

configuration, (that is, you cannot enable application security without first enabling Global Security at

the global level).

 2. Java 2 Security:

Select Use Java 2 security to enable or disable Java 2 security at the domain level or to assign or

add properties related to Java 2 security. This choice enables or disables Java 2 security at the

process (JVM) level so that all applications (both administrative and user) can enable or disable Java

2 security.

66 Securing applications and their environment

3. User Realm (User Registry):

This section enables you to configure the user registry for the security domain. You can separately

configure any registry except the federated registry that is used at the domain level. The federated

repository can only be configured at the global level but can be used at the domain level. Read about

“Configuring attributes for security domains” on page 64 for more information.

When configuring a registry at the domain level you can choose to define your own realm name for

the registry. The realm name distinguishes one user registry from another. The realm name is used in

multiple places – in the Java client login panel to prompt the user, in the authentication cache, and

when using native authorization.

At the global configuration level, the system creates the realm for the user registry. In previous

releases of WebSphere Application Server, only one user registry is configured in the system. When

you have multiple security domains you can configure multiple registries in the system. For the realms

to be unique in these domains, configure your own realm name for a security domain. You also can

choose the system to create a unique realm name if it is certain to be unique. In the latter case, the

realm name is based on the registry that is being used.

For LDAP registries, the host:port of the LDAP server is the system-generated realm name. For

localOS, the name of the localOS machine is the realm name. For custom user registries, the realm

is the one returned by the getRealm () method of the custom registry implementation.

If the system generated realm names are not unique enough, you can choose the option for the

system to generate the realm name. If not, choose a unique realm name for each security domain

where you have the user registry configured. If the underlying user repository is the same, use the

same realm name in different domains. From a security runtime perspective, same realm names have

the same set of users and groups information. For example, when users and groups information is

required from a realm, the first user repository that matches the realm is used.

When more than one user registry is in a process, the naming lookup that uses “UserRegistry” as the

lookup name returns the user registry that is used by user applications. The user registry used by

administrative applications is bound by the lookup name, “AdminUserRegistry”.

As described in “Cross realm communication” on page 71, when an application in one realm

communicates with an application in another realm using LTPA tokens, the realms have to be trusted.

The trust relationship can be established using the Trusted authentication realms – inbound link in

the user registry panel or by using the addTrustedRealms command. You can establish trust

between different realms. A user logged into one realm can access resources in another realm. If no

trust is established between the two realms the LTPA token validation fails.

 4. Trust Association:

When you configure the trust association interceptor (TAI) at a domain level, the interceptors

configured at the global level are copied to the domain level for convenience. You can modify the

interceptor list at the domain level to fit your needs. Only configure those interceptors that are to be

used at the domain level.

Tivoli Access Manager’s trust association interceptors can only be configured at the global level. The

domain configuration can also use them, but cannot have a different version of the trust association

interceptor. Only one instance of Tivoli Access Manager’s trust association interceptors can exist in

the cell.

 5. SPNEGO Web Authentication:

The SPNEGO Web authentication, which enables you to configure SPNEGO for Web resource

authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP

requests for secured resources was introduced. In WebSphere Application Server 7.0, this

function is now deprecated. SPNEGO Web authentication has taken its place to provide

dynamic reload of the SPNEGO filters and to enable fallback to the application login method.

 6. RMI/IIOP Security (CSIv2):

Chapter 4. Configuring multiple security domains 67

The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version 2)

protocol properties. When you configure these attributes at the domain level, the RMI/IIOP security

configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport layer

settings for CSIv2 inbound communications should be the same for both the global and the domain

levels. If they are different, the domain level attributes are applied to all of the application in the

process.

When a process communicates with another process with a different realm, the LTPA authentication

and the propagation tokens are not propagated to the downstream server unless that server is listed

in the outbound trusted realms list. This can be done using the Trusted authentication realms –

outbound link on the CSIv2 outbound communication panel, or by using the addTrustedRealms

command task. Read about “Cross realm communication” on page 71 for more information.

 7. JAAS (Java Authentication and Authorization Service):

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data aliases

can all be configured at the domain level. By default, all of the applications in the system have access

to the JAAS logins configured at the global level. The security runtime first checks for the JAAS logins

at the domain level. If it does not find them, it then checks for them in the global security

configuration. Configure any of these JAAS logins at a domain only when you need to specify a login

that is used exclusively by the applications in the security domain.

For JAAS and custom properties only, once global attributes are customized for a domain they can

still be used by user applications.

 8. Authentication Mechanism Attributes:

Specifies the various cache settings that must be applied at the domain level.

a. Authentication cache settings - use to specify your authentication cache settings. The

configuration specified on this panel is applied only to this domain.

b. LTPA Timeout - You can configure a different LTPA timeout value at the domain level. The default

timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set at the

domain level, any token that is created in the security domain when accessing user applications is

created with this expiration time.

c. Use realm-qualified user names - When this selection is enabled, user names returned by

methods such as getUserPrincipal() are qualified with the security realm (user registry) used

by applications in the security domain.

 9. Authorization Provider:

You can configure an external third party JACC (Java Authorization Contract for Containers) provider

at the domain level. Tivoli Access Manager’s JACC provider can only be configured at the global

level. Security domains can still use it if they do not override the authorization provider with another

JACC provider or with the built-in native authorization.

10. Custom properties:

Set custom properties at the domain level that are either new or different from those at the global

level. By default, all of the custom properties at the global security configuration can be accessed by

all of the applications in the cell. The security runtime code first checks for the custom property at the

domain level. If it does not find it, it then attempts to obtain the custom property from the global

security configuration.

For JAAS and custom properties only, once global attributes are customized for a domain they can

still be used by user applications.

Client and application security programming model when using security domains

A Java client or an application acting as a client that accesses an EJB typically does a naming lookup first.

The naming resource, which is used by both administrative and the user applications, is considered an

administrative resource. It is protected by the global security configuration information. In a multiple

domain setup where the global security is using one realm (the user registry) and a domain is using a

68 Securing applications and their environment

different realm, the Java client must authenticate to two different realms. The first authentication is required

for the realm in the global security configuration for the naming operation to succeed, and the second

authentication is required to access the EJB, which uses a different realm.

The CosNamingRead role protects all naming read operations. This role is usually assigned the Everyone

special subject. This implies that any user, valid or not, can look up the name space. When a multiple

domain is defined, if the CosNamingRead role has the Everyone special subject the security runtime code in

the client side does not prompt you to log in. It uses the UNAUTHENTICATED subject to access the

naming operation instead. Once the naming lookup operation is completed, when the client attempts to

access the EJB it is prompted with a login panel that indicates the realm that is currently used by that EJB

application (that is, the realm used in the domain). The client then presents the appropriate user

credentials for that realm, which can then access the EJB. This logic applies to all variations of login

source, including properties and stdin, not just when the login source is set to prompt.

If the Everyone special subject is removed from the CosNamingRead role, you are prompted twice. If the

login source is properties, you can uncomment the com.ibm.CORBA.loginRealm property in the

$WAS_HOME/profiles/$ProfileName/properties/sas.client.props file and add the appropriate realms using

“|” as the separator. You must also enter the corresponding users and passwords in the

com.ibm.CORBA.loginUserid and com.ibm.CORBA.loginPassword properties respectively. When you are

using the programmatic logon in the Java client code you must authenticate twice with different user

credentials; once prior to do a naming lookup for the EJB (the user should be in the global realm), and

later prior to calling any method in the EJB (the user should be in the EJB domain’s realm).

In general, when a Java client needs to authenticate to multiple and different realms it has to provide the

credential information for all of those realms. If the login source is prompt or stdin it is prompted to login

multiple times, once for each realm. If the login source is set to properties, the appropriate properties in

the sas.client.props file (or any related file) are used for authenticating to different realms.

In certain scenarios, a client might make multiple calls to the same realm. For example, the Java client

can access a resource using realm1 followed by access to a resource using realm2, and then come back

to access a resource in realm1 again. In this case, the client is prompted three times; first for realm1,

secondly for realm2 and finally for realm1 again.

By default, the subject that is used to login at a realm is not cached by the client side code. If you have

this scenario, and you want the client to cache the subject based on the realm, set the

com.ibm.CSI.isRealmSubjectLookupEnabled property to true in the sas.client.props file. If the

com.ibm.CSI.isRealmSubjectLookupEnabled property is set, the client code caches the subject based on

the realm name. The next time the Java client needs to authenticate to this realm, the cache is located to

obtain the subject and the client is not prompted. Also, when the

com.ibm.CSI.isRealmSubjectLookupEnabled property is set, the same subject that was logged in the first

time is used for subsequent logins. If the subject information needs to change then this property should

not be set.

If the client is doing a programmatic login it can pass the realm along with the user and password that it

needs to authenticate. In this case, when the com.ibm.CORBA.validateBasicAuth property is set to true

(the default value) in the sas.client.props file, the registry that matches the realm name is used for login.

That realm must be supported in the process where the authentication takes place.

When using the WSLogin JAAS configurations, you also must set the user_realm_callback option in the

wsjaas_client.config file in $WAS_HOME/profiles/$ProfileName/properties for the realm name to be

passed to the call back handler. If you want to specify a different provider URL for the name server, set the

use_appcontext_callback option and pass in the provider URL properties in a hash map to WSLogin.

If you do not know the realm name, use <default> as the realm name. The authentication is performed

against the application realm. If the naming read operation does not have the Everyone special subject

Chapter 4. Configuring multiple security domains 69

assigned, you must provide the realm that is used by the administrative applications (the registry used in

the global security configuration), as well as the appropriate user and password information in that registry

for the lookup operation to succeed.

After the lookup operation succeeds, perform another programmatic login by providing the application

realm (or <default>) and the user and password information for the appropriate user in the registry that is

used by the application. This is similar to the case where the login source is prompt. You must authenticate

twice, once for the registry used by the global security configuration (for the naming lookup operation) and

again for the registry used by the application to access the EJB.

If com.ibm.CORBA.validateBasicAuth is set to false in the $WAS_HOME/profiles/$ProfileName/properties/
sas.client.props file then the programmatic login can use <default> as the realm name for both the lookup

and the EJB operations. The actual authentication occurs only when the resource is accessed on the

server side, in which case the realm is calculated based on the resource that is accessed.

The new security domain support for WebSphere Application Version 7.0 does not change the current

application security programming model. However, it provides more flexibility and capabilities such as the

following:

v User applications can still find the user registry object by using the naming lookup for “UserRegistry”.

For the registry object used by administrative applications, the naming lookup for “AdminUserRegistry”

can be used.

v The application usage of the JAAS login configuration does not change in a multiple domain setup.

However, if an application must refer to the JAAS configuration that is specified at the domain level, the

administrator and the deployer of that application must make sure that this domain is configured with

the JAAS configurations that are required by the application.

v If an application needs to communicate with other applications using different realms, trust relationship

should be established for both inbound and outbound communications when using the LTPA tokens.

Read about “Cross realm communication” on page 71 for more information.

v When using programmatic login in the applications, if you want to login to the realm used by the

application, use <default> as the realm name or provide the realm name that the application is using. If

you need to login to the global realm, you must provide the global realm name. If you provide any other

realm, only a basic authentication subject is created. When the request actually flows to the server

hosting that realm, the actual authentication of the user occurs if that server hosts the realm. If the

server does not host the realm, the login fails.

Application deployment in multiple domains configurations

When deploying an application in a multiple domain setup, all of the modules in the application should be

installed in the servers or clusters that belong to the same security domain. If not, depending on the

security attributes configured in these security domains, inconsistent behavior can result. For example, if

the domains contain different user registries, the users and groups information can be different, which can

cause inconsistent behavior when accessing the modules. Another example is when the JAAS data is

different between the security domains. The JAAS configurations is not accessible from all of the modules

in the application. The security runtime code and the command tasks rely on one domain being associated

with an application when dealing with attributes such as user registry, JAAS login configurations, J2C

authentication data, and authorization.

In most cases, application deployment fails when an application is deployed across different domains.

However, since this was possible in earlier releases of WebSphere Application Server when only a few

attributes were supported at the server level, the deployment tool first checks for attributes that are

configured at the domains. If the attributes in the domain are the same as those supported in previous

releases, the administrative console requests confirmation to ensure that you want to deploy application

modules across multiple security domains. Unless there is an absolute requirement to deploy the

applications across different domains, stop the deployment and select the servers and clusters in the same

security domain.

70 Securing applications and their environment

Cross realm communication

When applications communicate using the RMI/IIOP protocol and LTPA is the authentication mechanism,

the LTPA token is passed between the servers involved. The LTPA token contains the realm-qualified

uniqueId, (also called the accessId), of the user who is logging into the front-end application. When this

token is received by the downstream server it attempts to decrypt the token. If the LTPA keys are shared

between the two servers, decryption succeeds and the accessId of the user is obtained from the token.

The realm in the accessId is checked with the current realm that is used by the application. If the realms

match, the LTPA token validation succeeds and it proceeds with the authorization. If the realms do not

match, the token validation fails since the user from the foreign realm cannot be validated in the current

realm of the application. If applications are not supposed to communicate with each other when using

RMI/IIOP and the LTPA authentication mechanism, you do not to have to do anything further.

If you do want the cross realm communication to succeed when using RMI/IIOP and LTPA tokens, you

must first establish trust between the realms involved, both for inbound and outbound communications.

For the server originating the request, its realm must have the realms that it can trust to send the token to.

This is referred to as outboundTrustedRealms. For the server receiving the request, its realm needs to

trust the realms that it can receive LTPA tokens from. This is referred to as inboundTrustedRealms.

Outbound trusted realms can be established using the addTrustedRealms command with the

–communicationType option set to outbound. It can also be established in the administrative console by

clicking Trusted authentication realms - outbound on theCSIv2 outbound communications panel.

Inbound trusted realms can be established using the same addTrustedRealms command task with the

–communicationType option set to inbound. It can also be established by using the administrative console.

The figure below shows the communication between applications that use different user realms (registries)

using RMI/IIOP. In this example, application app1 (for example, a servlet) is configured to use the realm1

user registry. The app2 application (for example, an EJB) is configured to use the realm2 user registry. The

user (user1) initially logs into the servlet in app1, which then attempts to access an EJB in app2. The

following must be set:

v In Domain1, realm1 should trust realm2 for the outbound communication.

v In Domain2, realm2 should trust realm1 for the inbound communication.

v The accessId for user1 should be configured in the authorization table for app2.

When the LTPA token that contains the accessId of user1 is received by app2, it decrypts the token. Both

of the servers share the same LTPA keys. The LTPA token then ensures that the foreign realm is a trusted

realm, and performs the authorization based on the accessId of user1. If security attribute propagation is

not disabled, then the group information of user1 is also propagated to app2. The groups can be used for

the authorization check, provided that the authorization table contains the group information. You can

associate a special subject, AllAuthenticatedInTrustedRealms, to the roles instead of adding individual

users and groups to the authorization table.

If the applications in the above example are deployed in different cells, you must do the following:

v Share the LTPA keys between the cells.

v Update the authorization table for app2 with foreign users and groups accessIds by using the wsadmin

utility. The administrative console does not have access to the realms outside of the scope of the cell.

Chapter 4. Configuring multiple security domains 71

Once trust has been established between the realms, when the server receives the LTPA token and the

token is decrypted, it checks to see if the foreign realm is in its inbound trusted realms list. If it is trusted,

the authentication succeeds. However, since it is a foreign realm, it does not go search the user registry to

gather information about the user. Whatever information is in the LTPA token is used to authorize the user.

The only information in the LTPA token is the unique id of the user. This unique id of the user should exist

in the authorization table for this application. If it does, authorization succeeds. However, if attribute

propagation is enabled, additional authorization attributes (groups that this user belongs to) for the user

are sent from the originating server to the receiving server. These additional attributes are used to make

the access decisions. If the groups information exists in the propagation tokens it is used when making the

authorization decision.

As previously mentioned, the information about the users and or the groups from the trusted realms should

exist in the authorization table of the receiving application. Specifically, the accessId of the users and or

groups should exist in the binding file of the application. This must be the case when the application is

deployed. In the administrative console, when an application is deployed in a domain you can add the

accessIds of the users and groups from any of its trusted realms to the authorization table.

You also have an option to associate a special subject, AllAuthenticatedInTrustedRealms, to the roles

instead of adding individual users and groups. This is similar to the AllAuthenticated special subject that is

currently supported. The difference is that the AllAuthenticated special subject refers to users in the same

realm as the application while the AllAuthenticatedInTrustedRealms special subject applies to all of the

users in the trusted realms and in the realm of the application.

You can associate the accessId by using the $AdminApp install script. Because the accessId takes a

unique format, use the command task listRegistryUsers with displayAccessIds set to true. If an invalid

name or format is entered in this field, the authorization fails.

User and group information from the trusted realms is obtained by the deployment manager since it has

access to all of the user registry configurations in all domains. However, in certain situations it is not

possible to obtain the users and group information.

Cell

Node1 Node2

S1.1 (Domain1) S1.2 (Domain2)

user1
LTPA Token

Contains accessId
user:realm1/cn=user1,

o=ibm,c=us

app1 app2

user1
user:realm1/cn=user1,

o=ibm,c=us

realm1
realm2

Application Authorization
Table

realm1 trusts realm2 for outbound
communication using RMI/IIOP

realm2 trusts realm1 for inbound
communication using RMI/IIOP

user1

Figure 4. Cross realm communication in a multiple realm environment

72 Securing applications and their environment

For example, if a server hosted on an external node is using localOS as the registry for its domain, the

deployment manager cannot obtain the users and groups information unless it is running in the same

operating system setup. The external operating system should be contacted to obtain this information. This

can be done by directly invoking the registry in the server associated with that domain. The servers

associated with the domain have to be started for this to work. You also must set the property,

com.ibm.websphere.allowRegistryLookupOnProcess, to true in the top-level security custom properties.

When this property is set, the deployment manager code searches one of the servers that is associated

with the security domain and obtains the users and groups information directly from it. This is possible by

calling an MBean in one of the servers.

If the MBean in any of the servers that are using that domain cannot be accessed, the administrative

console displays a panel where you can enter the user and accessId information manually for each user

and group. It is important that the correct accessId format be entered in this field. The accessId format for

the user is user:realmName/userUniqueId. The realmName is the name of the realm where the user

resides, and the userUniqueId is the uniqueId that represents the user, depending on the registry that is

used.

For example, for LDAP, the uniqueUserId is the Distinguished Name (DN), for the Windows® localOS

registry and is the SID of the user. For Unix platforms, it is the UID. For custom registries, it depends on

the implementation.

Similarly, for groups, the accessId format is group:realmName/groupUniqueId. As previously mentioned,

use the listRegistryUsers and listRegistryGroups command with the –displayAccessIds option set to true

so that you can obtain the correct format for the domain or realm that you are interested in.

Once users and groups from the trusted realms or the AllAuthenticatedInTrustedRealms special subject is

added to the authorization table of the application, it is ready to accept requests from other applications

that are using any of its trusted realms. The LTPA token validation on the receiving server first checks to

make sure that the realm is trusted. The authorization engine then checks to see if the external user

and/or the groups or the AllAuthenticatedInTrustedRealms special subject are given access to the roles

needed to access the resource. If true, access is granted.

Cross realm communication is only applicable when using the WebSphere built-in authorization. If you are

using other authorization engines including SAF for z/OS, any cross realm authorization can be achieved

by implementing custom login modules that map external users to users in its own repository.

Federating a node with security domains

When a security domain is configured in the base version and is federated to a cell, the security domain

configured at the base version is also configured for that server in the cell. The same domain security

configuration can be used by the server before and after the federation. If a base server is to be federated

to a cell, the resource assigned to the security domain should be the server scope instead of the cell

scope.

If the base server is expected to be registered with an Administrative Agent process, use the cell scope as

the resource if the intention is to have all of the servers in the base profile use this security domain.

If during federation the security domain at the base already exists at the cell level, the addNode command

fails. You can use the –excludesecuritydomains option not to include the security domain during federation.

When the federated node is removed from a cell, the resources in that node should be removed from the

security domains. If security domains have clusters associated with them that span nodes, the nodes are

not removed. You can always remove resources from the security domains or any domains that are not

used by using scripting commands or the administrative console.

Chapter 4. Configuring multiple security domains 73

Security domains in a mixed-version environment

You should create security domains once all of the nodes have been migrated to the latest version. This is

especially true if there is a need to associate the cell with a domain. However, if you want to create

security domains in a mixed- version environment, be aware of the following:

v If a cell-wide domain is created in a mixed version setup, a domain called

PassThroughToGlobalSecurity is created automatically. All mixed clusters are assigned to this domain at

the time of the creation of the cell-wide domain. This PassThroughToGlobalSecurity domain is special in

the sense that attributes cannot be added to it, only resources can be assigned to it.

All resources assigned to the PassThroughToGlobalSecurity domain use the global security

configuration information. Whenever a node in the mixed version setup is migrated to the latest version,

the servers and clusters in these nodes are added to this domain. Applications in all of the servers and

clusters in these nodes do not use the cell-wide domain; they instead use the global security

configuration before and after migration.

If any of these servers need to use the cell-wide domain, you must remove these resources from this

PassThroughToGlobalSecurity domain. New servers and clusters that are created in the migrated node

use the cell-wide domain, not the PassThroughToGlobalSecurity domain. As a result, you have a mix of

servers and clusters, some of them using global security configuration and some using the cell-wide

domain.

v Once a cell-wide domain is created, adding any old version cluster members to a WebSphere

Application Server Version 7.0 cluster is restricted since this action makes it a mixed cluster. This

restriction also holds true when a WebSphere Application Server Version 7.0 cluster is associated with a

domain. and a previous version cluster member is added to this cluster. This restriction is needed to

avoid associating a security domain to a mixed cluster.

v If possible, you should create a cell-wide domain after all of the nodes have been migrated. In this case,

the cell-wide domain is applicable to the entire cell and not just to parts of it. This also eliminates the

need to create the PassThroughToGlobalSecurity domain and the mixed cluster scenario with security

domains.

Modifying security domains

Use the administrative console tasks or scripting commands to modify security domains. For a complete

list of administrative tasks and scripting commands, see the links in ″Related tasks″ at the bottom of this

document.

Once a security domain is created and associated to a set of scopes, the servers associated with this new

domain must be restarted. After the restart, the applications in the scopes associated with the new domain

use the security attributes defined in the domain.

Changes to any of the domain attributes requires the restart of all of the scopes assigned to it. If new

scopes are added they also need to be restarted. Any modifications to the domain configuration, either to

the security attributes or to the scopes, has impacts on those applications that are using the domain

configuration.

Before you make modifications to an existing domain, consider the following potential impacts. For

example, if a user registry that is configured at a domain is removed, and the servers restarted, the user

registry from the cell-wide domain (if one is defined), or the global security configuration is then used. This

can impact application authentication and authorization. Users and groups associated with an application

might no longer be valid in the new registry. Another example to consider is when JAAS configurations are

removed from a domain. Applications that rely on this are no longer be able to use the JAAS

configurations. Whenever a security configuration is changed it might impact your applications, so all

security configuration changes should be made with the utmost care.

74 Securing applications and their environment

Creating new multiple security domains

You can create multiple security domains in your configuration. By creating multiple security domains, you

can configure different security attributes for administrative and user applications within a cell environment.

Before you begin

Only users assigned to the administrator role can create new multiple security domains. Enable global

security in your environment before creating new multiple security domains.

Read about “Multiple security domains” on page 60 for a better understanding of what multiple security

domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and

user applications. They also provide the ability to support multiple security settings so different applications

can use different security attributes like user registry or login configurations.

Use multiple security domains to achieve the following goals:

v Configure different security attributes for administrative and user applications within a cell

v Consolidate server configurations by managing different security configurations within a cell

v Restrict access between applications with different user registries, or configure trust relationships

between applications to support communication across registries

Perform the following steps to create a new security domain using the administrative console:

1. Click Security > Security domains.

2. On the Security domains collection page, click New.

3. Specify a unique name for the domain. A domain name must be unique within a cell and cannot

contain an invalid character. This field is required.

4. Specify a unique description for the domain. After you click Apply you are returned to the Security

domains detail page

5. Under Assigned Scopes, assign the security domain to the entire cell or select the specific servers,

clusters, and service integration buses to include in the security domain.

6. Customize your security configuration by specifying security attributes for your new domain and by

assigning it to cell resources.

You can change security attributes such as the following:

Application Security

Specifies the settings for application security and Java 2 security. You can use the global

security settings or customize the settings for a domain.

 Select Enable application security to enable or disable security this choice for user

applications. When this selection is disabled, all of the EJBs and Web applications in the

security domain are no longer protected. Access is granted to these resources without user

authentication. When you enable this selection, the J2EE security is enforced for all of the

EJBs and Web applications in the security domain. The J2EE security is only enforced when

Global Security is enabled in the global security configuration, (that is, you cannot enable

application security without first enabling Global Security at the global level).

Java 2 Security

Select Java 2 security to enable or disable Java 2 security at the domain level. This choice

enables or disables Java 2 security at the process (JVM) level so that all applications (both

administrative and user) can enable or disable Java 2 security.

User realm

Chapter 4. Configuring multiple security domains 75

This section enables you to configure the user registry for the security domain. You can

separately configure any registry except the federated registry that is used at the domain level.

The federated repository can only be configured at the global level but can be used at the

domain level. Read about “Multiple security domains” on page 60 for more information.

Trust association

When you configure the trust association interceptor (TAI) at a domain level, the interceptors

configured at the global level are copied to the domain level for convenience. You can modify

the interceptor list at the domain level to fit your needs. Only configure those interceptors that

are to be used at the domain level.

SPNEGO Web Authentication

The SPNEGO Web authentication, which enables you to configure SPNEGO for Web resource

authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate

HTTP requests for secured resources was introduced. In WebSphere Application Server

7.0, this function is now deprecated. SPNEGO Web authentication has taken its place

to provide dynamic reload of the SPNEGO filters and to enable fallback to the

application login method.

RMI/IIOP Security

 The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version 2)

protocol properties. When you configure these attributes at the domain level, the RMI/IIOP

security configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport

layer settings for CSIv2 inbound communications should be the same for both the global and

the domain levels. If they are different, the domain level attributes are applied to all of the

application in the process.

JAAS application logins

Specifies the configuration settings for the Java Authentication and Authorization Service

(JAAS) application logins. You can use the global security settings or customize the settings for

a domain.

 The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data

aliases can all be configured at the domain level. Be default, all of the applications in the

system have access to the JAAS logins configured at the global level. The security runtime

first checks for the JAAS logins at the domain level. If it does not find them, it then checks for

them in the global security configuration. Configure any of these JAAS logins at a domain only

when you need to specify a login that is used exclusively by the applications in the security

domain.

JAAS system logins

Specifies the configuration settings for the JAAS system logins. You can use the global

security settings or customize the configuration settings for a domain.

 The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data

aliases can all be configured at the domain level. Be default, all of the applications in the

system have access to the JAAS logins configured at the global level. The security runtime

first checks for the JAAS logins at the domain level. If it does not find them, it then checks for

them in the global security configuration. Configure any of these JAAS logins at a domain only

when you need to specify a login that is used exclusively by the applications in the security

domain.

JAAS J2C authentication

Specifies the configuration settings for the JAAS J2C authentication data. You can use the

global security settings or customize the settings for a domain.

76 Securing applications and their environment

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data

aliases can all be configured at the domain level. Be default, all of the applications in the

system have access to the JAAS logins configured at the global level. The security runtime

first checks for the JAAS logins at the domain level. If it does not find them, it then checks for

them in the global security configuration. Configure any of these JAAS logins at a domain only

when you need to specify a login that is used exclusively by the applications in the security

domain.

Authentication Mechanism Attributes

 Specifies the various cache settings that need to applied at the domain level.

Select Authentication cache settings to specify your authentication cache settings. The

configuration specified on this panel is applied only to this domain.

Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The

default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set

at the domain level, any token that is created in the security domain when accessing user

applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such as

getUserPrincipal() are qualified with the security realm (user registry) used by applications

in the security domain.

Authorization Provider

 You can configure an external third party JACC (Java Authorization Contract for Containers)

provider at the domain level. Tivoli Access Manager’s JACC provider can only be configured at

the global level. Security domains can still use it if they do not override the authorization

provider with another JACC provider or with the built-in native authorization.

Custom properties

Set custom properties at the domain level that are either new or different from those at the

global level. By default, all of the custom properties at the global security configuration can be

accessed by all of the applications in the cell. The security runtime code first checks for the

custom property at the domain level. If it does not find it, it then attempts to obtain the custom

property from the global security configuration.

7. Click Apply.

8. After you have saved your configuration changes, restart the server for your changes to take effect.

Deleting multiple security domains

You can delete multiple security domains from your configuration. You must remove the resources

assigned to the security domains before deleting them. Only remove those security domains that are not

needed in your security configuration.

Before you begin

Only users assigned to the administrator role can delete security domains. Enable global security in your

environment before deleting security domains.

Read about “Multiple security domains” on page 60 for a better understanding of what multiple security

domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and

user applications. They also provide the ability to support multiple security settings so different applications

can use different security attributes like user registry or login configurations.

Chapter 4. Configuring multiple security domains 77

Perform the following steps to delete an existing security domain using the administrative console:

Note: Only delete the security domains after first removing any resources associated with them. The

servers impacted should be restarted.

1. Click Security > Security domains.

2. On the Security domains collection page, select a domain to delete.

3. Click Delete.

Copying multiple security domains

You can copy selected multiple security domains from the domain collection to create a new domain. This

is useful if you want to create a domain that is similar to a previous domain. However, you might want to

make a few slight adjustments. When copying an existing domain, you must supply a unique domain name

for the new one.

Before you begin

Only users assigned to the administrator role can copy or create new multiple security domains. Enable

global security in your environment before copying multiple security domains.

Read about “Multiple security domains” on page 60 for a better understanding of what multiple security

domains are and how they are supported in this version of WebSphere Application Server.

About this task

Security domains provide a mechanism to use different security settings for administrative applications and

user applications. They also provide the ability to support multiple security settings so different applications

can use different security attributes like user registry or login configurations.

Use multiple security domains to achieve the following goals:

v Configure different security attributes for administrative and user applications within a cell

v Consolidate server configurations by managing different security configurations within a cell

v Restrict access between applications with different user registries, or configure trust relationships

between applications to support communication across registries

Perform the following steps to copy an existing security domain using the administrative console:

 1. Click Security > Security domains.

 2. Optional: From Preferences, you can select the maximum number of rows to display when the

domain collection is large. The default number of rows is 20. Rows that exceed that number appear

on subsequent pages.

 3. Select a domain to copy.

 4. Click Copy Selected Domain... to copy an existing domain from the collection. You can optionally

select Copy Global Security.. to copy an existing domain and have it maintain its global security

settings (collection selections are ignored). A new domain name is also required if you choose this

option.

 5. Specify a unique name for the domain. This field is required. A domain name must be unique within a

cell and cannot contain an invalid character.

 6. Specify a unique description for the domain.

 7. Click Apply. After you click Apply you are returned to the Security domains detail page

 8. Under Assigned Scopes, assign the security domain to the entire cell or select the specific servers,

clusters, and service integration buses to include in the security domain.

78 Securing applications and their environment

9. Customize your security configuration by specifying security attributes for your new domain and by

assigning it to cell resources.

You can change security attributes such as the following:

Application Security

Specifies the settings for application security and Java 2 security. You can use the global

security settings or customize the settings for a domain.

 Select Enable application security to enable or disable security this choice for user

applications. When this selection is disabled, all of the EJBs and Web applications in the

security domain are no longer protected. Access is granted to these resources without user

authentication. When you enable this selection, the J2EE security is enforced for all of the

EJBs and Web applications in the security domain. The J2EE security is only enforced when

Global Security is enabled in the global security configuration, (that is, you cannot enable

application security without first enabling Global Security at the global level).

Java 2 Security

Select Java 2 security to enable or disable Java 2 security at the domain level. This choice

enables or disables Java 2 security at the process (JVM) level so that all applications (both

administrative and user) can enable or disable Java 2 security.

User realm

 This section enables you to configure the user registry for the security domain. You can

separately configure any registry except the federated registry that is used at the domain

level. The federated repository can only be configured at the global level but can be used at

the domain level. Read about “Multiple security domains” on page 60 for more information.

Trust association

When you configure the trust association interceptor (TAI) at a domain level, the interceptors

configured at the global level are copied to the domain level for convenience. You can modify

the interceptor list at the domain level to fit your needs. Only configure those interceptors that

are to be used at the domain level.

SPNEGO Web Authentication

The SPNEGO Web authentication, which enables you to configure SPNEGO for Web

resource authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere

Application Server 7.0, this function is now deprecated. SPNEGO Web authentication

has taken its place to provide dynamic reload of the SPNEGO filters and to enable

fallback to the application login method.

RMI/IIOP Security

 The RMI/IIOP security attribute refers to the CSIv2 (Common Secure Interoperability version

2) protocol properties. When you configure these attributes at the domain level, the RMI/IIOP

security configuration at the global level is copied for convenience.

You can change the attributes that need to be different at the domain level. The Transport

layer settings for CSIv2 inbound communications should be the same for both the global and

the domain levels. If they are different, the domain level attributes are applied to all of the

application in the process.

JAAS application logins

Specifies the configuration settings for the Java Authentication and Authorization Service

(JAAS) application logins. You can use the global security settings or customize the settings

for a domain.

Chapter 4. Configuring multiple security domains 79

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data

aliases can all be configured at the domain level. Be default, all of the applications in the

system have access to the JAAS logins configured at the global level. The security runtime

first checks for the JAAS logins at the domain level. If it does not find them, it then checks for

them in the global security configuration. Configure any of these JAAS logins at a domain

only when you need to specify a login that is used exclusively by the applications in the

security domain.

JAAS system logins

Specifies the configuration settings for the JAAS system logins. You can use the global

security settings or customize the configuration settings for a domain.

 The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data

aliases can all be configured at the domain level. Be default, all of the applications in the

system have access to the JAAS logins configured at the global level. The security runtime

first checks for the JAAS logins at the domain level. If it does not find them, it then checks for

them in the global security configuration. Configure any of these JAAS logins at a domain

only when you need to specify a login that is used exclusively by the applications in the

security domain.

JAAS J2C authentication

Specifies the configuration settings for the JAAS J2C authentication data. You can use the

global security settings or customize the settings for a domain.

 The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data

aliases can all be configured at the domain level. Be default, all of the applications in the

system have access to the JAAS logins configured at the global level. The security runtime

first checks for the JAAS logins at the domain level. If it does not find them, it then checks for

them in the global security configuration. Configure any of these JAAS logins at a domain

only when you need to specify a login that is used exclusively by the applications in the

security domain.

Authentication Mechanism Attributes

 Specifies the various cache settings that need to applied at the domain level.

Select Authentication cache settings to specify your authentication cache settings. The

configuration specified on this panel is applied only to this domain.

Select LTPA Timeout to configure a different LTPA timeout value at the domain level. The

default timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is

set at the domain level, any token that is created in the security domain when accessing user

applications is created with this expiration time.

When Use realm-qualified user names is enabled, user names returned by methods such

as getUserPrincipal() are qualified with the security realm (user registry) used by

applications in the security domain.

Authorization Provider

 You can configure an external third party JACC (Java Authorization Contract for Containers)

provider at the domain level. Tivoli Access Manager’s JACC provider can only be configured

at the global level. Security domains can still use it if they do not override the authorization

provider with another JACC provider or with the built-in native authorization.

Custom properties

Set custom properties at the domain level that are either new or different from those at the

global level. By default, all of the custom properties at the global security configuration can be

accessed by all of the applications in the cell. The security runtime code first checks for the

custom property at the domain level. If it does not find it, it then attempts to obtain the custom

property from the global security configuration.

10. Click Apply.

80 Securing applications and their environment

11. After you have saved your configuration changes, restart the server for your changes to take effect.

Configuring inbound trusted realms for multiple security domains

You can configure which realms to grant inbound trust to for multiple security domains. The trust

relationship between realms is used when communicating with Lightweight Third-Party Authentication

(LTPA) tokens. Once a LTPA token is decrypted by the receiving server, the realm in the token is checked

to see if it is trusted. If it is not, the validation of the token fails. A realm represents a user registry in

WebSphere Application Server.

Before you begin

For information on cross realm communications, read the section in “Multiple security domains” on page

60.

Only users assigned to the administrator role can configure multiple security domains. Enable global

security in your environment before configuring multiple security domains.

Perform the following steps to grant inbound trusted realms for multiple security domains using the

administrative console:

1. Click Security > Security domains.

2. Select a domain to edit or create a new one. Under Security Attributes, click User realm.

3. Click Customize for this domain.

4. Under Related Items, select Trusted authentication realms - inbound.

5. Select Trust all realms (including those external to this cell) or Trust realms as indicated below.

If Kerberos authentication is enabled, and you have cross realms or trusted realms, you must add the

Kerberos trusted realm by selecting Trust realms as indicated below.

6. Click Apply.

What to do next

The realms you selected to trust accept messages from other trusted realms but do not accept messages

from untrusted realms. Select Add External Realm to add trust for realms that are external to this cell.

Configure security domains

Use this page to configure the security attributes of a domain and to assign the domain to cell resources.

For each security attribute, you can use the global security settings or customize settings for the domain.

To view this administrative console page, click Security > Security domains. On the Security domains

collection page, select an existing domain to configure, create a new one, or copy an existing domain.

Read about “Multiple security domains” on page 60 for a better understanding of what multiple security

domains are and how they are supported in this version of WebSphere Application Server.

Chapter 4. Configuring multiple security domains 81

Related concepts

“Multiple security domains” on page 60
The WebSphere Security Domains (WSD) provide the flexibility to use different security configurations in

WebSphere Application Server. The WSD is also referred to as multiple security domains, or simply,

security domains. You can configure different security attributes, such as the UserRegistry, for different

applications.

Related reference

“Standalone LDAP registry settings” on page 102
Use this page to configure Lightweight Directory Access Protocol (LDAP) settings when users and groups

reside in an external LDAP directory.

“Configuration entry settings for Java Authentication and Authorization Service” on page 396
Use this page to specify a list of Java Authentication and Authorization Service (JAAS) login configurations

for the application code to use, including Java 2 Platform, Enterprise Edition (J2EE) components such as

enterprise beans, JavaServer Pages (JSP) files, servlets, resource adapters, and message-driven beans

(MDBs).

“Java 2 Connector authentication data entry settings” on page 408
Use this page as a central place for administrators to define authentication data, which includes user

identities and passwords. These values can reference authentication data entries by resource adapters,

data sources, and other configurations that require authentication data using an alias.

“External Java Authorization Contract for Containers provider settings” on page 525
Use this page to configure the application server to use an external Java Authorization Contract for

Containers (JACC) provider. For example, the policy class name and the policy configuration factory class

name are required by the JACC specification.

“Security domains collection” on page 89
Security domains provide a mechanism to use different security settings for administrative applications and

user applications. They also provide the ability to support multiple security settings so different application

servers can use different security attributes like user registry or login configurations.

Related information

“Security custom properties” on page 49
Use this page to understand the predefined custom properties that are related to security.

Name

Specifies a unique name for the domain. This name can not be edited after the initial submission.

A domain name must be unique within a cell and cannot contain an invalid character.

Description

Specifies a description for the domain.

Assigned Scopes

Select to display the cell topology. You can assign the security domain to the entire cell or select the

specific clusters, nodes and service integration buses to include in the security domain.

If you select All scopes, the entire cell topology is displayed.

If you select Assigned scopes, the cell topology is displayed with those servers and clusters that are

assigned to the current domain.

The name of an explicitly assigned domain appears next to any resource. Checked boxes indicate

resources that are currently assigned to the domain. You also can select other resources and click Apply

or OK to assign them to the current domain.

82 Securing applications and their environment

A resource that is not checked (disabled) indicates that it is not assigned to the current domain and must

be removed from another domain before it can be enabled for the current domain.

If a resource does not have an explicitly-assigned domain, it uses the domain assigned to the cell. If no

domain is assigned to the cell, then the resource uses global settings.

Cluster members cannot be individually assigned to domains; the enter cluster uses the same domain.

Application Security:

Select Enable application security to enable or disable security for user applications. You can use the

global security settings or customize the settings for a domain.

When this selection is disabled, all of the EJBs and Web applications in the security domain are no longer

protected. Access is granted to these resources without user authentication. When you enable this

selection, the J2EE security is enforced for all of the EJBs and Web applications in the security domain.

The J2EE security is only enforced when Global Security is enabled in the global security configuration,

(that is, you cannot enable application security without first enabling Global Security at the global level).

Enable application security

Enables security for the applications in your environment. This type of security provides application

isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both

administrative and application security were enabled. In WebSphere Application Server Version 6.1, the

previous notion of global security were split into administrative security and application security, each of

which you can enable separately.

As a result of this split, WebSphere Application Server clients must know whether application security is

disabled at the target server. Administrative security is enabled, by default. Application security is disabled,

by default. To enable application security, you must enable administrative security. Application security is in

effect only when administrative security is enabled.

When this selection is disabled, all of the EJBs and Web applications in the security domain are no longer

protected. Access is granted to these resources without user authentication. When you enable this

selection, the J2EE security is enforced for all of the EJBs and Web applications in the security domain.

The J2EE security is only enforced when Global Security is enabled in the global security configuration,

(that is, you cannot enable application security without first enabling Global Security at the global level).

Java 2 security:

Select Use Java 2 security to enable or disable Java 2 security at the domain level or to assign or add

properties related to Java 2 security. You can use the global security settings or customize the settings for

a domain.

This choice enables or disables Java 2 security at the process (JVM) level so that all applications (both

administrative and user) can enable or disable Java 2 security.

Use global security settings

Select to specify the global security settings that are being used.

Customize for this domain

Select to specify the settings that are defined in the domain, such as options to enable application and

Java 2 security and to use realm-qualified authentication data.

Chapter 4. Configuring multiple security domains 83

Use Java 2 security to restrict application access to local resources

Select to specify whether to enable or disable Java 2 security permission checking. By default, access to

local resources is not restricted. You can choose to disable Java 2 security, even when application security

is enabled.

When the Use Java 2 security to restrict application access to local resources option is enabled and

if an application requires more Java 2 security permissions than are granted in the default policy, the

application might fail to run properly until the required permissions are granted in either the app.policy file

or the was.policy file of the application. AccessControl exceptions are generated by applications that do

not have all the required permissions.

Warn if applications are granted custom permissions

Specifies that during application deployment and application start, the security runtime issues a warning if

applications are granted any custom permissions. Custom permissions are permissions that are defined by

the user applications, not Java API permissions. Java API permissions are permissions in the java.* and

javax.* packages.

The application server provides support for policy file management. A number of policy files are available

in this product, some of them are static and some of them are dynamic. Dynamic policy is a template of

permissions for a particular type of resource. No code base is defined and no relative code base is used in

the dynamic policy template. The real code base is dynamically created from the configuration and

run-time data. The filter.policy file contains a list of permissions that you do not want an application to have

according to the J2EE 1.4 specification.

Note: You cannot enable this option without enabling the Use Java 2 security to restrict application

access to local resources option.

Restrict access to resource authentication data

This option is disabled if Java 2 security has not been enabled.

Consider enabling this option when both of the following conditions are true:

v Java 2 security is enforced.

v The application code is granted the accessRuntimeClasses WebSphereRuntimePermission permission

in the was.policy file found within the application enterprise archive (EAR) file. For example, the

application code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses";

The Restrict access to resource authentication data option adds fine-grained Java 2 security

permission checking to the default principal mapping of the WSPrincipalMappingLoginModule

implementation. You must grant explicit permission to Java 2 Platform, Enterprise Edition (J2EE)

applications that use the WSPrincipalMappingLoginModule implementation directly in the Java

Authentication and Authorization Service (JAAS) login when Use Java 2 security to restrict application

access to local resources and the Restrict access to resource authentication data options are

enabled.

 Default: Disabled

User Realm:

This section enables you to configure the user registry for the security domain. You can separately

configure any registry except the federated registry that is used at the domain level. The federated

repository can only be configured at the global level but can be used at the domain level.

84 Securing applications and their environment

When configuring a registry at the domain level you can choose to define your own realm name for the

registry. The realm name distinguishes one user registry from another. The realm name is used in multiple

places – in the Java client login panel to prompt the user, in the authentication cache, and when using

native authorization.

At the global configuration level, the system creates the realm for the user registry. In previous releases of

WebSphere Application Server, only one user registry is configured in the system. When you have multiple

security domains you can configure multiple registries in the system. For the realms to be unique in these

domains, configure your own realm name for a security domain. You also can choose the system to create

a unique realm name if it is certain to be unique. In the latter case, the realm name is based on the

registry that is being used.

Trust Association:

Select to specify the settings for the trust association. Trust association is used to connect reversed proxy

servers to the application servers.

Trust association enables the integration of IBM WebSphere Application Server security and third-party

security servers. More specifically, a reverse proxy server can act as a front-end authentication server

while the product applies its own authorization policy onto the resulting credentials that are passed by the

proxy server.

Tivoli Access Manager’s trust association interceptors can only be configured at the global level. The

domain configuration can also use them, but cannot have a different version of the trust association

interceptor. Only one instance of Tivoli Access Manager’s trust association interceptors can exist in the

system.

Note: The use of trust association interceptors (TAIs) for Simple and Protected GSS-API Negotiation

Mechanism (SPNEGO) authentication is deprecated. The SPNEGO web authentication panels

provide a much easier way to configure SPNEGO.

Interceptors

Select to access or to specify the trust information for reverse proxy servers.

Enable trust association

Select to enable the integration of IBM WebSphere Application Server security and third-party security

servers. More specifically, a reverse proxy server can act as a front-end authentication server while the

product applies its own authorization policy onto the resulting credentials that are passed by the proxy

server.

SPNEGO Web Authentication:

Specifies the settings for Simple and Protected GSS-API Negotiation (SPNEGO) as the Web

authentication mechanism.

The SPNEGO Web authentication, which enables you to configure SPNEGO for Web resource

authentication, can be configured at the domain level.

Note: In WebSphere Application Server Version 6.1, a TAI that uses the Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP requests for

secured resources was introduced. In WebSphere Application Server 7.0, this function is now

deprecated. SPNEGO Web authentication has taken its place to provide dynamic reload of the

SPNEGO filters and to enable fallback to the application login method.

Chapter 4. Configuring multiple security domains 85

RMI/IIOP Security:

Specifies the settings for Remote Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP).

An Object Request Broker (ORB) manages the interaction between clients and servers, using the Internet

InterORB Protocol (IIOP). It enables clients to make requests and receive responses from servers in a

network-distributed environment.

When you configure these attributes at the domain level, the RMI/IIOP security configuration at the global

level is copied for convenience. You can change the attributes that need to be different at the domain

level. The Transport layer settings for CSIv2 inbound communications should be the same for both the

global and the domain levels. If they are different, the domain level attributes are applied to all of the

applications in the process.

When a process communicates with another process with a different realm, the LTPA authentication and

the propagation tokens are propagated to the downstream server unless that server is listed in the

outbound trusted realms list. This can be done using the Trusted authentication realms – outbound link

on the CSIv2 outbound communication panel.

CSIv2 inbound communications

Select to specify authentication settings for requests that are received and transport settings for

connections that are accepted by this server using the Object Management Group (OMG) Common

Secure Interoperability (CSI) authentication protocol.

WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for

both inbound and outbound authentication requests. For inbound requests, you can specify the type of

accepted authentication, such as basic authentication.

CSIv2 outbound communications

Select to specify authentication settings for requests that are sent and transport settings for connections

that are initiated by the server using the Object Management Group (OMG) Common Secure

Interoperability (CSI) authentication protocol.

WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for

both inbound and outbound authentication requests. For outbound requests, you can specify properties

such as type of authentication, identity assertion or login configurations that are used for requests to

downstream servers.

JAAS Application logins

Select to define login configurations that are used by JAAS.

The JAAS application logins, the JAAS system logins, and the JAAS J2C authentication data aliases can

all be configured at the domain level. By default, all of the applications in the system have access to the

JAAS logins configured at the global level. The security runtime first checks for the JAAS logins at the

domain level. If it does not find them, it then checks for them in the global security configuration. Configure

any of these JAAS logins at a domain only when you need to specify a login that is used exclusively by

the applications in the security domain.

For JAAS and custom properties only, once global attributes are customized for a domain they can still be

used by user applications.

Do not remove the ClientContainer, DefaultPrincipalMapping, and WSLogin login configurations because

other applications might use them. If these configurations are removed, other applications might fail.

86 Securing applications and their environment

Use global and domain-specific logins

Select to specify the settings that are defined in the domain, such as options to enable application and

Java 2 security and to use realm-qualified authentication data.

JAAS System Logins:

Specifies the configuration settings for the JAAS system logins. You can use the global security settings or

customize the configuration settings for a domain.

System Logins

Select to define the JAAS login configurations that are used by system resources, including the

authentication mechanism, principal mapping, and credential mapping

JAAS J2C Authentication Data:

Specifies the settings for the JAAS J2C authentication data. You can use the global security settings or

customize the settings for a domain.

Java 2 Platform, Enterprise Edition (J2EE) Connector authentication data entries are used by resource

adapters and Java DataBase Connectivity (JDBC) data sources.

Use global and domain-specific entries

Select to specify the settings that are defined in the domain, such as options to enable application and

Java 2 security and to use realm-qualified authentication data.

Authentication Mechanism Attributes:

Specifies the various cache settings that must be applied at the domain level.

v Authentication cache settings - use to specify your authentication cache settings. The configuration

specified on this panel is applied only to this domain.

v LTPA Timeout - You can configure a different LTPA timeout value at the domain level. The default

timeout value is 120 minutes, which is set at the global level. If the LTPA timeout is set at the domain

level, any token that is created in the security domain when accessing user applications is created with

this expiration time.

v Use realm-qualified user names - When this selection is enabled, user names returned by methods

such as getUserPrincipal() are qualified with the security realm (user registry) used by applications in

the security domain.

Authorization Provider:

Specifies the settings for the authorization provider. You can use the global security settings or customize

the settings for a domain.

You can configure an external third party JACC (Java Authorization Contract for Containers) provider at

the domain level. Tivoli Access Manager’s JACC provider can only be configured at the global level.

Security domains can still use it if they do not override the authorization provider with another JACC

provider or with the built-in native authorization.

Select either the Default authorization or External authorization using a JAAC provider. The

Configure button is only enabled when External authorization using a JAAC provider is selected.

Custom properties

Select to specify name-value pairs of data, where the name is a property key and the value is a string.

Chapter 4. Configuring multiple security domains 87

Set custom properties at the domain level that are either new or different from those at the global level. By

default, all of the custom properties at the global security configuration can be accessed by all of the

applications in the system. The security runtime code first checks for the custom property at the domain

level. If it does not find it, it then attempts to obtain the custom property from the global security

configuration.

Web Services Bindings

Click Default policy set bindings to set the domain default provider and client bindings.

External realm name

Use this page to add a WebSphere Application Server realm that is external to this cell. The realm is

initially not trusted. Use the Trusted authentication realms - inbound page to establish trust.

To view this administrative console page, click Security > Security domains. Select a domain to edit or

create a new one. Under Security Attributes, click User realm. Click Customize for this domain and then

select a Realm type. Click Configure. Under Related items, click Trusted authentication realms -

inbound or Trusted authentication realms - outbound. Click Add External Realm....

Related reference

“Trust all realms”
Use this page to configure which realms to grant inbound or outbound trust to.

External realm name

Use to specify the name of the realm that is external to the list of realms that are available to receive trust.

Trust all realms

Use this page to configure which realms to grant inbound or outbound trust to.

The inbound trust is required to validate LTPA tokens that contain a foreign realm. The outbound trust is

required to send the credential tokens to the trusted realms. For example, if an application using realmA

needs to communicate using LTPA with an application using realmB, realmA should have realmB in its

outbound trust list and realmB should have realmA in its inbound trust list.

To view this administrative console page, click Security > Security domains. Select a domain to edit or

create a new one. Under Security Attributes, click User realm. Click Customize for this domain. Select a

realm type and then click Configure.

Under Related items, click Trusted authentication realms - inbound or Trusted authentication realms -

outbound.

Trust all realms (including those external to this cell)

Select to trust all of the realms listed on this page, including those external to the cell.

Trust realms as indicated below

Select to trust only those realms that you have selected from the list of realms that are available to receive

inbound trust.

Add External Realm...

Select to add realms that are external to this cell to the list of realms that are available to receive inbound

trust. When an external realm is added, it is trusted by default. If it is not trusted it is removed from the list.

88 Securing applications and their environment

Security domains collection

Security domains provide a mechanism to use different security settings for administrative applications and

user applications. They also provide the ability to support multiple security settings so different application

servers can use different security attributes like user registry or login configurations.

To view this administrative console page, click Security > Security domains.

Read about “Multiple security domains” on page 60 for a better understanding of what multiple security

domains are and how they are supported in this version of WebSphere Application Server.

Related reference

“Configure security domains” on page 81
Use this page to configure the security attributes of a domain and to assign the domain to cell resources.

For each security attribute, you can use the global security settings or customize settings for the domain.

Related information

“Security custom properties” on page 49
Use this page to understand the predefined custom properties that are related to security.

Maximum rows

Specifies the maximum number of rows that display when the collection is large. The rows that are not

displayed appear on the next page.

The default is 20. Rows that exceed the maximum number display on subsequent pages.

Retain filter criteria

Specifies whether to use the same filter criteria entered in the show filter function to display this page the

next time you visit it.

Copy selected domain

Select to copy a selected domain from the collection (a new name is required)

Copy global security

Select to create a domain with a copy of the global security settings (collection selections are ignored). A

domain name is required.

Authentication cache settings

Use this page to specify your authentication cache settings.

To view this administrative console page, click Security > Global security > Authentication cache

settings.

Related reference

“Security domains collection”
Security domains provide a mechanism to use different security settings for administrative applications and

user applications. They also provide the ability to support multiple security settings so different application

servers can use different security attributes like user registry or login configurations.

Enable authentication cache

Specifies whether to disable the authentication cache.

Leave the authentication cache enabled for performance reasons. However, you can disable the

authentication cache for debug or measurement purposes. When this choice is disabled, the performance

Chapter 4. Configuring multiple security domains 89

is impacted since whenever a user is authenticated the user registry is accessed to gather information

about the user. New tokens are then created for the user.

 Default: Enabled

Cache timeout:

Specifies the time period at which the authenticated credential in the cache expires. Verify that this time

period is less than the value for the Timeout value for forwarded credentials between servers field (the

LTPA timeout).

If the application server infrastructure security is enabled, the security cache timeout can influence

performance. The timeout setting specifies how often to refresh the security-related caches. Security

information pertaining to beans, permissions, and credentials is cached. When the cache timeout expires,

all cached information not accessed within the timeout period is purged from the cache. Subsequent

requests for the information result in a database lookup. On occasion, acquiring the information requires

invoking a Lightweight Directory Access Protocol (LDAP)-bind or native authentication. Both invocations

are relatively costly operations for performance. Determine the best trade-off for the application by looking

at usage patterns and security needs for the site.

The default security cache timeout value is 10 minutes. If you have a small number of users, it should be

set higher than that, or lower if a larger number of users.

The LTPA timeout value should not be set lower than the security cache timeout. The LTPA timeout value

should be set higher than the orb request timeout value. However, there is no relation between the

security cache timeout value and the orb request timeout value.

 Default: 10 minutes

Initial cache size:

Specifies the initial size of the hash table caches.

A higher number of available hash values might decrease the occurrence of hash collisions. A hash

collision results in a linear search for the hash bucket, which might decrease the retrieval time. If several

entries compose a hash table cache, create a table with a larger capacity that supports more efficient hash

entries instead of allowing automatic rehashing determine the growth of the table. Rehashing causes every

entry to move each time.

 Default: 50

Maximum cache size

Indicates the maximum size of the cache.

After this limit is reached, the least used entries are removed from the cache to make space for the new

entries.

 Default: 25000

Use basic authentication cache keys (password one-way hashed):

Caches the userName and the one-way hashed password as the key lookup in the cache.

Disable this only if you do want this information to be stored in the cache. If this is disabled, every time a

user logs in with userName and password, the user registry is accessed, which impacts performance.

90 Securing applications and their environment

Default: True

Use custom cache keys:

Enables custom cache keys to be used as the key lookups in the authentication cache.

 Default: True

Chapter 4. Configuring multiple security domains 91

92 Securing applications and their environment

Chapter 5. Authenticating users

The process of authenticating users involves a user registry and an authentication mechanism. Optionally,

you can define trust between WebSphere Application Server and a proxy server, configure single sign-on

capability, and specify how to propagate security attributes between application servers.

About this task

The following security topics are covered in this section:

User registries

For information on local operating system, Lightweight Directory Access Protocol (LDAP), custom

user registries, and user repositories such as virtual member manager, see “Selecting a registry or

repository.”

Trust associations

For more information on trust associations, see “Trust associations” on page 267.

Single sign-on

For more information on single sign-on, see “Single sign-on using LTPA cookies” on page 273.

Security attribute propagation

For more information on propagation tokens, authorization tokens, single sign-on tokens, and

authentication tokens, see “Security attribute propagation” on page 436.

The following information is covered in this section:

v Configure a user registry. For more information, see “Selecting a registry or repository.”

v Configure WebSEAL or a custom trust association interceptor. For more information see, “Integrating

third-party HTTP reverse proxy servers” on page 271.

v Configure single sign-on. For more information, see “Implementing single sign-on to minimize Web user

authentications” on page 275.

v Propagate security attributes. For more information, see “Propagating security attributes among

application servers” on page 440.

v Configure the authentication cache. For more information, see “Configuring the authentication cache” on

page 453.

What to do next

After completing the configuring the authentication process, you must authorize access to resources. For

more information, see Chapter 6, “Authorizing access to resources,” on page 495.

Selecting a registry or repository

Information about users and groups reside in a user registry. In WebSphere Application Server, a user

registry authenticates a user and retrieves information about users and groups to perform security-related

functions, including authentication and authorization.

Before you begin

Note: During profile creation, either during installation or post-installation, administrative security is

enabled by default. The file-based federated user repository is configured as the active user

registry. Decide if you want a different user registry.

Before configuring the user registry or repository, decide which user registry or repository to use. You can

configure one Active default registry for the Cell.

© Copyright IBM Corp. 2008 93

About this task

WebSphere Application Server provides implementations that support multiple types of registries and

repositories including the local operating system registry, a standalone Lightweight Directory Access

Protocol (LDAP) registry, a standalone custom registry, and federated repositories.

With WebSphere Application Server, a user registry or a repository, such as a federated repository,

authenticates a user and retrieves information about users and groups to perform security-related functions

including authentication and authorization.

With WebSphere Application Server, a user registry or repository is used for:

v Authenticating a user using basic authentication, identity assertion, or client certificates

v Retrieving information about users and groups to perform security-related administrative functions, such

as mapping users and groups to security roles

In addition to local operating system, LDAP, and Federated repository registries, WebSphere Application

Server also provides a plug-in to support any registry by using the custom registry feature. The custom

registry feature enables you to configure any user registry that is not made available through the security

configuration panels of the WebSphere Application Server.

Configuring the correct registry or repository is a prerequisite to assigning users and groups to roles for

applications. When a user registry or repository is not configured, the local operating system registry is

used by default. If your choice of user registry is not the local operating system registry, you need to first

configure the registry or repository, which is normally done as part of enabling security, restart the servers,

and then assign users and groups to roles for all your applications.

WebSphere Application Server supports the following types of user registries:

v Federated repository

v Local operating system

v Standalone Lightweight Directory Access Protocol (LDAP) registry

v Standalone custom registry

The UserRegistry interface is used to implement both the custom registry and the federated repository

options for the user account repository. The interface is very helpful in situations where the current user

and group information exists in some other formats, for example, a database, and cannot move to local

operating system or LDAP registries. In such a case, you can implement the UserRegistry interface so that

WebSphere Application Server can use the existing registry for all the security-related operations. The

process of implementing a custom registry is a software implementation effort, and it is expected that the

implementation does not depend on WebSphere Application Server resource management for its

operation. For example, you cannot use an Application Server data source configuration; generally you

must invoke database connections and dictate their behavior directly in your code.

Note: WebSphere Application Server has implemented a user registry proxy by using the UserRegistry

interface. However, the return values are little different from the interface. For example,

getUniqueUserId returns the uniqueID with the realm name wrapped. You cannot use the return

value to pass to getUserSecurityName, as shown in the following example:

// Retrieves the default InitialContext for this server.

javax.naming.InitialContext ctx = new javax.naming.InitialContext();

// Retrieves the local UserRegistry object.

com.ibm.websphere.security.UserRegistry reg =

 (com.ibm.websphere.security.UserRegistry) ctx.lookup("UserRegistry");

// Retrieves the registry uniqueID based on the userName that is specified

 // in the NameCallback.

String uniqueid = reg.getUniqueUserId(userName);

94 Securing applications and their environment

// Strip the realm name and get real uniqueID

String uid = com.ibm.wsspi.security.token.WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

// Retrieves the security name from the user registry based on the uniqueID.

String securityName = reg.getUserSecurityName(uid);

You can use a Service Provider Interface (SPI) for this parsing function.

After the applications are assigned users and groups and you need to change the user registries, delete

all the users and groups, including any RunAs role, from the applications, and reassign them after

changing the registry through the administrative console or by using wsadmin scripting. The following

wsadmin command, which uses Jacl, removes all of the users and groups from any application:

$AdminApp deleteUserAndGroupEntries yourAppName

where yourAppName is the name of the application. Backing up the old application is advised before

performing this operation. However, if both of the following conditions are true, you might be able to switch

the registries without having to delete the users and groups information:

v All of the user and group names, including the password for the RunAs role users, in all of the

applications match in both user registries.

v The application bindings file does not contain the access IDs which are unique for each user registry

even for the same user or group name.

By default, an application does not contain access IDs in the bindings file. These IDs are generated when

the applications start. However, if you migrated an existing application from an earlier release, or if you

used the wsadmin script to add access IDs for the applications to improve performance, you have to

remove the existing user and group information and add the information after configuring the new user

registry.

For more information on updating access IDs, see updateAccess IDs in the AdminApp object for scripted

administration article.

Note: WebSphere Application Server supports a variety of user registries and repositories on different

operating systems. During the user authentication process, you might use non-alphanumeric

characters in your user name or password. Restrictions on the use of these non-alphanumeric

characters depends on both the underlying operating system and the user registry type. For more

information on which non-alphanumeric characters are not supported, see your operating system

and user registry or repository documentation.

For a comprehensive list of the non-alphanumeric characters that are not supported, see the IBM AIX

operating system documentation.

Complete one of the following steps to configure your user registry:

v “Configuring local operating system registries” on page 97

v “Configuring Lightweight Directory Access Protocol user registries” on page 100

v “Configuring standalone custom registries” on page 123.

v “Managing the realm in a federated repository configuration” on page 151

What to do next

1. If you are enabling security, make sure that you complete the remaining steps. Verify that the User

account repository on the Global security panel is set to the appropriate registry or repository. As the

final step, validate the user ID and the password by clicking Apply on the Global security panel. Save,

stop and start all WebSphere Application Servers.

2. For any changes in user registry panels to be effective, you must validate the changes by clicking

Apply on the Global security panel. After validation, save the configuration and stop and start all

WebSphere Application Servers, including the cells, nodes and all of the application servers. To avoid

Chapter 5. Authenticating users 95

inconsistencies between the WebSphere Application Server processes, make sure that any changes to

the registry or repository are done when all of the processes are running. If any of the processes are

down, force synchronization to make sure that the process can start later.

If the server or servers start without any problems, the setup is correct.

Standalone custom registries

A standalone custom registry is a customer-implemented registry that implements the UserRegistry Java

interface, as provided by the product. A custom-implemented registry can support virtually any type of an

account repository from a relational database, flat file, and so on. The custom user registry provides

considerable flexibility in adapting product security to various environments where some form of a registry

or repository other than federated repositories, standalone Lightweight Directory Access Protocol (LDAP)

registry or local operating system registry already exists in the operational environment.

WebSphere Application Server security provides an implementation that uses various local operating

system-based registries and various standalone Lightweight Directory Access Protocol (LDAP)-based

registries. However, situations can exist where your user and group data resides in other repositories or

custom user registries, such as a database, and moving this information to either a local operating system

registry or a standalone LDAP registry implementation might not be feasible. For these situations,

WebSphere Application Server security provides a service provider interface (SPI) that you can implement

to interact with your current registry. The custom registry feature supports any user registry that is not

implemented by WebSphere Application Server.

The SPI is the UserRegistry interface. The UserRegistry interface is a collection of methods that are

required for authorization purposes. These methods authenticate individual users using either a password

or certificates and collect information about the user, which are called privilege attributes. This interface

also includes methods that obtain user and group information so that they can be given access to

resources. When implementing the methods in the interface, you must decide how to map the information

that is manipulated by the UserRegistry interface to the information in your registry.

This interface has a set of methods to implement for the product security to interact with your registries for

all security-related tasks. The local operating system and LDAP registry implementations that are provided

also implement this interface. Custom user registries are sometimes called the pluggable user registries or

custom registries for short. Your custom user registry implementation is expected to be thread-safe.

Building a custom registry is a software implementation effort. The implementation does not depend on

other WebSphere Application Server resources, for example, data sources, for its operation.

Make sure that your implementation of the custom registry does not depend on any WebSphere

Application Server components such as data sources, enterprise beans, and so on. Do not have this

dependency because security is initialized and enabled prior to most of the other WebSphere Application

Server components during startup. If your previous implementation used these components, make a

change that eliminates the dependency.

The methods in the UserRegistry interface operate on the following information for users:

User security name

The user name is similar to the user profile in the operating system registry.

 This name is used to log in when prompted by a secured application. By default, the Enterprise

JavaBeans (EJB) getCallerPrincipal method and the getRemoteUser and getUserPrincipal servlet

methods return this name. The user security name is also referred to as userSecurityName,

userName, or user name.

Unique user ID

This ID represents a unique identifier for the user, which is required by the UserRegistry interface.

The unique ID is similar to the system ID (SID) in Windows systems, the Unique ID (UID) in

Linux® and UNIX® systems, and the distinguished name (DN) in Lightweight Directory

96 Securing applications and their environment

Authentication Protocol (LDAP). This ID is also referred to as uniqueUserId. The unique ID is used

to make the authorization decisions for protected resources.

Display user name

The display name is the text description for the user profile.

Group security name

This name, which represents the security group, is also referred to as groupSecurityName,

groupName, and group name.

Unique group ID

The unique ID is the identifier for a group. This name is also referred to as uniqueGroupId ID.

Display group name

The display name is an optional string that describes a group.

The topic on UserRegistry interface describes each of the methods in the interface that need

implementing. An explanation of each of the methods and their usage in the sample and any changes from

the Version 4 interface are provided. The Related references section provides links to all other custom

user registries documentation, including a file-based registry sample. The Sample provided is very simple

and is intended to familiarize you with this feature. Do not use this sample in an actual production

environment.

Configuring local operating system registries

Use these steps to configure local operating system registries.

Before you begin

For detailed information about using the local operating system user registry, see “Local operating system

registries” on page 218. These steps set up security based on the local operating system user registry on

which WebSphere Application Server is installed.

In WebSphere Application Server Version 6.1, you can use an internally-generated server ID because the

Security WebSphere Common Configuration Model (WCCM) model contains a new tag, internalServerId.

You do not need to specify a server user ID and a password during security configuration except in a

mixed-cell environment. See “Administrative roles and naming service authorization” on page 496 for more

detailed information about the new internal server ID.

About this task

The following steps are needed to perform this task initially when setting up security for the first time.

1. Click Security > Global security.

2. Under User account repository, select Local operating system and click Configure.

3. Enter a valid user name in the Primary administrative user name field. This value is the name of a

user with administrative privileges that is defined in the registry. This user name is used to access the

administrative console or used by wsadmin.

4. Click Apply.

5. Select either the Automatically generated server identity or Server identity that is stored in the

repository option. If you select the Server identity that is stored in the repository option, enter the

following information:

Server user ID or administrative user on a Version 6.0.x node

Specify the short name of the account that is chosen in the second step.

Server user password

Specify the password of the account that is chosen in the second step.

6. Enter a valid user profile name in the Primary administrative user name field.

The Primary administrative user name specifies the user profile to use when the server authenticates

to the underlying operating system. This identity is also the user that has initial authority to access the

Chapter 5. Authenticating users 97

administrative application through the administrative console. The administrative user ID is common to

all user registries. The administrative ID is a member of the chosen registry and it has special

privileges in WebSphere Application Server. However, it does not have any special privileges in the

registry that it represents. In other words, you can select any valid user ID in the registry to use as the

administrative user ID or server user ID.

For the Primary administrative user name field, you can specify any user profile that meets this

criteria:

v The user profile has a status of *ENABLED.

v The user profile has a valid password.

v The user profile is not used as a group profile.

Note: A group profile is assigned a unique group ID number, which is not assigned to a regular

user profile. Run the DSPUSRPRF Display User Profile command to determine if the user profile

you want to use as the Primary administrative user name has a defined group ID number. If

the Group ID field is set to *NONE, you can use the user profile as the Primary administrative

user name.

7. Click OK.

The administrative console does not validate the user ID and password when you click OK. Validation

is only done when you click OK or Apply in the Global security panel. First, make sure that you select

Local operating system as the available realm definition in the User account repository section, and

click Set as current. If security was already enabled and you had changed either the user or the

password information in this panel, make sure to go to the Global security panel and click OK or

Apply to validate your changes. If your changes are not validated, the server might not start.

Note: Until you authorize other users to perform administrative functions, you can only access the

administrative console with the server user ID and password that you specified. For more

information, see “Authorizing access to administrative roles” on page 546.

Results

For any changes in this panel to be effective, you need to save, stop, and start all the product servers,

including nodes and application servers. If the server comes up without any problems, the setup is correct.

After completed these steps, you have configured WebSphere Application Server to use the local

operating system registry to identify authorized users.

What to do next

Complete any remaining steps for enabling security. For more information, see “Enabling security” on page

28.

Local operating system settings

Use this page to configure local operating system registry settings.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select Local

operating system.

3. Click Configure.

WebSphere Application Server Version 6.1 distinguishes between the user identities for administrators who

manage the environment and server identities for authenticating server to server communications. In most

cases, server identities are automatically generated and are not stored in a repository.

98 Securing applications and their environment

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your local operating system.

 The user name is used to log on to the administrative console when administrative security is enabled.

Version 6.1 requires an administrative user that is distinct from the server user identity so that

administrative actions can be audited.

Note: In WebSphere Application Server, Versions 5.x and 6.0.x, a single user identity is required for both

administrative access and internal process communication. When migrating to Version 6.1, this

identity is used as the server user identity. You need to specify another user for the administrative

user identity.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments

that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a

user repository.

 You can change this server identity on the Authentication mechanisms and expiration panel. To access the

Authentication mechanisms and expiration panel, click Security > Global security > Authentication

mechanisms and expiration. Change the value of the Internal server ID field.

 Default: Enabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication. Cells that

contain Version 5.x or 6.0.x nodes require a server user identity that is defined in the active user

repository.

 Default: Enabled

Local operating system wizard settings

Use this security wizard page to configure local operating system registry settings.

To view this security wizard page, complete the following steps:

1. Click Security > Global security > Security configuration wizard.

2. Select your protection settings and click Next.

3. Select the Local operating system option and click Next.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your local operating system.

 The user name is used to log on to the administrative console when administrative security is enabled.

Version 6.1 requires an administrative user that is distinct from the server user identity so that

administrative actions can be audited.

Note: In WebSphere Application Server, Versions 5.x and 6.0.x, a single user identity is required for both

administrative access and internal process communication. When migrating to Version 6.1, this

identity is used as the server user identity. You need to specify another user for the administrative

user identity.

Chapter 5. Authenticating users 99

Configuring Lightweight Directory Access Protocol user registries

To access a user registry using the Lightweight Directory Access Protocol (LDAP), you must know a valid

user name (ID) and password, the server host and port of the registry server, the base distinguished name

(DN) and, if necessary, the bind DN and the bind password. You can choose any valid user in the user

registry that is searchable. You can use any user ID that has the administrative role to log in.

Before you begin

In some LDAP servers, administrative users cannot be searched and thus cannot be used. The user is

referred to as a WebSphere Application Server security server ID, server ID, or server user ID in the

documentation. A server ID user has special privileges when calling some protected internal methods.

Normally, the primary administrative user name is used to log into the administrative console if security is

enabled. By default, security is enabled after installation.

When security is enabled in the product, the primary administrative user name and password are

authenticated with the registry during the product startup. If authentication fails, the server does not start. It

is important to choose an ID and password that do not expire or change often. If the product server user

ID or password need to change in the registry, make sure that the changes are performed when all the

product servers are up and running. When changes are to be made in the registry, review the article on

“Standalone Lightweight Directory Access Protocol registries” on page 219 (LDAP) before beginning this

task.

 1. In the administrative console, click Security > Global security.

 2. Under User account repository, click the Available realm definitions drop-down list, select

Standalone LDAP registry, and click Configure.

 3. Enter a valid user name in the Primary administrative user name field. You can either enter the

complete distinguished name (DN) of the user or the short name of the user, as defined by the user

filter in the Advanced LDAP settings panel. For example, enter the user ID for Netscape browsers.

This ID is the security server ID, which is only used for WebSphere Application Server security and is

not associated with the system process that runs the server. The server calls the local operating

system registry to authenticate and obtain privilege information about users by calling the native

application programming interfaces (API) in that particular registry.

 4. Optional: If you want to use the server ID that is stored in the repository, complete the following:

a. Select Automatically generated server identity to enable the application server to generate the

server identity that is used for internal process communication. You can change this server

identity on the Authentication mechanisms and expiration panel. To access the Authentication

mechanisms and expiration panel, click Security > Global security > Authentication

mechanisms and expiration. Change the value of the Internal server ID field.

b. Alternatively, specify a user identity in the repository that is used for internal process

communication in the Server identity that is stored in the repository field.

c. Alternatively, specify the user ID that is used to run the application server for security purposes in

the Server user ID or administrative user on a Version 6.0.x node field.

 5. Select the type of LDAP server to use from the Type list. The type of LDAP server determines the

default filters that are used by WebSphere Application Server. These default filters change the Type

field to Custom, which indicates that custom filters are used. This action occurs after you click OK or

Apply in the Advanced LDAP settings panel. Choose the Custom type from the list and modify the

user and group filters to use other LDAP servers, if required.

IBM Tivoli Directory Server users can choose IBM Tivoli Directory Server as the directory type. Use

the IBM Tivoli Directory Server directory type for better performance. For a list of supported LDAP

servers, see the Supported hardware, software, and APIs Web site.

Note: IBM SecureWay® Directory Server has been renamed to IBM Tivoli Directory Server in

WebSphere Application Server version 6.1.

100 Securing applications and their environment

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

6. Enter the fully qualified host name of the LDAP server in the Host field. You can enter either the IP

address or domain name system (DNS) name.

 7. Enter the LDAP server port number in the Port field. The host name and the port number represent

the realm for this LDAP server in the WebSphere Application Server cell. So, if servers in different

cells are communicating with each other using Lightweight Third Party Authentication (LTPA) tokens,

these realms must match exactly in all the cells.

The default value is 389. If multiple WebSphere Application Servers are installed and configured to

run in the same single sign-on domain, or if the WebSphere Application Server interoperates with a

previous version of the WebSphere Application Server, then it is important that the port number match

all configurations. For example, if the LDAP port is explicitly specified as 389 in a version 5.x

configuration, and a WebSphere Application Server at version 6.0.x is going to interoperate with the

version 5.x server, then verify that port 389 is specified explicitly for the version 6.0.x server.

 8. Enter the base distinguished name (DN) in the Base distinguished name field. The base DN

indicates the starting point for searches in this LDAP directory server. For example, for a user with a

DN of cn=John Doe, ou=Rochester, o=IBM, c=US, specify the base DN as any of the following options

assuming a suffix of c=us): ou=Rochester, o=IBM, c=us or o=IBM c=us or c=us. For authorization

purposes, this field is case sensitive by default. Match the case in your directory server. If a token is

received (for example, from another cell or Lotus Domino) the base DN in the server must match

exactly the base DN from the other cell or Domino. If case sensitivity is not a consideration for

authorization, enable the Ignore case for authorization option.

In WebSphere Application Server, the distinguished name is normalized according to the Lightweight

Directory Access Protocol (LDAP) specification. Normalization consists of removing spaces in the

base distinguished name before or after commas and equal symbols. An example of a

non-normalized base distinguished name is o = ibm, c = us or o=ibm, c=us. An example of a

normalized base distinguished name is o=ibm,c=us.

To interoperate between WebSphere Application Server Version 5 and later versions, you must enter

a normalized base distinguished name in the Base Distinguished Name field. In WebSphere

Application Server, Version 5.0.1 or later, the normalization occurs automatically during runtime.

This field is required for all LDAP directories except the Lotus Domino Directory. The Base

Distinguished Name field is optional for the Domino server.

 9. Optional: Enter the bind DN name in the Bind distinguished name field. The bind DN is required if

anonymous binds are not possible on the LDAP server to obtain user and group information. If the

LDAP server is set up to use anonymous binds, leave this field blank. If a name is not specified, the

application server binds anonymously. See the Base Distinguished Name field description for

examples of distinguished names.

10. Optional: Enter the password corresponding to the bind DN in the Bind password field.

11. Optional: Modify the Search time out value. This timeout value is the maximum amount of time that

the LDAP server waits to send a response to the product client before stopping the request. The

default is 120 seconds.

12. Ensure that the Reuse connection option is selected. This option specifies that the server should

reuse the LDAP connection. Clear this option only in rare situations where a router is used to send

requests to multiple LDAP servers and when the router does not support affinity. Leave this option

selected for all other situations.

13. Optional: Verify that the Ignore case for authorization option is enabled. When you enable this

option, the authorization check is case insensitive. Normally, an authorization check involves checking

the complete DN of a user, which is unique in the LDAP server and is case sensitive. However, when

you use either the IBM Directory Server or the Sun ONE (formerly iPlanet) Directory Server LDAP

servers, you must enable this option because the group information that is obtained from the LDAP

servers is not consistent in case. This inconsistency affects the authorization check only. Otherwise,

this field is optional and can be enabled when a case sensitive authorization check is required. For

example, you might select this option when you use certificates and the certificate contents do not

match the case of the entry in the LDAP server.

Chapter 5. Authenticating users 101

You can also enable the Ignore case for authorization option when you are using single sign-on

(SSO) between the product and Lotus Domino. The default is enabled.

14. Optional: Select the SSL enabled option if you want to use Secure Sockets Layer communications

with the LDAP server.

If you select the SSL enabled option, you can select either the Centrally managed or the Use

specific SSL alias option.

Centrally managed

Enables you to specify an SSL configuration for particular scope such as the cell, node,

server, or cluster in one location. To use the Centrally managed option, you must specify the

SSL configuration for the particular set of endpoints. The Manage endpoint security

configurations and trust zones panel displays all of the inbound and outbound endpoints that

use the SSL protocol. If you expand the Inbound or Outbound section of the panel and click

the name of a node, you can specify an SSL configuration that is used for every endpoint on

that node. For an LDAP registry, you can override the inherited SSL configuration by

specifying an SSL configuration for LDAP. To specify an SSL configuration for LDAP,

complete the following steps:

a. Click Security > SSL certificate and key management > Manage endpoint security

configurations and trust zones.

b. Expand Outbound > cell_name > Nodes > node_name > Servers > server_name >

LDAP.

Use specific SSL alias

Select the Use specific SSL alias option if you intend to select one of the SSL configurations

in the menu below the option.

 This configuration is used only when SSL is enabled for LDAP. The default is

DefaultSSLSettings. To modify or create a new SSL configuration, complete the following

steps:

a. Click Security > SSL certificate and key management.

b. Under Configuration settings, click Manage endpoint security configurations.

c. Select a Secure Sockets Layer (SSL) configuration_name for selected scopes, such as a

cell, node, server, or cluster.

d. Under Related items, click SSL configurations.

e. Click New.

15. Click OK and either Apply or Save until you return to the Global security panel.

Results

This set of steps is required to set up the LDAP user registry. This step is required as part of enabling

security in the WebSphere Application Server.

What to do next

1. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41.

2. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems the setup is

correct.

Standalone LDAP registry settings

Use this page to configure Lightweight Directory Access Protocol (LDAP) settings when users and groups

reside in an external LDAP directory.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

102 Securing applications and their environment

2. Under User account repository, click the Available realm definitions drop-down list, select

Standalone LDAP registry, and click Configure.

When security is enabled and any of these properties change, go to the Global security panel and click

Apply to validate the changes.

WebSphere Application Server Version 6.1 distinguishes between the user identities for administrators who

manage the environment and server identities for authenticating server to server communications. In most

cases, server identities are automatically generated and are not stored in a repository.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

 The user name is used to log onto the administrative console when administrative security is enabled.

Version 6.1 requires an administrative user that is distinct from the server user identity so that

administrative actions can be audited.

Note: In WebSphere Application Server, Versions 5.x and 6.0.x, a single user identity is required for both

administrative access and internal process communication. When migrating to Version 6.1, this

identity is used as the server user identity. You need to specify another user for the administrative

user identity.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments

that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a

user repository.

 You can change this server identity on the Authentication mechanisms and expiration panel. To access the

Authentication mechanisms and expiration panel, click Security > Global security > Authentication

mechanisms and expiration. Change the value of the Internal server ID field.

 Default: Enabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication. Cells that

contain Version 5.x or 6.0.x nodes require a server user identity that is defined in the active user

repository.

 Default: Enabled

Type of LDAP server:

Specifies the type of LDAP server to which you connect.

 IBM SecureWay Directory Server is not supported.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.

Port:

Chapter 5. Authenticating users 103

Specifies the host port of the LDAP server.

 If multiple application servers are installed and configured to run in the same single sign-on domain or if

the application server interoperates with a previous version, it is important that the port number match all

configurations. For example, if the LDAP port is explicitly specified as 389 in a Version 4.0.x configuration,

and a WebSphere Application Server at Version 5 is going to interoperate with the Version 4.0.x server,

verify that port 389 is specified explicitly for the Version 5 server.

 Default: 389

Type: Integer

Base distinguished name (DN):

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point for

LDAP searches of the directory service. In most cases, bind DN and bind password are needed. However,

when anonymous bind can satisfy all of the required functions, bind DN and bind password are not

needed.

 For example, for a user with a DN of cn=John Doe , ou=Rochester, o=IBM, c=US, specify the Base DN as

any of the following options: ou=Rochester, o=IBM, c=US or o=IBM c=US or c=US. For authorization purposes,

this field is case sensitive. This specification implies that if a token is received, for example, from another

cell or Lotus Domino, the base DN in the server must match the base DN from the other cell or Lotus

Domino server exactly. If case sensitivity is not a consideration for authorization, enable the Ignore case

for authorization option. This option is required for all Lightweight Directory Access Protocol (LDAP)

directories, except for the Lotus Domino Directory, IBM Tivoli Directory Server V6.0, and Novell eDirectory,

where this field is optional.

If you need to interoperate between the application server Version 5 and a Version 5.0.1 or later server,

you must enter a normalized base DN. A normalized base DN does not contain spaces before or after

commas and equal symbols. An example of a non-normalized base DN is o = ibm, c = us or o=ibm,

c=us. An example of a normalized base DN is o=ibm,c=us. In WebSphere Application Server, Version 5.0.1

or later, the normalization occurs automatically during runtime.

Bind distinguished name (DN):

Specifies the DN for the application server to use when binding to the directory service.

 If no name is specified, the application server binds anonymously. See the Base distinguished name (DN)

field description for examples of distinguished names.

Bind password:

Specifies the password for the application server to use when binding to the directory service.

Search timeout:

Specifies the timeout value in seconds for a Lightweight Directory Access Protocol (LDAP) server to

respond before stopping a request.

 Default: 120

Reuse connection:

104 Securing applications and their environment

Specifies whether the server reuses the LDAP connection. Clear this option only in rare situations where a

router is used to distribute requests to multiple LDAP servers and when the router does not support

affinity.

 Default: Enabled

Range: Enabled or Disabled

Note: Disabling the Reuse connection option causes the application server to create a new LDAP

connection for every LDAP search request. This situation impacts system performance if your

environment requires extensive LDAP calls. This option is provided because the router is not

sending the request to the same LDAP server. The option is also used when the idle connection

timeout value or firewall timeout value between the application server and LDAP is too small.

If you are using WebSphere Edge Server for LDAP failover, you must enable TCP resets with the

Edge server. A TCP reset causes the connection to immediately closed and a backup server to

failover. For more information, see ″Sending TCP resets when server is down″ at

http://www.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/
LBguide.htm#HDRRESETSERVER and the Edge Server V2 - TCP Reset feature in PTF #2

described in: ftp://ftp.software.ibm.com/software/websphere/edgeserver/info/doc/v20/en/updates.pdf.

Ignore case for authorization:

Specifies that a case insensitive authorization check is performed when using the default authorization.

 This option is required when IBM Tivoli Directory Server is selected as the LDAP directory server.

This option is required when Sun ONE Directory Server is selected as the LDAP directory server. For

more information, see ″Using specific directory servers as the LDAP server″ in the documentation.

This option is optional and can be enabled when a case-sensitive authorization check is required. For

example, use this option when the certificates and the certificate contents do not match the case that is

used for the entry in the LDAP server. You can enable the Ignore case for authorization option when

using single sign-on (SSO) between the application server and Lotus Domino.

 Default: Enabled

Range: Enabled or Disabled

SSL enabled:

Specifies whether secure socket communication is enabled to the Lightweight Directory Access Protocol

(LDAP) server.

 When enabled, the LDAP Secure Sockets Layer (SSL) settings are used, if specified.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java

Naming and Directory Interface (JNDI) platform.

 Centrally managed configurations support one location to maintain SSL configurations rather than

spreading them across the configuration documents.

 Default: Enabled

Use specific SSL alias:

Chapter 5. Authenticating users 105

http://www.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/LBguide.htm#HDRRESETSERVER
http://www.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/LBguide.htm#HDRRESETSERVER
ftp://ftp.software.ibm.com/software/websphere/edgeserver/info/doc/v20/en/updates.pdf

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

 This option overrides the centrally managed configuration for the JNDI platform.

Standalone LDAP registry wizard settings

Use this security wizard page to provide the basic settings to connect the application server to an existing

Lightweight Directory Access Protocol (LDAP) registry.

To view this security wizard page, click Security > Global security > Security configuration wizard. You

can modify your LDAP registry configuration by completing the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

 The user name is used to log onto the administrative console when administrative security is enabled.

Version 6.1 requires an administrative user that is distinct from the server user identity so that

administrative actions can be audited.

Note: In WebSphere Application Server, Versions 5.x and 6.0.x, a single user identity is required for both

administrative access and internal process communication. When migrating to Version 6.1, this

identity is used as the server user identity. You need to specify another user for the administrative

user identity.

Type of LDAP server:

Specifies the type of LDAP server to which you connect.

 IBM SecureWay Directory Server is not supported.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.

Port:

Specifies the host port of the LDAP server.

 If multiple application servers are installed and configured to run in the same single sign-on domain or if

the application server interoperates with a previous version, it is important that the port number match all

configurations. For example, if the LDAP port is explicitly specified as 389 in a Version 4.0.x configuration,

and a WebSphere Application Server at Version 5 is going to interoperate with the Version 4.0.x server,

verify that port 389 is specified explicitly for the Version 5 server.

 Default: 389

Type: Integer

Base distinguished name (DN):

106 Securing applications and their environment

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point for

LDAP searches of the directory service. In most cases, bind DN and bind password are needed. However,

when anonymous bind can satisfy all of the required functions, bind DN and bind password are not

needed.

 For example, for a user with a DN of cn=John Doe , ou=Rochester, o=IBM, c=US, specify the Base DN as

any of the following options: ou=Rochester, o=IBM, c=US or o=IBM, c=US or c=US. For authorization purposes,

this field is case sensitive. This specification implies that if a token is received, for example, from another

cell or Lotus Domino, the base DN in the server must match the base DN from the other cell or Lotus

Domino server exactly.

If you need to interoperate between the application server Version 5 and a Version 5.0.1 or later server,

you must enter a normalized base DN. A normalized base DN does not contain spaces before or after

commas and equal symbols. An example of a non-normalized base DN is o = ibm, c = us or o=ibm,

c=us. An example of a normalized base DN is o=ibm,c=us. In WebSphere Application Server, Version 5.0.1

or later, the normalization occurs automatically during run time.

Bind distinguished name (DN):

Specifies the DN for the application server to use when binding to the directory service.

 If no name is specified, the application server binds anonymously. See the Base distinguished name (DN)

field description for examples of distinguished names.

Bind password:

Specifies the password for the application server to use when binding to the directory service.

Advanced Lightweight Directory Access Protocol user registry settings

Use this page to configure the advanced Lightweight Directory Access Protocol (LDAP) user registry

settings when users and groups reside in an external LDAP directory.

To view this administrative page, complete the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select

Standalone LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

Default values for all the user and group related filters are already completed in the appropriate fields. You

can change these values depending on your requirements. These default values are based on the type of

LDAP server that is selected in the Standalone LDAP registry settings panel. If this type changes, for

example from Netscape to Secureway, the default filters automatically change. When the default filter

values change, the LDAP server type changes to Custom to indicate that custom filters are used. When

security is enabled and any of these properties change, go to the Global security panel and click Apply or

OK to validate the changes.

User filter:

Specifies the LDAP user filter that searches the user registry for users.

 This option is typically used for security role-to-user assignments and specifies the property by which to

look up users in the directory service. For example, to look up users based on their user IDs, specify

(&(uid=%v)(objectclass=inetOrgPerson)). For more information about this syntax, see the LDAP directory

service documentation.

Chapter 5. Authenticating users 107

Data type: String

Group filter:

Specifies the LDAP group filter that searches the user registry for groups

 This option is typically used for security role-to-group assignments and specifies the property by which to

look up groups in the directory service. For more information about this syntax, see the LDAP directory

service documentation.

 Data type: String

User ID map:

Specifies the LDAP filter that maps the short name of a user to an LDAP entry.

 Specifies the piece of information that represents users when users display. For example, to display

entries of the object class = inetOrgPerson type by their IDs, specify inetOrgPerson:uid. This field takes

multiple objectclass:property pairs delimited by a semicolon (;).

 Data type: String

Group ID map:

Specifies the LDAP filter that maps the short name of a group to an LDAP entry.

 Specifies the piece of information that represents groups when groups display. For example, to display

groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches on any object

class in this case. This field takes multiple objectclass:property pairs, delimited by a semicolon (;).

 Data type: String

Group member ID map:

Specifies the LDAP filter that identifies user-to-group relationships.

 For directory types SecureWay, and Domino, this field takes multiple objectclass:property pairs, delimited

by a semicolon (;). In an objectclass:property pair, the object class value is the same object class that is

defined in the group filter, and the property is the member attribute. If the object class value does not

match the object class in the group filter, authorization might fail if groups are mapped to security roles.

For more information about this syntax, see your LDAP directory service documentation.

For IBM Directory Server, Sun ONE, and Active Directory, this field takes multiple group attribute:member

attribute pairs delimited by a semicolon (;). These pairs are used to find the group memberships of a

user by enumerating all the group attributes that are possessed by a given user. For example, attribute

pair memberof:member is used by Active Directory, and ibm-allGroup:member is used by IBM Directory

Server. This field also specifies which property of an object class stores the list of members belonging to

the group represented by the object class. For supported LDAP directory servers, see ″Supported directory

services″.

 Data type: String

Perform a nested group search:

108 Securing applications and their environment

Specifies a recursive nested group search.

 Select this option if the Lightweight Directory Access Protocol (LDAP) server does not support recursive

server-side group member searches and if recursive group member search is required. It is not

recommended that you select this option to locate recursive group memberships for LDAP servers.

Application server security leverages the recursive search functionality of the LDAP server to search a

user’s group memberships, including recursive group memberships. For example:

v IBM Directory Server is preconfigured by the application server security to recursively calculate a user’s

group memberships using the ibm-allGroup attribute.

v SunONE directory server is preconfigured to calculate nested group memberships using the nsRole

attribute.

 Data type: String

Kerberos user filter:

Specifies the Kerberos user filter value. This value can be modified when Kerberos is configured and is

active as one of the preferred authentication mechanisms.

 Data type: String

Certificate map mode:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or

CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the

mapping.

 Data type: String

Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the

client certificate to entries in the LDAP registry.

 If more than one LDAP entry matches the filter specification at runtime, authentication fails because the

result is an ambiguous match. The syntax or structure of this filter is:

(&(uid=${SubjectCN})(objectclass=inetOrgPerson)). The left side of the filter specification is an LDAP

attribute that depends on the schema that your LDAP server is configured to use. The right side of the

filter specification is one of the public attributes in your client certificate. The right side must begin with a

dollar sign ($) and open bracket ({) and end with a close bracket (}). You can use the following certificate

attribute values on the right side of the filter specification. The case of the strings is important:

v ${UniqueKey}

v ${PublicKey}

v ${IssuerDN}

v ${Issuer<xx>}

where <xx> is replaced by the characters that represent any valid component of the Issuer

Distinguished Name. For example, you might use ${IssuerCN} for the Issuer Common Name.

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectDN}

Chapter 5. Authenticating users 109

v ${Subject<xx>}

where <xx> is replaced by the characters that represent any valid component of the Subject

Distinguished Name. For example, you might use ${SubjectCN} for the Subject Common Name.

v ${Version}

 Data type: String

Configuring Lightweight Directory Access Protocol search filters

Use this topic to configure the LDAP search filters. These steps are required to modify existing user and

group filters for a particular LDAP directory type, and also to set up certificate filters to map certificates to

entries in the LDAP server.

Before you begin

WebSphere Application Server uses Lightweight Directory Access Protocol (LDAP) filters to search and

obtain information about users and groups from an LDAP directory server. A default set of filters is

provided for each LDAP server that the product supports. You can modify these filters to fit your LDAP

configuration. After the filters are modified and you click OK or Apply the directory type in the Standalone

LDAP registry panel changes to custom, which indicates that custom filters are used. Also, you can

develop filters to support any additional type of LDAP server. The effort to support additional LDAP

directories is optional and other LDAP directory types are not supported. Complete the following steps in

the administrative console.

 1. Click Security > Global security.

 2. Under User account repository, select Standalone LDAP registry and click Configure.

 3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

 4. Modify the user filter, if necessary. The user filter is used for searching the registry for users and is

typically used for the security role-to-user assignment. The filter is also used to authenticate a user

with the attribute that is specified in the filter. The filter specifies the property that is used to look up

users in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the user,

must be a unique key. Two LDAP entries with the same object class cannot have the same short

name. To look up users based on their user IDs (uid) and to use the inetOrgPerson object class,

specify the following syntax:

(&(uid=%v)(objectclass=inetOrgPerson)

For more information about this syntax, see the “Using specific directory servers as the LDAP server”

on page 113 documentation.

 5. Modify the Kerberos user filter, if necessary. The Kerberos user filter name is used for searching the

registry for the Kerberos principal name. Specify the LDAP attribute that holds the Kerberos principal

name.

IBM Lotus Domino default krbuser filter:

(&(krbPrincipalName=%v)(objectcategory=Person))

IBM SecureWay Directory Server default krbuser filter:

(&(krbPrincipalName=%v)(objectcategory=ePerson))

Microsoft Active Directory default krbuser filter:

(&(userprincipalname=%v)(objectcategory=user))

Sun Java System Directory Server default krbuser filter:

(&(krbPrincipalName=%v)(objectcategory=inetOrgPerson))

Novell eDirectory default krbuser filter:

(&(krbPrincipalName=%v)(objectcategory=Person))

110 Securing applications and their environment

6. Optional: If your using Federated Repositories, modify the Kerberos attribute name if necessary. The

Kerberos attribute name is used for searching the registry for Kerberos principal. Specify the LDAP

attribute that holds the Kerberos principal name.

IBM Lotus Domino default krbuser filter:

krbPrincipalName

IBM SecureWay Directory Server default krbuser filter:

krbPrincipalName

Microsoft Active Directory default krbuser filter:

userprincipalname

Sun Java System Directory Server default krbuser filter:

krbPrincipalName

Novell eDirectory default krbuser filter:

krbPrincipalName

 7. Modify the group filter, if necessary. The group filter is used in searching the registry for groups and is

typically used for the security role-to-group assignment. Also, the filter is used to specify the property

by which to look up groups in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the group,

must be a unique key. Two LDAP entries with the same object class cannot have the same short

name. To look up groups based on their common names (CN) and to use either the groupOfNames

object class or the groupOfUniqueNames object class, specify the following syntax:

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

For more information about this syntax, see the “Using specific directory servers as the LDAP server”

on page 113 documentation.

 8. Modify the user ID map, if necessary. This filter maps the short name of a user to an LDAP entry and

specifies the piece of information that represents users when these users are displayed with their

short names. For example, to display entries of object class = inetOrgPerson by their IDs, specify

inetOrgPerson:uid. This field takes multiple objectclass:property pairs, delimited by a semicolon (;).

To provide a consistent value for methods like the getCallerPrincipal method and the getUserPrincipal

method, the short name that is obtained by using this filter is used. For example, the CN=Bob Smith,

ou=austin.ibm.com, o=IBM, c=US user can log in using any attributes that are defined, for example,

e-mail address, social security number, and so on, but when these methods are called, the bob user

ID is returned no matter how the user logs in.

 9. Modify the group ID map filter, if necessary. This filter maps the short name of a group to an LDAP

entry and specifies the piece of information that represents groups when groups display. For example,

to display groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches

on any object class in this case. This field takes multiple objectclass:property pairs, delimited by a

semicolon (;).

10. Modify the group member ID map filter, if necessary. This filter identifies user-to-group memberships.

For SecureWay, and Domino directory types, this field is used to query all the groups that match the

specified object classes to see if the user is contained in the specified attribute. For example, to get

all the users that belong to groups with the groupOfNames object class and the users that are

contained in the member attributes, specify groupOfNames:member. This syntax, which is a property of

an object class, stores the list of members that belong to the group that is represented by the object

class. This field takes multiple objectclass:property pairs that are delimited by a semicolon (;). For

more information about this syntax, see the “Using specific directory servers as the LDAP server” on

page 113.

For the IBM Tivoli Directory Server, Sun ONE, and Active Directory, this field is used to query all

users in a group with the information that is stored in the user object. For example, the

memberof:member filter (for Active Directory) is used to get the memberof attribute of the user object

Chapter 5. Authenticating users 111

to obtain all the groups to which the user belongs. The member attribute is used to get all the users

in a group that use the Group object. Using the User object to obtain the group information improves

performance.

11. Select the Perform a nested group search option if your LDAP server does not support recursive

server-side searches.

12. Modify the Certificate map mode, if necessary. You can use the X.590 certificates for user

authentication when LDAP is selected as the registry. This field is used to indicate whether to map

the X.509 certificates into an LDAP directory user by EXACT_DN or CERTIFICATE_FILTER. If

EXACT_DN is selected, the DN in the certificate must exactly match the user entry in the LDAP

server, including case and spaces.

Select the Ignore case for authorization option on the Standalone LDAP registry settings to make

the authorization case insensitive. To access the Standalone LDAP registry settings panel, complete

the following steps:

a. Click Security > Global security.

b. Under User account repository, click the Available realm definitions drop-down list,

selectStandalone LDAP registry.

13. If you select CERTIFICATE_FILTER, specify the LDAP filter for mapping attributes in the client

certificate to entries in LDAP. If more than one LDAP entry matches the filter specification at run time,

authentication fails because an ambiguous match results. The syntax or structure of this filter is: LDAP

attribute=${Client certificate attribute} (for example, uid=${SubjectCN}).

The left side of the filter specification is an LDAP attribute that depends on the schema that your

LDAP server is configured to use. The right side of the filter specification is one of the public

attributes in your client certificate. Note that the right side must begin with a dollar sign ($), open

bracket ({), and end with a close bracket (}). Use the following certificate attribute values on the right

side of the filter specification. The case of the strings is important.

v ${UniqueKey}

v ${PublicKey}

v ${IssuerDN}

v ${Issuer<xx>}

where <xx> is replaced by the characters that represent any valid component of the Issuer

Distinguished Name. For example, you might use ${IssuerCN} for the Issuer Common Name.

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectDN}

v ${Subject<xx>}

where <xx> is replaced by the characters that represent any valid component of the Subject

Distinguished Name. For example, you might use ${SubjectCN} for the Subject Common Name.

v ${Version}

To enable this field, select CERTIFICATE_FILTER for the certificate mapping.

14. Click Apply.

When any LDAP user or group filter is modified in the Advanced LDAP Settings panel click Apply.

Clicking OK navigates you to the Standalone LDAP registry panel, which contains the previous LDAP

directory type, rather than the custom LDAP directory type. Clicking OK or Apply in the Standalone

LDAP registry panel saves the back-level LDAP directory type and the default filters of that directory.

This action overwrites any changes to the filters that you made. To avoid overwriting changes, you

can take either of the following actions:

v Click Apply in the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings

panel. Click Security > Global security and change the User account repository type to

Standalone custom registry.

112 Securing applications and their environment

v Select Custom type from the Standalone LDAP registry panel. Click Apply and then change the

filters by clicking the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings

panel. After you complete your changes, click Apply or OK.

The validation of the changes does not take place in this panel. Validation is done when you click OK

or Apply on the Global security panel. If you are in the process of enabling security for the first time,

complete the remaining steps and go to the Global security panel. Select Standalone LDAP registry

as the user account repository. If security is already enabled and any information on this panel

changes, go to the Global security panel and click OK or Apply to validate your changes. If your

changes are not validated, the server might not start.

Results

These steps result in the configuration of the LDAP search filters. These steps are required to modify

existing user and group filters for a particular LDAP directory type. The steps are also used to set up

certificate filters to map certificates to entries in the LDAP server.

What to do next

1. Validate this setup by clicking OK or Apply on the Global security panel.

2. Save, stop, and start all the product servers, including the cell, nodes and all of the application servers

for any changes in this panel to become effective.

3. After the server starts, go through all the security-related tasks (getting users, getting groups, and so

on) to verify that the changes to the filters function.

Using specific directory servers as the LDAP server

This article provides important information about the directory servers that are supported as Lightweight

Directory Access Protocol (LDAP) servers in WebSphere Application Server.

Before you begin

Microsoft® Active Directory forest is not supported in the user registry in this product.

About this task

For a list of supported LDAP servers, refer to the Supported hardware and software Web site.

It is expected that other LDAP servers follow the LDAP specification. Support is limited to these specific

directory servers only. You can use any other directory server by using the custom directory type in the list

and by filling in the filters that are required for that directory.

To improve performance for LDAP searches, the default filters for IBM Tivoli Directory Server, Sun ONE,

and Active Directory are defined such that when you search for a user, the result contains all the relevant

information about the user (user ID, groups, and so on). As a result, the product does not call the LDAP

server multiple times. This definition is possible only in these directory types, which support searches

where the complete user information is obtained.

If you use the IBM Directory Server, select the Ignore case for authorization option. This option is

required because when the group information is obtained from the user object attributes, the case is not

the same as when you get the group information directly. For the authorization to work in this case,

perform a case insensitive check and verify the requirement for the Ignore case for authorization option.

v Using Directory Services as the LDAP server

Support for groups that contain other groups or nested groups depends upon the specific versions of

WebSphere Application Server and LDAP. For more information, see “Dynamic groups and nested

group support” on page 220.

v Using IBM Tivoli Directory Server as the LDAP server

Chapter 5. Authenticating users 113

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

To use IBM Tivoli Directory Server, formerly IBM Directory Server, select IBM Tivoli Directory Server

as the directory type.

The difference between these two types is group membership lookup. It is recommended that you

choose the IBM Tivoli Directory Server for optimum performance during runtime. In the IBM Tivoli

Directory Server, the group membership is an operational attribute. With this attribute, a group

membership lookup is done by enumerating the ibm-allGroups attribute for the entry. All group

memberships, including the static groups, dynamic groups, and nested groups, can be returned with the

ibm-allGroups attribute.

WebSphere Application Server supports dynamic groups, nested groups, and static groups in IBM Tivoli

Directory Server using the ibm-allGroups attribute. To utilize this attribute in a security authorization

application, use a case-insensitive match so that attribute values returned by the ibm-allGroups attribute

are all in uppercase.

Note: It is recommended that you do not install IBM Tivoli Directory Server Version 6.0 on the same

machine that you install WebSphere Application Server Version 7.0. IBM Tivoli Directory Server

Version 6.0 includes WebSphere Application Server Express Version 5.1.1, which the directory

server uses for its administrative console. Install the Web Administration tool Version 6.0 and

WebSphere Application Server Express Version 5.1.1, which are both bundled with IBM Tivoli

Directory Server Version 6.0, on a different machine from WebSphere Application Server Version

7.0. You cannot use WebSphere Application Server Version 7.0 as the administrative console for

IBM Tivoli Directory Server. If IBM Tivoli Directory Server Version 6.0 and WebSphere Application

Server Version 7.0 are installed on the same machine, you might encounter port conflicts.

If you must install IBM Tivoli Directory Server Version 6.0 and WebSphere Application Server

Version 7.0 on the same machine, consider the following information:

– During the IBM Tivoli Directory Server installation process, you must select both the Web

Administration tool and WebSphere Application Server Express Version 5.1.1.

– Install WebSphere Application Server Version 7.0.

– When you install WebSphere Application Server Version 7.0, change the port number for the

application server.

– You might need to adjust the WebSphere Application Server environment variables on

WebSphere Application Server Version 7.0 for WAS_HOME and WAS_INSTALL_ROOT (or

APP_SERVER_ROOT for i5/OS). To change the variables using the administrative console,

click Environment > WebSphere Variables.

v Using a Lotus Domino Enterprise Server as the LDAP server

If you select the Lotus Domino Enterprise Server Version 6.5.4 or Version 7.0 and the attribute short

name is not defined in the schema, you can take either of the following actions:

– Change the schema to add the short name attribute.

– Change the user ID map filter to replace the short name with any other defined attribute (preferably

to UID). For example, change person:shortname to person:uid.

The userID map filter is changed to use the uid attribute instead of the shortname attribute as the

current version of Lotus Domino does not create the shortname attribute by default. If you want to use

the shortname attribute, define the attribute in the schema and change the userID map filter.

User ID Map : person:shortname

v Using Sun ONE Directory Server as the LDAP server

You can select Sun ONE Directory Server for your Sun ONE Directory Server system. In Sun ONE

Directory Server, the object class is the default groupOfUniqueName when you create a group. For

better performance, WebSphere Application Server uses the User object to locate the user group

membership from the nsRole attribute. Create the group from the role. If you want to use the

groupOfUniqueName attribute to search groups, specify your own filter setting. Roles unify entries.

Roles are designed to be more efficient and easier to use for applications. For example, an application

114 Securing applications and their environment

can locate the role of an entry by enumerating all the roles that are possessed by a given entry, rather

than selecting a group and browsing through the members list. When using roles, you can create a

group using a:

– Managed role

– Filtered role

– Nested role

All of these roles are computable by the nsRole attribute.

v Using Microsoft Active Directory server as the LDAP server

To use Microsoft Active Directory as the LDAP server for authentication with WebSphere Application

Server you must take specific steps. By default, Microsoft Active Directory does not permit anonymous

LDAP queries. To create LDAP queries or to browse the directory, an LDAP client must bind to the

LDAP server using the distinguished name (DN) of an account that has the authority to search and read

the values of LDAP attributes, such as user and group information, needed by the Application Server. A

group membership search in the Active Directory is done by enumerating the memberof attribute for a

given user entry, rather than browsing through the member list in each group. If you change the default

behavior to browse each group, you can change the Group Member ID Map field from

memberof:member to group:member.

The following steps describe how to set up Microsoft Active Directory as your LDAP server.

1. Determine the full distinguished name (DN) and password of an account in the administrators group.

For example, if the Active Directory administrator creates an account in the Users folder of the Active

Directory Users and Computers Windows control panel and the DNS domain is ibm.com, the resulting

DN has the following structure:

cn=<adminUsername>, cn=users, dc=ibm,

dc=com

2. Determine the short name and password of any account in the Microsoft Active Directory.

3. Use the WebSphere Application Server administrative console to set up the information that is needed

to use Microsoft Active Directory.

a. Click Security > Global security.

b. Under User account repository, select Standalone LDAP registry and click Configure.

c. Set up LDAP with Active Directory as the type of LDAP server. Based on the information that is

determined in the previous steps, you can specify the following values on the LDAP settings panel:

Primary administrative user name

Specify the name of a user with administrative privileges that is defined in the registry. This

user name is used to access the administrative console or used by wsadmin.

Type Specify Active Directory

Host Specify the domain name service (DNS) name of the machine that is running Microsoft

Active Directory.

Base distinguished name (DN)

Specify the domain components of the DN of the account that is chosen in the first step.

For example: dc=ibm, dc=com

Bind distinguished name (DN)

Specify the full distinguished name of the account that is chosen in the first step. For

example: cn=adminUsername, cn=users, dc=ibm, dc=com

Bind password

Specify the password of the account that is chosen in the first step.

d. Click OK and Save to save the changes to the master configuration.

4. Click Security > Global security.

Chapter 5. Authenticating users 115

5. Under User account repository, click the Available realm definitions drop-down list, select

Standalone LDAP registry, and click Configure.

6. Select either the Automatically generated server identity or Server identity that is stored in the

repository option. If you select the Server identity that is stored in the repository option, enter the

following information:

Server user ID or administrative user on a Version 6.0.x node

Specify the short name of the account that is chosen in the second step.

Server user password

Specify the password of the account that is chosen in the second step.

7. Optional: Set ObjectCategory as the filter in the Group member ID map field to improve LDAP

performance.

a. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP)

user registry settings .

b. Add ;objectCategory:group to the end of the Group member ID map field.

8. Click OK and Save to save the changes to the master configuration.

9. Stop and restart the administrative server so that the changes take effect.

Adding users to the Lightweight Directory Access Protocol user registry

You can use the Lightweight Directory Access Protocol (LDAP) user registry with any of the authentication

mechanisms supported by WebSphere Application Server. Therefore, it is necessary to add users into the

LDAP directory that you want to have authorization to access Application Server resources.

About this task

This information in this article is specific to the iSeries® Directory Services product.

A variety of methods are available to add users. However, the easiest way is to create an LDAP Data

Interchange Format (LDIF) file. The file contains the set of users to add into the directory. The file is used

by the LDAP utilities, such as idsldapmodify. You can run these utilities from either the operating system

or from a workstation. If you run these LDAP utilities from the operating system, your LDIF file must reside

in the integrated file system.

Complete the following steps to add users to the LDAP user registry:

1. Create an LDIF file and save it in the integrated file system. Use either the Edit File (EDTF) utility or

your workstation text editor to create the file. Save the file in the integrated file system either by

mapping a drive or using the file transfer protocol (FTP).

For WebSphere Application Server and LDAP directory services, create entries in the directory that

correspond to the ePerson schema definition.

A simple ePerson LDIF entry resembles the following example:

dn: cn=John Doe, ou=Rochester, o=IBM, c=US

objectclass: person

objectclass: inetOrgPerson

objectclass: top

objectclass: organizationalPerson

objectclass: ePerson

cn: John Doe

sn: Doe

uid: jdoe

userpassword: secretpass

This LDIF entry defines an ePerson for user John Doe. The user identification (uid) for John is set to

jdoe and his password is set to secretpass. This entry resides within the Rochester organizational unit,

which is within the IBM organization in the United States. Each of the ou, o, and c containing entries

are defined before this ePerson entry is defined. You can define a series of LDIF entries in the same

file to define Lightweight Third Party Authentication (LTPA) users for WebSphere Application Server.

116 Securing applications and their environment

If you do not specify a value for the userpassword attribute, the LDAP server attempts to authenticate

LTPA users with the user profile for the local operating system that is identified by the uid attribute

value. This action might be desirable if users have user profiles for the operating system and do not

want to manage passwords in both the operating system user registry and the LDAP directory.

When you create an ePerson entry, make sure that the cn and uid attributes each have a unique

value. Do not create two entries that have the same value for the cn and uid attributes.

Note: If you have a large user registry, login performance might be severely impacted if the Group

Member ID Map property is left at its default value, which is both groupOfNames:member and

groupOfUniqueNames:uniqueMember.

To address this performance problem, specify one of these object classes and not both. You must then

exclusively use the selected object class to implement groups in the user registry.

2. Import the LDIF file entries into your directory on the server. Use the LDAP ldapadd utility in Qshell

Interpreter (QSH) or from a workstation.

What to do next

For more information on importing LDIF entries, see the Directory Services documentation in the

Information Centers for i5/OS V5R4 and V6R1.

Locating a user’s group memberships in Lightweight Directory Access Protocol

WebSphere Application Server security can be configured to search group memberships directly or

indirectly. It can also be configured to search only a static group, or it can be configured to search static

groups, recursive or nested groups, and dynamic groups for some Lightweight Directory Access Protocol

(LDAP) servers.

v Evaluate group memberships from user object directly.

– Several popular LDAP servers enable user objects to contain information about the groups to which

they belong such as Microsoft Active Directory Server, or eDirectory. Some user group memberships

can be computable attributes from the user object such as IBM Directory Server or Sun ONE

directory server. In some LDAP servers, this attribute can be used to include a user’s dynamic group

memberships, nesting group memberships, and static group memberships to locate all the group

memberships from a single attribute.

– For example, in IBM Directory Server all group memberships including the static groups, dynamic

groups, and nested groups can be returned using the ibm-allGroups attribute. In Sun ONE, all roles,

including managed roles, filtered roles, and nested roles, are calculated using the nsRole attribute. If

an LDAP server has such an attribute in a User object to include dynamic groups, nested groups,

and static groups, WebSphere Application Server security can be configured to use this attribute to

support these groups.

v Evaluate group memberships from a Group object indirectly.

– Some LDAP servers enable only Group objects, such as the Lotus Domino LDAP server to contain

information about users. The LDAP server does not enable the User object to contain information

about groups. For this type of LDAP server, group membership searches are performed by locating

the user on the member list of groups. The member list evaluation is not currently used in the static

group membership search for WebSphere Application Server.

v Use the direct method for searching group memberships if your LDAP server has an attribute in the

User object to include group information. To use the direct method or the indirect method, enter the

appropriate value in the Group Member ID map field on the Advanced LDAP Settings panel using the

following methods.

– objectclass:attribute pairs for the indirect method

– attribute:attribute pairs for the direct method

v Use the sample entries of attribute:attribute pairs in Group member ID map fields. Note that the

groupMembership attribute lists all the static groups for which a user is a member. This attribute is NOT

Chapter 5. Authenticating users 117

updated whenever an object matches or does not match a dynamic group’s filter. Please refer to the

Novell eDirectory documentation for more information about the groupMembership attribute.

– ibm-allGroups:member for IBM Directory server

– nsRole:nsRole for Sun ONE directory, if groups are created with role inside Sun ONE

– memberOf:member in Microsoft Active Directory Server

– groupMembership:member for eDirectory

v Use the sample entries of objectClass:attribute pairs in the Group member ID map field.

– dominoGroup:member for Lotus Domino

– groupOfNames:member for eDirectory

Results

While using the direct method, dynamic groups, recursive groups, and static groups can be returned as

multiple values of a single attribute. For example, in IBM Directory Server all group memberships,

including the static groups, dynamic groups, and nested groups, can be returned using the ibm-allGroups

attribute. In Sun ONE, all roles, including managed roles, filtered roles, and nested roles, are calculated

using the nsRole attribute. If an LDAP server can use the nsRole attribute, dynamic groups, nested

groups, and static groups are all supported by WebSphere Application Server.

Some LDAP servers do not have recursive computing functionality. For example, although Microsoft Active

Directory server has direct group search capability using the memberOf attribute, this attribute lists the

groups beneath, which the group is directly nested only and does not contain the recursive list of nested

predecessors. The Lotus Domino LDAP server only supports the indirect method to locate the group

memberships for a user. You cannot obtain recursive group memberships from a Domino server directly.

For LDAP servers without recursive searching capability, WebSphere Application Server security provides

a recursive function that is enabled by clicking Perform a Nested Group Search in the Advanced LDAP

user registry settings. Select this option only if your LDAP server does not provide recursive searches and

you want a recursive search.

Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server:

Configure dynamic and nested groups to simplify WebSphere Application Server security management and

increase its effectiveness and flexibility.

 Before you begin

To use dynamic and nested groups with WebSphere Application Server security, you must be running

WebSphere Application Server Version 5.1.1 or later. Refer to “Dynamic groups and nested group support”

on page 220 for more information on this topic.

1. In the administrative console for WebSphere Application Server, click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select

Standalone LDAP registry, and click Configure.

3. Select SunONE for the type of LDAP server.

4. Select the Ignore case for authorization option.

5. Under Additional Properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

6. Change the Group filter setting to &(cn=%v)(objectclass=ldapsubentry)).

7. Change the Group member ID map setting to nsRole:nsRole.

8. Click Apply or OK to validate the changes.

Configuring dynamic and nested group support for the IBM Tivoli Directory Server:

118 Securing applications and their environment

Configure dynamic and nested groups to simplify WebSphere Application Server security management and

increase its effectiveness and flexibility.

 Before you begin

When creating groups, ensure that nested and dynamic group memberships work correctly.

1. In the administrative console for WebSphere Application Server, click Security > Global security.

2. Under User account repository, click Standalone LDAP registry, and click Configure.

3. Select IBM Tivoli Directory Server for the type of LDAP server.

4. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

5. Change the Group filter value to (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs))).

6. Change the Group member ID map value to ibm-allGroups:member;ibm-allGroups:uniqueMember.

7. Click Apply or OK to validate the changes.

8. Verify that Auxiliary object class field on the Add an LDAP entry panel for your IBM Tivoli Directory

server has the appropriate value. When you create a nested group, the Auxiliary object class value is

ibm-nestedGroup. When you create a dynamic group, the Auxiliary object class value is

ibm-dynamicGroup.

Configuring multiple LDAP servers for user registry failover

WebSphere Application Server security can be configured to attempt failovers between multiple

Lightweight Directory Access Protocol (LDAP) hosts.

Before you begin

The multiple LDAP servers involved in the failover can be replicas that are replicated from the same

master LDAP server, or they can be any LDAP host with the same schema. That is any LDAP host that

contains data that is imported from the same LDAP data interchange format (LDIF) file.

Note: When WebSphere Application Server attempts failovers between multiple Lightweight Directory

Access Protocol (LDAP) hosts, system properties are exchanged. WebSphere Application Server

Version 6.1.0 manages the SSL configuration and these system properties. You cannot expect to

set system properties yourself and expect the failover to succeed.

1. Start the deployment manager process.

a. Start the Command Prompt application.

b. Change directories to profile_root/bin.

c. Enter startManager.

2. Start the wsadmin Command Prompt application.

a. Start the Command Prompt application.

b. Change directories to profile_root/bin.

c. Enter the following command:

wsadmin –user username –password password

3. Configure a second LDAP server for failover.

a. Enter the following command to set the failover LDAP server hostname:

set ldapServer [ldap server hostname]

b. Enter the following command to set the LDAP server port number:

set ldapPort [ldap server port]

c. Enter the following command to set the WebSphere LDAP failover variable:

set Attrs2 [list [list hosts [list [list [list host $ldapServer] [list port $ldapPort]]]]]

Chapter 5. Authenticating users 119

d. Modify the LDAP configuration to add the failover LDAP server by entering the following command:

set result [$AdminConfig list LDAPUserRegistry]

e. Find the LDAP server configID by entering the following command:

$AdminConfig modify $result $Attrs2

f. Enter the following command to save the configuration change:

$AdminConfig save

g. Enter exit to quit the Command Prompt application. The following is an example of the Command

Prompt application output:

wsadmin>set ldapServer [list xxxx.xxxx.xxx.com]

xxxx.xxxx.xxx.com

wsadmin>set ldapPort [list NNN]

NNN

wsadmin>set Attrs2 [list [list hosts [list [list [list host $ldapServer] [list port $ldapPort]]]]]

{hosts {{{host xxxx.xxxx.xxx.com} {port NNN}}}}

wsadmin> set result [$AdminConfig list LDAPUserRegistry]

(cells/Father2Cell01|security.xml#LDAPUserRegistry_1)

wsadmin>$AdminConfig modify $result $Attrs2

wsadmin>$AdminConfig save

4. Review the configuration change by opening the security.xml file with a text editor and review the new

entry.

5. Stop the deployment manager.

a. Start the Command Prompt application.

b. Change directories to profile_root/bin.

c. To stop the deployment manager, enter the following command:

stopManager –user username –password password

Related tasks

“Testing an LDAP server for user registry failover”
After configuring a Lightweight Directory Access Protocol (LDAP) host for failover you should test the

failover server by stopping the main LDAP server.

“Deleting LDAP endpoints using wsadmin” on page 121
You can delete Lightweight Directory Access Protocol (LDAP) endpoints for a user registry by using the

WebSphere Application Server administrative tool (wsadmin).

Testing an LDAP server for user registry failover

After configuring a Lightweight Directory Access Protocol (LDAP) host for failover you should test the

failover server by stopping the main LDAP server.

Before you begin

This task assumes the following setup:

v Deployment Manager is installed on the primary LDAP server running Application Server version 6.0.2

or higher.

v All other LDAP hosts are Active Directory machines with similar user registry designs.

v Atleast one of the other LDAP hosts has been configured for failover.

1. Stop the Active Directory Server on the failover server.

2. Start the deployment manager process.

a. Start the Command Prompt application.

b. Change directories to profile_root/bin.

c. Enter startManager.

3. Review the SystemOut.log file to see if the LDAP failover happened. The sample text is an example of

a SystemOut.log file that records a successful failover:

120 Securing applications and their environment

[7/11/05 15:38:31:324 EDT] 0000000a LdapRegistryI A SECJ0418I:

Cannot connect to the LDAP server ldap://xxxx.xxxxx.xxxx.com:NNN. {primary LDAP server}

[7/11/05 15:38:32:486 EDT] 0000000a UserRegistryI A SECJ0136I:

Custom Registry:com.ibm.ws.security.registry.ldap.LdapRegistryImpl has been initialized

[7/11/05 15:38:53:787 EDT] 0000000a LdapRegistryI A SECJ0419I:

The user registry is currently connected to the LDAP server ldap://xxxx.xxxxx.xxxx.com:NNN. {failover LDAP server}

...

[7/11/05 15:39:35:667 EDT] 0000000a WsServerImpl A WSVR0001I: Server dmgr open for e-business

4. Log into the console to see working and non-working cases.

a. Start a browser.

b. Browse to http://localhost:9060/admin.

c. Type in your user ID and password and click OK.

d. Log out of the Administrative Console.

e. Type in DummyAdmin as the user ID and dummy1admin as your password and click OK. This should

fail proving WebSphere Application Server is connected to the other LDAP server. Please make

sure that on a production system the user registries are identical so this problem does not happen

when switching between LDAP servers.

5. Stop the deployment manager.

a. Start the Command Prompt application.

b. Change directories to profile_root/bin.

c. To stop the deployment manager, enter the following command:

stopManager –user username –password password

Related tasks

“Configuring multiple LDAP servers for user registry failover” on page 119
WebSphere Application Server security can be configured to attempt failovers between multiple

Lightweight Directory Access Protocol (LDAP) hosts.

Deleting LDAP endpoints using wsadmin

You can delete Lightweight Directory Access Protocol (LDAP) endpoints for a user registry by using the

WebSphere Application Server administrative tool (wsadmin).

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Set the LDAP variable and display a list of LDAP endpoint objects. Enter the following commands:

Using Jacl:

set ldap [$AdminConfig list LDAPUserRegistry]

$AdminConfig list EndPoint $ldap

Using Jython:

ldap=AdminConfig.list["LDAPUserRegistry"]

print AdminConfig.show(ldap)

For the Jython language, you can obtain the endpoint from the host variable after running the previous

command.

3. Display a list of LDAP endpoint objects. Enter the following command for each object:

Using Jacl:

$AdminConfig showall End_Point_Object

Using Jython:

AdminConfig.showall("End_Point_Object")

4. Delete an LDAP endpoint object. Enter the following command:

Using Jacl:

$AdminConfig remove End_Point_Object

Using Jython:

Chapter 5. Authenticating users 121

AdminConfig.remove ("End_Point_Object")

5. Save your configuration changes: Enter the following command:

Using Jacl:

$AdminConfig save

Using Jython:

AdminConfig.save()

Related tasks

“Testing an LDAP server for user registry failover” on page 120
After configuring a Lightweight Directory Access Protocol (LDAP) host for failover you should test the

failover server by stopping the main LDAP server.

Updating LDAP binding information

Use this information to dynamically update security LDAP binding information by switching to a different

binding identity.

About this task

You can dynamically update Lightweight Directory Access Protocol (LDAP) binding information without first

stopping and restarting WebSphere Application Server by using the wsadmin tool.

The resetLdapBindInfo method in SecurityAdmin MBean is used to dynamically update LDAP binding

information at WebSphere Application Server security runtime, and it takes the bind distinguished name

(DN) and bind password parameters as input. The resetLdapBindInfo method validates the bind

information against the LDAP server. If validation passes, new binding information is stored in

security.xml, and a copy of the information is placed in WebSphere Application Server security runtime.

If the new binding information is null, null, the resetLdapBindInfo method first extracts LDAP binding

information, including bind DN, bind password, and target binding host from WebSphere Application Server

security configuration in security.xml. It then pushes the binding information to WebSphere Application

Server security runtime.

There are two ways to dynamically update WebSphere Application Server security LDAP binding

information using the SecurityAdmin MBean through wsadmin:

v “Switching to a different binding identity”

v “Switching to a failover LDAP host” on page 123

Switching to a different binding identity:

About this task

To dynamically update security LDAP binding information by switching to a different binding identity:

1. In the administrative console, click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select

Standalone LDAP registry, and click Configure.

3. Create a new bind DN. It must have the same access authority as the current bind DN.

4. Run the SecurityAdmin MBean across all of the application server processes to validate the new

binding information, to save it to security.xml, and to push the new binding information to the runtime.

Example

The following is a sample Jacl file for step 4:

proc LDAPReBind {args} {

 global AdminConfig AdminControl ldapBindDn ldapBindPassword

 set ldapBindDn [lindex $args 0]

122 Securing applications and their environment

set ldapBindPassword [lindex $args 1]

 set secMBeans [$AdminControl queryNames type=SecurityAdmin,*]

 set plist [list $ldapBindDn $ldapBindPassword]

 foreach secMBean $secMBeans {

 set result [$AdminControl invoke $secMBean resetLdapBindInfo $plist]

 }

 }

Switching to a failover LDAP host:

About this task

To dynamically update security LDAP binding information by switching to a failover LDAP host:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Standalone LDAP registry and click Configure.

3. Change the password for bind DN on one LDAP server (it can be the primary or the backup).

4. Update the new bind DN password to WebSphere Application security runtime by calling

resetLdapBindInfo with the bind DN and by using its new password as a parameter.

5. Use the new bind DN password for all of the other LDAP servers. The binding information is now

consistent across WebSphere Application Server and the LDAP servers.

Note: If you call resetLdapBindInfo with null, null as input parameters, WebSphere Application

Server security runtime completes the following steps:

a. Reads the bind DN, bind password, and target LDAP hosts from security.xml.

b. Refreshes the cached connection to the LDAP server.

If you configure security to use multiple LDAP servers, this MBean call forces WebSphere

Application Server security to reconnect to the first available LDAP host in the list. For example,

if three LDAP servers are configured in the order of L1, L2, and L3, the reconnection process

always starts with the L1 server.

When LDAP failover is configured by associating a single hostname to multiple IP addresses,

entering an invalid password can cause multiple LDAP bind retries. With the default settings,

the number of LDAP bind retries is equal to one more than the number of associated IP

addresses. This means a single invalid login attempt can cause the LDAP account to be locked.

If the com.ibm.websphere.security.ldap.retryBind custom property is set to false, LDAP bind

calls are not retried.

Configuring standalone custom registries

Use the following information to configure standalone custom registries through the administrative console.

Before you begin

Before you begin this task, implement and build the UserRegistry interface. For more information on

developing standalone custom registries refer to “Developing standalone custom registries” on page 711.

The following steps are required to configure standalone custom registries through the administrative

console.

 1. Click Security > Global security.

 2. Under User account repositories, select Standalone custom registry and click Configure.

 3. Enter a valid user name in the Primary administrative user name field. This ID is the security server

ID, which is only used for WebSphere Application Server security and is not associated with the

system process that runs the server. The server calls the local operating system registry to

authenticate and obtain privilege information about users by calling the native APIs in that particular

registry.

Chapter 5. Authenticating users 123

4. Enter the complete location of the dot-separated class name that implements the

com.ibm.websphere.security.UserRegistry interface in the Custom registry class name field. For the

sample, this file name is com.ibm.websphere.security.FileRegistrySample.

The file can be located in any directory in the integrated file system. However, it is recommended that

the directory is not located in a product directory. Copy the custom trust association interceptor class

files to the profile_root/classes directory.

Note: The sample provided is intended to familiarize you with this feature. Do not use this sample in

an actual production environment.

 5. Add your custom registry class name to the class path. It is recommended that you add the Java

Archive (JAR) file that contains your custom user registry implementation to the profile_root/classes

directory.

 6. Optional: Select the Ignore case for authorization option for the authorization to perform a case

insensitive check. Enabling this option is necessary only when your user registry is case insensitive

and does not provide a consistent case when queried for users and groups.

 7. Click Apply if you have any other additional properties to enter for the registry initialization.

 8. Optional: Enter additional properties to initialize your implementation.

a. Click Custom properties > New.

b. Enter the property name and value.

For the sample, enter the following two properties. It is assumed that the users.props file and the

groups.props file are in the customer_sample directory under the product installation directory.

You can place these properties in any directory that you choose and reference their locations

through custom properties. However, make sure that the directory has the appropriate access

permissions.

 Property name Property value

usersFile ${USER_INSTALL_ROOT}/customer_sample /users.props

groupsFile ${USER_INSTALL_ROOT}/customer_sample /groups.props

Note: The QEJBSVR user profile must have Execute (*X) authority for the directory that contains

user.props and groups.props files. Additionally, QEJBSVR must have Read and Execute

(*RX) authority for the user.props and groups.props files.

Samples of these two properties are available in “users.props file” on page 144 and “groups.props

file” on page 145.

The Description, Required, and Validation Expression fields are not used and can remain

blank.

WebSphere Application Server version 4-based custom user registry is migrated to the custom

user registry based on the com.ibm.websphere.security.UserRegistry interface.

c. Click Apply.

d. Repeat this step to add other additional properties.

 9. Click Security > Global security.

10. Under User account repository, click the Available realm definitions drop-down list, select

Standalone custom registry, and click Configure.

11. Select either the Automatically generated server identity or Server identity that is stored in the

repository option. If you select the Server identity that is stored in the repository option, enter the

following information:

Server user ID or administrative user on a Version 6.0.x node

Specify the short name of the account that is chosen in the second step.

Server user password

Specify the password of the account that is chosen in the second step.

124 Securing applications and their environment

12. Click OK and complete the required steps to turn on security.

Results

This set of steps is required to set up the standalone custom registry and to enable security in WebSphere

Application Server.

Note: The security component of WebSphere Application Server expands a selected list of variables when

enabling security. See Variable settings for more detail.

What to do next

1. Complete the remaining steps, if you are enabling security.

2. Validate the user and password. Save and synchronize in the cell environment.

3. After security is turned on, save, stop, and start all the product servers, including cell, nodes, and all of

the application servers, for any changes to take effect. If the server comes up without any problems,

the setup is correct.

Standalone custom registry settings

Use this page to configure the standalone custom registry.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select

Standalone custom registry, and click Configure.

After the properties are set in this panel, click Apply. Under Additional Properties, click Custom

properties to include additional properties that the custom user registry requires.

Note: Custom properties might include information such as specifying lists of users or groups.

When security is enabled and any of these custom user registry settings change, go to the Global security

panel and click Apply to validate the changes.

WebSphere Application Server Version 6.1 distinguishes between the user identities for administrators who

manage the environment and server identities for authenticating server to server communications. In most

cases, server identities are automatically generated and are not stored in a repository.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

 The user name is used to log onto the administrative console when administrative security is enabled.

Version 6.1 requires an administrative user that is distinct from the server user identity so that

administrative actions can be audited.

Note: In WebSphere Application Server, Versions 5.x and 6.0.x, a single user identity is required for both

administrative access and internal process communication. When migrating to Version 6.1, this

identity is used as the server user identity. You need to specify another user for the administrative

user identity.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments

that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a

user repository.

Chapter 5. Authenticating users 125

You can change this server identity on the Authentication mechanisms and expiration panel. To access the

Authentication mechanisms and expiration panel, click Security > Global security > Authentication

mechanisms and expiration. Change the value of the Internal server ID field.

 Default: Enabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication. Cells that

contain Version 5.x or 6.0.x nodes require a server user identity that is defined in the active user

repository.

 Default: Enabled

Custom registry class name:

Specifies a dot-separated class name that implements the com.ibm.websphere.security.UserRegistry

interface.

 Put the custom registry class name in the class path. A suggested location is the following directory.

v profile_root/classes

 Data type: String

Default: com.ibm.websphere.security.FileRegistrySample

Ignore case for authorization:

Indicates that a case-insensitive authorization check is performed when you use the default authorization.

 Default: Disabled

Range: Enabled or Disabled

Standalone custom registry wizard settings

A wizard page exists in the administrative console to aid in viewing the basic settings necessary to

connect the application server to an existing standalone custom registry. After you have viewed the basic

settings, you can also modify the existing standalone customer registry configuration using the

administrative console.

To view this security wizard page, complete the following steps:

1. Click Security > Global security > Security configuration wizard.

2. Select your protection settings and click Next.

3. Select the Standalone custom registry option and click Next.

You can modify your standalone custom registry configuration by completing the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select

Standalone custom registry, and click Configure.

3. Enter additional properties to initialize your implementation

v Click Custom properties > New.

v Enter the property name and value. For the sample, enter the following two properties. It is assumed

that the users.props file and the groups.props file are in the customer_sample directory under the

product installation directory. You can place these properties in any directory that you choose and

126 Securing applications and their environment

reference their locations through Custom properties. However, make sure that the directory has the

appropriate access permissions.

 Property name Property value

usersFile ${USER_INSTALL_ROOT}/customer_sample /users.props

groupsFile ${USER_INSTALL_ROOT}/customer_sample /groups.props

Samples of these two properties are available in reference topics for the users.props file and the

groups.props file. See the related links below for more information.

The Description, Required, and Validation Expression fields are not used and can remain blank.

WebSphere Application Server Version 4 based custom user registry is migrated to the custom user

registry based on the com.ibm.websphere.security.UserRegistry interface.

v Click Apply.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

 The user name is used to log onto the administrative console when administrative security is enabled.

Version 6.1 requires an administrative user that is distinct from the server user identity so that

administrative actions can be audited.

Note: In WebSphere Application Server, Versions 5.x and 6.0.x, a single user identity is required for both

administrative access and internal process communication. When migrating to Version 6.1, this

identity is used as the server user identity. You need to specify another user for the administrative

user identity.

Custom registry class name:

Specifies a dot-separated class name that implements the com.ibm.websphere.security.UserRegistry

interface.

 Put the custom registry class name in the class path. A suggested location is the following directory.

v profile_root/classes

 Data type: String

Default: com.ibm.websphere.security.FileRegistrySample

Ignore case for authorization:

Indicates that a case-insensitive authorization check is performed when you use the default authorization.

 Default: Disabled

Range: Enabled or Disabled

FileRegistrySample.java file

This provides an example of the FileRegistrySample.java file.

The user and group information required by this sample is contained in the “users.props file” on page

144 and “groups.props file” on page 145 files.

Note: The samples that are provided are intended to familiarize you with this feature. Do not use these

samples in an actual production environment.

Chapter 5. Authenticating users 127

The contents of the FileRegistrySample.java file:

//

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2005

// All Rights Reserved * Licensed Materials - Property of IBM

////--

// This program may be used, run, copied, modified and distributed

// without royalty for the purpose of developing, using, marketing, or

// distributing.

//--

//

// This sample is for the custom user registry feature in WebSphere

// Application Server.

import java.util.*;

import java.io.*;

import java.security.cert.X509Certificate;

import com.ibm.websphere.security.*;

/**

 * The main purpose of this sample is to demonstrate the use of the

 * custom user registry feature available in WebSphere Application Server. This

 * sample is a file-based registry sample where the users and the groups

 * information is listed in files (users.props and groups.props). As such

 * simplicity and not the performance was a major factor. This

 * sample should be used only to get familiarized with this feature. An

 * actual implementation of a realistic registry should consider various

 * factors like performance, scalability, thread safety, and so on.

 **/

public class FileRegistrySample implements UserRegistry {

 private static String USERFILENAME = null;

 private static String GROUPFILENAME = null;

 /** Default Constructor **/

 public FileRegistrySample() throws java.rmi.RemoteException {

 }

 /**

 * Initializes the registry. This method is called when creating the

 * registry.

 *

 * @param props - The registry-specific properties with which to

 * initialize the custom registry

 * @exception CustomRegistryException

 * if there is any registry-specific problem

 **/

 public void initialize(java.util.Properties props)

 throws CustomRegistryException {

 try {

 /* try getting the USERFILENAME and the GROUPFILENAME from

 * properties that are passed in (For example, from the

 * administrative console). Set these values in the administrative

 * console. Go to the special custom settings in the custom

 * user registry section of the Authentication panel.

 * For example:

 * usersFile c:/temp/users.props

 * groupsFile c:/temp/groups.props

 */

 if (props != null) {

 USERFILENAME = props.getProperty("usersFile");

 GROUPFILENAME = props.getProperty("groupsFile");

128 Securing applications and their environment

}

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 }

 if (USERFILENAME == null || GROUPFILENAME == null) {

 throw new CustomRegistryException("users/groups information missing");

 }

 } /**

 * Checks the password of the user. This method is called to authenticate

 * a user when the user’s name and password are given.

 *

 * @param userSecurityName the name of user

 * @param password the password of the user

 * @return a valid userSecurityName. Normally this is

 * the name of same user whose password was checked

 * but if the implementation wants to return any other

 * valid userSecurityName in the registry it can do so

 * @exception CheckPasswordFailedException if userSecurityName/

 * password combination does not exist

 * in the registry

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String checkPassword(String userSecurityName, String passwd)

 throws PasswordCheckFailedException,

 CustomRegistryException {

 String s,userName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":",index+1);

 // check if the userSecurityName:passwd combination exists

 if ((s.substring(0,index)).equals(userSecurityName) &&

 s.substring(index+1,index1).equals(passwd)) {

 // Authentication successful, return the userID.

 userName = userSecurityName;

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (userName == null) {

 throw new PasswordCheckFailedException("Password check failed for user: "

 + userSecurityName);

 }

 return userName;

 } /**

 * Maps an X.509 format certificate to a valid user in the registry.

Chapter 5. Authenticating users 129

* This is used to map the name in the certificate supplied by a browser

 * to a valid userSecurityName in the registry

 *

 * @param cert the X509 certificate chain

 * @return The mapped name of the user userSecurityName

 * @exception CertificateMapNotSupportedException if the

 * particular certificate is not supported.

 * @exception CertificateMapFailedException if the mapping of

 * the certificate fails.

 * @exception CustomRegistryException if there is any registry

 * -specific problem

 **/

 public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException {

 String name=null;

 X509Certificate cert1 = cert[0];

 try {

 // map the SubjectDN in the certificate to a userID.

 name = cert1.getSubjectDN().getName();

 } catch(Exception ex) {

 throw new CertificateMapNotSupportedException(ex.getMessage(),ex);

 }

 if(!isValidUser(name)) {

 throw new CertificateMapFailedException("user: " + name

 + " is not valid");

 }

 return name;

 } /**

 * Returns the realm of the registry.

 *

 * @return the realm. The realm is a registry-specific string

 * indicating the realm or domain for which this registry

 * applies. For example, for OS/400 or AIX this would be

 * the host name of the system whose user registry this

 * object represents. If null is returned by this method,

 * realm defaults to the value of "customRealm". It is

 * recommended that you use your own value for realm.

 *

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getRealm()

 throws CustomRegistryException {

 String name = "customRealm";

 return name;

 } /**

 * Gets a list of users that match a pattern in the registry.

 * The maximum number of users returned is defined by the limit

 * argument.

 * This method is called by the administrative console and scripting

 * (command line) to make the users in the registry available for

 * adding them (users) to roles.

 *

 * @param pattern the pattern to match. (For example, a* will

 * match all userSecurityNames starting with a)

 * @param limit the maximum number of users that should be

 * returned. This is very useful in situations where

 * there are thousands of users in the registry and

 * getting all of them at once is not practical. The

 * default is 100. A value of 0 implies get all the

130 Securing applications and their environment

* users and hence must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users

 * exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public Result getUsers(String pattern, int limit)

 throws CustomRegistryException {

 String s;

 BufferedReader in = null;

 List allUsers = new ArrayList();

 Result result = new Result();

 int count = 0;

 int newLimit = limit+1;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 String user = s.substring(0,index);

 if (match(user,pattern)) {

 allUsers.add(user);

 if (limit !=0 && ++count == newLimit) {

 allUsers.remove(user);

 result.setHasMore();

 break;

 }

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 result.setList(allUsers);

 return result;

 } /**

 * Returns the display name for the user specified by

 * userSecurityName.

 *

 * This method may be called only when the user information

 * is displayed (information purposes only, for example, in

 * the administrative console) and hence not used in the actual

 * authentication or authorization purposes. If there are no

 * display names in the registry return null or empty string.

 *

 * In WebSphere Application Server 4.x custom registry, if you

 * had a display name for the user and if it was different from the

 * security name, the display name was returned for the EJB

 * methods getCallerPrincipal() and the servlet methods

 * getUserPrincipal() and getRemoteUser().

 * In WebSphere Application Server Version 5.x and later, for the

 * same methods, the security name will be returned by default.

 * This is the recommended way as the display name is not unique

 * and might create security holes. However, for backward

 * compatibility if you need the display name to be returned

 * set the property WAS_UseDisplayName to true.

 *

 *See the Information Center documentation for more information.

Chapter 5. Authenticating users 131

*

 * @param userSecurityName the name of the user.

 * @return the display name for the user. The display

 * name is a registry-specific string that

 * represents a descriptive, not necessarily

 * unique, name for a user. If a display name

 * does not exist return null or empty string.

 * @exception EntryNotFoundException if userSecurityName

 * does not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getUserDisplayName(String userSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,displayName = null;

 BufferedReader in = null;

 if(!isValidUser(userSecurityName)) {

 EntryNotFoundException nsee = new EntryNotFoundException("user: "

 + userSecurityName + " is not valid");

 throw nsee;

 }

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.lastIndexOf(":");

 if ((s.substring(0,index)).equals(userSecurityName)) {

 displayName = s.substring(index1+1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

 } finally {

 fileClose(in);

 }

 return displayName;

 }

 /**

 * Returns the unique ID for a userSecurityName. This method is called

 * when creating a credential for a user.

 *

 * @param userSecurityName - The name of the user.

 * @return The unique ID of the user. The unique ID for a user

 * is the stringified form of some unique, registry-specific,

 * data that serves to represent the user. For example, for

 * the UNIX user registry, the unique ID for a user can be

 * the UID.

 * @exception EntryNotFoundException if userSecurityName does not

 * exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getUniqueUserId(String userSecurityName)

132 Securing applications and their environment

throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueUsrId = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(0,index)).equals(userSecurityName)) {

 int index2 = s.indexOf(":", index1+1);

 uniqueUsrId = s.substring(index1+1,index2);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (uniqueUsrId == null) {

 EntryNotFoundException nsee =

 new EntryNotFoundException("Cannot obtain uniqueId for user: "

 + userSecurityName);

 throw nsee;

 }

 return uniqueUsrId;

 } /**

 * Returns the name for a user given its unique ID.

 *

 * @param uniqueUserId - The unique ID of the user.

 * @return The userSecurityName of the user.

 * @exception EntryNotFoundException if the unique user ID does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public String getUserSecurityName(String uniqueUserId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,usrSecName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 int index2 = s.indexOf(":", index1+1);

 if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

 usrSecName = s.substring(0,index);

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

Chapter 5. Authenticating users 133

} finally {

 fileClose(in);

 }

 if (usrSecName == null) {

 EntryNotFoundException ex =

 new EntryNotFoundException("Cannot obtain the

 user securityName for " + uniqueUserId);

 throw ex;

 }

 return usrSecName;

 } /**

 * Determines if the userSecurityName exists in the registry

 *

 * @param userSecurityName - The name of the user

 * @return True if the user is valid; otherwise false

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 * @exception RemoteException as this extends java.rmi.Remote

 * interface

 **/

 public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException {

 String s;

 boolean isValid = false;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(userSecurityName)) {

 isValid=true;

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

 } finally {

 fileClose(in);

 }

 return isValid;

 }

 /**

 * Gets a list of groups that match a pattern in the registry

 * The maximum number of groups returned is defined by the

 * limit argument. This method is called by administrative console

 * and scripting (command line) to make available the groups in

 * the registry for adding them (groups) to roles.

 *

 * @param pattern the pattern to match. (For example, a* matches

 * all groupSecurityNames starting with a)

 * @param Limits the maximum number of groups to return

 * This is very useful in situations where there

 * are thousands of groups in the registry and getting all

 * of them at once is not practical. The default is 100.

 * A value of 0 implies get all the groups and hence must

 * be used with care.

134 Securing applications and their environment

* @return A Result object that contains the list of groups

 * requested and a flag to indicate if more groups exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException {

 String s;

 BufferedReader in = null;

 List allGroups = new ArrayList(); Result result = new Result();

 int count = 0;

 int newLimit = limit+1;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 String group = s.substring(0,index);

 if (match(group,pattern)) {

 allGroups.add(group);

 if (limit !=0 && ++count == newLimit) {

 allGroups.remove(group);

 result.setHasMore();

 break;

 }

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 result.setList(allGroups);

 return result;

 }

 /**

 * Returns the display name for the group specified by groupSecurityName.

 * For this version of WebSphere Application Server, the only usage of

 * this method is by the clients (administrative console and scripting)

 * to present a descriptive name of the user if it exists.

 *

 * @param groupSecurityName the name of the group.

 * @return the display name for the group. The display name

 * is a registry-specific string that represents a

 * descriptive, not necessarily unique, name for a group.

 * If a display name does not exist return null or empty

 * string.

 * @exception EntryNotFoundException if groupSecurityName does

 * not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getGroupDisplayName(String groupSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,displayName = null;

 BufferedReader in = null;

 if(!isValidGroup(groupSecurityName)) {

Chapter 5. Authenticating users 135

EntryNotFoundException nsee = new EntryNotFoundException("group: "

 + groupSecurityName + " is not valid");

 throw nsee;

 }

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.lastIndexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 displayName = s.substring(index1+1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return displayName;

 }

 /**

 * Returns the Unique ID for a group.

 * @param groupSecurityName the name of the group.

 * @return The unique ID of the group. The unique ID for

 * a group is the stringified form of some unique,

 * registry-specific, data that serves to represent

 * the group. For example, for the UNIX user registry,

 * the unique ID might be the GID.

 * @exception EntryNotFoundException if groupSecurityName does

 * not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueGroupId(String groupSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueGrpId = null;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 uniqueGrpId = s.substring(index+1,index1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

136 Securing applications and their environment

fileClose(in);

 }

 if (uniqueGrpId == null) {

 EntryNotFoundException nsee =

 new EntryNotFoundException("Cannot obtain the uniqueId for group: "

 + groupSecurityName);

 throw nsee;

 }

 return uniqueGrpId;

 }

 /**

 * Returns the Unique IDs for all the groups that contain the unique ID

 * of a user. Called during creation of a user’s credential.

 *

 * @param uniqueUserId the unique ID of the user.

 * @return A list of all the group unique IDs that the unique user

 * ID belongs to. The unique ID for an entry is the

 * stringified form of some unique, registry-specific, data

 * that serves to represent the entry. For example, for the

 * UNIX user registry, the unique ID for a group might be

 * the GID and the Unique ID for the user might be the UID.

 * @exception EntryNotFoundException if uniqueUserId does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public List getUniqueGroupIds(String uniqueUserId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueGrpId = null;

 BufferedReader in = null;

 List uniqueGrpIds=new ArrayList();

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 int index2 = s.indexOf(":", index1+1);

 if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

 int lastIndex = s.lastIndexOf(":");

 String subs = s.substring(index2+1,lastIndex);

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens())

 uniqueGrpIds.add(st1.nextToken());

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return uniqueGrpIds;

 }

 /**

 * Returns the name for a group given its unique ID.

Chapter 5. Authenticating users 137

*

 * @param uniqueGroupId the unique ID of the group.

 * @return The name of the group.

 * @exception EntryNotFoundException if the uniqueGroupId does

 * not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getGroupSecurityName(String uniqueGroupId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,grpSecName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(index+1,index1)).equals(uniqueGroupId)) {

 grpSecName = s.substring(0,index);

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (grpSecName == null) {

 EntryNotFoundException ex =

 new EntryNotFoundException("Cannot obtain the group

 security name for: " + uniqueGroupId);

 throw ex;

 }

 return grpSecName;

 }

 /**

 * Determines if the groupSecurityName exists in the registry

 *

 * @param groupSecurityName the name of the group

 * @return True if the groups exists; otherwise false

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException {

 String s;

 boolean isValid = false;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName)) {

138 Securing applications and their environment

isValid=true;

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return isValid;

 }

 /**

 * Returns the securityNames of all the groups that contain the user

 *

 * This method is called by the administrative console and scripting

 * (command line) to verify that the user entered for RunAsRole mapping

 * belongs to that role in the roles to user mapping. Initially, the

 * check is done to see if the role contains the user. If the role does

 * not contain the user explicitly, this method is called to get the groups

 * that this user belongs to so that a check can be made on the groups that

 * the role contains.

 *

 * @param userSecurityName the name of the user

 * @return A list of all the group securityNames that the user

 * belongs to.

 * @exception EntryNotFoundException if user does not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 * @exception RemoteException as this extends the java.rmi.Remote

 * interface

 **/

 public List getGroupsForUser(String userName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s;

 List grpsForUser = new ArrayList();

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 StringTokenizer st = new StringTokenizer(s, ":");

 for (int i=0; i<2; i++)

 st.nextToken();

 String subs = st.nextToken();

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens()) {

 if((st1.nextToken()).equals(userName)) {

 int index = s.indexOf(":");

 grpsForUser.add(s.substring(0,index));

 }

 }

 }

 }

 } catch (Exception ex) {

 if (!isValidUser(userName)) {

 throw new EntryNotFoundException("user: " + userName

 + " is not valid");

 }

Chapter 5. Authenticating users 139

throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return grpsForUser;

 }

 /**

 * Gets a list of users in a group.

 *

 * The maximum number of users returned is defined by the

 * limit argument.

 *

 * This method is being used by the WebSphere Application

 * Server Enterprise process choreographer (Enterprise) when

 * staff assignments are modeled using groups.

 *

 * In rare situations, if you are working with a registry where

 * getting all the users from any of your groups is not practical

 * (for example if there are a large number of users) you can create

 * the NotImplementedException for that particular group. Make sure

 * that if the process choreographer is installed (or if installed later)

 * the staff assignments are not modeled using these particular groups.

 * If there is no concern about returning the users from groups

 * in the registry it is recommended that this method be implemented

 * without creating the NotImplemented exception.

 * @param groupSecurityName the name of the group

 * @param Limits the maximum number of users that should be

 * returned. This is very useful in situations where there

 * are lots of users in the registry and getting all of

 * them at once is not practical. A value of 0 implies

 * get all the users and hence must be used with care.

 * @return A Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @deprecated This method will be deprecated in future.

 * @exception NotImplementedException create this exception in rare

 * situations if it is not practical to get this information

 * for any of the group or groups from the registry.

 * @exception EntryNotFoundException if the group does not exist in

 * the registry

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException {

 String s, user;

 BufferedReader in = null;

 List usrsForGroup = new ArrayList();

 int count = 0;

 int newLimit = limit+1;

 Result result = new Result();

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName))

 {

140 Securing applications and their environment

StringTokenizer st = new StringTokenizer(s, ":");

 for (int i=0; i<2; i++)

 st.nextToken();

 String subs = st.nextToken();

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens()) {

 user = st1.nextToken();

 usrsForGroup.add(user);

 if (limit !=0 && ++count == newLimit) {

 usrsForGroup.remove(user);

 result.setHasMore();

 break;

 }

 }

 }

 }

 }

 } catch (Exception ex) {

 if (!isValidGroup(groupSecurityName)) {

 throw new EntryNotFoundException("group: "

 + groupSecurityName

 + " is not valid");

 }

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 result.setList(usrsForGroup);

 return result;

 }

 /**

 * This method is implemented internally by the WebSphere Application

 * Server code in this release. This method is not called for the custom

 * registry implementations for this release. Return null in the

 * implementation.

 *

 **/

 public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws CustomRegistryException,

 NotImplementedException,

 EntryNotFoundException {

 // This method is not called.

 return null;

 }

 // private methods

 private BufferedReader fileOpen(String fileName)

 throws FileNotFoundException {

 try {

 return new BufferedReader(new FileReader(fileName));

 } catch(FileNotFoundException e) {

 throw e;

 }

 }

 private void fileClose(BufferedReader in) {

 try {

 if (in != null) in.close();

 } catch(Exception e) {

Chapter 5. Authenticating users 141

System.out.println("Error closing file" + e);

 }

 }

 private boolean match(String name, String pattern) {

 RegExpSample regexp = new RegExpSample(pattern);

 boolean matches = false;

 if(regexp.match(name))

 matches = true;

 return matches;

 }

}

//--

// The program provides the Regular Expression implementation

// used in the sample for the custom user registry (FileRegistrySample).

// The pattern matching in the sample uses this program to search for the

// pattern (for users and groups).

//--

class RegExpSample

{

 private boolean match(String s, int i, int j, int k)

 {

 for(; k < expr.length; k++)

label0:

 {

 Object obj = expr[k];

 if(obj == STAR)

 {

 if(++k >= expr.length)

 return true;

 if(expr[k] instanceof String)

 {

 String s1 = (String)expr[k++];

 int l = s1.length();

 for(; (i = s.indexOf(s1, i)) >= 0; i++)

 if(match(s, i + l, j, k))

 return true;

 return false;

 }

 for(; i < j; i++)

 if(match(s, i, j, k))

 return true;

 return false;

 }

 if(obj == ANY)

 {

 if(++i > j)

 return false;

 break label0;

 }

 if(obj instanceof char[][])

 {

 if(i >= j)

 return false;

 char c = s.charAt(i++);

 char ac[][] = (char[][])obj;

 if(ac[0] == NOT)

142 Securing applications and their environment

{

 for(int j1 = 1; j1 < ac.length; j1++)

 if(ac[j1][0] <= c && c <= ac[j1][1])

 return false;

 break label0;

 }

 for(int k1 = 0; k1 < ac.length; k1++)

 if(ac[k1][0] <= c && c <= ac[k1][1])

 break label0;

 return false;

 }

 if(obj instanceof String)

 {

 String s2 = (String)obj;

 int i1 = s2.length();

 if(!s.regionMatches(i, s2, 0, i1))

 return false;

 i += i1;

 }

 }

 return i == j;

 }

 public boolean match(String s)

 {

 return match(s, 0, s.length(), 0);

 }

 public boolean match(String s, int i, int j)

 {

 return match(s, i, j, 0);

 }

 public RegExpSample(String s)

 {

 Vector vector = new Vector();

 int i = s.length();

 StringBuffer stringbuffer = null;

 Object obj = null;

 for(int j = 0; j < i; j++)

 {

 char c = s.charAt(j);

 switch(c)

 {

 case 63: /* ’?’ */

 obj = ANY;

 break;

 case 42: /* ’*’ */

 obj = STAR;

 break;

 case 91: /* ’[’ */

 int k = ++j;

 Vector vector1 = new Vector();

 for(; j < i; j++)

 {

 c = s.charAt(j);

 if(j == k && c == ’^’)

 {

Chapter 5. Authenticating users 143

vector1.addElement(NOT);

 continue;

 }

 if(c == ’\\’)

 {

 if(j + 1 < i)

 c = s.charAt(++j);

 }

 else

 if(c == ’]’)

 break;

 char c1 = c;

 if(j + 2 < i && s.charAt(j + 1) == ’-’)

 c1 = s.charAt(j += 2);

 char ac1[] = {

 c, c1

 };

 vector1.addElement(ac1);

 }

 char ac[][] = new char[vector1.size()][];

 vector1.copyInto(ac);

 obj = ac;

 break;

 case 92: /* ’\\’ */

 if(j + 1 < i)

 c = s.charAt(++j);

 break;

 }

 if(obj != null)

 {

 if(stringbuffer != null)

 {

 vector.addElement(stringbuffer.toString());

 stringbuffer = null;

 }

 vector.addElement(obj);

 obj = null;

 }

 else

 {

 if(stringbuffer == null)

 stringbuffer = new StringBuffer();

 stringbuffer.append(c);

 }

 }

 if(stringbuffer != null)

 vector.addElement(stringbuffer.toString());

 expr = new Object[vector.size()];

 vector.copyInto(expr);

 }

 static final char NOT[] = new char[2];

 static final Integer ANY = new Integer(0);

 static final Integer STAR = new Integer(1);

 Object expr[];

}

users.props file:

144 Securing applications and their environment

This example presents the format for the users.props file.

Note: The sample that is provided is intended to familiarize you with this feature. Do not use this sample

in an actual production environment.

5639-D57, 5630-A36, 5630-A37, 5724-D18

(C) COPYRIGHT International Business Machines Corp. 1997, 2005

All Rights Reserved * Licensed Materials - Property of IBM

Format:

name:passwd:uid:gids:display name

where name = userId/userName of the user

passwd = password of the user

uid = uniqueId of the user

gid = groupIds of the groups that the user belongs to

display name = a (optional) display name for the user.

bob:bob1:123:567:bob

dave:dave1:234:678:

jay:jay1:345:678,789:Jay-Jay

ted:ted1:456:678:Teddy G

jeff:jeff1:222:789:Jeff

vikas:vikas1:333:789:vikas

bobby:bobby1:444:789:

groups.props file:

The following example illustrates the format for the groups.props file.

Note: The sample provided is intended to familiarize you with this feature. Do not use this sample in an

actual production environment.

5639-D57, 5630-A36, 5630-A37, 5724-D18

(C) COPYRIGHT International Business Machines Corp. 1997, 2005

All Rights Reserved * Licensed Materials - Property of IBM

Format:

name:gid:users:display name

where name = groupId of the group

gid = uniqueId of the group

users = list of all the userIds that the group contains

display name = a (optional) display name for the group.

admins:567:bob:Administrative group

operators:678:jay,ted,dave:Operators group

users:789:jay,jeff,vikas,bobby:

Developing the UserRegistry interface for using custom registries

Implementing this interface enables WebSphere Application Server security to use custom registries. This

capability extends the java.rmi file. With a remote registry, you can complete this process remotely.

About this task

Provide implementations of the following methods.

v Initialize the UserRegistry method, with initialize(java.util.Properties).

public void initialize(java.util.Properties props)

 throws CustomRegistryException,

 RemoteException;

This method is called to initialize the UserRegistry method. All the properties that are defined in the

Custom User Registry panel propagate to this method.

For the FileRegistrySample.java sample file, the initialize method retrieves the names of the registry

files that contain the user and group information.

Chapter 5. Authenticating users 145

This method is called during server bringup to initialize the registry. This method is also called when

validation is performed by the administrative console, when security is on. This method remains the

same as in Version 4.x.

v Authenticate users with checkPassword(String,String).

public String checkPassword(String userSecurityName, String password)

 throws PasswordCheckFailedException

 CustomRegistryException,

 RemoteException;

The checkPassword method is called to authenticate users when they log in using a name or user ID

and a password. This method returns a string which, in most cases, is the user security name. A

credential is created for the user for authorization purposes. This user name is also returned for the

getCallerPrincipal enterprise bean call and the servlet calls the getUserPrincipal and getRemoteUser

methods. See the getUserDisplayName method for more information if you have display names in your

registry. In some situations, if you return a user other than the one who is logged in, you must verify

that the user is valid in the registry.

For the FileRegistrySample.java sample file, the mapCertificate method gets the distinguished name

(DN) from the certificate chain and makes sure it is a valid user in the registry before returning the user.

For the sample, the checkPassword method checks the name and password combination in the user

registry and, if they match, the method returns the user being authenticated.

This method is called for various scenarios, for example, by the administrative console to validate the

user information after the user registry is initialized. This method is also called when you access

protected resources in the product for authenticating the user and before proceeding with the

authorization. This method is the same as in Version 4.x.

v Obtain user names from X.509 certificates with mapCertificate(X509Certificate[]).

public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException,

 RemoteException;

The mapCertificate method is called to obtain a user name from an X.509 certificate chain that is

supplied by the browser. The complete certificate chain is passed to this method and the

implementation can validate the chain if needed and get the user information. A credential is created for

this user for authorization purposes. If browser certificates are not supported in your configuration, you

can create the CertificateMapNotSupportedException exception. The consequence of not supporting

certificates is authentication failure if the challenge type is certificates, even if valid certificates are in the

browser.

This method is called when certificates are provided for authentication. For Web applications, when the

authentication constraints are set to CLIENT-CERT in the web.xml file of the application, this method is

called to map a certificate to a valid user in the registry. For Java clients, this method is called to map

the client certificates in the transport layer, when using transport layer authentication. When the identity

assertion token, using the CSIv2 authentication protocol, is set to contain certificates, this method is

called to map the certificates to a valid user.

In WebSphere Application Server Version 4.x, the input parameter is the X509Certificate certificate. In

WebSphere Application Server Version 5.x and later, this parameter changes to accept an array of

X509Certificate certificates such as a certificate chain. In Version 4.x, this parameter is called for Web

applications only, but in version 5.x and later, you can call this method for both Web and Java clients.

v Obtain the security realm name with getRealm.

public String getRealm()

 throws CustomRegistryException,

 RemoteException;

146 Securing applications and their environment

The getRealm method is called to get the name of the security realm. The name of the realm identifies

the security domain for which the registry authenticates users. If this method returns a null value, a

customRealm default name is used.

For the FileRegistrySample.java sample file, the getRealm method returns the customRealm string.

One of the calls to this method occurs when the user registry information is validated. This method is

the same method as in Version 4.x.

v Obtain the list of users from the registry with getUsers(String,int).

public Result getUsers(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

The getUsers method returns the list of users from the registry. The names of users depend on the

pattern parameter. The number of users are limited by the limit parameter. In a registry that has many

users, getting all the users is not practical. So the limit parameter is introduced to limit the number of

users retrieved from the registry. A limit of zero (0) indicates to return all the users that match the

pattern and might cause problems for large registries. Use this limit with care.

The custom registry implementations are expected to support at least the wildcard search (*). For

example, a pattern of asterisk (*) returns all the users and a pattern of (b*) returns the users starting

with b.

The return parameter is an object with a com.ibm.websphere.security.Result type. This object contains

two attributes, a java.util.List and a java.lang.boolean attribute. The list contains the users that are

returned and the Boolean flag indicates if more users are available in the user registry for the search

pattern. This Boolean flag is used to indicate to the client whether more users are available in the

registry.

In the FileRegistrySample.java sample file, the getUsers method retrieves the required number of

users from the user registry and sets them as a list in the Result object. To find out if more users are

presented than requested, the sample gets one more user than requested and if it finds the additional

user, it sets the Boolean flag to true. For pattern matching, the match method in the RegExpSample

class is used, which supports wildcard characters such as the asterisk (*) and the question mark (?).

This method is called by the administrative console to add users to roles in the various

map-users-to-roles panels. The administrative console uses the Boolean set in the Result object to

indicate that more entries matching the pattern are available in the user registry.

In WebSphere Application Server Version 4.x, this method specifies to take only the pattern parameter.

The return is a list. In WebSphere Application Server Version 5.x or later, this method is changed to

take one additional parameter, the limit. Ideally, your implementation changes to take the limit value and

limits the users that are returned. The return is changed to return a Result object, which consists of the

list and a flag that indicates if more entries exist. When the list returns, use the Result.setList(List)

method to set the list in the Result object. If more entries exist than requested in the limit parameter, set

the Boolean attribute to true in the result object, using the Result.setHasMore method. The default for

the Boolean attribute in the result object is false.

v Obtain the display name of a user with getUserDisplayName(String).

public String getUserDisplayName(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

The getUserDisplayName method returns a display name for a user, if one exists. The display name is

an optional string that describes the user that you can set in some registries. This descriptive name is

for the user and does not have to be unique in the registry.

For example, in i5/OS systems, you can display the text description for the user profile.

If you do not need display names in your registry, return null or an empty string for this method.

If display names existed for any user in WebSphere Application Server Version 4.x, these names were

useful for the Enterprise JavaBean (EJB) method call getCallerPrincipal and the servlet calls

getUserPrincipal and getRemoteUser. If the display names are not the same as the security name for

Chapter 5. Authenticating users 147

any user, the display names are returned for the previously mentioned enterprise beans and servlet

methods. Returning display names for these methods might become problematic in some situations

because the display names might not be unique in the user registry. Avoid this problem by changing the

default behavior to return the user security name instead of the user display name in this version of the

product. For more information on how to set properties for the custom registry, see the section on

Setting Properties for Custom Registries.

In the FileRegistrySample.java sample file, this method returns the display name of the user whose

name matches the user name that is provided. If the display name does not exist, this method returns

an empty string.

This method can be called by the product to present the display names in the administrative console, or

by using the command line and the wsadmin tool. Use this method for display purposes only. This

method is the same as in Version 4.x.

v Obtain the unique ID of a user with getUniqueUserId(String).

public String getUniqueUserId(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique ID of the user, given the security name.

In the FileRegistrySample.java sample file, this method returns the uniqueUserId value of the user

whose name matches the supplied name. This method is called when forming a credential for a user

and also when creating the authorization table for the application.

v Obtain the security name of a user with getUserSecurityName(String).

public String getUserSecurityName(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the security name of a user given the unique ID. In the FileRegistrySample.java

sample file, this method returns the security name of the user whose unique ID matches the supplied

ID.

This method is called to make sure a valid user exists for a given uniqueUserId. This method is called

to get the security name of the user when the uniqueUserId is obtained from a token.

v Check whether a given user is a valid user in the registry with isValidUser(String).

public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException,

 RemoteException;

This method indicates whether the given user is a valid user in the registry.

In the FileRegistrySample.java sample file, this method returns true if the user is found in the registry,

otherwise this method returns false. This method is primarily called in situations where knowing if the

user exists in the directory prevents problems later. For example, in the mapCertificate call, when the

name is obtained from the certificate if the user is not found as a valid user in the user registry, you can

avoid trying to create the credential for the user.

v Return the list of groups from the user registry with getGroups(String,int).

public Result getGroups(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

The getGroups method returns the list of groups from the user registry. The names of groups depend

on the pattern parameter. The number of groups is limited by the limit parameter. In a registry that has

many groups, getting all the groups is not practical. So, the limit parameter is introduced to limit the

number of groups retrieved from the user registry. A limit of zero (0) implies to return all the groups that

match the pattern and can cause problems for large user registries. Use this limit with care. The custom

148 Securing applications and their environment

registry implementations are expected to support at least the wildcard search (*). For example, a pattern

of asterisk (*) returns all the users and a pattern of (b*) returns the users starting with b.

The return parameter is an object of the com.ibm.websphere.security.Result type. This object contains

the java.util.List and java.lang.boolean attributes. The list contains the groups that are returned

and the Boolean flag indicates whether more groups are available in the user registry for the pattern

searched. This Boolean flag is used to indicate to the client if more groups are available in the registry.

In the FileRegistrySample.java sample file, the getUsers method retrieves the required number of

groups from the user registry and sets them as a list in the Result object. To find out if more groups are

presented than requested, the sample gets one more user than requested and if it finds the additional

user, it sets the Boolean flag to true. For pattern matching, the match method in the RegExpSample

class is used, which supports the asterisk (*) and question mark (?) characters.

This method is called by the administrative console to add groups to roles in the various

map-groups-to-roles panels. The administrative console uses the boolean set in the Result object to

indicate that more entries matching the pattern are available in the user registry.

In WebSphere Application Server Version 4, this method is used to take the pattern parameter only and

returns a list. In WebSphere Application Server Version 5.x or later, this method is changed to take the

limit parameter. Change to take the limit value and limit the users that are returned. The return is

changed to return a Result object, which consists of the list and a flag that indicates whether more

entries exist. Use the Result.setList(List) method to set the list in the Result object. If more entries exist

than requested in the limit parameter, set the Boolean attribute to true in the Result object using the

Result.setHasMore method. The default for the Boolean attribute in the Result object is false.

v Obtain the display name of a group with getGroupDisplayName(String).

public String getGroupDisplayName(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

The getGroupDisplayName method returns a display name for a group if one exists. The display name

is an optional string that describes the group that you can set in some user registries. This name is a

descriptive name for the group and does not have to be unique in the registry. If you do not need to

have display names for groups in your registry, return null or an empty string for this method.

In the FileRegistrySample.java sample file, this method returns the display name of the group whose

name matches the group name that is provided. If the display name does not exist, this method returns

an empty string.

The product can call this method to present the display names in the administrative console or through

the command line using the wsadmin tool. This method is used for display purposes only.

v Obtain the unique ID of a group with getUniqueGroupId(String).

public String getUniqueGroupId(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique ID of the group that is given the security name.

In the FileRegistrySample.java sample file, this method returns the security name of the group whose

unique ID matches the supplied ID. This method verifies that a valid group exists for a given

uniqueGroupId ID.

v Obtain the unique IDs of all groups to which a user belongs with getUniqueGroupIds(String).

public List getUniqueGroupIds(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique IDs of all the groups to which a user belongs.

Chapter 5. Authenticating users 149

In the FileRegistrySample.java sample file, this method returns the unique ID of all the groups that

contain this uniqueUserID ID. This method is called when creating the credential for the user. As part of

creating the credential, all the groupUniqueIds IDs in which the user belongs are collected and put in

the credential for authorization purposes when groups are given access to a resource.

v Obtain the security name of a group with getGroupSecurityName(String).

public String getGroupSecurityName(String uniqueGroupId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the security name of a group given its unique ID.

In the FileRegistrySample.java sample file, this method returns the security name of the group whose

unique ID matches the supplied ID. This method verifies that a valid group exists for a given

uniqueGroupId ID.

v Determine whether a group is a valid group in the registry with isValidGroup(String).

public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException,

 RemoteException;

This method indicates if the given group is a valid group in the registry.

In the FileRegistrySample.java sample file, this method returns true if the group is found in the

registry, otherwise the method returns false. This method can be used in situations where knowing

whether the group exists in the directory might prevent problems later.

v Obtain all groups to which a user belongs with getGroupsForUser(String).

public List getGroupsForUser(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns all the groups to which a user belongs whose name matches the supplied name.

This method is similar to the getUniqueGroupIds method with the exception that the security names are

used instead of the unique IDs.

In the FileRegistrySample.java sample file, this method returns all the group security names that

contain the userSecurityName name.

This method is called by the administrative console or the scripting tool to verify that the users entered

for the RunAs roles are already part of that role in the users and groups-to-role mapping. This check is

required to ensure that a user cannot be added to a RunAs role unless that user is assigned to the role

in the users and groups-to-role mapping either directly or indirectly through a group that contains this

user. Because a group in which the user belongs can be part of the role in the users and groups-to-role

mapping, this method is called to check if any of the groups that this user belongs to mapped to that

role.

v Retrieve users from a specified group with getUsersForGroup(String,int).

public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method retrieves users from the specified group. The number of users returned is limited by the

limit parameter. A limit of zero (0) indicates to return all of the users in that group. This method is not

directly called by the WebSphere Application Server security component. However, this method can be

called by other components. In rare situations, if you are working with a user registry where getting all

the users from any of your groups is not practical, you can create the NotImplementedException

exception for the particular groups. In this case, verify that if the process choreographer is installed the

staff assignments are not modeled using these particular groups. If no concern exists about returning

150 Securing applications and their environment

the users from groups in the user registry, it is recommended that you do not create the

NotImplemented exception when implementing this method.

The return parameter is an object with a com.ibm.websphere.security.Result type. This object contains

the java.util.List and java.lang.boolean attributes. The list contains the users that are returned and the

Boolean flag, which indicates whether more users are available in the user registry for the search

pattern. This Boolean flag indicates to the client whether users are available in the user registry.

In the example, this method gets one user more than the requested number of users for a group, if the

limit parameter is not set to zero (0). If the method succeeds in getting one more user, the Boolean flag

is set to true.

In WebSphere Application Server Version 4, this getUsers method is mandatory for the product. For

WebSphere Application Server Version 5.x or later, this method can create the

NotImplementedException exception in situations where it is not practical to get the requested set of

users. However, create this exception in rare situations when as other components can be affected. In

Version 4, this method accepts only the pattern parameter and returns a list. In Version 5, this method

accepts the limit parameter. Change your implementation to take the limit value and limit the users that

are returned. The return changes to return a Result object, which consists of the list and a flag that

indicates whether more entries exist. When the list is returned, use the Result.setList(List) method to set

the list in the Result object. If more entries than requested are in the limit parameter, set the Boolean

attribute to true in the Result object using Result.setHasMore method. The default for the Boolean

attribute in the Result object is false.

v Implement the createCredential(String) method.

Note: The first two lines of the following code sample are split for illustrative purposes only.
public com.ibm.websphere.security.cred.WSCredential createCredential(String userSecurityName)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

In this release the WebSphere Application Server, the createCredential method is not called. You can

return null. In the example, a null value is returned.

What to do next

Managing the realm in a federated repository configuration

Follow this topic to manage the realm in a federated repository configuration.

Before you begin

The realm can consist of identities in:

v The file-based repository that is built into the system

v One or more external repositories

v Both the built-in, file-based repository and in one or more external repositories

Before you configure your realm, review “Federated repositories limitations” on page 154.

1. Configure your realm by using one of the following topics. You might be configuring your realm for the

first time or changing an existing realm configuration.

v “Using a single built-in, file-based repository in a new configuration under Federated repositories” on

page 157

v “Changing a federated repository configuration to include a single built-in, file-based repository only”

on page 161

v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under

Federated repositories” on page 162

Chapter 5. Authenticating users 151

v “Changing a federated repository configuration to include a single, Lightweight Directory Access

Protocol repository only” on page 163

v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository

configuration” on page 165

v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access

Protocol repositories in a federated repository configuration” on page 166

2. Configure supported entity types using the steps described in “Configuring supported entity types in a

federated repository configuration” on page 193. You must configure supported entity types before you

can manage this account with Users and Groups. The Base entry for the default parent determines the

repository location where entities of the specified type are placed on a create operation.

3. Optional: Use one or more of the following tasks to extend the capabilities of storing data and

attributes in your realm:

a. Configure an entry mapping repository using the steps described in “Configuring an entry mapping

repository in a federated repository configuration” on page 190. An entry mapping repository is

used to store data for managing profiles on multiple repositories.

b. Configure a property extension repository using the steps described in “Configuring a property

extension repository in a federated repository configuration” on page 177. A property extension

repository is used to store attributes that cannot be stored in your Lightweight Directory Access

Protocol (LDAP) server.

a. Set up a database repository using wsadmin commands as described in “Setting up an entry

mapping repository, a property extension repository, or a custom registry database repository using

wsadmin commands” on page 182

4. Optional: Use one or more of the following advanced user tasks to extend the capabilities of LDAP

repositories in your realm:

v “Increasing the performance of the federated repository configuration” on page 199

v “Configuring Lightweight Directory Access Protocol entity types in a federated repository

configuration” on page 208

v “Configuring group attribute definition settings in a federated repository configuration” on page 211

5. Optional: Manage repositories that are configured in your system by following the steps described in

“Managing repositories in a federated repository configuration” on page 196.

6. Optional: Add an external repository into your realm by following the steps described in “Adding an

external repository in a federated repository configuration” on page 176.

7. Optional: Change the password for the repository that is configured under federated repositories by the

following steps described in “Changing the password for a repository under a federated repositories

configuration” on page 155.

What to do next

1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Global security panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Realm configuration settings

Use this page to manage the realm. The realm can consist of identities in the file-based repository that is

built into the system, in one or more external repositories, or in both the built-in, file-based repository and

one or more external repositories.

152 Securing applications and their environment

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

A single built-in, file-based repository is built into the system and included in the realm by default.

You can configure one or more Lightweight Directory Access Protocol (LDAP) repositories to store

identities in the realm. Click Add base entry to realm to specify a repository configuration and a base

entry into the realm. You can configure multiple different base entries into the same repository.

Click Remove to remove selected repositories from the realm. Repository configurations and contents are

not destroyed. The following restrictions apply:

v The realm must always contain at least one base entry; therefore, you cannot remove every entry.

v If you plan to remove the built-in, file-based repository from the administrative realm, verify that at least

one user in another member repository is a console user with administrative rights. Otherwise, you must

disable security to regain access to the administrative console.

WebSphere Application Server Version 6.1 distinguishes between the user identities for administrators who

manage the environment and server identities for authenticating server to server communications. In most

cases, server identities are automatically generated and are not stored in a repository.

Realm name:

Specifies the name of the realm. You can change the realm name.

Primary administrative user name:

Specifies the name of the user with administrative privileges that is defined in the repository, for example,

adminUser.

 The user name is used to log on to the administrative console when administrative security is enabled.

Version 6.1 requires an administrative user that is distinct from the server user identity so that

administrative actions can be audited.

Note: In WebSphere Application Server, Versions 5.x and 6.0.x, a single user identity is required for both

administrative access and internal process communication. When migrating to Version 6.1, this

identity is used as the server user identity. You need to specify another user for the administrative

user identity.

Automatically generated server identity:

Enables the application server to generate the server identity, which is recommended for environments

that contain only Version 6.1 or later nodes. Automatically generated server identities are not stored in a

user repository.

 You can change this server identity on the Authentication mechanisms and expiration panel. To access the

Authentication mechanisms and expiration panel, click Security > Global security > Authentication

mechanisms and expiration. Change the value of the Internal server ID field.

 Default: Enabled

Chapter 5. Authenticating users 153

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication. Cells that

contain Version 5.x or 6.0.x nodes require a server user identity that is defined in the active user

repository.

 Default: Enabled

Ignore case for authorization:

Specifies that a case-insensitive authorization check is performed.

 If case sensitivity is not a consideration for authorization, enable the Ignore case for authorization

option.

Base entry:

Specifies the base entry within the realm. This entry and its descendents are part of the realm.

Repository identifier:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the

cell.

Repository type:

Specifies the repository type, such as File or LDAP.

Federated repositories limitations

This topic outlines known limitations and important information for configuring federated repositories.

Configuring federated repositories in a mixed-version environment

In a mixed-version deployment manager cell that contains both Version 6.1.x and Version 5.x or 6.0.x

nodes, the following limitations apply for configuring federated repositories:

v You can configure only one Lightweight Directory Access Protocol (LDAP) repository under federated

repositories, and the repository must be supported by Version 5.x or 6.0.x.

v You can specify a realm name that is compatible with prior versions only. The host name and the port

number represent the realm for the LDAP server in a mixed-version nodes cell. For example,

machine1.austin.ibm.com:389.

v You must configure a stand-alone LDAP registry; the LDAP information in both the stand-alone LDAP

registry and the LDAP repository under the federated repositories configuration must match. During

node synchronization, the LDAP information from the stand-alone LDAP registry propagates to the

Version 5.x or 6.0.x nodes.

Note: Before node synchronization, verify that Federated repositories is identified in the Current realm

definition field. If Federated repositories is not identified, select Federated repositories from the

Available realm definitions field and click Set as current. Do not set the stand-alone LDAP

registry as the current realm definition.

v You cannot configure an entry mapping repository or a property extension repository in a mixed-version

deployment manager cell.

Configuring LDAP servers in a federated repository

The LDAP connection connectTimeout default value is 20 seconds. LDAP should respond within 20

seconds for any request from WebSphere Application Server. If you cannot connect to your LDAP within

154 Securing applications and their environment

this time, make sure that your LDAP is running. A connection error displays at the top of the LDAP

configuration panel when the connection timeout exceeds 20 seconds.

Coexisting with Tivoli Access Manager

For Tivoli Access Manager to coexist with a federated repositories configuration, the following limitations

apply:

v You can configure only one LDAP repository under federated repositories, and that LDAP repository

configuration must match the LDAP server configuration under Tivoli Access Manager.

v The distinguished name for the realm base entry must match the LDAP distinguished name (DN) of the

base entry within the repository. In WebSphere Application Server, Tivoli Access Manager recognizes

the LDAP user ID and LDAP DN for both authentication and authorization. The federated repositories

configuration does not include additional mappings for the LDAP user ID and DN.

v The federated repositories functionality does not recognize the metadata that is specified by Tivoli

Access Manager. When users and groups are created under user and group management, they are not

formatted using the Tivoli Access Manager metadata. The users and groups must be manually imported

into Tivoli Access Manager before you use them for authentication and authorization.

Changing the password for a repository under a federated repositories

configuration

Passwords allow security control over the repositories under a federated repositories configuration. As part

of managing the realm in a federated repository configuration, one of the optional tasks you can perform is

to change the password of an individual repository that is under a federated repositories configuration.

Before you begin

Before you change the password for the repository that is configured under federated repositories, ensure

that the WebSphere Application Server is running and the target repository for the password change is

configured under the federated repositories configuration.

v Changing the password for a repository using the dynamic updateIdMgrLDAPBindInfo command Use

the following steps to change the Lightweight Directory Access Protocol (LDAP) bind distinguished

name (DN) or bind password of an LDAP repository.

From a wsadmin prompt, you can enter the following command to display a list of arguments for the

updateIdMgrLDAPBindInfo command: $AdminTask help UpdateIdMgrLDAPBindInfo

1. Start the wsadmin command-line utility. The wsadmin command is found in theapp_server_root/bin

directory. The WebSphere Application Server and wsadmin must remaining running.

2. Use an LDAP tool to change the password of the LDAP repository. Some LDAP repositories require

a stop and start of the LDAP server to change the password.

3. From the wsadmin prompt, enter the updateIdMgrLDAPBindInfo command to update the LDAP

password under the federated repository. The change is also reflected in the wimconfig.xml file.

v Changing the password for a repository using the updateIdMgrDBRepository command

1. Start the wsadmin command-line utility. The wsadmin command is found in the app_server_root/bin

directory. The wsadmin command session must remain running. If WebSphere Application Server is

not started, you need to open a wsadmin command session in local mode. wsadmin -conntype none

2. Log in to the Administrative Console for WebSphere Application Server.

3. Change the password for the repository.

4. From the Administrative Console, change the data source (J2C) password. You access the proper

console page by clicking Resources > JDBC > Data sources >data_source> JAAS - J2C

authentication data.

5. From the Administrative Console, save your changes to the master configuration.

6. From the wsadmin prompt, use the updateIdMgrDBRepository command to update the password in

the wimconfig.xml file.

Chapter 5. Authenticating users 155

7. From the wsadmin prompt, save your changes to the master configuration. The following command

is used to save the master configuration: $AdminConfig save.

8. Restart the WebSphere Application Server.

v Changing the password for a repository using the setIdMgrPropertyExtensionRepository command

1. Start the wsadmin command-line utility. The wsadmin command is found in theapp_server_root/bin

directory. The wsadmin command session must remain running. If WebSphere Application Server is

not started, you need to open a wsadmin command session in local mode.

wsadmin -conntype none

2. Log in to the Administrative Console for WebSphere Application Server.

3. Change the password for the repository.

4. From the Administrative Console, change the data source (J2C) password. You access the proper

console page by clicking Resources > JDBC > Data sources > data_source > JAAS - J2C

authentication data.

5. From the Administrative Console, save your changes to the master configuration.

6. From the wsadmin prompt, use the setIdMgrPropertyExtensionRepository command to update

the password in the wimconfig.xml file.

7. From the wsadmin prompt, save your changes to the master configuration. The following command

is used to save the master configuration: $AdminConfig save.

8. Restart the WebSphere Application Server.

v Changing the password for a repository using the setIdMgrEntryMappingRepository command

1. Start the wsadmin command-line utility. The wsadmin command is found in theapp_server_root/bin

directory. The wsadmin command session must remain running. If WebSphere Application Server is

not started, you need to open a wsadmin command session in local mode.

wsadmin -conntype none

2. Log in to the Administrative Console for WebSphere Application Server.

3. Change the password for the repository.

4. From the Administrative Console, change the data source (J2C) password. You access the proper

console page by clicking Resources > JDBC > Data sources >data_source > JAAS - J2C

authentication data.

5. From the Administrative Console, save your changes to the master configuration.

6. From the wsadmin prompt, use the setIdMgrEntryMappingRepository command to update the

password in the wimconfig.xml file.

7. From the wsadmin prompt, save your changes to the master configuration. The following command

is used to save the master configuration: $AdminConfig save.

8. Restart the WebSphere Application Server.

v Changing the password for a repository using the updateIdMgrLDAPServer command

1. Start the wsadmin command-line utility. The wsadmin command is found in theapp_server_root/bin

directory. The wsadmin command session must remain running. If WebSphere Application Server is

not started, you need to open a wsadmin command session in local mode.

wsadmin -conntype none

2. Change the password for the repository.

3. From the wsadmin prompt, use the updateIdMgrDBRepository command to update the password

in the wimconfig.xml file.

4. From the wsadmin prompt, save your changes to the master configuration. The following command

is used to save the master configuration: $AdminConfig save.

5. Restart the WebSphere Application Server.

156 Securing applications and their environment

Results

The password for the repository has been changed.

Using a single built-in, file-based repository in a new configuration under

Federated repositories

Follow this task to use a single built-in, file-based repository in a new configuration under Federated

repositories.

Before you begin

To use the default configuration under Federated repositories that includes a single built-in, file-based

repository only, you need to know the primary administrative user name of the user who manages

WebSphere Application Server resources and user accounts.

Note:

Client certificate login is not supported in a realm that includes a single built-in, file-based repository

or a single built-in, file-based repository with other repositories.

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Leave the Realm name field value as defaultWIMFileBasedRealm.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

5. Leave the Ignore case for authorization option enabled.

6. Click OK.

7. Provide an administrative user password. This panel displays only when a built-in, file-based repository

is included in the realm. Otherwise, the panel does not display. If a built-in, file-based repository is

included, complete the following steps:

a. Supply a password for the administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

Results

After completing these steps, your new configuration under Federated repositories includes a single

built-in, file-based repository only.

What to do next

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 193.

2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps, as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Chapter 5. Authenticating users 157

Administrative user password settings:

Use this page to set a password for the administrative user who manages the product resources and user

accounts.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. If your federated repository configuration includes a built-in, file-based repository, then the

Administrative user password panel displays when changes are applied.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Related tasks

“Managing the realm in a federated repository configuration” on page 151
Follow this topic to manage the realm in a federated repository configuration.

Password:

Specifies the password of the administrative user who manages the product resources and user accounts.

 Confirm password:

Confirms the password of the administrative user who manages the product resources and user accounts.

Federated repository wizard settings:

Use this security wizard page to complete the basic requirements to connect the application server to a

federated repository.

 To view this security wizard page, complete the following steps

1. Click Security > Global security > Security configuration wizard.

2. Select your protection settings and click Next.

3. Select the Federated repositories option and click Next.

You can modify your federated repository configuration by completing the following steps:

1. Click Security > Global security.

2. Under User account repository, select Federated repository and click Configure.

Note: This wizard is used for the initial configuration of a built-in, file-based repository. The user name

and password do not have to be in the federated repository because they will be created. If you

have previously configured federated repositories, do not use the Security configuration wizard to

modify your configuration. Instead, modify your configuration using the Federated repositories

selection under User account repository on the Global security panel.

Primary administrative user name:

Specifies the name of the user with administrative privileges that is defined in the repository, for example,

adminUser.

 The user name is used to log on to the administrative console when administrative security is enabled.

Version 6.1 requires an administrative user that is distinct from the server user identity so that

administrative actions can be audited.

158 Securing applications and their environment

Note: In WebSphere Application Server, Versions 5.x and 6.0.x, a single user identity is required for both

administrative access and internal process communication. When migrating to Version 6.1, this

identity is used as the server user identity. You need to specify another user for the administrative

user identity.

Password:

Specifies the password of the administrative user who manages the product resources and user accounts.

 Confirm password:

Confirms the password of the administrative user who manages the product resources and user accounts.

Configuring a single built-in, file-based repository in a new configuration under

federated repositories using wsadmin

You can use the Jython or Jacl scripting language with the wsadmin tool to configure a single built-in,

file-based repository in a new configuration under Federated repositories.

Before you begin

Shut down the application server and ensure you have the primary administrator id and password.

About this task

The federated repositories configuration file, wimconfig.xml, is supported by WebSphere Application

Server 6.1.x and is located in the app_server_root/profiles/profile_name/config/cells/cell_name/wim/
config directory.

Use the following steps to configure for use a single built-in, file-based repository in a new configuration for

federated repositories.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Create the fileRegistry.xml file, which is the user registry itself, if it does not already exist. If the

fileRegistry.xml file does exist, this step just adds the user to registry.

Using Jython:

AdminTask.addFileRegistryAccount(’-userId isoet01s01 -password oets01’)

Using Jacl:

$AdminTask addFileRegistryAccount {-userId isoet01s01 -password oets01}

3. Update the security.xml file to enable administrative security, set the activeUserRegistry to use

federated repositories, and update the primaryAdmin and its password.

Using Jython:

AdminTask applyWizardSettings(’-secureApps false

 -secureLocalResources false

 -userRegistryType WIMUserRegistry

 -customRegistryClass com.ibm.ws.wim.registry.WIMUserRegistry

 -adminName isoet01s01 -adminPassword oets01’)

Using Jacl:

$AdminTask applyWizardSettings {-secureApps false

 -secureLocalResources false

 -userRegistryType WIMUserRegistry

 -customRegistryClass com.ibm.ws.wim.registry.WIMUserRegistry

 -adminName isoet01s01

 -adminPassword oets01}

4. Save your configuration changes. Enter the following commands to save the new configuration and

close the wsadmin tool:

Chapter 5. Authenticating users 159

Using Jython:

AdminConfig.save()

Using Jacl:

$AdminConfig save

5. Restart the application server.

FileRegistryCommands command group for the AdminTask object:

Federated repositories provides a file registry. Use the commands in the FileRegistryCommands command

group to administer the file registry using the wsadmin tool.

 Use the following commands in the FileRegistryCommands group to modify the federated repository file

registry:

v “addFileRegistryAccount command”

v “changeFileRegistryAccountPassword command” on page 161

addFileRegistryAccount command

The addFileRegistryAccount command adds an account to the file registry. You must save your

configuration changes after running this command to save the new account to the master repository.

Target object

None

Required parameters

-userId

Specifies the ID of the user to add to the file registry. (String, required)

-password

Specifies the password of the user to add to the file registry. (String, required)

Optional parameters

-parent

Specifies the parent of the entity. (String, optional)

.

Return value

This command returns a message that indicates that the command ran successfully, as the following

example displays:

’CWWIM4544I Account newAcct(uid=newAcct,o=defaultWIMFileBasedRealm) is stored in the

file registry in the temporary workspace. You must use the "$AdminConfig save"

command to save it in the master repository.’

Batch mode example usage

v Using Jython string:

AdminTask.addFileRegistryAccount(’-userId newAcct -password new22password’)

Interactive mode example usage

v Using Jython string:

AdminTask.addFileRegistryAccount([’-userId’, ’newAcct’, ’-password’, ’new22password’])

160 Securing applications and their environment

changeFileRegistryAccountPassword command

The changeFileRegistryAccountPassword changes the password for the file registry account.

Target object

None.

Required parameters

-userId

Specifies the user ID of interest. (String, required)

-password

Specifies the new password. (String, required)

Optional parameters

-uniqueName

Specifies the fully-qualified unique name of the administrator. (String, optional)

Return value

This command returns a message that indicates that the command ran successfully, as the following

example displays:

’CWWIM4545I The password is changed for newAcct(uid=newAcct,o=defaultWIMFileBasedRealm)

in the file registry in the temporary workspace. You must use the "$AdminConfig save"

command to save it in the master repository.’

Batch mode example usage

v Using Jython string:

AdminTask.changeFileRegistryAccountPassword(’-userId newAcct -password newPassword -uniqueName

uid=newAcct,o=defaultWIMFileBasedRealm’)

Interactive mode example usage

v Using Jython string:

AdminTask.changeFileRegistryAccountPassword([’-userId’, ’newAcct’, ’-password’, ’newPassword’,

’-uniqueName’, ’uid=newAcct,o=defaultWIMFileBasedRealm’])

Changing a federated repository configuration to include a single built-in,

file-based repository only

Follow this task to change your federated repository configuration to include a single built-in, file-based

repository only.

Before you begin

To change your federated repository configuration to include a single built-in, file-based repository only,

you need to know the primary administrative user name of the user who manages WebSphere Application

Server resources and user accounts.

Note: Client certificate login is not supported in a realm that includes a single built-in, file-based repository

or a single built-in, file-based repository with other repositories.

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

Chapter 5. Authenticating users 161

3. Enter the name of the realm in the Realm name field. If the realm contains a single built-in, file-based

repository only, you must specify defaultWIMFileBasedRealm as the realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

5. Enable the Ignore case for authorization option.

6. Click Use built-in repository if the built-in, file-based repository is not listed in the collection.

7. Select all repositories in the collection that are not of type File and click Remove.

8. Click OK.

9. Provide an administrative user password. This panel displays only when a built-in, file-based repository

is included in the realm. Otherwise, it does not display. If a built-in, file-based repository is included,

complete the following steps:

a. Supply a password for the primary administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

Results

After completing these steps, your federated repository configuration, which includes a single built-in,

file-based repository only, is configured.

What to do next

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 193.

2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps, as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Configuring a single, Lightweight Directory Access Protocol repository in a new

configuration under Federated repositories

Follow this task to configure a single, Lightweight Directory Access Protocol (LDAP) repository in a new

configuration under Federated repositories.

Before you begin

To configure an LDAP repository in a new configuration under Federated repositories, you must know a

valid user name (ID), the user password, the server host and port and, if necessary, the bind distinguished

name (DN) and the bind password. You can choose any valid user in the repository that is searchable. In

some LDAP servers, administrative users are not searchable and cannot be used (for example, cn=root in

SecureWay). This user is referred to as the WebSphere Application Server administrative user name or

administrative ID in the documentation. Being an administrative ID means a user has special privileges

when calling some protected internal methods. Normally, this ID and password are used to log in to the

administrative console after you turn on security. You can use other users to log in, if those users are part

of the administrative roles.

1. In the administrative console, click Security > Global security.

162 Securing applications and their environment

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. On the Federated repositories panel, complete the following steps:

a. Enter the name of the realm in the Realm name field. You can change the existing realm name.

b. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

c. Optional: Select the Ignore case for authorization option. When you enable this option, the

authorization check is case-insensitive. Normally, an authorization check involves checking the

complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when

all of the member repositories in the realm are case-sensitive.

Note: Some repositories contain data that is case-sensitive only, and some repositories contain

data that is case-insensitive only. Do not include both case-sensitive and case-insensitive

repositories in the realm. For example, do not include case-sensitive repositories in the

realm with a built-in, file-based repository.

d. Click Add base entry to realm to add a base entry that uniquely identifies the external repository

in the realm. Then complete the steps in “Adding an external repository in a federated repository

configuration” on page 176.

4. On the Federated repositories panel, complete the following steps:

a. Select the built-in, file-based repository in the collection, and click Remove.

Note: Before you remove the built-in, file-based repository from the administrative realm, verify

that at least one user in another member repository is a console user with administrative

rights. Otherwise, you must disable security to regain access to the administrative console.

b. Click OK.

Results

After completing these steps, your new configuration under Federated repositories includes a single, LDAP

repository only.

What to do next

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 193.

2. After configuring the federated repositories, click Security > Global secuity to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Changing a federated repository configuration to include a single, Lightweight

Directory Access Protocol repository only

Follow this task to change your federated repository configuration to include a single, Lightweight Directory

Access Protocol repository (LDAP) repository only.

Chapter 5. Authenticating users 163

Before you begin

To configure an LDAP repository in a federated repository configuration, you must know a valid user name

(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and

the bind password. You can choose any valid user in the repository that is searchable. In some LDAP

servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).

This user is referred to as a WebSphere Application Server administrative user name or administrative ID

in the documentation. Being an administrative ID means a user has special privileges when calling some

protected internal methods. Normally, this ID and password are used to log into the administrative console

after you turn on security. You can use other users to log in if those users are part of the administrative

roles.

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

5. Optional: Select the Ignore case for authorization option. When you enable this option, the

authorization check is case-insensitive. Normally, an authorization check involves checking the

complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when all

of the member repositories in the realm are case-sensitive.

Note: Some repositories contain data that is case-sensitive only, and some repositories contain data

that is case-insensitive only. Do not include both case-sensitive and case-insensitive

repositories in the realm. For example, do not include case-sensitive repositories in the realm

with a built-in, file-based repository.

6. Optional: Click Add base entry to realm if the LDAP repository that you need is not contained in the

collection. Then complete the steps in “Adding an external repository in a federated repository

configuration” on page 176.

7. On the Federated repositories panel, complete the following steps:

a. Optional: Select the repositories in the collection that you do not need in the realm and click

Remove.

Note: The realm must always contain at least one base entry; therefore, you cannot remove every

entry.

b. Click OK.

Results

After completing these steps, your federated repository configuration, which includes a single LDAP

repository only, is configured.

What to do next

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 193.

2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Global security panel.

164 Securing applications and their environment

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Configuring multiple Lightweight Directory Access Protocol repositories in a

federated repository configuration

Follow this task to configure multiple Lightweight Directory Access Protocol (LDAP) repositories in a

federated repository configuration.

Before you begin

To configure an LDAP repository in a federated repository configuration, you must know a valid user name

(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and

the bind password. You can choose any valid user in the repository that is searchable. In some LDAP

servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).

This user is referred to as a WebSphere Application Server administrative user name or administrative ID

in the documentation. Being an administrative ID means a user has special privileges when calling some

protected internal methods. Normally, this ID and password are used to log into the administrative console

after you turn on security. You can use other users to log in if those users are part of the administrative

roles.

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

5. Optional: Select the Ignore case for authorization option. When you enable this option, the

authorization check is case-insensitive. Normally, an authorization check involves checking the

complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when all

of the member repositories in the realm are case-sensitive.

Note: Some repositories contain data that is case-sensitive only, and some repositories contain data

that is case-insensitive only. Do not include both case-sensitive and case-insensitive

repositories in the realm. For example, do not include case-sensitive repositories in the realm

with a built-in, file-based repository.

6. Optional: Click Add base entry to realm if the LDAP repository that you need is not listed in the

collection. Then complete the steps in “Adding an external repository in a federated repository

configuration” on page 176.

7. On the Federated repositories panel, complete the following steps:

a. Optional: Repeat step 6 if the LDAP repository that you need is not listed in the collection.

b. Optional: Select the repositories in the collection that you do not need in the realm and click

Remove. The following restrictions apply:

v The realm must always contain at least one base entry; therefore, you cannot remove every

entry.

v If you plan to remove the built-in, file-based repository from the administrative realm, verify that

at least one user in another member repository is a console user with administrative rights.

Otherwise, you must disable security to regain access to the administrative console.

c. Click OK.

Results

After completing these steps, your federated repository configuration, which includes multiple LDAP

repositories, is configured.

Chapter 5. Authenticating users 165

What to do next

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 193.

2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Configuring a single built-in, file-based repository and one or more Lightweight

Directory Access Protocol repositories in a federated repository configuration

Follow this task to configure a single built-in, file-based repository and multiple Lightweight Directory

Access Protocol (LDAP) repositories in a federated repository configuration.

Before you begin

To configure a built-in, file-based repository in a federated repository configuration, you must know the

primary administrative user name of the user who manages WebSphere Application Server resources and

user accounts.

To configure an LDAP repository in a federated repository configuration, you must know a valid user name

(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and

the bind password. You can choose any valid user in the repository that is searchable. In some LDAP

servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).

This user is referred to as a WebSphere Application Server administrative user name or administrative ID

in the documentation. Being an administrative ID means a user has special privileges when calling some

protected internal methods. Normally, this ID and password are used to log in to the administrative console

after you turn on security. You can use other users to log in if those users are part of the administrative

roles.

Note: Client certificate login is not supported in a realm that includes a single built-in, file-based repository

or a single built-in, file-based repository with other repositories.

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

Note: When you configure multiple repositories that includes a single built-in, file-based repository, the

primary administrative user name must exist in the file-based repository. If the primary

administrative user name does not exist in the file-based repository, then the name is created in

the file-based repository. The primary administrative user name cannot exist in other

repositories.

5. Select the Ignore case for authorization option.

Note: When the realm includes a built-in, file-based repository, you must enable the Ignore case for

authorization option.
When you enable this option, the authorization check is case-insensitive. Normally, an authorization

166 Securing applications and their environment

check involves checking the complete DN of a user, which is unique in the realm and is

case-insensitive. Clear this option when all of the member repositories in the realm are case-sensitive.

Note: Some repositories contain data that is case-sensitive only, and some repositories contain data

that is case-insensitive only. Do not include both case-sensitive and case-insensitive

repositories in the realm. For example, do not include case-sensitive repositories in the realm

with a built-in, file-based repository.

6. Optional: Click Add base entry to realm if the LDAP repository that you need is not contained in the

collection. Then complete the steps in “Adding an external repository in a federated repository

configuration” on page 176.

7. On the Federated repositories panel, complete the following steps:

a. Optional: Repeat step 6 if the LDAP repository that you need is not listed in the collection.

b. Click Use built-in repository if the built-in, file-based repository is not listed in the collection.

c. Optional: Select the repositories in the collection that you do not need in the realm and click

Remove.

Note: The realm must always contain at least one base entry; therefore, you cannot remove every

entry.

d. Click OK.

8. Provide an administrative user password. This panel displays only when a built-in, file-based repository

is included in the realm. Otherwise, the panel does not display. If a built-in, file-based repository is

included, complete the following steps:

a. Supply a password for the administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

Results

After completing these steps, your federated repository configuration, which includes a single built-in,

file-based repository and one or more LDAP repositories, is configured.

What to do next

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 193.

2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Manually configuring a Lightweight Directory Access Protocol repository in a

federated repository configuration

Follow this topic to manually configure Lightweight Directory Access Protocol (LDAP) repository in a

federated repository configuration.

Chapter 5. Authenticating users 167

Before you begin

As a prerequisite, you need to add a LDAP repository to your WebSphere Application Server configuration,

where you define the following information:

 Item Name Example

Repository identifier ldaprepo1

Directory type IBM Tivoli Directory Server

Primary host name localhost

Port 389

Bind distinguished name cn=ldapadmin

Bind password yourpwd

Login properties uid (a property containing login information)

See “Lightweight Directory Access Protocol repository configuration settings” on page 173 for the specific

steps you must perform to establish this LDAP repository.

About this task

At this point, you have a valid LDAP repository ready to be manually configured in a federated repository

configuration.

1. Map the federated repository entity types to the LDAP object classes.

a. Configure the LDAP repository to match the used LDAP object class for users.

1) In the administrative console, click Security > Global security.

2) Under User account repository, select Federated repositories from the Available realm

definitions field and click Configure.

3) Under Related items, click Manage repositories.

4) Select the repository (for example, ldaprepo1).

5) Click LDAP entity types.

6) Click PersonAccount.

7) Insert the objectclass name used in our LDAP server, for example, inetOrgPerson.

8) Click Apply.

9) Click Save.

See “Configuring supported entity types in a federated repository configuration” on page 193 for an

explanation of the supported entity types.

See http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wim.doc.en/
ldap.html for a description of the LDAP default mappings.

b. Configure the LDAP repository to match the used LDAP objectclass for groups

1) In the administrative console, click Security > Global security.

2) Under User account repository, select Federated repositories from the Available realm

definitions field and click Configure.

3) Under Related items, click Manage repositories.

4) Select ldaprepo1.

5) Click LDAP entity types.

6) Click Group.

7) Insert the objectclass name used for your LDAP server, for example, groupOfUniqueNames.

8) Click Apply.

168 Securing applications and their environment

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wim.doc.en/ldap.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wim.doc.en/ldap.html

9) Click Save.

See “Group attribute definition settings” on page 212 for an explanation of group attribute

definitions.

2. Map the federated repository property names to the LDAP attribute names.

a. Configure the LDAP repository to match the used LDAP attributes for a user.

1) Edit the file

{WAS_HOME}\profiles\{profileName}\config\cells\{cellName}\wim\config\wimconfig.xml

2) Look for the section in this file containing the LDAP repository configuration, For example,

a) <config:repositories

xsi:type="config:LdapRepositoryType"

adapterClassName="com.ibm.ws.wim.adapter.ldap.LdapAda

pter" id="ldaprepo1" ...>

b) <config:attributeConfiguration>

c) ...

d) <config:attributes name="anLDAPattribute"

propertyName="aVMMattribute"/>

e) ...

<config:attributeConfiguration>

3) Add an element of type config:attributes to define the mapping between a given federated

depository property name, such as departmentNumber, to a desired LDAP attribute name, such

as warehouseSection.

Note: For all given federated depository properties, a one-to-one mapping is assumed. If no

explicit mapping of the above type is defined, for example the federated repository

property departmentNumber, the underlying LDAP attribute name, departmentNumber is

assumed.

b. Configure the unsupported properties of the federated repository.

To indicate that a given federated repository property, such as departmentNumber is not supported

by any LDAP attributes, you need to define the following type of element:

<config:repositories xsi:type="config:LdapRepositoryType"

adapterClassName="com.ibm.ws.wim.adapter.ldap.LdapAdapter"

id="ldaprepo1" ...>

<config:attributeConfiguration>

...

<config:propertiesNotSupported name=" departmentNumber"/>

...

<config:attributeConfiguration>

c. Configure the LDAP repository to match the used LDAP user membership attribute in the groups.

1) In the administrative console, click Security > Global security.

2) Under User account repository, select Federated repositories from the Available realm

definitions field and click Configure.

3) Under Related items, click Manage repositories.

4) Select ldaprepo1

5) Click Group attribute defintions.

6) Click Member attributes.

7) Check if your LDAP attributes (for example, uniqueMember) is specified for your LDAP

objectclass (for example, groupOfUniqueNames).

v If not specified, click New and add the pair (objectclass / member attribute name) that

applies to your LDAP schema (for example, uniqueMember / groupOfUniqueNames

v If specified, proceed.

8) Click Apply.

9) Click Save.

Chapter 5. Authenticating users 169

3. Map other LDAP settings by configuring a new base entry for the new LDAP repository.

a. In the administrative console, click Security > Global security.

b. Under User account repository, select Federated repositories from the Available realm definitions

field and click Configure.

c. Click Add Base Entry to Realm.

d. Select ldaprepo1.

e. Specifiy:

v The base entry within the federated repository realm, for example, o=Default Organization

v The base entry within the LDAP repository, for example, o=Default Organization

f. Click Apply.

g. Click Save.

For an explanation of base entries, see “Configuring supported entity types in a federated repository

configuration” on page 193

Results

After completing these steps, your federated repository matches the LDAP server settings.

What to do next

Related tasks

“Configuring supported entity types in a federated repository configuration” on page 193
Follow this task to configure supported entity types for user and group management.

Related information

“Lightweight Directory Access Protocol repository configuration settings” on page 173
Use this page to configure secure access to a Lightweight Directory Access Protocol (LDAP) repository

with optional failover servers.

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wim.doc.en/ldap.html

Configuring Lightweight Directory Access Protocol in a federated repository

configuration

Follow this topic to configure Lightweight Directory Access Protocol (LDAP) settings in a federated

repository configuration.

Before you begin

You have chosen among various ways to configure LDAP:

v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under

Federated repositories” on page 162

v “Changing a federated repository configuration to include a single, Lightweight Directory Access Protocol

repository only” on page 163

v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository

configuration” on page 165

v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access

Protocol repositories in a federated repository configuration” on page 166

v “Managing repositories in a federated repository configuration” on page 196

About this task

At this point, you are viewing the LDAP repository configuration page of the administrative console.

170 Securing applications and their environment

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.wim.doc.en/ldap.html

1. Enter a unique identifier for the repository in the Repository identifier field. This identifier uniquely

identifies the repository within the cell, for example: LDAP1.

 2. Select the type of LDAP server that is used from the Directory type list. The type of LDAP server

determines the default filters that are used by WebSphere Application Server.

IBM Tivoli Directory Server users can choose either IBM Tivoli Directory Server or SecureWay as the

directory type. Use the IBM Tivoli Directory Server directory type for better performance. For a list of

supported LDAP servers, see “Using specific directory servers as the LDAP server” on page 113.

 3. Enter the fully qualified host name of the primary LDAP server in the Primary host name field. You

can enter either the IP address or the domain name system (DNS) name.

 4. Enter the server port of the LDAP directory in the Port field. The host name and the port number

represent the realm for this LDAP server in a mixed version nodes cell. If servers in different cells are

communicating with each other using Lightweight Third Party Authentication (LTPA) tokens, these

realms must match exactly in all the cells.

The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a

Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for

a non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server

administrator.

If multiple WebSphere Application Servers are installed and configured to run in the same single

sign-on domain, or if WebSphere Application Server interoperates with a previous version of

WebSphere Application Server, then it is important that the port number match all configurations. For

example, if the LDAP port is explicitly specified as 389 in a Version 5.x or 6.0.x configuration, and

WebSphere Application Server at Version 6.1 is going to interoperate with the Version 5.x or 6.0.x

server, then verify that port 389 is specified explicitly for the Version 6.1 server.

 5. Optional: Enter the host name of the failover LDAP server in the Failover host name field. You can

specify a secondary directory server to be used in the event that your primary directory server

becomes unavailable. After switching to a secondary directory server, LDAP repository attempts to

reconnect to the primary directory server every 15 minutes.

 6. Optional: Enter the port of the failover LDAP server in the Port field and click Add. The default value

is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a Secure Sockets

Layer (SSL) connection. For some LDAP servers, you can specify a different port for a non-SSL or

SSL connection. If you do not know the port to use, contact your LDAP server administrator.

 7. Optional: Select the type of referral. A referral is an entity that is used to redirect a client request to

another LDAP server. A referral contains the names and locations of other objects. It is sent by the

server to indicate that the information that the client requested can be found at another location,

possibly at another server or several servers. The default value is ignore.

ignore

Referrals are ignored.

follow Referrals are followed automatically.

 8. Optional: Enter the bind DN name in the Bind distinguished name field, for example, cn=root. The

bind DN is required if anonymous binds are not possible on the LDAP server to obtain user and

group information or for write operations. In most cases, bind DN and bind password are needed.

However, when anonymous bind can satisfy all of the required functions, bind DN and bind password

are not needed. If the LDAP server is set up to use anonymous binds, leave this field blank. If a

name is not specified, the application server binds anonymously.

Note: To create LDAP queries or to browse, an LDAP client must bind to the LDAP server using the

distinguished name (DN) of an account that has the authority to search and read the values of

LDAP attributes, such as user and group information. The LDAP administrator ensures that

read access privileges are set for the bind DN. Read access privileges allow access to the

subtree of the base DN and ensure that searches of user and group information are

successful.

Chapter 5. Authenticating users 171

The directory server provides an operational attribute in each directory entry (for example, the

IBM Directory Server uses ibm-entryUuid as the operational attribute). The value of this

attribute is a universally unique identifier (UUID), which is chosen automatically by the

directory server when the entry is added, and is expected to be unique: no other entry with the

same or different name would have this same value. Directory clients may use this attribute to

distinguish objects identified by a distinguished name or to locate an object after renaming.

Ensure that the bind credentials have the authority to read this attribute.

 9. Optional: Enter the password that corresponds to the bind DN in the Bind password field.

10. Optional: Enter the property names to use to log into WebSphere Application Server in the Login

properties field. This field takes multiple login properties, delimited by a semicolon (;). For example,

uid;mail.

All login properties are searched during login. If multiple entries or no entries are found, an exception

is thrown. For example, if you specify the login properties as uid;mail and the login ID as Bob, the

search filter searches for uid=Bob or mail=Bob. When the search returns a single entry, then

authentication can proceed. Otherwise, an exception is thrown.

11. Optional: Select the certificate map mode in the Certificate mapping field. You can use the X.590

certificates for user authentication when LDAP is selected as the repository. The Certificate mapping

field is used to indicate whether to map the X.509 certificates into an LDAP directory user by

EXACT_DN or CERTIFICATE_FILTER. If EXACT_DN is selected, the DN in the certificate must

exactly match the user entry in the LDAP server, including case and spaces.

12. If you select CERTIFICATE_FILTER in the Certificate mapping field, specify the LDAP filter for

mapping attributes in the client certificate to entries in LDAP.

If more than one LDAP entry matches the filter specification at run time, authentication fails because

the result is an ambiguous match. The syntax or structure of this filter is:

LDAP attribute=${Client certificate attribute}

For example, uid=${SubjectCN}.

The left side of the filter specification is an LDAP attribute that depends on the schema that your

LDAP server is configured to use. The right side of the filter specification is one of the public

attributes in your client certificate. The right side must begin with a dollar sign ($) and open bracket

({) and end with a close bracket (}). You can use the following certificate attribute values on the right

side of the filter specification. The case of the strings is important:

v ${UniqueKey}

v ${PublicKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectCN}

v ${Version}

13. Optional: Select the Require SSL communications option if you want to use Secure Sockets Layer

communications with the LDAP server.

If you select the Require SSL communications option, you can select either the Centrally

managed or Use specific SSL alias option.

Centrally managed

Enables you to specify an SSL configuration for a particular scope, such as the cell, node,

server, or cluster in one location. To use the Centrally managed option, you must specify the

SSL configuration for the particular set of endpoints. The Manage endpoint security

configurations and trust zones panel displays all of the inbound and outbound endpoints that

use the SSL protocol. If you expand the Inbound or Outbound section of the panel and click

172 Securing applications and their environment

the name of a node, you can specify an SSL configuration that is used for every endpoint on

that node. For an LDAP registry, you can override the inherited SSL configuration by

specifying an SSL configuration for LDAP. To specify an SSL configuration for LDAP,

complete the following steps:

a. Click Security > SSL certificate and key management > Manage endpoint security

configurations and trust zones.

b. Expand Outbound > cell_name > Nodes > node_name > Servers > server_name >

LDAP.

Use specific SSL alias

Select the Use specific SSL alias option if you intend to select one of the SSL configurations

in the menu that follows the option.

 This configuration is used only when SSL is enabled for LDAP. The default is

DefaultSSLSettings. To modify or create a new SSL configuration, complete the following

steps:

a. Click Security > SSL certificate and key management.

b. Under Configuration settings, click Manage endpoint security configurations and trust

zones > configuration_name.

c. Under Related items, click SSL configurations.

14. Click OK.

Results

After completing these steps, your LDAP repository settings are configured.

What to do next

Return to the appropriate task to complete the steps for your federated repository configuration:

v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under

Federated repositories” on page 162

v “Changing a federated repository configuration to include a single, Lightweight Directory Access Protocol

repository only” on page 163

v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository

configuration” on page 165

v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access

Protocol repositories in a federated repository configuration” on page 166

v “Managing repositories in a federated repository configuration” on page 196

Lightweight Directory Access Protocol repository configuration settings:

Use this page to configure secure access to a Lightweight Directory Access Protocol (LDAP) repository

with optional failover servers.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Chapter 5. Authenticating users 173

Related tasks

“Configuring a property extension repository in a federated repository configuration” on page 177
Follow this task to configure a property extension repository to store attributes that cannot be stored in

your Lightweight Directory Access Protocol (LDAP) server.

“Managing the realm in a federated repository configuration” on page 151
Follow this topic to manage the realm in a federated repository configuration.

Repository identifier:

Specifies a unique identifier for the LDAP repository. This identifier uniquely identifies the repository within

the cell, for example: LDAP1.

Directory type:

Specifies the type of LDAP server to which you connect.

 Expand the drop-down list to display a list of LDAP directory types.

Primary host name:

Specifies the host name of the primary LDAP server. This host name is either an IP address or a domain

name service (DNS) name.

Port:

Specifies the LDAP server port.

 The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a

Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for a

non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server administrator.

 Data type: Integer

Default: 389

Range: 389, which is not a Secure Sockets

Layer (SSL) connection

636, which is a Secure Sockets Layer

(SSL) connection

Failover host name:

Specifies the host name of the failover LDAP server.

 You can specify a secondary directory server to be used in the event that your primary directory server

becomes unavailable. After switching to a secondary directory server, the LDAP repository attempts to

reconnect to the primary directory server every 15 minutes.

Port:

Specifies the port of the failover LDAP server.

 The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a

Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for a

non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server administrator.

 Data type: Integer

Range: 389, which is not a Secure Sockets

Layer (SSL) connection

636, which is a Secure Sockets Layer

(SSL) connection

174 Securing applications and their environment

Support referrals to other LDAP servers:

Specifies how referrals that are encountered by the LDAP server are handled.

 A referral is an entity that is used to redirect a client request to another LDAP server. A referral contains

the names and locations of other objects. It is sent by the server to indicate that the information that the

client requested can be found at another location, possibly at another server or several servers. The

default value is ignore.

 Default: ignore

Range:

ignore Referrals are ignored.

follow Referrals are followed automatically.

Bind distinguished name:

Specifies the distinguished name (DN) for the application server to use when binding to the LDAP

repository.

 If no name is specified, the application server binds anonymously. In most cases, bind DN and bind

password are needed. However, when anonymous bind can satisfy all of the required functions, bind DN

and bind password are not needed.

Bind password:

Specifies the password for the application server to use when binding to the LDAP repository.

Login properties:

Specifies the property names to use to log into the application server.

 This field takes multiple login properties, delimited by a semicolon (;). For example, uid;mail. All login

properties are searched during login. If multiple entries or no entries are found, an exception is thrown. For

example, if you specify the login properties as uid;mail and the login ID as Bob, the search filter searches

for uid=Bob or mail=Bob. When the search returns a single entry, then authentication can proceed.

Otherwise, an exception is thrown.

Certificate mapping:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or

CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the

mapping.

Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the

client certificate to entries in the LDAP repository.

 If more than one LDAP entry matches the filter specification at run time, authentication fails because the

result is an ambiguous match. The syntax or structure of this filter is:

LDAP attribute=${Client certificate attribute}

For example, uid=${SubjectCN}.

Chapter 5. Authenticating users 175

The left side of the filter specification is an LDAP attribute that depends on the schema that your LDAP

server is configured to use. The right side of the filter specification is one of the public attributes in your

client certificate. The right side must begin with a dollar sign ($) and open bracket ({) and end with a close

bracket (}). You can use the following certificate attribute values on the right side of the filter specification.

The case of the strings is important:

v ${UniqueKey}

v ${PublicKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectCN}

v ${Version}

Require SSL communications:

Specifies whether secure socket communication is enabled to the LDAP server.

 When enabled, the Secure Sockets Layer (SSL) settings for LDAP are used, if specified.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java

Naming and Directory Interface (JNDI) platform.

 Centrally managed configurations support one location to maintain SSL configurations, rather than

spreading them across the configuration documents.

 Default: Enabled

Range: Enabled or Disabled

Use specific SSL alias:

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

 This option overrides the centrally managed configuration for the JNDI platform.

Adding an external repository in a federated repository configuration

Follow this task to add an external repository into a federated repository configuration.

1. If the Lightweight Directory Access Protocol (LDAP) repository that you want to add to your federated

repository configuration is previously configured, select the corresponding Repository on the Repository

reference panel. To access the Repository reference panel, complete the following steps:

a. Click Security > Global security.

b. Under User account repository, select Federated repositories from the Available realm definitions

field and click Configure.

c. Click Add base entry to realm.

2. Enter a distinguished name for the realm base entry in the Distinguished name that uniquely

identifies... field. This base entry must uniquely identify the external repository in the realm. If multiple

repositories are included in the realm, use this field to define an additional distinguished name (DN)

that uniquely identifies this set of entries within the realm. For example, repositories LDAP1 and

176 Securing applications and their environment

LDAP2 might both use o=ibm,c=us as the base entry in the repository. Use the DN in this field to

uniquely identify this set of entries in the realm. For example: o=ibm,c=us for LDAP1 and o=ibm2,c=us

for LDAP2. The specified DN in this field maps to the LDAP DN of the base entry within the repository.

3. Enter the LDAP DN of the base entry within the repository in the Distinguished name of a base entry...

field. The base entry indicates the starting point for searches in this LDAP directory server. This entry

and its descendents are mapped to the subtree that is identified by this unique base name entry field.

For example, for a user with a DN of cn=John Doe, ou=Rochester, o=IBM, c=US, specify the LDAP

base entry as any of the following options:

ou=Rochester, o=IBM, c=us or o=IBM, c=us or c=us

In most cases, this LDAP DN is the same as the distinguished name for the realm base entry.

If this field is left blank, then the subtree defaults to the root of the LDAP repository. Consult your

LDAP administrator to determine if your LDAP repository provides support to search from the root, or

create users and groups under the root without defining a suffix beforehand.

In WebSphere Application Server, the distinguished name is normalized according to the LDAP

specification. Normalization consists of removing spaces in the base distinguished name before or after

commas and equal symbols. An example of a non-normalized base distinguished name is o = ibm, c =

us or o=ibm, c=us. An example of a normalized base distinguished name is o=ibm,c=us.

4. If the LDAP repository that you want to add to your realm is not previously configured, complete the

following steps:

a. Click Add Repository on the Repository reference panel to configure the LDAP repository. See

step 1 to access the Repository reference panel.

b. Configure LDAP on the LDAP configuration panel, as described in “Configuring Lightweight

Directory Access Protocol in a federated repository configuration” on page 170.

c. Select the new Repository on the Repository reference panel.

5. Click OK.

Results

You have added a new or previously configured external repository into your federated repository

configuration.

What to do next

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 193.

2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Configuring a property extension repository in a federated repository

configuration

Follow this task to configure a property extension repository to store attributes that cannot be stored in

your Lightweight Directory Access Protocol (LDAP) server.

Chapter 5. Authenticating users 177

About this task

For security and business reasons, you might not want to not allow write operations to your repositories.

However, applications calling the federated repository configuration might need to store additional

properties for the entities. A federated repository configuration provides a property extension repository,

which is a database regardless of the type of main profile repositories, for a propertylevel join

configuration. For example, a company that uses an LDAP directory for its internal employees and a

database for external customers and business partners might not allow write access to its LDAP and its

database. The company can use the property extension repository in a federated repository configuration

to store additional properties for the people in those repositories, excluding the user ID. When an

application uses the federated repository configuration to retrieve an entry for a person, the federated

repository configuration transparently joins the properties of the person that is retrieved from either the

LDAP or the customer’s database with the properties of the person that is retrieved from the property

extension repository into a single logical person entry.

When you configure a property extension repository, you can supply a valid data source, a direct

connection configuration, or both. The system first tries to connect by way of the data source. If the data

source is not available, then the system uses the direct access configuration.

Note: You cannot configure a property extension repository in a mixedversion deployment manager cell.

1. Configure the WebSphere Application Server data source. See “Configuring the WebSphere

Application Server data source” on page 189.

2. If you are adding new properties (including properties that are stored in the property extension

repository) to the schema, you must do the following before you create the property extension

repository.

a. Open or create the wimxmlextension.xml file under the profile_root\config\cells\cell_name\
wim\model directory.

Note: Make sure the editor is on the deployment manager node.

b. Add the schema definition of the new property. The following sample wimxmlextension.xml file

adds a new property called ibmotherEmail to both the Person and PersonAccount entity types. This

new property type is ″String″ and it is multiplevalued.

<sdo:datagraph xmlns:sdo="commonj.sdo"

 xmlns:wim="http://www.ibm.com/websphere/wim">

 <wim:schema>

 <wim:propertySchema nsURI="http://www.ibm.com/websphere/wim" dataType="String" multiValued="true"

 propertyName="ibm-otherEmail">

 <wim:applicableEntityTypeNames>Person</wim:applicableEntityTypeNames>

 <wim:applicableEntityTypeNames>PersonAccount</wim:applicableEntityTypeNames>

 </wim:propertySchema>

 <wim:propertySchema nsURI="http://www.ibm.com/websphere/wim" dataType="String" multiValued="true"

 propertyName="ibm-personalTitle">

 <wim:applicableEntityTypeNames>Person</wim:applicableEntityTypeNames>

 <wim:applicableEntityTypeNames>PersonAccount</wim:applicableEntityTypeNames>

 </wim:propertySchema>

 <wim:propertySchema nsURI="http://www.ibm.com/websphere/wim" dataType="String" multiValued="true"

 propertyName="ibm-middleName">

 <wim:applicableEntityTypeNames>Person</wim:applicableEntityTypeNames>

 <wim:applicableEntityTypeNames>PersonAccount</wim:applicableEntityTypeNames>

 </wim:propertySchema>

 <wim:propertySchema nsURI="http://www.ibm.com/websphere/wim" dataType="String" multiValued="true"

 propertyName="ibm-generationQualifier">

 <wim:applicableEntityTypeNames>Person</wim:applicableEntityTypeNames>

 <wim:applicableEntityTypeNames>PersonAccount</wim:applicableEntityTypeNames>

 </wim:propertySchema>

 <wim:propertySchema nsURI="http://www.ibm.com/websphere/wim" dataType="String" multiValued="false"

 propertyName="ibm-regionalLocale">

 <wim:applicableEntityTypeNames>Person</wim:applicableEntityTypeNames>

 <wim:applicableEntityTypeNames>PersonAccount</wim:applicableEntityTypeNames>

178 Securing applications and their environment

</wim:propertySchema>

 <wim:propertySchema nsURI="http://www.ibm.com/websphere/wim" dataType="String" multiValued="false"

 propertyName="ibm-timeZone">

 <wim:applicableEntityTypeNames>Person</wim:applicableEntityTypeNames>

 <wim:applicableEntityTypeNames>PersonAccount</wim:applicableEntityTypeNames>

 </wim:propertySchema>

 <wim:propertySchema nsURI="http://www.ibm.com/websphere/wim" dataType="String" multiValued="false"

 propertyName="ibm-preferredCalendar">

 <wim:applicableEntityTypeNames>Person</wim:applicableEntityTypeNames>

 <wim:applicableEntityTypeNames>PersonAccount</wim:applicableEntityTypeNames>

 </wim:propertySchema>

 <wim:propertySchema nsURI="http://www.ibm.com/websphere/wim" dataType="String" multiValued="false"

 propertyName="ibm-alternativeCalendar">

 <wim:applicableEntityTypeNames>Person</wim:applicableEntityTypeNames>

 <wim:applicableEntityTypeNames>PersonAccount</wim:applicableEntityTypeNames>

 </wim:propertySchema>

 <wim:propertySchema nsURI="http://www.ibm.com/websphere/wim" dataType="String" multiValued="false"

 propertyName="ibm-firstDayOfWeek">

 <wim:applicableEntityTypeNames>Person</wim:applicableEntityTypeNames>

 <wim:applicableEntityTypeNames>PersonAccount</wim:applicableEntityTypeNames>

 </wim:propertySchema>

 <wim:propertySchema nsURI="http://www.ibm.com/websphere/wim" dataType="String" multiValued="false"

 propertyName="ibm-firstWorkDayOfWeek">

 <wim:applicableEntityTypeNames>Person</wim:applicableEntityTypeNames>

 <wim:applicableEntityTypeNames>PersonAccount</wim:applicableEntityTypeNames>

 </wim:propertySchema>

 <wim:propertySchema nsURI="http://www.ibm.com/websphere/wim" dataType="String" multiValued="false"

 propertyName="ibm-gender">

 <wim:applicableEntityTypeNames>Person</wim:applicableEntityTypeNames>

 <wim:applicableEntityTypeNames>PersonAccount</wim:applicableEntityTypeNames>

 </wim:propertySchema>

 <wim:propertySchema nsURI="http://www.ibm.com/websphere/wim" dataType="String" multiValued="true"

 propertyName="ibm-hobby">

 <wim:applicableEntityTypeNames>Person</wim:applicableEntityTypeNames>

 <wim:applicableEntityTypeNames>PersonAccount</wim:applicableEntityTypeNames>

 </wim:propertySchema>

 </wim:schema>

</sdo:datagraph>

Available data types are defined in com.ibm.websphere.wim.SchemaConstants. For example:

/**

 * Instance Class: java.lang.String

 */

 String DATA_TYPE_STRING = "String";

 /**

 * Instance Class: int

 */

 String DATA_TYPE_INT = "Int";

 /**

 * Instance Class: java.lang.Object

 */

 String DATA_TYPE_DATE = "Date";

 /**

 * Instance Class: dobjava.lang.Object

 */

 String DATA_TYPE_ANY_SIMPLE_TYPE = "AnySimpleType";

 /**

 * Instance Class: java.lang.String

 */

 String DATA_TYPE_ANY_URI = "AnyURI";

 /**

 * Instance Class: java.lang.boolean

 */

 String DATA_TYPE_BOOLEAN = "Boolean";

 /**

 * Instance Class: long

 */

Chapter 5. Authenticating users 179

String DATA_TYPE_LONG = "Long";

 /**

 * Instance Class: double

 */

 String DATA_TYPE_DOUBLE = "Double";

 /**

 * Instance Class: short

 */

 String DATA_TYPE_SHORT = "Short";

c. Add the new property to the property extension repository. Before running the

setupIdMgrPropertyExtensionRepositoryTables command, add the new properties into

install_root/etc/wim/setup/wimlaproperties.xml.

d. Follow the example inside this file to define the new property definitions. The schema file for

wimlaproperties.xml is wimdbproperty.xsd and is in the same directory. It can be used for

reference.

3. Run the setupIdMgrPropertyExtensionRepositoryTables command to create the property extension

repository and to add the new properties.

4. Set up the property extension repository using wsadmin by following the procedure discussed in

“Setting up an entry mapping repository, a property extension repository, or a custom registry database

repository using wsadmin commands” on page 182; ignore the ″Before you begin″ options.

5. Configure the property extension repository by completing the following steps:

a. In the administrative console, click Security > Global security.

b. Under User account repository, select Federated repositories, and click Configure.

c. Click Property extension repository.

d. Supply the name of the data source in the Data source name field.

e. Select the type of database that is used for the property extension repository.

f. Supply the name of the Java database connectivity (JDBC) driver in the JDBC driver field.

Values include:

DB2® com.ibm.db2.jcc.DB2Driver

Oracle

oracle.jdbc.driver.OracleDriver

Informix®

com.informix.jdbc.IfxDriver

Microsoft SQL Server

com.microsoft.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

g. Supply the database URL that is used to access the property extension repository with JDBC in the

Database URL field. Use an alphanumeric text string that conforms to the standard JDBC URL

syntax.

Values include:

DB2 jdbc:db2://<hostname>:<port>/<DB2location>

Oracle

jdbc:oracle:thin:@<hostname>:<port>:<dbname>

Derby jdbc:derby:c:\derby\wim

Microsoft SQL Server

jdbc:microsoft:sqlserver://<hostname>:1433;databaseName=wim;selectmethod=cursor;

Informix

jdbc:informixsqli://<hostname>:1526/wim:INFORMIXSERVER=<IFXServerName>;

h. Supply the user name of the database administrator in the Database administrator user name field.

180 Securing applications and their environment

i. Supply the password of the database administrator in the Password field.

j. Specify the entity retrieval limit in the Entity retrieval limit field. The entity retrieval limit is the

maximum number of entities that the system can retrieve from the property extension repository

with a single database query. The default value is 200.

k. Click OK.

Results

After completing these steps, your federated repository configuration, which includes a property extension

repository, is configured.

What to do next

1. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

2. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Property extension repository settings:

Use this page to configure a property extension repository that is used to store attributes that cannot be

stored in existing repositories.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Additional properties, click Property extension repository.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Related tasks

“Managing the realm in a federated repository configuration” on page 151
Follow this topic to manage the realm in a federated repository configuration.

Data source name:

Specifies the Java Naming and Directory Interface (JNDI) name of the data source that is used to access

the property extension repository.

 Default: jdbc/wimDS

Database type:

Specifies the type of database that is used for the property extension repository.

 Default: DB2

JDBC driver:

Specifies the Java Database Connectivity (JDBC) driver that is used to access the entry mapping

repository.

Chapter 5. Authenticating users 181

Values include:

DB2 COM.ibm.db2.jcc.DB2Driver

Oracle

oracle.jdbc.driver.OracleDriver

Informix

com.informix.jdbc.IfxDriver

DataDirect Connect

com.ddtek.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

Microsoft SQL Server

com.microsoft.sqlserver.jdbc.SQLServerDriver

Database URL:

Specifies the Web address for the property extension repository.

 Values include:

DB2 jdbc:db2:wim

Informix

jdbc:informix-sqli://host_name:1526/wim:INFORMIXSERVER=IFXServerName;

DataDirect Connect

jdbc:datadirect:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Derby jdbc:derby:c:\derby\wim

Oracle

jdbc:oracle:thin:@host_name:port:dbname

Microsoft SQL Server

jdbc:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Database administrator user name:

Specifies the user name of the database administrator that is used to access the property extension

repository.

Password:

Specifies the password that is used to enable the database administrator to access the property extension

repository.

Entity retrieval limit:

Specifies the maximum number of entities that the system can retrieve from the property extension

repository with a single database query.

 Data type: Integer

Default: 200

Setting up an entry mapping repository, a property extension repository, or a custom registry

database repository using wsadmin commands:

182 Securing applications and their environment

You can set up an entry mapping repository, a property extension repository, or a custom registry database

repository using wsadmin commands.

 Before you begin

If you are setting up an entry mapping repository, begin with the steps described in “Configuring an entry

mapping repository in a federated repository configuration” on page 190.

If you are setting up a property extension repository, begin with the steps described in “Configuring a

property extension repository in a federated repository configuration” on page 177.

About this task

When you create a repository, use the appropriate wsadmin commands to define the database schema

and to populate the database property definitions.

1. Create the database. You can use any relational database product. The following examples give you

tips for specific vendors.

a. For DB2, open a DB2 command window or command center and enter the following:

db2 create database <name> using codeset UTF-8 territory US

Enter the following database tuning commands:

db2 update database configuration for <name> using applheapsz 1024

db2 update database configuration for <name> using stmtheap 4096

db2 update database configuration for <name> using app_ctl_heap_sz 2048

db2 update database configuration for <name> using locklist 1024

db2 update database configuration for <name> using indexrec RESTART

db2 update database configuration for <name> using logfilsiz 1000

db2 update database configuration for <name> using logprimary 12

db2 update database configuration for <name> using logsecond 10

db2 update database configuration for <name> using sortheap 2048

db2set DB2_RR_TO_RS=yes

b. Optional: For Informix databases using dbaccess, enter the following command:

CREATE DATABASE <name> WITH BUFFERED LOG

c. Optional: For Oracle databases, the database should already exist during Oracle installation (for

example, orcl).

2. Run the setupIdMgrEntryMappingRepositoryTables command, the

setupIdMgrPropertyExtensionRepositoryTables command, or the setupIdMgrDBTables command (for

custom registry repositories) by doing the following:

a. Start WebSphere Application Server.

b. Open a command window and go to the <WAS>/Profiles/<PROFILE_NAME>bin directory.

c. Start wsadmin.

d. Type the necessary commands as described below.

What to do next

Using these commands, you can:

v Specify the arguments on the command line.

v Specify the arguments in a file.

The -file option enables you to specify a file in which some or all of the parameters are specified. To use

the -file argument on the command line, enter the full path to the file. Parameters in the file must be

specified in key=value pairs and each must be on its own line. If a parameter is specified on both the

command line and in the file, the value on the command line takes precedence.

Tips for diagnosing argument errors:

Chapter 5. Authenticating users 183

v If an argument is not properly specified on the command line or in the file, a message is returned which

states that the argument was not properly specified. This might mean that the argument was not

specified at all or was required for a given configuration but was not specified.

v If the argument was not specified at all, check that the parameter is specified on the command line or in

the file, and that it is properly spelled and has matching case.

v If the argument was required for a given configuration but was not specified, it is possible that a value is

not required solely by the command but is required for the type of database and configuration you are

setting.

For example, if you set the dn, wasAdminId, or wasAdminPassword parameters, you must also specify the

dbDriver parameter.

Additionally, if the dn, wasAdminId or wasAdminPassword parameters are specified, and the databaseType

is not a Apache Derby v10.2 database, then the dbAdminId and dbAdminPassword parameters must also

be specified.

The setupIdMgrDBTables command:

The setupIdMgrDBTables command creates, and populates the tables in the database that you previously

created. Required arguments are prefixed by a double start (**). Arguments are case-sensitive, both

through the command line and the file.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

dbPropXML (String)

The location of database repository property definition XML file.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,

and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

dn (String)

The default organization uniqueName to replace. For example: o=yourco. If it is not set, o=Default

Organization is used.

wasAdminId (String)

The WebSphere Application Server admin user ID. The ID should be a short name, not a

uniqueName. For example: wasadmin. After creation, the uniqueName is uid=wasadmin,

<defaultOrg>.

wasAdminPassword (String)

The WebSphere Application Server admin user password. If wasAdminId is set, then this parameter

is mandatory.

184 Securing applications and their environment

saltLength (Integer)

The salt length of the randomly generated salt for password hashing.

encryptionKey (String)

The password encryption key. Set the password encryption key to match the encryption key in the

wimconfig.xml file for the repository. If the encryption key is not set, the default is used.

derbySystemHome (String)

The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2

database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The deleteIdMgrDBTables command:

The deleteIdMgrDBTables command deletes the tables in the database.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,

and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2

database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The setupIdMgrPropertyExtensionRepositoryTables command:

Chapter 5. Authenticating users 185

The setupIdMgrPropertyExtensionRepositoryTables command sets up the property extension repository,

which includes creating and populating the tables in the database.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

laPropXML (String)

The location of the property extension repository definition XML file.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,

and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2

database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The deleteIdMgrPropertyExtensionRepositoryTables command:

The deleteIdMgrPropertyExtensionRepositoryTables command deletes the tables in the property extension

database.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,

and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

186 Securing applications and their environment

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2

database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The setupIdMgrEntryMappingRepositoryTables command:

The setupIdMgrEntryMappingRepositoryTables command sets up the entry mapping repository, which

includes creating and populating the tables of the repository.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,

and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2

database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The deleteIdMgrEntryMappingRepositoryTables command:

Chapter 5. Authenticating users 187

The deleteIdMgrEntryMappingRepositoryTables command deletes the tables in the entry mapping

repository.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, derby, sqlserver, db2zos,

and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: com.ibm.db2.jcc.DB2Driver.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Apache Derby v10.2 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Apache Derby v10.2 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Apache Derby v10.2 system if you are setting up a Apache Derby v10.2

database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

Sample command line usage:

To set up a database using the command line, enter the following:

$AdminTask setupIdMgrDBTables {-schemaLocation "C:\WAS7\etc\wim\setup" -dbPropXML

"C:\WAS7\etc\wim\setup\wimdbproperties.xml" -databaseType db2

-dbURL jdbc:db2:wim -dbAdminId db2admin

-dbDriver com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd

-reportSqlError true}

To delete database tables using the command line, enter the following:

$AdminTask deleteIdMgrDBTables {-schemaLocation "C:\WAS7\etc\wim\setup"

-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin

-dbDriver com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd

-reportSqlError true}

To set up a property extension repository using the command line, enter the following:

$AdminTask setupIdMgrPropertyExtensionRepositoryTables {-schemaLocation

"C:\WAS7\etc\wim\setup"

-laPropXML "C:\WAS7\etc\wim\setup\wimlaproperties.xml" -databaseType db2

-dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver com.ibm.db2.jcc.DB2Driver

-dbAdminPassword db2adminPwd -reportSqlError true}

188 Securing applications and their environment

To delete a property extension repository using the command line, enter the following:

$AdminTask deleteIdMgrPropertyExtensionRepositoryTables {-schemaLocation "C:\WAS7\etc\wim\setup "

-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver

com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

To set up an entry mapping repository using the command line, enter the following:

$AdminTask setupIdMgrEntryMappingRepositoryTables {-schemaLocation "C:\WAS7\etc\wim\setup"

-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver

com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

To delete an entry mapping repository using the command line, enter the following:

$AdminTask deleteIdMgrEntryMappingRepositoryTables {-schemaLocation "C:\WAS7\etc\wim\setup"

-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver

com.ibm.db2.jcc.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

Sample CLI Usage using -file option:

To set up a database with the -file option using the example params.txt file below, enter the following:

$AdminTask setupIdMgrDBTables {–file C:\params.txt -dbPropXML

"C:\OverrideDBPropParam\wimdbproperties.xml"}

Params.txt

schemaLocation=C:\WAS7\etc\wim\setup

dbPropXML=C:\Program Files\IBM\WebSphere\AppServer\profiles\default

\config\cells\mycell\wim\config\wimdbproperties.xml

laPropXML=C:\Program Files\IBM\WebSphere\AppServer\profiles\default

\config\cells\mycell\wim\config\wimlaproperties.xml

databaseType=db2

dbURL=jdbc:db2:wim

dbDriver=com.ibm.db2.jcc.DB2Driver

reportSqlError=true

dn=o=db.com

dbAdminId=db2admin

dbAdminPassword=dbPassword

wasAdminId=wasadmin

wasAdminPassword=wasadmin1

To set up a database with the -file option using a file only, enter the following:

$AdminTask setupIdMgrDBTables {-file C:\params.txt}

Note: The use of a file only works if -file is the only parameter specified on the command line. If other

parameters are specified then the file is completely ignored, and only the parameters on the

command line are used to execute the command.

Configuring the WebSphere Application Server data source:

Installed applications use data sources as resources to obtain connection to relational databases. To

create these connections between an application and a relational database, WebSphere Application Server

uses the driver implementation classes that are encapsulated by the JDBC provider, which is an object

that represents vendor-specific JDBC driver classes to WebSphere Application Server. For access to a

relational databases, applications use the JDBC drivers and data sources that you configure for

WebSphere Application Server.

 1. Start the WebSphere Application Server administrative console.

 2. Click Security -> Global security.

 3. On the Configuration panel, expand Java Authentication and Authorization Service and click J2C

authentication data.

 4. Click New and enter the Alias, User ID and Password.

Chapter 5. Authenticating users 189

5. Click Ok.

 6. On the WebSphere Application Server administrative console, expand Resources. Expand JDBC

then click JDBC Providers.

 7. In the Scope section, choose the Node level from the drop-down list.

 8. Click New to create a new JDBC driver.

 9. Select, in this order, the Database type, Provider type, Implementation type and Name. The Name

automatically fills based on the implementation type you choose.

10. Click Next and configure the database class path. Click Next.

11. On the Summary page, click Finish.

12. Click Save to save your selections. The JDBC providers page then appears.

13. On the WebSphere Application Server administrative console, click Data sources.

14. Click New to create a new data source. Enter the Data source name and the JNDI name, and choose

the authentication alias from the drop-down list in Component-managed authentication alias. The

JNDI name should match the datasourceName value set in wimconfig.xml. By default, it is

jdbc/wimDS.

Note: For Apache Derby v10.2 embedded databases, leave the Component-managed authentication

alias field set to NONE.

15. Click Next.

16. Enter the Database name and deselect the checkbox, Use this data source in container managed

persistence (CMP). Click Next.

17. On the Summary page, click Finish.

18. The Data sources page displays. Click Save, Then select the check box for the authentication alias

previously created. Click Test Connection. The message should indicate that the connection is

successful. Ignore any warnings, and then click Next.

19. Save the configurations, and restart WebSphere Application Server.

Configuring an entry mapping repository in a federated repository configuration

Follow this task to configure an entry mapping repository that is used to store data for managing profiles

on multiple repositories.

About this task

An entry-level join means that the federated repository configuration uses multiple repositories

simultaneously and recognizes the entries in the different repositories as entries representing distinct

entities. For example, a company might have a Lightweight Directory Access Protocol (LDAP) directory

that contains entries for its employees and a database that contains entries for business partners and

customers. By configuring an entry mapping repository, a federated repository configuration can use both

the LDAP and the database at the same time. The federated repository configuration hierarchy and

constraints for identifiers provide the aggregated namespace for both of those repositories and prevent

identifiers from colliding.

When you configure an entry mapping repository, you can supply a valid data source, a direct connection

configuration, or both. The system first tries to connect by way of the data source. If the data source is not

available, then the system uses the direct access configuration.

Note: You cannot configure an entry mapping repository in a mixed-version deployment manager cell.

1. Configure the WebSphere Application Server data source. See “Configuring the WebSphere

Application Server data source” on page 189.

2. Set up the entry mapping repository using wsadmin. See “Setting up an entry mapping repository, a

property extension repository, or a custom registry database repository using wsadmin commands” on

page 182; ignore the ″Before you begin″ options.

190 Securing applications and their environment

3. Configure the entry mapping repository into the federated repository by doing the following:

a. In the administrative console, click Security > Global security.

b. Under User account repository, select Federated repositories from the Available realm definitions

field and click Configure.

c. Click Entry mapping repository.

d. Supply the name of the data source in the Data source name field.

e. Select the type of database that is used for the property extension repository.

f. Supply the name of the Java database connectivity (JDBC) driver in the JDBC driver field.

Values include:

DB2 com.ibm.db2.jcc.DB2Driver

DB2 for iSeries

com.ibm.db2.jcc.DB2Driver

Informix

com.informix.jdbc.IfxDriver

DataDirect Connect

com.ddtek.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

Microsoft SQL Server

com.microsoft.sqlserver.jdbc.SQLServerDriver

Oracle

oracle.jdbc.driver.OracleDriver

g. Supply the database URL that is used to access the property extension repository with JDBC in the

Database URL field. Use an alphanumeric text string that conforms to the standard JDBC URL

syntax.

Values include:

DB2 jdbc:db2:wim

Informix

jdbc:informix-sqli://host_name:1526/wim:INFORMIXSERVER=IFXServerName;

DataDirect Connect

jdbc:datadirect:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Derby jdbc:derby:c:\derby\wim

Microsoft SQL Server

jdbc:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Oracle

jdbc:oracle:thin:@host_name:port:dbname

h. Supply the user name of the database administrator in the Database administrator user name field.

i. Supply the password of the database administrator in the Password field.

j. Click OK.

Results

After completing these steps, your federated repository configuration, which includes an entry mapping

repository, is configured.

Chapter 5. Authenticating users 191

What to do next

1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Global security panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Entry mapping repository settings:

Use this page to configure an entry mapping repository that is used to store data for managing profiles on

multiple repositories.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Additional properties, click Entry mapping repository.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Related tasks

“Managing the realm in a federated repository configuration” on page 151
Follow this topic to manage the realm in a federated repository configuration.

Data source name:

Specifies the Java Naming and Directory Interface (JNDI) name of the data source that is used to access

the entry mapping repository.

 Default: jdbc/wimDS

Database type:

Specifies the type of database that is used to access the entry mapping repository.

 Default: DB2

JDBC driver:

Specifies the Java Database Connectivity (JDBC) driver that is used to access the entry mapping

repository.

 Values include:

DB2 com.ibm.db2.jcc.DB2Driver

DB2 for iSeries

com.ibm.db2.jcc.DB2Driver

192 Securing applications and their environment

DataDirect Connect

com.ddtek.jdbc.sqlserver.SQLServerDriver

Informix

com.informix.jdbc.IfxDriver

Oracle

oracle.jdbc.driver.OracleDriver

Microsoft SQL Server

com.microsoft.sqlserver.jdbc.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

Database URL:

Specifies the Web address for the entry mapping repository.

 Values include:

DB2 jdbc:db2:wim

Derby jdbc:derby:c:\derby\wim

DataDirect Connect

datadirect:sqlserver://:host_name1433;databaseName=wim;selectMethod=cursor;

Oracle

jdbc:oracle:thin:@host_name:port:dbname

Microsoft SQL Server

jdbc:sqlserver://host_name:1433;databaseName=wim;selectMethod=cursor;

Informix

jdbc:informix-sqli://host_name:1526/wim:INFORMIXSERVER=IFXServerName;

Database administrator user name:

Specifies the user name of the database administrator that is used to access the entry mapping repository.

Password:

Specifies the password that is used to enable the database administrator to access the entry mapping

repository.

Configuring supported entity types in a federated repository configuration

Follow this task to configure supported entity types for user and group management.

About this task

You must configure the supported entity types before you can manage this account with Users and Groups

in the administrative console. The supported entity types are Group, OrgContainer, and PersonAccount. A

Group entity represents a simple collection of entities that might not have any relational context. An

OrgContainer entity represents an organization, such as a company or an enterprise, a subsidiary, or an

organizational unit, such as a division, a location, or a department. A PersonAccount entity represents a

human being. You cannot add or delete the supported entity types, because these types are predefined.

The Base entry for the default parent determines the repository location where entities of the specified

type are placed on write operations by user and group management.

Chapter 5. Authenticating users 193

Note: To manage users and groups, click Users and Groups in the console navigation tree. Click either

Manage Users or Manage Groups.

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Click Supported entity types to view a list of predefined entity types.

4. Click the name of a predefined entity type to change its configuration.

5. Supply the distinguished name of a base entry in the repository in the Base entry for the default parent

field. This entry determines the default location in the repository where entities of this type are placed

on write operations by user and group management.

6. Supply the relative distinguished name (RDN™) properties for the specified entity type in the Relative

Distinguished Name properties field. Possible values are cn for Group, uid or cn for PersonAccount,

and o, ou, dc, and cn for OrgContainer. Delimit multiple properties for the OrgContainer entity with a

semicolon (;).

The following list outlines known requirements and limitations that apply to specific Lightweight

Directory Access Protocol (LDAP) servers:

Using Microsoft Active Directory as the LDAP server

v Unless you modify the LDAP schema to use uid, you must specify cn in the Relative

Distinguished Name (RDN) properties field for the PersonAccount entity type.

v Secure Sockets Layer communications must be enabled to create users with passwords. To

select the Require SSL communications option, see the topic “Configuring Lightweight

Directory Access Protocol in a federated repository configuration” on page 170.

v Typically the value of user is specified as the value in the Object classes field for the

PersonAccount entity type and the value of group is specified as the value in the Object

classes field for the Group entity type.

Using a Lotus Domino Enterprise Server as the LDAP server

v Typically, the value of cn is specified in the Relative Distinguished Name (RDN) properties

field for the PersonAccount entity type. The value of uid is also acceptable.

v Typically, both inetOrgPerson and dominoPerson are used as values in the Object classes

field for the PersonAccount entity type.

Using Sun ONE Directory Server as the LDAP server

v Typically, groupOfUniqueNames is specified as the value in the Object classes field for the

Group entity type.

7. Click OK.

Results

After completing these steps, your federated repository configuration, which uses supported entity types, is

configured.

What to do next

1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply on the Global security panel.

194 Securing applications and their environment

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Supported entity types collection:

Use this page to list entity types that are supported by the member repositories or to select an entity type

to view or change its configuration properties.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Additional properties, click Supported entity types.

You must configure the supported entity types before you can manage this account with Users and Groups

in the administrative console. The Base entry for the default parent determines the repository location

where entities of the specified type are placed on write operations by user and group management.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Related tasks

“Managing the realm in a federated repository configuration” on page 151
Follow this topic to manage the realm in a federated repository configuration.

Related reference

“Lightweight Directory Access Protocol entity types settings” on page 210
Use this page to configure Lightweight Directory Access Protocol (LDAP) entity types that are supported

by the member repositories.

Entity type:

Specifies the entity type name.

Base entry for the default parent:

Specifies the distinguished name of a base entry in the repository.

 This entry determines the default location in the repository where entities of this type are placed on write

operations by user and group management.

Relative Distinguished Name properties:

Specifies the relative distinguished name (RDN) properties for the specified entity type.

 Possible values are cn for Group, uid or cn for PersonAccount, and o, ou, dc, and cn for OrgContainer.

Delimit multiple properties for the OrgContainer entity with a semicolon (;).

Supported entity types settings:

Use this page to configure entity types that are supported by the member repositories.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

Chapter 5. Authenticating users 195

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Additional properties, click Supported entity types.

4. Click the name of a configured entity type to view or change its configuration.

You must configure the supported entity types before you can manage this account with Users and Groups

in the administrative console. The Base entry for the default parent determines the repository location

where entities of the specified type are placed on write operations by user and group management.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Entity type:

Specifies the name of the entity type.

Base entry for the default parent:

Specifies the distinguished name of a base entry in the repository.

 This entry determines the default location in the repository where entities of this type are placed on write

operations by user and group management.

Relative Distinguished Name properties:

Specifies the relative distinguished name (RDN) properties for the specified entity type.

 Possible values are cn for Group, uid or cn for PersonAccount, and o, ou, dc, and cn for OrgContainer.

Delimit multiple properties for the OrgContainer entity with a semicolon (;).

Managing repositories in a federated repository configuration

Follow this topic to manage repositories in a federated repository configuration.

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories. Repositories that are configured in the system are

listed in the collection panel. This list includes repositories that are configured using the federated

repository functionality as well as repositories that are created using wsadmin commands described in

the topic “IdMgrRepositoryConfig command group for the AdminTask object” on page 1135.

4. Optional: Click Add to configure a new external repository. The Lightweight Directory Access Protocol

(LDAP) repository configuration settings are described in detail in “Configuring Lightweight Directory

Access Protocol in a federated repository configuration” on page 170.

Note: You cannot add a database repository using the administrative console. This repository

configuration is supported by using wsadmin commands only.

5. Optional: Click Delete to delete a repository that you specified previously using the administrative

console or wsadmin commands.

Note: You cannot delete the built-in, file-based repository from the collection panel.

6. Optional: Select one of the LDAP repository identifier entries to view or update an external repository

that is configured in the system previously. The steps to configure LDAP settings are described in

detail in “Configuring Lightweight Directory Access Protocol in a federated repository configuration” on

page 170.

196 Securing applications and their environment

Note: While database repositories that are configured in the system are listed in the collection panel,

you cannot update a database repository using the administrative console. Updates to a

database repository are supported by using wsadmin commands only.

7. Click OK.

Results

After completing these steps, the collection panel under Managing repositories reflects a current list of

repositories that are configured in your system.

What to do next

1. To add one or more external repositories that are listed on this collection panel into the realm, see

“Managing the realm in a federated repository configuration” on page 151.

2. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Global security panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Replicating changes to a built-in, file-based repository:

Changes to built-in, file-based repositories are not automatically replicated to managed nodes in a

federated repositories configuration. You need to use the administrative console to replicate the changes

you make to a built-in, file-based repository.

 About this task

The network deployment support in a federated repositories configuration only updates the in-memory

state of the processes that are running on the managed nodes. Because WebSphere Application Server

synchronizes the file systems, the network deployment support does not attempt to update the file systems

of the managed nodes.

You must synchronize the node configuration to replicate the changes to the built-in, file-based repository.

1. In the administrative console, click System Administration > Nodes. to access the nodes panel.

2. On the Nodes panel, select all the relevant nodes for which the changes to the built-in, file-based

repository need to be made.

3. Click Full Resynchronize. The resynchronize operation resolves conflicts among configuration files

and can take several minutes to complete.

Results

After completing these steps, your federated repository configuration of managed nodes reflects the

changes to the built-in, file-based repository.

Manage repositories collection:

Use this page to list repositories that are configured in the system or to select a repository to view or

change its configuration properties. You can add or delete external repositories.

Chapter 5. Authenticating users 197

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Repository identifier:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the

cell.

Repository type:

Specifies the repository type, such as File or LDAP.

Repository reference settings:

Use this page to configure a repository reference. A repository reference is a single repository that

contains a set of identity entries that are referenced by a base entry into the directory information tree.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Click Add base entry to realm.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Related tasks

“Managing the realm in a federated repository configuration” on page 151
Follow this topic to manage the realm in a federated repository configuration.

Repository:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the

cell.

 Expand the drop-down list to display a list of previously defined repository identifiers.

Distinguished name that uniquely identifies this set of entries in the realm:

Specifies the distinguished name (DN) that uniquely identifies this set of entries in the realm.

 If multiple repositories are included in the realm, it is necessary to define an additional distinguished name

that uniquely identifies this set of entries within the realm. Overlapping base entries are not supported. You

should not define two base entries where one is c=us, and the other is o=myorg,c=us in the same realm;

otherwise a search returns duplicate results.

Distinguished name of a base entry in this repository:

198 Securing applications and their environment

Specifies the Lightweight Directory Access Protocol (LDAP) distinguished name (DN) of the base entry

within the repository. The entry and its descendents are mapped to the subtree that is identified by the

unique base name entry field.

 If this field is left blank, then the subtree defaults to the root of the LDAP repository.

Increasing the performance of the federated repository configuration

Follow this page to manage the realm in a federated repository configuration.

Before you begin

The settings that are available on the Performance panel are independent options that pertain specifically

to the federated repositories functionality. These options do not affect your entire WebSphere Application

Server configuration.

 1. In the administrative console, click Security > Global security.

 2. Under User account repository, select Federated repositories from the Available realm definitions

field and click Configure.

 3. Under Related items, click Manage repositories > repository_name.

 4. Under Additional properties, click Performance.

 5. Optional: Select the Limit search time option and enter the maximum number of milliseconds that

the Application Server can use to search through your Lightweight Directory Access Protocol (LDAP)

entries.

 6. Optional: Select the Limit search returns option and enter the maximum number of entries to return

that match the search criteria.

 7. Optional: Select the Use connection pooling option to specify whether the Application Server can

store separate connections to the LDAP server for reuse.

 8. Optional: Select the Enable context pool option to specify whether multiple applications can use the

same connection to the LDAP server. If you select the option, specify the initial, preferred, and

maximum number of entries that can use the same connection. The Enable context pool option can

be enabled either in conjunction with the Use connection pool option or separately. If this option is

disabled, a new connection is created for each context. You can also select the Context pool times

out option and specify the number of seconds after which the entries in the context pool expire.

 9. Optional: Select the Cache the attributes option and specify the maximum number of search

attribute entries. This option enables WebSphere Application Server to save the LDAP entries so that

it can search the entries locally rather than making multiple calls to the LDAP server. Click the Cache

times out option that is associated with the Cache the attributes option to specify the maximum

number of seconds that the Application Server can save these entries.

10. Optional: Select the Cache the search results option and specify the maximum number of search

result entries. This option enables WebSphere Application Server to save the results of a search

inquiry instead of making multiple calls to the LDAP server to search and retrieve the results of that

search. Click the Cache times out option that is associated with the Cache the search results

option to specify the maximum number of seconds that the Application Server can save the results.

Results

These options are available to potentially increase the performance of your federated repositories

configuration. However, the any increase in performance is dependant upon your specific configuration.

Lightweight Directory Access Protocol performance settings:

Use this page to minimize impacts to performance by adding opened connections and contexts to

internally maintained pools and reusing them. Also minimize performance impacts by maintaining internal

caches of retrieved data.

Chapter 5. Authenticating users 199

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Performance.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Related tasks

“Managing the realm in a federated repository configuration” on page 151
Follow this topic to manage the realm in a federated repository configuration.

Limit search time:

Specifies the timeout value in milliseconds for a Lightweight Directory Access Protocol (LDAP) server to

respond before stopping a request.

 Data type: Integer

Units: Milliseconds

Default: 0

Range: Equal to or greater than 0. A value of 0 specifies that no

search time limit exists.

Limit search returns:

Specifies the maximum number of entries that are returned in a search result.

 Data type: Integer

Units: Entries

Default: 0

Range: Equal to or greater than 0. A value of 0 specifies that no

search return limit exists.

Use connection pooling:

Specifies whether to utilize the connection pooling function, which is provided in the Software Development

Kit (SDK).

 Connection pooling is maintained by the Java run time. It is configured by system properties.

 Default: Disabled

Range: Enabled or Disabled

Enable context pool:

Specifies whether context pooling is enabled to the LDAP server. To improve performance, use the context

pool in combination with connection pooling.

 Default: Enabled

Range: Enabled or Disabled

200 Securing applications and their environment

Initial size:

Specifies the number of context instances in the pool when the pool is initially created by the LDAP

repository.

 Data type: Integer

Default: 1

Range: 1 to 50

Preferred size:

Specifies the preferred number of context instances that the context pool maintains. Both in-use and idle

context instances contribute to this number.

 Data type: Integer

Default: 3

Range: 0 to 100

Maximum size:

Specifies the maximum number of context instances that can be maintained concurrently by the context

pool. Both in-use and idle context instances contribute to this number.

 When the pool size reaches the maximum size, no new context instances can be created for a new

request. The new request is blocked until a context instance is released or removed. The request

periodically checks for context instances that are available in the pool. A request for a pooled context

instance uses an existing pooled and idle context instance or a newly created pooled context instance.

A maximum pool size of 0 indicates that the context pool can maintain an infinite number of context

instances.

 Data type: Integer

Default: 0

Context pool times out:

Specifies the number of seconds for the context pool to time out and remove idle context instances.

 A timeout value of 0 indicates that the context pool does not time out context instances.

 Data type: Integer

Default: 0

Cache the attributes:

Specifies whether to cache the attributes that are returned from the LDAP server.

 Default: Enabled

Range: Enabled or Disabled

Cache size:

Specifies the maximum size of the cache.

Chapter 5. Authenticating users 201

Data type: Integer

Default: 4000

Range: Equal to or greater than 100

Cache times out:

Specifies the maximum number of seconds that the cached search results can stay in the cache.

 A timeout value of 0 indicates that the cached search results stay in the cache until update operations are

made.

 Data type: Integer

Units: Seconds

Default: 1200

Range: Equal to or greater than 0

Cache the search results:

Specifies whether to cache the search results that are returned from the LDAP server.

 Default: Enabled

Range: Enabled or Disabled

Cache size:

Specifies the maximum size of the cache.

 Data type: Integer

Default: 2000

Range: Equal to or greater than 100

Cache times out:

Specifies the maximum number of seconds that the cached search results can stay in the cache.

 A timeout value of 0 indicates that the cached search results stay in the cache until update operations are

made.

 Data type: Integer

Units: Seconds

Default: 600

Range: Equal to or greater than 0

Using custom adapters for federated repositories

When the custom adapters for federated repositories are part of the default realm, the users and groups

can be managed using wsadmin commands or the administrative console.

About this task

If custom adapters for federated repositories are part of the default realm, you use the administrative

console to manage the users and groups in the realm.

202 Securing applications and their environment

Note: The default parent for PersonAccount and Group entities needs to be the same as the base entry

of the custom adapter.

To view this administrative console page, complete the following steps:

v In the administrative console, click Security > Global security.

v Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

v Under Additional properties, click Supported entity types.

You must configure the supported entity types before you can manage this account with Users and Groups

in the administrative console. The Base entry for the default parent determines the repository location

where entities of the specified type are placed on write operations by user and group management.

1. In the administrative console, click Users and Groups to access users and groups panel.

2. Click Manage Groups to test the basic functions of the custom adapter with respect to custom

adapters for federated repositories.

3. Click Manage Users to test the basic functions of the custom adapter with respect to custom adapters

for federated repositories.

Results

After completing these steps, you will have ensured that the custom adapter is being used properly.

What to do next

Adjustments to the custom adapter can be made by using the wsadmin tool to make configuration

changes. See “Configuring custom adapters for federated repositories using wsadmin” on page 206 for

more details.

Sample custom adapters for federated repositories examples:

Out of the box adapters for federated repositories provide File, LDAP, and Database adapters for your use.

These adapters implement the com.ibm.wsspi.wim.Repository software programming interface (SPI). A

virtual member manager custom adapter needs to implement the same SPI.

 Developing custom adapters for federated repositories

Out of the box adapters for federated repositories provide File, LDAP and Database adapters for your use.

All these adapters implement the com.ibm.wsspi.wim.Repository SPI. See the

com.ibm.wsspi.wim.Repository SPI for more information. As you develop a virtual member manager

custom adapter, you need to implement the same SPI.

Custom adapters for federated repositories must not depend on any WebSphere Application Server

components, such as data sources and enterprise beans. These WebSphere Application Server

components require that security is initialized and enabled prior to startup. If your implementation of

custom adapters for federated repositories needs to use data sources to connect to a database, you need

to use Java database connectivity (JDBC) to make the connection during server startup. Then, at a later

time, switch to using the data sources when the data source is available.

There are examples of suggested behavior and requirements of custom adapters for federated repositories

that you can find in the sample code.

A sample custom adapter for federated repositories

A sample custom adapter implementation has been provided as an example. The custom adapter is based

on file repository. The sample source code and class files are bundled in vmmsampleadapter.jar. The

Chapter 5. Authenticating users 203

vmmsampleadapter.jar can be downloaded at this location: http://www.ibm.com/developerworks/
websphere/downloads/samples/vmmsampleadapter.html.

Contents of the vmmsampleadapter.jar file are as follows:

v Class files for the sample adapter:

– com/ibm/ws/wim/adapter/sample/AbstractAdapterImpl.class

– com/ibm/ws/wim/adapter/sample/SampleFileAdapter.class

– com/ibm/ws/wim/adapter/sample/XPathHelper.class

v Source code for the sample adapter:

– src/com/ibm/ws/wim/adapter/sample/AbstractAdapterImpl.java

– src/com/ibm/ws/wim/adapter/sample/SampleFileAdapter.java

– src/com/ibm/ws/wim/adapter/sample/XPathHelper.java

Note: The sample files should not be used in the production environment. You should make a copy of

these files, rename them, and update them based on your specific adapter implementation. Refer to

the Javadoc in the source code for more information.

com/ibm/ws/wim/sample/adapter/AbstractAdapterImpl.java

Provides an abstract implementation class which handles most of the repository independent

internal operations for the adapter and defines some simple abstract methods that should be

implemented by the custom adapter. For most cases, you may not need to change this file.

com/ibm/ws/wim/sample/adapter/SampleFileAdapter.java

Extends from the AbstractAdapterImpl class and implements the abstracts method. This class

implements the abstract methods using file as the repository. Adapter providers can use this class

as a reference to implement these methods specific to their adapters.

com/ibm/ws/wim/sample/adapter/XPathHelper.java

Defines a helper class to parse the XPath search expression and build the search tree. This

helper class also contains the method to evaluate the search expression. If your repository

supports a search expression, then you need to convert XPath expression to an expression that

your repository can process and let your repository evaluate the expression. This helper class

evaluates the search expression based on the use of dataobjects. You can overwrite the

evaluate() method to perform the evaluation using other objects, such as java.util.Map.

Some utility classes have been provided to help adapter providers. Most of these utility methods are used

in the sample adapter. Refer to http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/
com.ibm.websphere.javadoc.doc/vmm/com/ibm/wsspi/wim/package-summary.html for more details.

Establishing custom adapters for federated repositories

Out of the box adapters for federated repositories provide File, LDAP, and Database adapter for your use.

These adapters implement the com.ibm.wsspi.wim.Repository software programming interface (SPI).

Custom adapters for federated repositories need to implement the same SPI.

Before you begin

Refer to the Repository SPI implementation information in the related references for information about the

custom adapters for federated repositories SPI.

Refer to the sample custom adapter code that is available in the vmmsampleadapter.jar file. The JAR file

contains the sample customer adapter code in the src/ directory. The vmmsampleadapter.jar can be

downloaded at this location: http://www.ibm.com/developerworks/websphere/library/samples/
vmmsampleadapter.html

Note:

204 Securing applications and their environment

http://www.ibm.com/developerworks/websphere/downloads/samples/vmmsampleadapter.html
http://www.ibm.com/developerworks/websphere/downloads/samples/vmmsampleadapter.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.javadoc.doc/vmm/com/ibm/wsspi/wim/package-summary.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.javadoc.doc/vmm/com/ibm/wsspi/wim/package-summary.html
http://www.ibm.com/developerworks/websphere/library/samples/vmmsampleadapter.html
http://www.ibm.com/developerworks/websphere/library/samples/vmmsampleadapter.html

v The sample that is provided is intended to familiarize you with the features of custom adapters

for federated repositories and the handling of various types of dataobjects. Do not use this

sample in an actual production environment.

v Copy the AbstractAdapterImpl class and rename it before making changes. Make sure that the

new name is appropriate for your adapter.

Custom adapters for federated repositories must not depend on any WebSphere Application Server

components, such as data sources and enterprise beans. These WebSphere Application Server

components require that security is initialized and enabled prior to startup. If your implementation of the

virtual member manager custom adapter needs to use data sources to connect to a database, you need to

use Java database connectivity (JDBC) to make the connection during server startup. Then, at a later

time, switch to using the data sources when the data source is available.

1. Build your implementation.

Note: EMF JAR files contain version number in their names, such as v200607270021. Make sure to

change the version number to reflect your installation.
To compile your code, you need the following JAR files in the classpath:

v app_server_root/plugins/com.ibm.ws.runtime_6.1.0.jar

v app_server_root/plugins/org.eclipse.emf.commonj.sdo_2.1.0.v200607270021.jar

v app_server_root/plugins/org.eclipse.emf.ecore_2.2.1.v200607270021.jar

v app_server_root/plugins/org.eclipse.emf.common_2.2.1.v200607270021.jar

v app_server_root/plugins/org.eclipse.emf.ecore.xmi_2.2.0.v200607270021.jar

v app_server_root/plugins/org.eclipse.emf.ecore.sdo_2.2.0.v200607270021.jar

Here is an example:

"${java.home}/bin/javac -classpath

app_server_root/plugins/com.ibm.ws.runtime_6.1.0.jar;app_server_root/plugins/org.eclipse.emf.commonj.sdo_2.1.0.

v200607270021.jar;app_server_root/plugins/org.eclipse.emf.ecore_2.2.1.v200607270021.jar;

app_server_root/plugins/org.eclipse.emf.

common_2.2.1.v200607270021.jar;app_server_root/plugins/org.eclipse.emf.ecore.xmi_2.2.0.v200607270021.jar;

app_server_root/plugins/org.eclipse.emf.

ecore.sdo_2.2.0.v200607270021.jar your_implementation_file.java"

2. Copy the generated class files or the packaged JAR file to the product classpath. The preferred

location is the app_server_root/lib/ext directory. This should be copied to the classpaths of all the

product processes (cell and all NodeAgents).

3. Configure your custom adapter by following the steps in “Configuring custom adapters for federated

repositories using wsadmin” on page 206.

4. Test your custom adapter by following the steps in “Using custom adapters for federated repositories”

on page 202

What to do next

“Configuring custom adapters for federated repositories using wsadmin” on page 206 provides details

about configuring your custom adapter with the wsadmin tool.

Chapter 5. Authenticating users 205

Related tasks

“Configuring custom adapters for federated repositories using wsadmin”
You can use the Jython or Jacl scripting language with the wsadmin tool to define custom adapters in the

federated repositories configuration file.

“Using custom adapters for federated repositories” on page 202
When the custom adapters for federated repositories are part of the default realm, the users and groups

can be managed using wsadmin commands or the administrative console.

Related reference

“Sample custom adapters for federated repositories examples” on page 203
Out of the box adapters for federated repositories provide File, LDAP, and Database adapters for your use.

These adapters implement the com.ibm.wsspi.wim.Repository software programming interface (SPI). A

virtual member manager custom adapter needs to implement the same SPI.

Related information

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/
com.ibm.websphere.javadoc.doc/vmm/com/ibm/wsspi/wim/Repository.html

Configuring custom adapters for federated repositories using wsadmin

You can use the Jython or Jacl scripting language with the wsadmin tool to define custom adapters in the

federated repositories configuration file.

Before you begin

Shut down the WebSphere Application Server and the wsadmin command window.

About this task

The federated repositories configuration file, wimconfig.xml, is shipped with WebSphere Application Server

6.1.x and is located in the app_server_root/profiles/profile_name/config/cells/cell_name/wim/config

directory.

Note: For additional information about the commands to use for this topic, see “IdMgrRepositoryConfig

command group for the AdminTask object” on page 1135.

Use the following steps to add a custom adapter to any federated repositories configuration file and to any

realm defined within the configuration file.

 1. Open the wimconfig.xml file with a text editor.

 2. Add a new config:repositories element to the file. This element should be placed before the

config:realmConfiguration element.

The following example configures a custom repository to use the

com.ibm.ws.wim.adapter.sample.SampleFileAdapter class and sets the SampleFileRepository

repository as the identifier:

<config:repositories adapterClassName="com.ibm.ws.wim.adapter.sample.SampleFileAdapter"

id="SampleFileRepository"/>

 3. Save the wimconfig.xml file and close the text editor.

 4. Copy the vmmsampleadapter.jar file that is provided to app_server_root/lib.

 5. Start the wsadmin command prompt application and enter the following command:

wsadmin –conntype none

 6. Disable paging in the common repository configuration. Set the supportPaging parameter for the

updateIdMgrRepository command to false to disable paging.

Note: You must perform this step because the sample adapter does not support paging.

206 Securing applications and their environment

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.javadoc.doc/vmm/com/ibm/wsspi/wim/Repository.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.javadoc.doc/vmm/com/ibm/wsspi/wim/Repository.html

The following examples use the SampleFileRepository repository as the identifier for the custom

repository.

Using Jython:

AdminTask.updateIdMgrRepository(’-id SampleFileRepository -supportPaging false’)

Using Jacl:

$AdminTask updateIdMgrRepository {-id SampleFileRepository -supportPaging

false}

Note: A warning will appear until the configuration of the sample repository is complete.

 7. Add the necessary custom properties for the adapter. Use the setIdMgrCustomProperty command

repeatedly to add multiple properties. Use this command once per property to add multiple properties

to your configuration. You must use both the name and value parameters to add the custom property

for the specified repository. For example, to add a custom property of fileName, enter the following

command.

Using Jython:

AdminTask.setIdMgrCustomProperty(’-id SampleFileRepository -name fileName

-value "c:\sampleFileRegistry.xml"’)

Using Jacl:

$AdminTask setIdMgrCustomProperty {-id SampleFileRepository -name fileName

-value "c:\sampleFileRegistry.xml"}

 8. Add a base entry to the adapter configuration. Use the addIdMgrRepositoryBaseEntry command to

specify the name of the base entry for the specified repository. For example:

Using Jython:

AdminTask.addIdMgrRepositoryBaseEntry(’-id SampleFileRepository -name

o=sampleFileRepository’)

Using Jacl:

$AdminTask addIdMgrRepositoryBaseEntry {-id SampleFileRepository -name

o=sampleFileRepository}

 9. Use the addIdMgrRealmBaseEntry command to add the base entry to the realm, which will link the

realm with the repository:

Using Jython:

AdminTask.addIdMgrRealmBaseEntry(’-name defaultWIMFileBasedRealm -baseEntry o=sampleFileRepository’)

Using Jacl:

$AdminTask addIdMgrRealmBaseEntry {-name defaultWIMFileBasedRealm -baseEntry o=sampleFileRepository}

10. Save your configuration changes. Enter the following commands to save the new configuration and

close the wsadmin tool.

Using Jython:

AdminConfig.save()

exit

Using Jacl:

$AdminConfig save

exit

The following example displays the complete text of the newly-revised wimconfig.xml file:

<!--

 Begin Copyright

 Licensed Materials - Property of IBM

 virtual member manager

 (C) Copyright IBM Corp. 2005 All Rights Reserved.

 US Government Users Restricted Rights - Use, duplication or

Chapter 5. Authenticating users 207

disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 End Copyright

-->

<sdo:datagraph xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:config="http://www.ibm.com/websphere/wim

/config" xmlns:sdo="commonj.sdo">

 <config:configurationProvider maxPagingResults="500" maxSearchResults="4500"

maxTotalPagingResults="1000"

pagedCacheTimeOut="900" pagingEntityObject="true" searchTimeOut="600000">

 <config:dynamicModel xsdFileName="wimdatagraph.xsd"/>

 <config:supportedEntityTypes defaultParent="o=defaultWIMFileBasedRealm" name="Group">

 <config:rdnProperties>cn</config:rdnProperties>

 </config:supportedEntityTypes>

 <config:supportedEntityTypes defaultParent="o=defaultWIMFileBasedRealm" name="OrgContainer">

 <config:rdnProperties>o</config:rdnProperties>

 <config:rdnProperties>ou</config:rdnProperties>

 <config:rdnProperties>dc</config:rdnProperties>

 <config:rdnProperties>cn</config:rdnProperties>

 </config:supportedEntityTypes>

 <config:supportedEntityTypes defaultParent="o=defaultWIMFileBasedRealm" name="PersonAccount">

 <config:rdnProperties>uid</config:rdnProperties>

 </config:supportedEntityTypes>

 <config:repositories xsi:type="config:FileRepositoryType" adapterClassName="com.ibm.

 ws.wim.adapter.file.was.FileAdapter"

id="InternalFileRepository" supportPaging="false" supportSorting="false" messageDigestAlgorithm="SHA-1">

 <config:baseEntries name="o=defaultWIMFileBasedRealm"/>

 </config:repositories>

 <config:repositories adapterClassName="com.ibm.ws.wim.adapter.sample.SampleFileAdapter"

 id="SampleFileRepository">

 <config:CustomProperties name="fileName" value="c:\sampleFileRegistry.xml"/>

 <config:baseEntries name="o=sampleFileRepository"/>

 </config:repositories>

 <config:realmConfiguration defaultRealm="defaultWIMFileBasedRealm">

 <config:realms delimiter="@" name="defaultWIMFileBasedRealm" securityUse="active">

 <config:participatingBaseEntries name="o=defaultWIMFileBasedRealm"/>

 <config:participatingBaseEntries name="o=sampleFileRepository"/>

 <config:uniqueUserIdMapping propertyForInput="uniqueName" propertyForOutput="uniqueName"/>

 <config:userSecurityNameMapping propertyForInput="principalName" propertyForOutput="principalName"/>

 <config:userDisplayNameMapping propertyForInput="principalName" propertyForOutput="principalName"/>

 <config:uniqueGroupIdMapping propertyForInput="uniqueName" propertyForOutput="uniqueName"/>

 <config:groupSecurityNameMapping propertyForInput="cn" propertyForOutput="cn"/>

 <config:groupDisplayNameMapping propertyForInput="cn" propertyForOutput="cn"/>

 </config:realms>

 </config:realmConfiguration>

</config:configurationProvider></sdo:datagraph>

11. Restart the application server.

Related reference

“Sample custom adapters for federated repositories examples” on page 203
Out of the box adapters for federated repositories provide File, LDAP, and Database adapters for your use.

These adapters implement the com.ibm.wsspi.wim.Repository software programming interface (SPI). A

virtual member manager custom adapter needs to implement the same SPI.

Configuring Lightweight Directory Access Protocol entity types in a federated

repository configuration

Follow this task to configure Lightweight Directory Access Protocol (LDAP) entity types in a federated

repository configuration.

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

208 Securing applications and their environment

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

During LDAP configuration, based on the selected LDAP server type, some defaults and mappings are

set in the configuration. When the selected LDAP server type is custom, no default is set, and you

must set all of the mappings manually. To avoid setting all of the mappings manually, choose a

non-custom LDAP server type (for example, IBM Directory Server or SunOne) which matches closely

to your LDAP server.

Note: If you click Add to specify a new external repository, you must first complete the required fields

and click Apply before you can proceed to the next step.

5. Under Additional properties, click LDAP entity types.

6. View the entity types that are supported by the member repositories, or select an entity type to view or

change its configuration properties.

7. Supply the object classes that are mapped to this entity type in the Object classes field. LDAP entries

that contain one or more of the object classes belong to this entity type.

8. Supply the search bases that are used to search this entity type. The search bases specified must be

subtrees of the base entry in the repository. For example, you can specify the following search bases,

where o=ibm,c=us is the base entry in the repository:

o=ibm,c=us or cn=users,o=ibm,c=us or ou=austin,o=ibm,c=us

In the preceding example, you cannot specify search bases c=us or o=ibm,c=uk.

Delimit multiple search bases with a semicolon (;). For example:

ou=austin,o=ibm,c=us;ou=raleigh,o=ibm,c=us

9. Supply the LDAP search filter that is used to search this entity type.

For example, use (objectclass=ePerson) to search for users or

(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames) to search for groups in an external

LDAP repository.

If a search filter is not specified, the object classes and the relative distinguished name (RDN)

properties are used to generate the search filter. For information on RDN properties, see “Configuring

supported entity types in a federated repository configuration” on page 193.

Results

After completing these steps, LDAP entity types are configured for your LDAP repository.

What to do next

1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Global security panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Lightweight Directory Access Protocol entity types collection:

Use this page to list Lightweight Directory Access Protocol (LDAP) entity types that are supported by the

member repositories or to select an LDAP entity type to view or change its configuration properties.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

Chapter 5. Authenticating users 209

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click LDAP entity types.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Entity type:

Specifies the entity type name.

Object classes:

Specifies the object classes that are mapped to this entity type. LDAP entries that contain one or more of

the object classes belong to this entity type.

 You cannot map multiple entity types to the same LDAP object class.

Lightweight Directory Access Protocol entity types settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) entity types that are supported

by the member repositories.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click LDAP entity types.

6. Select an entity type to view or change its configuration properties.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Entity type:

Specifies the entity type.

Object classes:

Specifies the object classes that are mapped to this entity type. LDAP entries that contain one or more of

the object classes belong to this entity type.

 You cannot map multiple entity types to the same LDAP object class.

Search bases:

Specifies the search bases that are used to search this entity type.

 The search bases specified must be subtrees of the base entry in the repository. For example, you can

specify the following search bases, where o=ibm,c=us is the base entry in the repository:

210 Securing applications and their environment

o=ibm,c=us or cn=users,o=ibm,c=us or ou=austin,o=ibm,c=us

In the preceding example, you cannot specify search bases c=us or o=ibm,c=uk.

Delimit multiple search bases with a semicolon (;). For example:

ou=austin,o=ibm,c=us;ou=raleigh,o=ibm,c=us

Search filter:

Specifies the LDAP search filter that is used to search this entity type.

 For example, use (objectclass=ePerson) to search for users or (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames))) to search for groups in an

external LDAP repository.

If a search filter is not specified, the object classes and the relative distinguished name (RDN) properties

are used to generate the search filter.

Configuring group attribute definition settings in a federated repository

configuration

Follow this task to configure group definition settings in a federated repository configuration.

Before you begin

Because group attribute definition settings apply only to a Lightweight Directory Access Protocol (LDAP)

repository, you must first configure an LDAP repository. For more information, see “Managing repositories

in a federated repository configuration” on page 196.

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required fields

and click Apply before you can proceed to the next step.

5. Under Additional properties, click Group attribute definition.

6. Supply the name of the group membership attribute in the Name of group membership attribute field.

Only one membership attribute can be defined for each LDAP repository.

Every LDAP entry should have this attribute to indicate the groups to which this entry belongs. For

example, memberOf is the name of the membership attribute that is used in Active Directory. The

group membership attribute contains values that reference groups to which this entry belongs. If UserA

belongs to GroupA, then the value of the memberOf attribute of UserA should contain the distinguished

name of GroupA.

If your LDAP server does not support the group membership attribute, then do not specify this

attribute. The LDAP repository can look up groups by searching the group member attributes, though

the performance might be slower.

7. Select the scope of the group membership attribute. The default value is Direct.

Direct The membership attribute contains direct groups only. Direct groups are the groups that

contain the member. For example, if Group1 contains Group2 and Group2 contains User1,

then Group2 is a direct group of User1, but Group1 is not a direct group of User1.

Nested

The membership attribute contains both direct groups and nested groups.

Chapter 5. Authenticating users 211

All The membership attribute contains direct groups, nested groups, and dynamic members.

Results

After completing these steps, group attribute definition settings are configured for your LDAP repository.

What to do next

1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Global security panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Group attribute definition settings:

Use this page to specify the name of the group membership attribute. Every Lightweight Directory Access

Protocol (LDAP) entry includes this attribute to indicate the group to which this entry belongs.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Related tasks

“Managing the realm in a federated repository configuration” on page 151
Follow this topic to manage the realm in a federated repository configuration.

Name of group membership attribute:

Specifies the name of the group membership attribute. Only one membership attribute can be defined for

each Lightweight Directory Access Protocol (LDAP) repository.

 Every LDAP entry should have this attribute to indicate the groups to which this entry belongs. For

example, memberOf is the name of the membership attribute that is used in Active Directory. The group

membership attribute contains values that reference groups to which this entry belongs. If UserA belongs

to GroupA, then the value of the memberOf attribute of UserA should contain the distinguished name of

GroupA.

If your LDAP server does not support the group membership attribute, then do not specify this attribute.

The LDAP repository can look up groups by searching the group member attributes, though the

performance might be slower.

Scope of group membership attribute:

212 Securing applications and their environment

Specifies the scope of the group membership attribute.

 Default: Direct

Range:

Direct The membership attribute contains direct groups

only. Direct groups are the groups that contain

the member. For example, if Group1 contains

Group2 and Group2 contains User1, then Group2

is a direct group of User1, but Group1 is not a

direct group of User1.

Nested The membership attribute contains both direct

groups and nested groups.

All The membership attribute contains direct groups,

nested groups, and dynamic members.

Configuring member attributes in a federated repository configuration

Follow this task to configure member attributes in a federated repository configuration.

Before you begin

Because member attributes apply only to a Lightweight Directory Access Protocol (LDAP) repository, you

must first configure an LDAP repository. For more information, see “Managing repositories in a federated

repository configuration” on page 196.

 1. In the administrative console, click Security > Global security.

 2. Under User account repository, select Federated repositories from the Available realm definitions

field and click Configure.

 3. Under Related items, click Manage repositories.

 4. Click Add to specify a new external repository or select an external repository that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required

fields and click Apply before you can proceed to the next step.

 5. Under Additional properties, click Group attribute definition.

 6. Under Additional properties, click Member attributes.

 7. Click New to specify a new member attribute or Delete to remove a preconfigured member attribute.

 8. Accept the default, or supply the name of the member attribute in the Name of member attribute field.

For example, member and uniqueMember are two commonly used names of member attributes.

The member attribute is used to store the values that reference members that the group contains. For

example, a group type with an object class groupOfNames has a member attribute named member;

group type with object class groupOfUniqueNames has a member attribute named uniqueMember. An

LDAP repository supports multiple group types if multiple member attributes and their associated

group object classes are specified.

 9. Supply the object class of the group that uses this member attribute in the Object class field. If this

field is not defined, this member attribute applies to all group object classes.

10. Select the scope of the member attribute. The default value is Direct.

Direct The member attribute contains direct members only. Direct members are members that are

directly contained by the group. For example, if Group1 contains Group2 and Group2

contains User1, then User1 is a direct member of Group2, but User1 is not a direct member

of Group1.

Nested

The member attribute contains both direct members and nested members.

All The member attribute contains direct members, nested members, and dynamic members.

Chapter 5. Authenticating users 213

Results

After completing these steps, member attributes are configured for your LDAP repository.

What to do next

1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Global security panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Member attributes collection:

Use this page to list Lightweight Directory Access Protocol (LDAP) member attributes or to select a

member attribute to view or change its configuration properties.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Member attributes.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Name:

Specifies the name of the member attribute in LDAP. For example, member and uniqueMember are two

commonly used names of member attributes.

 The member attribute is used to store the values that reference members that the group contains. For

example, a group type with an object class groupOfNames has a member attribute named member; group

type with object class groupOfUniqueNames has a member attribute named uniqueMember. An LDAP

repository supports multiple group types if multiple member attributes and their associated group object

classes are specified.

Scope:

Specifies the scope of the member attribute.

 Default: Direct

214 Securing applications and their environment

Range:

Direct The member attribute contains direct members

only. Direct members are members that are

directly contained by the group. For example, if

Group1 contains Group2 and Group2 contains

User1, then User1 is a direct member of Group2,

but User1 is not a direct member of Group1.

Nested The member attribute contains both direct

members and nested members.

All The member attribute contains direct members,

nested members, and dynamic members.

Object class:

Specifies the object class of the group that uses this member attribute. If this field is not defined, this

member attribute applies to all group object classes.

Member attributes settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) member attributes.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is pre-configured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Member attributes.

7. Click New to specify a new member attribute.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Name of member attribute:

Specifies the name of the member attribute in LDAP. For example, member and uniqueMember are two

commonly used names of member attributes.

 The member attribute is used to store the values that reference members that the group contains. For

example, a group type with an object class groupOfNames has a member attribute named member; group

type with object class groupOfUniqueNames has a member attribute named uniqueMember. An LDAP

repository supports multiple group types if multiple member attributes and their associated group object

classes are specified.

Object class:

Specifies the object class of the group that uses this member attribute. If this field is not defined, this

member attribute applies to all group object classes.

Scope:

Specifies the scope of the member attribute.

Chapter 5. Authenticating users 215

Default: Direct

Range:

Direct The member attribute contains direct members

only. Direct members are members that are

directly contained by the group. For example, if

Group1 contains Group2 and Group2 contains

User1, then User1 is a direct member of Group2,

but User1 is not a direct member of Group1.

Nested The member attribute contains both direct

members and nested members.

All The member attribute contains direct members,

nested members, and dynamic members.

Configuring dynamic member attributes in a federated repository configuration

Follow this task to configure dynamic member attributes in a federated repository configuration.

Before you begin

Because dynamic member attributes apply only to a Lightweight Directory Access Protocol (LDAP)

repository, you must first configure an LDAP repository. For more information, see “Managing repositories

in a federated repository configuration” on page 196.

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required fields

and click Apply before you can proceed to the next step.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Dynamic member attributes.

7. Click New to specify a new dynamic member attribute or Delete to remove a preconfigured dynamic

member attribute.

8. Accept the default, or supply the name of the dynamic member attribute in the Name of dynamic

member attribute field. The name of the dynamic member attribute defines the filter for dynamic group

members in LDAP, for example, memberURL is the name of a commonly used dynamic member

attribute.

If both member and dynamic member attributes are specified for the same group type, this group type

is a hybrid group with both static and dynamic members.

A dynamic group defines its members differently than a static group. Instead of listing the members

individually, the dynamic group defines its members using an LDAP search. The filter for the search is

defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass

groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the

search using a simplified LDAP URL syntax:

ldap:///<base DN of search> ? ? <scope of search> ? <searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the

objectclass=person:

ldap:///o=Acme,c=US??sub?objectclass=person

9. Supply the object class of the group that contains the dynamic member attribute in the Dynamic object

class field, for example, groupOfURLs. If this property is not defined, the dynamic member attribute

applies to all group object classes.

216 Securing applications and their environment

Results

After completing these steps, dynamic member attributes are configured for your LDAP repository.

What to do next

1. After configuring the federated repositories, click Security > Global security to return to the Global

security panel. Verify that Federated repositories is identified in the Current realm definition field. If

Federated repositories is not identified, select Federated repositories from the Available realm

definitions field and click Set as current. To verify the federated repositories configuration, click Apply

on the Global security panel. If Federated repositories is not identified in the Current realm definition

field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 41. As the final step, validate this setup by clicking Apply in the Global security panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Dynamic member attributes collection:

Use this page to manage Lightweight Directory Access Protocol (LDAP) dynamic member attributes.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Dynamic member attributes.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Name:

Specifies the name of the attribute that defines the filter for dynamic group members in LDAP. For

example, memberURL is the name of a commonly used dynamic member attribute.

 If both member and dynamic member attributes are specified for the same group type, this group type is a

hybrid group with both static and dynamic members.

A dynamic group defines its members differently than a static group. Instead of listing the members

individually, the dynamic group defines its members using an LDAP search. The filter for the search is

defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass

groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the

search using a simplified LDAP URL syntax:

ldap:///<base DN of search>??<scope of search>?<searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the

objectclass=person:

ldap:///o=Acme,c=US??sub?objectclass=person

Chapter 5. Authenticating users 217

Object class:

Specifies the object class of the group that contains this dynamic member attribute, for example,

groupOfURLs. If this property is not defined, the dynamic member attribute applies to all group object

classes.

Dynamic member attributes settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) dynamic member attributes.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Global security.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Dynamic member attributes.

7. Click New to specify a new dynamic member attribute.

When you finish adding or updating your federated repository configuration, go to the Security > Global

security panel and click Apply to validate the changes.

Name of dynamic member attribute:

Specifies the name of the attribute that defines the filter for dynamic group members in LDAP. For

example, memberURL is the name of a commonly used dynamic member attribute.

 If both member and dynamic member attributes are specified for the same group type, this group type is a

hybrid group with both static and dynamic members.

A dynamic group defines its members differently than a static group. Instead of listing the members

individually, the dynamic group defines its members using an LDAP search. The filter for the search is

defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass

groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the

search using a simplified LDAP URL syntax:

ldap:///<base DN of search>??<scope of search>?<searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the

objectclass=person:

ldap:///o=Acme,c=US??sub?objectclass=person

Dynamic object class:

Specifies the object class of the group that contains this dynamic member attribute, for example,

groupOfURLs. If this property is not defined, the dynamic member attribute applies to all group object

classes.

Local operating system registries

With the registry implementation for the local operating system, the WebSphere Application Server

authentication mechanism can use the user accounts database of the local operating system.

218 Securing applications and their environment

If you want to use the local operating system registry to represent the principals who access your

WebSphere Application Server resources, you do not have to complete any special user registry setup

steps. The local operating system registry is used for authentication and authorization of users who access

WebSphere Application Server resources, but not for WebSphere Application Server users who access

operating system resources. WebSphere Application Server does not run under the operating system user

profile of Application Server users. Instead, WebSphere Application Server runs under the operating

system profile that is configured by the Application Server administrator.

If you want to authorize a user for any WebSphere Application Server resource, a user profile for that user

must exist in the operating system. Use the Create User Profile (CRTUSRPRF) command to create new

user IDs that can be used by WebSphere Application Server

Do not use a local operating system registry in a WebSphere Application Server environment where

application servers are dispersed across more than one machine because each machine has its own user

registry.

As mentioned previously, the access IDs taken from the user registry are used during authorization

checks. Because these IDs are typically unique identifiers, they vary from machine to machine, even if the

exact users and passwords exist on each machine.

Web client certificate authentication is not currently supported when using the local operating system user

registry. However, Java client certificate authentication does function with a local operating user registry.

Java client certificate authentication maps the first attribute of the certificate domain name to the user ID in

the user registry.

Even though Java client certificates function correctly, the following error displays in the SystemOut.log file:

CWSCJ0337E: The mapCertificate method is not supported

The error is intended for Web client certificates; however, it also displays for Java client certificates. Ignore

this error for Java client certificates.

Using either the local or the domain user registry

. If you want to access users and groups from either the local or the domain user registry, instead of both,

set the com.ibm.websphere.registry.UseRegistry property. This property can be set to either local or

domain. When this property is set to local (case insensitive) only the local user registry is used. When this

property is set to domain, (case insensitive) only the domain user registry is used.

Set this property by completing the following steps to access the Custom Properties panel in the

administrative console:

1. Click Security > Global security

2. Under User account repository, click the Available realm definitions drop-down list, select Local

operating system, and click Configure.

3. Under Additional properties, click Custom properties.

You can also use wsadmin to configure this property. When the property is set, the privilege requirement

for the user who is running the product process does not change. For example, if this property is set to

local, the user that is running the process requires the same privilege, as if the property was not set.

Standalone Lightweight Directory Access Protocol registries

A Standalone Lightweight Directory Access Protocol (LDAP) registry performs authentication using an

LDAP binding.

Chapter 5. Authenticating users 219

WebSphere Application Server security provides and supports the implementation of most major LDAP

directory servers, which can act as the repository for user and group information. These LDAP servers are

called by the product processes for authenticating a user and other security-related tasks. For example,

the servers are used to retrieve user or group information. This support is provided by using different user

and group filters to obtain the user and group information. These filters have default values that you can

modify to fit your needs. The custom LDAP feature enables you to use any other LDAP server, which is

not in the product-supported list of LDAP servers, for its user registry by using the appropriate filters.

To use LDAP as the user registry, you need to know an administrative user name that is defined in the

registry, the server host and port, the base distinguished name (DN) and, if necessary, the bind DN and

the bind password. You can choose any valid user in the registry that is searchable and have

administrative privileges. In some LDAP servers, the administrative users are not searchable and cannot

be used, for example, cn=root in SecureWay. This user is referred to as WebSphere Application Server

security server ID, server ID, or server user ID in the documentation. Being a server ID means a user has

special privileges when calling some protected internal methods. Normally, this ID and password are used

to log into the administrative console after security is turned on. You can use other users to log in if those

users are part of the administrative roles.

When security is enabled in the product, the primary administrative user name and password are

authenticated with the registry during the product startup. If authentication fails, the server does not start. It

is important to choose an ID and password that do not expire or change often. If the product server user

ID or password need to change in the registry, make sure that the changes are performed when all the

product servers are up and running.

When the changes are done in the registry, use the steps that are described in “Configuring Lightweight

Directory Access Protocol user registries” on page 100. Change the ID, password, and other configuration

information, save, stop, and restart all the servers so that the new ID or password is used by the product.

If any problems occur starting the product when security is enabled, disable security before the server can

start up. To avoid these problems, make sure that any changes in this panel are validated in the Global

security panel. When the server is up, you can change the ID, password, and other configuration

information and then enable security.

You can use the custom Lightweight Directory Access Protocol (LDAP) feature to support any LDAP server

by setting up the correct configuration. However, support is not extended to these custom LDAP servers

because many configuration possibilities exist.

The users and groups and security role mapping information is used by the configured authorization

engine to perform access control decisions.

Dynamic groups and nested group support

Dynamic and nested groups simplify WebSphere Application Server security management and increase its

effectiveness and flexibility.

Dynamic groups contain a group name and membership criteria:

v The group membership information is as current as the information on the user object.

v There is no need to manually maintain members on the group object.

v Dynamic groups are designed so an application does not need a large amount of information from the

directory to find out if someone is a member of a group.

Nested groups enable the creation of hierarchical relationships that are used to define inherited group

membership. A nested group is defined as a child group entry whose distinguished name (DN) is

referenced by a parent group entry attribute.

You only need to assign a larger parent group if all nested groups share the same privilege. Assigning a

role to a single parent group simplifies the run-time authorization table.

220 Securing applications and their environment

Dynamic groups and nested group support for the IBM Tivoli Directory Server

WebSphere Application Server supports all Lightweight Directory Access Protocol (LDAP) dynamic and

nested groups when using IBM Tivoli Directory Server. This function is enabled by default by taking

advantage of a new feature in IBM Tivoli Directory Server. IBM Tivoli Directory Server uses the

ibm-allGroups forward-reference group attribute that automatically calculates all the group memberships

including dynamic and recursive memberships for a user. Security directly locates a user group

membership from a user object rather than indirectly search all the groups to match group members.

For more information, see “Configuring dynamic and nested group support for the IBM Tivoli Directory

Server” on page 118.

When you create groups, ensure that nested and dynamic group memberships work correctly.

Dynamic and nested group support for the SunONE or iPlanet Directory Server

The SunONE or iPlanet Directory Server uses two grouping mechanisms:

Groups

Entries that name other entries as a list of members or as a filter for members.

Roles Entries that name other entries as a list of members or as a filter for members. Additional

functionality is provided by generating the nsrole attribute on each role member.

Three types of roles are available:

Filtered roles

Depends upon the attributes that are contained in each entry. Entries are members, if they match

a specified Lightweight Directory Access Protocol (LDAP) filter. This role is equivalent to a dynamic

group.

Nested roles

Creates roles that contain other roles. This role is equivalent to a nested group.

Managed roles

Explicitly assigns a role to member entries. This role is equivalent to a static group.

Refer to “Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server” on

page 118 for more information.

Security failover among multiple LDAP servers

WebSphere Application Server security can be configured to attempt failovers between multiple

Lightweight Directory Access Protocol (LDAP) hosts.

If the current active LDAP server is unavailable, WebSphere Application Server security attempts a failover

to the first available LDAP host in the specified host list. The multiple LDAP servers can be replicas of the

same master LDAP server, or they can be any LDAP host with the same schema, which contain data that

is imported from the same LDAP Data Interchange Format (LDIF) file.

Whenever a failover occurs, WebSphere Application Server security always uses the first available LDAP

server in the specified host list. For example, if there are four LDAP servers configured in the order of L1,

L2, L3, and L4, L1 is treated as the primary LDAP server. The preference of connection is from L1 to L4.

If, for example, WebSphere Application Server security is currently connected to L4, and failover or

reconnection is necessary, WebSphere Application Server security first attempts to connect to L1, L2, and

then L3 in that order until the connection is successful.

The current LDAP host name is logged in message CWSCJ0419I in the WebSphere Application Server log

file, SystemOut.log. If you want to reconnect to the primary LDAP host, run the WebSphere Application

Server MBean method, resetLDAPBindInfo, with null,null as the input.

Chapter 5. Authenticating users 221

To configure LDAP failover among multiple LDAP hosts, you must use wsadmin or ConfigService to

include the backup LDAP host, which does not have a number limitation. The LDAP host that is displayed

in the administrative console is the primary LDAP host, and is the first item listed in the LDAP host list in

security.xml.

The WebSphere Application Server security realm name defaults to the primary LDAP host name that is

displayed in the administrative console. It includes a trailing colon and a port number (if one exists).

However, the custom property, com.ibm.websphere.security.ldap.logicRealm, can be added to override the

default security realm name. Use the logicRealm name to configure each cell to have its own LDAP host

for interoperability and backward compatibility, and to provide flexibility for adding or removing the LDAP

host dynamically. If migrating from a previous installation, the new logicRealm name does not take effect

until administrative security is enabled again. To be compatible with a previous release that does not

support logic realm, the logicRealm name has to be the same as that used by the previous installation (the

LDAP host name, including a trailing colon and port number).

The following Jacl example shows how to use wsadmin to add a backup LDAP host for failover:

proc LDAPAdd {args} {

 global AdminConfig AdminControl ldapServer ldapPort

 set ldapServer [lindex $args 0]

 set ldapPort [lindex $args 1]

 global ldapUserRegistryId

 if {[catch {$AdminConfig list LDAPUserRegistry} result]} {

 puts stdout "\$AdminConfig list LDAPUserRegistry caught an exception $result\n"

 return

 } else {

 if {$result != {}} {

 set ldapUserRegistryId [lindex $result 0]

 } else {

 return;

 }

 }

 set secMbean [$AdminControl queryNames type=SecurityAdmin,*]

 set Attrs2 [list [list hosts [list [list [list host $ldapServer]

 [list port $ldapPort]]]]]

 $AdminConfig modify $ldapUserRegistryId $Attrs2

 $AdminConfig save

}

The following Jython example shows how to use wsadmin to add a backup LDAP host for failover:

#---

Add ldap hostname and port

wsadmin -f LDAPAdd.py arg1 arg2

The script expects some parameters:

arg1 - LDAP Server hostname

arg2 - LDAP Server portnumber

#---

import java

#---

get the line separator and use to do the parsing

since the line separator on different platform are different

lineSeparator = java.lang.System.getProperty(’line.separator’)

#---

add LDAP host

#---

def LDAPAdd (ldapServer, ldapPort):

 global AdminConfig, lineSeparator, ldapUserRegistryId

 try:

 ldapObject = AdminConfig.list("LDAPUserRegistry")

 if len(ldapObject) == 0:

 print "LDAPUserRegistry ConfigId was not found\n"

222 Securing applications and their environment

return

 ldapUserRegistryId = ldapObject.split(lineSeparator)[0]

 print "Got LDAPUserRegistry ConfigId is " + ldapUserRegistryId + "\n"

 except:

 print "AdminConfig.list(’LDAPUserRegistry’) caught an exception\n"

 try:

 secMbeans = AdminControl.queryNames(’WebSphere:type=SecurityAdmin,*’)

 if len(secMbeans) == 0:

 print "Security Mbean was not found\n"

 return

 secMbean = secMbeans.split(lineSeparator)[0]

 print "Got Security Mbean is " + secMbean + "\n"

 except:

 print "AdminControl.queryNames(’WebSphere:type=SecurityAdmin,*’) caught an exception\n"

 attrs2 = [["hosts", [[["host", ldapServer], ["port", ldapPort]]]]]

 try:

 AdminConfig.modify(ldapUserRegistryId, attrs2)

 try:

 AdminConfig.save()

 print "Done setting up attributes values for LDAP User Registry"

 print "Updated was saved successfully\n"

 except:

 print "AdminConfig.save() caught an exception\n"

 except:

 print "AdminConfig.modify(" + ldapUserRegistryId + ", " + attrs2 + ") caught an exception\n"

 return

#---

Main entry point

#---

if len(sys.argv) < 2 or len(sys.argv) > 3:

 print("LDAPAdd: this script requires 2 parameters: LDAP server hostname and LDAP server port number\n")

 print("e.g.: LDAPAdd ldaphost 389\n")

 sys.exit(1)

else:

 ldapServer = sys.argv[0]

 ldapPort = sys.argv[1]

 LDAPAdd(ldapServer, ldapPort)

 sys.exit(0)

Federated repositories

Federated repositories enable you to use multiple repositories with WebSphere Application Server. These

repositories, which can be file-based repositories, LDAP repositories, or a sub-tree of an LDAP repository,

are defined and theoretically combined under a single realm. All of the user repositories that are

configured under the federated repository functionality are invisible to WebSphere Application Server.

When you use the federated repositories functionality, all of the configured repositories, which you specify

as part of the federated repository configuration, become active. It is required that the user ID, and the

distinguished name (DN) for an LDAP repository, be unique in multiple user repositories that are

configured under the same federated repository configuration. For example, there might be three different

repositories that are configured for the federated repositories configuration: Repository A, Repository B,

and Repository C. When user1 logs in, the federated repository adapter searches each of the repositories

for all of the occurrences of that user. If multiple instances of that user are found in the combined

repositories, an error message displays.

In addition, the federated repositories functionality in WebSphere Application Server supports the logical

joining of entries across multiple user repositories when the Application Server searches and retrieves

entries from the repositories. For example, when an application calls for a sorted list of people whose age

Chapter 5. Authenticating users 223

is greater than twenty, WebSphere Application searches all of the repositories in the federated repositories

configuration. The results are combined and sorted before the Application Server returns the results to the

application.

Unlike the local operating system, standalone LDAP registry, or custom registry options, federated

repositories provide user and group management with read and write capabilities. When you configure

federated repositories, you can use one of the following methods to add, create, and delete users and

groups:

Note: If you configure multiple repositories under the federated repositories realm, you must also

configure supported entity types and specify a base entry for the default parent. The base entry for

the default parent determines the repository location where entities of the specified type are placed

on write operations by user and group management. See “Configuring supported entity types in a

federated repository configuration” on page 193 for details.

v Use the user management application programming interfaces (API). For more information, refer to

articles under ″Developing with virtual member manager″ in this information center.

v Use the administrative console. To manage users and groups within the administrative console, click

Users and Groups > Manage Users or Users and Groups > Manage Groups. For information on

user and group management, click the Help link that displays in the upper right corner of the window.

From the left navigation pane, click Users and Groups.

v Use the wsadmin commands. For more information, see “WIMManagementCommands command group

for the AdminTask object” on page 1190.

If you do not configure the federated repositories functionality or do not enable federated repositories as

the active repository, you cannot use the user management capabilities that are associated with federated

repositories. You can configure an LDAP server as the active user registry and configure the same LDAP

server under federated repositories, but not select federated repositories as the active user repository.

With this scenario, authentication takes place using the LDAP server, and you can use the user

management functionality for the LDAP server that is available for federated repositories.

The following table compares the federated repository functionality that is available in WebSphere

Application Server Version 7.0 with the registry functionality that remains unchanged from previous

versions of the Application Server.

 Table 3. Federated repositories versus user registry implementations

Federated repositories User registry

Supports multiple types of repositories such as file-based,

LDAP, database, and custom. In WebSphere Application

Server Version 7.0, file-based and LDAP repositories are

supported by the administrative console. However, the

federated repositories functionality does not support local

operating system implementations. For database and

custom repositories, you can use the wsadmin

command-line interface or the configuration application

programming interfaces (API).

Supports multiple types of registries such as the local

operating system, a standalone LDAP registry, and a

standalone custom registry.

Supports multiple repositories in a realm within a cell. Supports one registry only in a realm within a cell.

Provides read and write capabilities for the repositories

that are defined in the federated repository configuration.

Provides read only capability for the registries.

Provides account and password policy support as defined

by the registry type. However, this support is not provided

by the federated repository functionality.

Provides account and password policy support as defined

by the registry type.

Supports identity profiles. Does not support identity profiles.

Uses the custom UserRegistry implementation. Uses the custom UserRegistry implementation.

224 Securing applications and their environment

Selecting an authentication mechanism

An authentication mechanism defines rules about security information, such as whether a credential is

forwardable to another Java process, and the format of how security information is stored in both

credentials and tokens. You can select and configure an authentication mechanism by using the

administrative console.

About this task

Authentication is the process of establishing whether a client is who or what it claims to be in a particular

context. A client can be either an end user, a machine, or an application. An authentication mechanism in

WebSphere Application Server typically collaborates closely with a user registry. The user registry is the

user and groups account repository that the authentication mechanism consults with when performing

authentication. The authentication mechanism is responsible for creating a credential, which is an internal

product representation of a successfully authenticated client user. Not all credentials are created equally.

The abilities of the credential are determined by the configured authentication mechanism.

WebSphere Application Server provides three authentication mechanisms: Lightweight Third Party

Authentication (LTPA), Kerberos, and RSA token authentication mechanism.

Security support for Kerberos as the authentication mechanism has been added for this release of

WebSphere Application Server. Kerberos (KRB5) is a mature, flexible, open, and very secure network

authentication protocol. Kerberos includes authentication, mutual authentication, message integrity and

confidentiality and delegation features. KRB5 is used for Kerberos in the administrative console and in the

sas.client.props, soap.client.props and ipc.client.props files.

The RSA token authentication mechanism is new to this release of WebSphere Application Server. It aids

the flexible management objective to preserve the base profiles configurations and isolate them from a

security perspective. This mechanism permits the base profiles managed by an administrative agent to

have different Lightweight Third-Party Authentication (LTPA) keys, different user registries, and different

administrative users.

Note: Simple WebSphere Authentication Mechanism (SWAM) is deprecated in this release. SWAM does

not provide authenticated communication between different servers.

Authentication is required for enterprise bean clients and Web clients when they access protected

resources. Enterprise bean clients, like a servlet or other enterprise beans or a pure client, send the

authentication information to a Web application server using one of the following protocols:

v Common Secure Interoperability Version 2 (CSIv2)

v Secure Authentication Service (SAS)

Note: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Web clients use the HTTP or HTTPS protocol to send the authentication information.

The authentication information can be basic authentication (user ID and password), a credential token, or

a client certificate. The Web authentication is performed by the Web Authentication module.

You can configure Web authentication for a Web client by using the administrative console. Click Security

> Global security. Under Authentication, expand Web and SIP security and click General settings. The

following options exist for Web authentication:

Authenticate only when the URI is protected

Specifies that the Web client can retrieve an authenticated identity only when it accesses a

protected Uniform Resource Identifier (URI). WebSphere Application Server challenges the Web

Chapter 5. Authenticating users 225

client to provide authentication data when the Web client accesses a URI that is protected by a

J2EE role. This default option is also available in previous versions of WebSphere Application

Server.

Use available authentication data when an unprotected URI is accessed

Specifies that the Web client is authorized to call the getRemoteUser, isUserInRole, and

getUserPrincipal methods; retrieves an authenticated identity from either a protected or an

unprotected URI. Although the authentication data is not used when you access an unprotected

URI, the authentication data is retained for future use. This option is available when you select the

Authentication only when the URI is protected check box.

Authenticate when any URI is accessed

Specifies that the Web client must provide authentication data regardless of whether the URI is

protected.

Default to basic authentication when certificate authentication for the HTTPS client fails.

Specifies that WebSphere Application Server challenges the Web client for a user ID and

password when the required HTTPS client certificate authentication fails.

The enterprise bean authentication is performed by the Enterprise JavaBean (EJB) authentication module.

The EJB authentication module resides in the CSIv2 and SAS layer.

The authentication module is implemented using the Java Authentication and Authorization Service (JAAS)

login module. The Web authenticator and the EJB authenticator pass the authentication data to the login

module, which can use the following mechanisms to authenticate the data:

v Kerberos

v LTPA

v RSA token

v Simple WebSphere Authentication Mechanism (SWAM)

Note: SWAM was deprecated in WebSphere Application Server Version 7.0 and will be removed in a

future release.

The authentication module uses the registry that is configured on the system to perform the authentication.

Four types of registries are supported:

v Federated repositories

v Local operating system

v Standalone Lightweight Directory Access Protocol (LDAP) registry

v Standalone custom registry

External registry implementation following the registry interface that is specified by IBM can replace either

the local operating system or the LDAP registry.

The login module creates a JAAS subject after authentication and stores the credential that is derived from

the authentication data in the public credentials list of the subject. The credential is returned to the Web

authenticator or to the enterprise beans authenticator.

The Web authenticator and the enterprise beans authenticator store the received credentials in the Object

Request Broker (ORB) current for the authorization service to use in performing further access control

checks. If the credentials are forwardable, they are sent to other application servers.

You can configure authentication mechanisms in the administrative console by doing the following:

1. Click Security > Global security.

2. Under Authentication mechanisms and expiration, select an authentication mechanism to configure.

226 Securing applications and their environment

Lightweight Third Party Authentication

Lightweight Third Party Authentication (LTPA) is intended for distributed, multiple application server and

machine environments. LTPA supports forwardable credentials and single sign-on (SSO). LTPA can

support security in a distributed environment through cryptography. This support permits LTPA to encrypt,

digitally sign, and securely transmit authentication-related data, and later decrypt and verify the signature.

Application servers can securely communicate using the LTPA protocol. It also provides the single sign-on

(SSO) feature wherein a user is required to authenticate only once in a domain name system (DNS)

domain and can access resources in other WebSphere Application Server cells without getting prompted.

The realm names on each system in the DNS domain are case sensitive and must match identically.

For local OS, the realm name is the same as the host name.

For the Lightweight Directory Access Protocol (LDAP), the realm name is the host:port value of the LDAP

server.

The LTPA protocol uses cryptographic keys to encrypt and decrypt user data that passes between the

servers. These keys must be shared between the different cells for the resources in one cell to access

resources in other cells, assuming that all the cells involved use the same LDAP or custom registry.

When using LTPA, a token is created with the user information and an expiration time and is signed by the

keys. The LTPA token is time sensitive. All product servers that participate in a protection domain must

have their time, date, and time zone synchronized. If not, LTPA tokens appear prematurely expired and

cause authentication or validation failures.

This token passes to other servers, in the same cell or in a different cell through cookies, for Web

resources when SSO is enabled, or through the authentication protocol layer for enterprise beans.

If the receiving servers share the same keys as the originating server, the token can be decrypted to

obtain the user information, which then is validated to make sure that it has not expired and that the user

information in the token is valid in its registry. On successful validation, the resources in the receiving

servers are accessible after the authorization check.

Each server must have valid credentials. When the credentials expire, the server is required to

communicate to the user registry to authenticate. User registry outages can cause server processes to

hang, requiring them to be restarted to recover. Extending the time the LTPA token remains cached

reduces this risk, but does present a slightly increased security risk to be considered when defining your

security policies.

All of the WebSphere Application Server processes in a cell (deployment manager, nodes, application

servers) share the same set of keys. If key sharing is required between different cells, export them from

one cell and import them to the other. For security purposes, the exported keys are encrypted with a

random generated key and a user-defined password is used to protect the keys. This same password is

needed when importing the keys into another cell. The password is only used to protect the keys and is

not used to generate the keys.

WebSphere Application Server supports the LTPA, Kerberos and the Simple WebSphere Authentication

Mechanism (SWAM) protocols.

Note: SWAM is deprecated in WebSphere Application Server Version 7.0 and will be removed in a future

release.

When security is enabled during profile creation time, LTPA is configured by default.

Chapter 5. Authenticating users 227

LTPA requires that the configured user registry be a centrally shared repository such as LDAP or a

Windows domain-type registry so that users and groups are the same, regardless of the machine.

The use of LTPA with the local OS user registry is only applicable to configurations where all of the

servers reside on the same system.

Lightweight Third Party Authentication key sets and key set groups

Key set groups contain lists of key sets and Lightweight Third Party Authentication (LTPA) key generation

schedules. Each key set contains key references to keys in key stores. To generate keys automatically,

each key set must be a member of a key set group.

The keys for some key configurations must be generated together. The LTPA key pair is referenced in one

key set while the secret or private key is in a separate key set. When the key set group is created, the two

key sets are added as members of the key set group. Key set group settings determine whether the keys

for both key sets are generated together automatically or manually.

The key set group contains the following attributes:

v Member key sets

v Choice of either manual or automatic key generation in the member key sets

v Schedule for automatically generating keys

Configuring the Lightweight Third Party Authentication mechanism

You must configure Lightweight Third Party Authentication (LTPA) or Kerberos when you set up security for

the first time.

1. Open the administrative console.

Type http://server_name:port_number/ibm/console to access the administrative console in a Web

browser.

Port 9060 is the default port number for accessing the administrative console. During installation,

however, you might have specified a different port number. Use the appropriate port number.

2. Click Security > Global security > Authentication mechanisms and expiration.

3. Click LTPA.

4. Select the appropriate group from the Key set group field that contains your public, private, and

shared LTPA keys. These keys are used to encrypt and decrypt data that is sent between servers. You

can access these key set group configurations using the Key set group link. In the Key set group

configuration, you can indicate whether to automatically generate new keys and when to generate

them.

5. Enter a positive integer value in the Authentication cache timeout field. This timeout value refers to

how long an LTPA token is valid in minutes. The token contains this expiration time so that any server

that receives the token can verify that the token is valid before proceeding further. When the token

expires, the user must log in again. An optimal value for this field depends on your configuration.

However, the default value is 10 minutes.

6. Enter a positive integer in the Timeout value for forwarded credentials between servers field. This

value refers to how long the server credentials from another server are valid before they expire. The

default value is 120 minutes. The value in the Timeout value for forwarded credentials between

servers field must be greater than the value in the Authentication cache timeout field.

7. Enter a password in the Password field, which is used to protect the generated keys that are used to

encrypt and decrypt the LTPA keys from the SSO properties file. The password is not used to generate

keys, only to protect them. During import, this password should match the password used to export the

keys at another LTPA server (for example, another application server Cell, Lotus Domino Server, and

so on). During export, remember this password in order to provide it during the import operation.

Single sign-on across cells can be provided by sharing keys and passwords. To share the keys and

password, log on to one cell, specify a key file, and click Export keys. Then, log on to the other cell,

specify the key file, and click Import keys.

228 Securing applications and their environment

8. Click Apply or OK. The LTPA configuration is now set. Do not generate the LTPA keys in this step

because they are automatically generated later. Proceed with the rest of the steps that are required to

enable security, and start with single sign-on (SSO), if it is required.

9. Complete the information in the Security > Global security panel and click OK. The LTPA keys are

generated automatically the first time. Do not generate the keys manually.

Results

The previous steps configured LTPA.

What to do next

After configuring LTPA, you can also complete the following tasks:

1. Generate key files. For more information, see “Generating Lightweight Third Party Authentication keys”

on page 232.

2. Export key files. For more information, see “Exporting Lightweight Third Party Authentication keys” on

page 233.

3. Import key files. For more information, see “Importing Lightweight Third Party Authentication keys” on

page 233.

4. Manage LPTA keys from multiple cells. For more information, see tsec_sslmanagelptakeys.dita.

5. If you are enabling security, you can also enable single sign-on (SSO). See:

v “Configuring single sign-on capability with Enterprise Identity Mapping” on page 330

v “Configuring single sign-on capability with Tivoli Access Manager or WebSEAL” on page 343
6. If you generated a new set of keys or imported a new set of keys, verify that the keys are saved to the

master configuration by clicking Save at the top of the panel. Because LTPA authentication uses

time-sensitive tokens, verify that the time, date, and time zone are synchronized among all of the

product servers that are participating in the protected domain. Changes to the time, date, and time

zone are done independently from WebSphere Application Server. If the clock skew is too high

between servers, the LTPA token seems prematurely expired and causes authentication or validation

failures.

Authentication mechanisms and expiration

Use this page to specify the shared keys and configure the authentication mechanism that is used to

exchange information between servers. You can also use this page to specify the amount of time that the

authentication information remains valid and specify the single sign-on configuration.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Authentication mechanisms and expiration > LTPA.

After you configure the properties on this page, complete the following steps:

1. Click Security > Global security.

2. Under Available realm definitions, verify that the appropriate registry is configured.

3. Click Apply. When security is enabled and any of these properties change, return to the Global

security panel and click Apply to validate the changes.

Key set group:

Specifies groups of public, private, and shared keys. These key groups enable the application server to

manage multiple sets of Lightweight Third Party Authentication (LTPA) keys.

Generate Keys:

Chapter 5. Authenticating users 229

tsec_sslmanagelptakeys.dita

Specifies whether to generate a new set of LTPA keys in the configured keystore, and to update the

runtime with the new keys. By default, LTPA keys are regenerated on a schedule every 90 days,

configurable to the day of the week.

 Each new set of LTPA keys is stored in the keystore associated with the key set group. A maximum

number of keys (or even one) can be configured. However, it is recommended to have at least two keys;

the old keys can be used for validation while the new keys are being distributed.

This step is not necessary during security enablement. A default set of keys is created during the first

server startup. If any nodes are down during a key generation event, the nodes should be synchronized

with the Deployment Manager before restart.

Authentication cache timeout:

Specifies the time period at which the authenticated credential in the cache expires. Verify that this time

period is less than the value for the Timeout value for forwarded credentials between servers field.

 If the application server infrastructure security is enabled, the security cache timeout can influence

performance. The timeout setting specifies how often to refresh the security-related caches. Security

information pertaining to beans, permissions, and credentials is cached. When the cache timeout expires,

all cached information not accessed within the timeout period is purged from the cache. Subsequent

requests for the information result in a database lookup. Sometimes, acquiring the information requires

invoking a Lightweight Directory Access Protocol (LDAP)-bind or native authentication. Both invocations

are relatively costly operations for performance. Determine the best trade off for the application, by looking

at usage patterns and security needs for the site.

The default security cache timeout value is 10 minutes. If you have a small number of users, it should be

set higher than that, or if a large number of users, it should be set lower.

The LTPA timeout value should not be set lower than the security cache timeout. It is also recommended

that the LTPA timeout value should be set higher than the orb request timeout value. However, there is no

relation between the security cache timeout value and the orb request timeout value.

In a 20-minute performance test, setting the cache timeout so that a timeout does not occur yields a 40%

performance improvement.

 Data type Integer

Units Minutes and seconds

Default 10 minutes

Range: Greater than 30 seconds

Timeout value for forwarded credentials between servers:

Specifies the period of time after which forwarded credentials expire.

 Specify a value for this field that is greater than the authentication cache timeout value.

 Default 120 minutes

Note: The Timeout value for forwarded credentials between servers should be an integer between the

range of 5 through 35971.

Password:

230 Securing applications and their environment

Enter a password which will be used to encrypt and decrypt the LTPA keys from the SSO properties file.

During import, this password should match the password used to export the keys at another LTPA server

(for example, another application server Cell, Lotus Domino Server, and so on). During export, remember

this password in order to provide it during the import operation.

 After the keys are generated or imported, they are used to encrypt and decrypt the LTPA token. Whenever

the password is changed, a new set of LTPA keys are automatically generated when you click OK or

Apply. The new set of keys is used after the configuration changes are saved.

 Data type String

Confirm password:

Specifies the confirmed password that is used to encrypt and decrypt the LTPA keys.

 Use this password when importing these keys into other application server administrative domain

configurations and when configuring SSO for a Lotus Domino server.

 Data type String

Fully qualified key file name:

Specifies the name of the file that is used when importing or exporting keys.

 Enter a fully qualified key file name, and click Import Keys or Export Keys.

 Data type String

Internal server ID:

Specifies the server ID that is used for interprocess communication between servers. The server ID is

protected with an LTPA token when sent remotely. You can edit the internal server ID to make it identical

to server IDs across multiple application server administrative domains (cells). By default this ID is the cell

name.

 This internal server ID should only be used in a Version 6.1 or higher environment. For mixed-version

Cells, you should convert to using a server user ID and server password for interoperability.

To switch back to the server user ID and password for interoperability, complete the following steps:

1. Click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select a user

registry, and click Configure.

3. Select the Server identity that is stored in the repository option and type a valid registry ID and

password.

 Data type String

Import Keys:

Specifies whether the server imports new LTPA keys.

 To support single sign-on (SSO) in the application server product across multiple application server

domains (cells), share the LTPA keys and the password among the domains. You can use the Import

Chapter 5. Authenticating users 231

Keys option to import the LTPA keys from other domains. The LTPA keys are exported from one of the

cells to a file. To import a new set of LTPA keys, complete the following steps:

1. Enter the appropriate password in the Password and Confirm password fields.

2. Click OK and click Save.

3. Enter the directory location where the LTPA keys are located in the Fully qualified key file name field

prior to clicking Import keys.

4. Do not click OK or Apply, but save the settings.

Export Keys:

Specifies whether the server exports LTPA keys.

 To support single sign-on (SSO) in the WebSphere product across multiple application server domains

(cells), share the LTPA keys and the password among the domains. Use the Export Keys option to export

the LTPA keys to other domains.

To export the LTPA keys, make sure that the system is running with security enabled and is using LTPA.

Enter the file name in the Fully qualified key file name field and click Export Keys. The encrypted keys

are stored in the specified file.

Generating Lightweight Third Party Authentication keys

WebSphere Application Server generates Lightweight Third Party Authentication (LTPA) keys automatically

during the first server startup. You can generate additional keys as you need them in the Authentication

mechanisms and expiration panel.

Before you begin

About this task

Complete the following steps to generate new LTPA keys in the administrative console.

1. Access the administrative console.

Type http://server_name:port_number/ibm/console to access the administrative console in a Web

browser.

2. Verify that all the WebSphere Application Server processes are running, including the cell, nodes, and

application servers.

Note: If any of the servers are down at the time of key generation and then restarted later, these

servers might contain old keys. Copy the new set of keys to these servers to restart them after

you generate them.

3. Click Security > Global security > Authentication mechanisms and expiration.

4. Click LTPA.

5. Click Generate keys to generate a new set of LTPA keys in the local keystore and update the runtime

with the new keys. By default, LTPA keys are regenerated on a schedule every 90 days, configurable

to the day of the week. Each new set of LTPA keys is stored in the keystore that is associated with the

key set group. The same password that is already stored in the configuration is used when you

generate new keys.

Note: This step is not necessary when you enable security because, by default, a set of keys is

created during the first server startup. However, the keystore should have at least two keys: the

old keys can be used for validation while the new keys are being distributed. If any nodes are

down during a key generation event, the nodes should be synchronized with the Deployment

Manager before restarting the server.

6. Restart the server for the changes to become active.

232 Securing applications and their environment

Results

After WebSphere Application Server generates and saves a new set of keys, the generated keys are not

used in the configuration until WebSphere Application Server is restarted. Token generation uses the keys

that were last imported. To view the latest key version, see “Changing the number of active LTPA keys” on

page 236.

What to do next

Exporting Lightweight Third Party Authentication keys

To support single sign-on (SSO) in WebSphere Application Server across multiple WebSphere Application

Server domains or cells, you must share the Lightweight Third Party Authentication (LTPA) keys and the

password among the domains.

Before you begin

Make sure that the time in the domains is similar so that you do not mistakenly interpret the tokens as

expired between the cells.

About this task

Complete the following steps in the administrative console to export key files for LTPA so that they can be

shared across domains:

1. Type http://server_name:port_number/ibm/console in a Web browser to access the administrative

console.

2. Click Security > Global security > Authentication mechanisms and expiration.

3. Click LTPA.

4. In the Password and Confirm password fields, enter the password that is used to encrypt the LTPA

keys. Remember the password so that you can use it later when the keys are imported into the other

cell.

5. In the Fully qualified key file name field, specify the fully qualified path to the location where you want

the exported LTPA keys to reside. You must have write permission to this file.

6. Click Export keys to export the keys to the location that you specified in the Fully qualified key file

name field.

7. Specify the Internal server ID that is used for interprocess communication between servers. The

server ID is protected with an LTPA token when sent remotely. You can edit the internal server ID to

make it identical to server IDs across multiple application server administrative domains (cells). By

default this ID is the cell name.

8. Click OK and Save.

Results

You can share LTPA keys and passwords among domains on WebSphere Application Server.

What to do next

After exporting the keys from one cell, you must import those keys into the other cell. For more

information, see “Importing Lightweight Third Party Authentication keys”

Importing Lightweight Third Party Authentication keys

To support single sign-on (SSO) in WebSphere Application Server across multiple WebSphere Application

Server domains or cells, you must share the LTPA keys and the password among the domains. You can

import LTPA keys from other domains and export keys to other domains.

Chapter 5. Authenticating users 233

Before you begin

After you export LTPA keys from one cell, you must import these keys into another cell. To import keys,

you must know the password for the exported key file to access the LTPA keys. Verify that key files are

exported from one of the cells into a file.

About this task

Complete the following steps in the administrative console to import key files for LTPA.

1. Access the administrative console for the cell that will receive the imported keys by typing

http://server_name:port_number/ibm/console in a Web browser.

2. Click Security > Global security > Authentication mechanisms and expiration.

3. Click LTPA.

4. In the Password and Confirm password fields, enter the password that is used to decrypt the LTPA

keys . This password must match the password that was used in the cell from which you are importing

the keys.

5. In the Fully qualified key file name field, specify the fully qualified path to the location where the

signer keys reside. You must have write permission to this file.

6. Click Import keys to import the keys to the location that you specified in the Fully qualified key file

name field.

7. Click OK and Save to save the changes to the master configuration. It is important to save the new set

of keys to match the new password so that no problems are encountered when starting the servers

later.

What to do next

After a new set of keys is generated and saved, the generated keys are not used in the configuration until

WebSphere Application Server is restarted.

Note: After you enter the password in the Password and Confirm password fields and click Save, the

password is not redisplayed on the administrative console panel.

Disabling automatic generation of Lightweight Third Party Authentication keys

You can disable the automatic generation of new Lightweight Third Party Authentication (LTPA) keys for

key sets that are members of a key set group. Automatic generation creates new keys on a schedule that

you specify when you configure a key set group, which manages one or more key sets. WebSphere

Application Server uses key set groups to automatically generate cryptographic keys or multiple

synchronized key sets.

Before you begin

You must know the name of the key set group and the management scope where the key set group is

defined.

About this task

LTPA keys are used to encrypt the LTPA token.

Note: You might want to disable the automatic generation of these keys so that you can generate them

on a schedule. You should definitely disable automatic key generation if you disable node automatic

synchronization. This disabling eventually causes the LTPA keys to fall out of synchronization

between the deployment manager and the node agents. Also, you should disable automatic key

generation if you import or export LTPA keys to or from another cell. The automatic generation of

LTPA keys changes keys over time and causes the cells to fall out of synchronization.

234 Securing applications and their environment

The following steps are needed to complete this task in the administrative console.

1. Click Security > SSL certificate and key management > Manage endpoint security

configurations.

2. Expand the tree to the inbound or outbound management scope that contains the key set group, and

then click the scope link.

3. Under Related Items, click Key Set Groups.

4. Click the key set group that you want to disable.

5. Clear the Automatically generate keys option.

6. Click OK and Save to save the changes to the master configuration.

7. Start the server again for the changes to become active.

Results

You have disabled the automatic generation of LTPA keys for the key sets in the key set group.

Note: You can generate keys manually at any time by completing the following steps:

1. Open the key set group collection.

2. Select the check box beside the key set group.

3. Click Generate keys.

Managing LTPA keys from multiple WebSphere Application Server cells

You can specify the shared keys and configure the authentication mechanism that is used to exchange

information between servers to import and export LTPA keys across multiple WebSphere Application

Server cells.

Before you begin

You must be sure that the exported key file for the multiple cells is accessible on the host where

WebSphere Application Server is running. Also, you must know the password that was used when the

keys were exported.

Note: You should disable automatic key generation if you import or export keys to or from another cell.

This disabling causes the imported keys to get lost and the exported keys to no longer interoperate

with this cell over time.

About this task

Complete the following steps to manage LTPA keys using the administrative console.

1. Access the administrative console.

Type http://server_name:port_number/ibm/console to access the administrative console in a Web

browser.

2. Verify that all of the WebSphere Application Server processes are running, including cells, nodes, and

all of the application servers. If any of the servers are down at the time of key generation and then

brought back up later, these servers might contain old keys. Copy the new set of keys to these

servers, then bring them back up.

3. Click Security > Global security > Authentication mechanisms and expiration.

4. Click LTPA.

5. Type the password for the LTPA keys in the Password field. Enter a password that is used to encrypt

and decrypt the LTPA keys from the single sign-on (SSO) properties file. During import, this password

should match the password that is used to export the keys at another LTPA server. During export,

remember this password in order to provide it during the import operation.

6. Type the password again in the Confirm password field.

Chapter 5. Authenticating users 235

7. Select from among the following options:

v To support SSO in the WebSphere product across multiple application server domains (cells), you

can share the LTPA keys and the password among the domains. Before exporting, make sure that

security is enabled and using LTPA on the system that is running. For more information, see

“Exporting Lightweight Third Party Authentication keys” on page 233.

v To support SSO in the application server product across multiple application server domains (cells),

you can share the LTPA keys and the password among the domains. For more information, see

“Importing Lightweight Third Party Authentication keys” on page 233.

v To import LTPA keys for the current cell if they were previously exported, see “Importing Lightweight

Third Party Authentication keys” on page 233.

8. Start the server again for any changes you make to become active.

Results

The shared LTPA keys are now available for WebSphere Application Server to use for secure connections.

What to do next

After the keys are generated or imported, they are used to encrypt and decrypt the LTPA token. To view

the latest key version, see “Changing the number of active LTPA keys.”

Changing the number of active LTPA keys

Key sets manage Lightweight Third Party Authentication (LTPA) keys in a key store that is based on a key

alias prefix. A key alias prefix is automatically generated when you generate a new key and store it in a

key store. Key stores can contain multiple versions of keys for any given key alias prefix. You can specify

a maximum number of active keys in the key set configuration.

Before you begin

You must know the name of the key set group and the management scope where the key set group is

defined. Complete the following steps in the administrative console.

About this task

LTPA keys are used to encrypt the LTPA token. You might want to set a specific number of active keys that

WebSphere Application Server returns when the server queries for keys for a particular key set. The

following steps are needed to complete this task in the administrative console.

1. Click Security > SSL certificate and key management > Manage endpoint security

configurations.

2. Expand the tree to the inbound or outbound management scope that contains the key set group, and

then click the scope link.

3. Under Related Items, click Key Sets.

4. Click the key set that you want to modify.

5. In the Maximum number of keys referenced field, type a numerical value for the maximum number

of keys that you want to activate.

6. Click OK and Save to save the changes to the master configuration.

7. Start the server again for the changes to become active. WebSphere Application Server activates only

the number of recent keys that you specified.

Results

The Maximum number of keys referenced value determines how many active keys are returned when

the server queries for keys for the selected key set.

236 Securing applications and their environment

What to do next

You can click Active key history in the Key set panel to display the keys that are active for this key set.

Kerberos (KRB5) authentication mechanism support for security

The Kerberos authentication mechanism enables interoperability with other applications (such as .NET,

DB2 and others) that support Kerberos authentication. It provides single sign on (SSO) end-to-end

interoperable solutions and preserves the original requester identity.

Note: Security support for Kerberos as the authentication mechanism has been added for this release of

WebSphere Application Server. Kerberos is a mature, flexible, open, and very secure network

authentication protocol. Kerberos includes authentication, mutual authentication, message integrity

and confidentiality and delegation features.

The following sections describe Kerberos authentication in more detail:

v “What is Kerberos?”

v “The benefits of having Kerberos as an authentication mechanism”

v “Kerberos authentication in a single Kerberos realm environment” on page 238

v “Kerberos authentication in a cross or trusted Kerberos realm environment” on page 239

v “Setting up Kerberos as the authentication mechanism for WebSphere Application Server” on page 243

v “Setting up Kerberos as the authentication mechanism for the pure Java client” on page 244

What is Kerberos?

Kerberos has withstood the test of time and is now at version 5.0. Kerberos enjoys wide spread platform

support (for example, for Windows, Linux, Solaris, AIX®, and z/OS) partly because the Kerberos source

code is freely downloadable from the Massachusetts Institute of Technology (MIT) where it was originally

created.

Kerberos is composed of three parts: a client, a server, and a trusted third party known as the Kerberos

Key Distribution Center (KDC). The KDC provides authentication and ticket granting services.

The KDC maintains a database or repository of user accounts for all of the security principals in its realm.

Many Kerberos distributions use file-based repositories for the Kerberos principal and policy DB and others

use Lightweight Directory Access Protocol (LDAP) as the repository.

Kerberos does not support any notion of groups (that is, iKeys groups or groups of users or principals).

The KDC maintains a long-term key for each principal in its accounts database. This long-term key is

derived from the password of the principal. Only the KDC and the user that the principal represents should

know what the long-term key or password is.

The benefits of having Kerberos as an authentication mechanism

The benefits of having Kerberos as the authentication mechanism for WebSphere Application Server

include the following:

v The Kerberos protocol is a standard. This enables interoperability with other applications (such as .NET,

DB2 and others) that support Kerberos authentication. It provides single sign on (SSO) end-to-end

interoperable solutions and preserves the original requester identity.

v When using Kerberos authentication, the user clear text password never leaves the user machine. The

user authenticates and obtains a Kerberos ticket granting ticket (TGT) from a KDC by using a one-way

hash value of the user password. The user also obtains a Kerberos service ticket from the KDC by

using the TGT. The Kerberos service ticket that represents the client identity is sent to WebSphere

Application Server for authentication.

Chapter 5. Authenticating users 237

v A Java client can participate in Kerberos SSO using the Kerberos credential cache to authenticate to

WebSphere Application server.

v J2EE, Web Service, .NET and Web browser clients that use the HTTP protocol can use the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) token to authenticate to the WebSphere

Application Server and participate in SSO by using SPNEGO Web authentication. Support for SPNEGO

as the Web authentication service is new to this release of WebSphere Application Server.

Read about “Single sign-on for HTTP requests using SPNEGO Web authentication” on page 280 for

more information.

v WebSphere Application Server can support both Kerberos and Lightweight Third-Party Authentication

(LTPA) authentication mechanisms at the same time.

v Server-to-server communication using Kerberos authentication is provided.

Kerberos authentication in a single Kerberos realm environment

WebSphere Application Server supports Kerberos authentication in a single Kerberos realm environment

as shown in the following figure:

WebSphere Application Server now supports SPNEGO tokens in the HTTP header, Kerberos tokens, LTPA

tokens and BasicAuth (GSSUP) for authentication. However, to provide end-to-end Kerberos and

end-to-end SPNEGO to Kerberos solutions the following must occur:

v A client must obtain a ticket-granting ticket (TGT) with forwardable, address-less and renewable flags.

The renewable flag is optional.

Web services client

Web browser client

.NET client

Administrative
client

J2EE aplication/EJB client

Web services client

Administrative
client

A client

WAS

SPN
EG

O
in

H
TTP

Kerberos token

Bas
ic
Aut

h
(G

SSU
P)

LT
PA token

Kerberos token

Kerberos token

.NET Server

WebSphere
Application

Server

WASKDC
Realm1

DB2

WebSphere
Application

Server

WebSphere
Application

Server

Figure 5. Kerberos authentication in a single Kerberos realm environment

238 Securing applications and their environment

v The Enabled delegation of Kerberos credentials option must be selected. Read about “Configuring

Kerberos as the authentication mechanism using the administrative console” on page 244 for more

information about this option.

When the WebSphere Application Server receives a Kerberos or SPNEGO token for authentication, it uses

the Kerberos service principal (SPN) to establish a security context with a requestor. If a security context is

established, the WebSphere Kerberos login module extracts a client GSS delegation credential, creates a

Kerberos authentication token base on the Kerberos credential, and places them in the client subject with

other tokens.

If the server must use a downstream server or back-end resources, it uses the client GSS delegation

credential. If a downstream server does not support Kerberos authentication, the server uses the LTPA

token instead of the Kerberos token. If a client does not include a GSS delegation credential in the

request, the server uses the LTPA token for the downstream server . The Kerberos authentication token

and principal are propagated to the downstream server as part of the security attributes propagation

feature.

If the WebSphere Application Server and the KDC do not use the same user registry, then a JAAS custom

login module might be required to map the Kerberos principal name to the WebSphere user name.

Kerberos authentication in a cross or trusted Kerberos realm environment

WebSphere Application Server also supports Kerberos authentication in a cross or trusted Kerberos realm

environment as shown in the following figure:

Web services client

Web browser client

.NET client

Administrative
client

J2EE aplication/EJB client

Web services client

Administrative
client

A client

SPN
EG

O
in

H
TTP

Kerberos token

Bas
ic
Aut

h
(G

SSU
P)

LT
PA token

Kerberos token

Kerberos token

.NET Server

WebSphere
Application

Server

WASKDC
Realm1

DB2

WASKDC
Realm2

Trusted

WebSphere
Application

Server

WebSphere
Application

Server

Figure 6. Kerberos authentication in a cross or trusted Kerberos realm environment

Chapter 5. Authenticating users 239

WebSphere Application Server now supports SPNEGO tokens in the HTTP header, Kerberos tokens, LTPA

tokens and BasicAuth (GSSUP) for authentication. However, to provide end-to-end Kerberos and

end-to-end SPNEGO to Kerberos solutions the following must occur:

v A client must obtain a ticket-granting ticket (TGT) with forwardable, address-less and renewable flags.

The renewable flag is optional.

v The Enabled delegation of Kerberos credentials option must be selected. Read about “Configuring

Kerberos as the authentication mechanism using the administrative console” on page 244 for more

information about this option.

When the WebSphere Application Server receives a Kerberos or SPNEGO token for authentication, it uses

the Kerberos service principal (SPN) to establish a security context with a requestor. If a security context is

established, the WebSphere Kerberos login module always extracts a client GSS delegation credential and

Kerberos ticket and places them in the client subject with other tokens.

If the server must use a downstream server or backend resources, it uses the client GSS delegation

credential. If a downstream server does not support Kerberos authentication, the server uses the LTPA

token instead of the Kerberos token. If a client does not include a GSS delegation credential in the

request, the server uses the LTPA token for the downstream server . The Kerberos authentication token

and principal are propagated to the downstream server as part of the security attributes propagation

feature.

If the WebSphere Application Server and the KDC do not use the same user registry, then a JAAS custom

login module might be required to map the Kerberos principal name to the WebSphere user name.

In this release of WebSphere Application Server, the new security multiple domains only support Kerberos

at the cell level. All WebSphere application servers must be used by the same Kerberos realm. However,

the clients and or backend resources (such as DB2, .NET server, and others) that support Kerberos

authentication can have their own Kerberos realm. Only peer-to-peer and transitive trust cross-realm

authentication are supported. The following steps must be performed for trusted Kerberos realms:

v The Kerberos trusted realm setup must be done on each of the Kerberos KDCs. See your Kerberos

Administrator and User’s guide for more information about how to set up a Kerberos trusted realm.

v The Kerberos configuration file might need to list the trusted realm.

v Add Kerberos trusted realms in the administrative console by clicking Global security > CSIv2

outbound communications > Trusted authentication realms - outbound.

The following figure shows a Java and administrative client that uses a Kerberos credential cache to

authenticate to WebSphere Application Server with a Kerberos token in a trusted Kerberos realm:

240 Securing applications and their environment

In the figure above, the following events occur:

1. The client uses the Kerberos credential cache if it exists.

2. The client requests a cross realm ticket (TGS_REQ) for Realm A from the Realm B KDC using the

Kerberos credential cache.

3. The client uses a cross realm ticket to request Kerberos service ticket for server1 (TGS_REQ) from

the Realm A KDC.

4. The Kerberos token returned from the KDC (TGS_REP) is added to the CSIv2 message

authentication token and sent to server1 for authentication.

5. The server calls Krb5LoginModuleWrapper to establish security context with the client using the server

Kerberos Service Principal Name (SPN) and keys from the krb5.keytab file. If the server successfully

establishes a security context with the client, it always extracts the client GSS delegation credential

and tickets and places them in the client subject.

6. Optionally, a custom JAAS Login Module might be needed if the KDC and WebSphere Application

server do not use the same user registry.

7. The user is validated with the WAS user registry.

8. The results (success or failure) are returned to the client.

The following figure shows a Java and administrative client that uses a Kerberos principal name and

password to authenticate to WebSphere Application server with a Kerberos token:

Krb5LoginModule
ClientWrapper

Client machine

WebSphere Application
Server User Registry

WSKrb5LoginModule

Krb5LoginModule
Wrapper

JAAS
krb5LoginModule

CSIv2
Server-RI

Security Server
Authenticate()

krb5.conf

krb5.keytab

Custom JAAS
LoginModule

CSIv2 KRB
authentication

token

server1

WebSphere Application Server
Security Domain A
Kerberos Realm A

4.

8.
6.

5.Java Client
RMI/IIOP

KRB5
cache

krb5.conf

Realm B
KDC

2.

1.

Realm A
KDC

Trusted

3.

7.

Figure 7. Using a Kerberos credential cache to authenticate to WebSphere Application Server with a Kerberos token in

a trusted Kerberos realm

Chapter 5. Authenticating users 241

In the figure above, the following events occur:

1. The client obtains the Kerberos granting ticket (TGT) from the KDC.

2. The client obtains a Kerberos service ticket for server1 (TGS_REQ) using the TGT.

3. The Kerberos token returned from the KDC (TGS_REP) is added to the CSIv2 message

authentication token and sent to server1 for authentication.

4. The server calls Krb5LoginModuleWrapper to establish security context with the client using the server

Kerberos Service Principal Name (SPN) and keys from the krb5.keytab file. If the server successfully

establishes a security context with the client, it always extracts the client GSS delegation credential

and tickets and places them in the client subject.

5. Optionally, a custom JAAS Login Module might be needed if the KDC and WebSphere Application

server do not use the same user registry.

6. The user is validated with the WAS user registry.

7. The results are returned to the client.

The following figure shows server-to-server communications:

Krb5LoginModule
ClientWrapper

Client machine

Realm A
KDC

WebSphere Application
Server User Registry

WSKrb5LoginModule

Krb5LoginModule
Wrapper

JAAS
krb5LoginModule

CSIv2
Server-RI

Security Server
Authenticate()

krb5.conf

krb5.keytab

Custom JAAS
LoginModule

CSIv2 KRB
authentication

token

server1

WebSphere Application Server
Security Domain A
Kerberos Realm A

3.

7.

6.

5.

4.Java Client
RMI/IIOP

krb5.conf

Realm A
KDC

2.1.

Figure 8. Using a Kerberos principal name and password to authenticate to WebSphere Application Server with a

Kerberos token

242 Securing applications and their environment

When a WebSphere application server starts up, it uses the server ID and password to login to the KDC

and then obtains the TGT. It then uses the TGT to request a service ticket to communicate with another

server. If a WebSphere application server uses the internal server ID instead of the server ID and

password, server-to-server communication is done using an LTPA token. In the figure above, the following

events occur:

1. WebSphere Application Server 1 invokes a method, foo(), on an Enterprise JavaBeans (EJB) running

in WebSphere Application Server 2.

2. Server1 obtains a Kerberos service ticket for Server2 (TGS_REQ) using the Server1 TGT.

3. Same as step 2.

4. The Kerberos token returned from a KDC (TGS_REP) is added to the CSIv2 message authentication

token and sent to Server2 for authentication.

5. Server2 calls the acceptSecContext() method to establish security context with server1 using the

server2 Kerberos Service Principal Name (SPN) and keys from the krb5.keytab file. If server2

successfully establishes a security context with server1, it always extracts the server1 GSS delegation

credential and tickets and places them in the subject.

6. The server id is validated with the WebSphere user registry.

Setting up Kerberos as the authentication mechanism for WebSphere Application

Server

You must perform the following steps in order to set up Kerberos as the authentication mechanism for

WebSphere Application Server.

Note: Kerberos authentication mechanism on the server side must be done by the system administrator

and on the Java client side by end users. The Kerberos keytab file must to be protected.

1. Ensure that the KDC is configured.

See your Kerberos Administrator and User’s guide for more information.

2. The IBM implementation of the Java Generic Security Service (JGSS) and KRB5 require a Kerberos

configuration file (krb5.conf or krb5.ini) on each node or Java virtual machine (JVM). In this release of

WebSphere Application Server, this configuration file should be placed in the config/cells/<cell_name>

directory so that all application servers can access this file. If you do not have a Kerberos configuration

file, use a wsadmin command to create one.

WebSphere Application Server 1

Servlet, JSP, EJB

CSIv2
Client-RI

Krb5WSSecurityContextlmpl
initSecContext()

JGSS

2.

WebSphere Application Server 2

EJB

CSIv2
Client-RI

Krb5WSSecurityContextlmpl
acceptSecContext()

JGSS

5.

User Registry

6.

KDC

3.

4.

CSIv2/RMI/IIOP
Kerberos

GSS initial context token

1.

foo()

Figure 9. Server to server communications

Chapter 5. Authenticating users 243

Read about “Creating a Kerberos configuration file” on page 247 for more information.

3. Set up Kerberos as the authentication mechanism for WebSphere Application server on the server side

by using the administrative console.

Read about “Configuring Kerberos as the authentication mechanism using the administrative console”

for more information.

For information about how to set up Kerberos as the authentication mechanism for WebSphere

Application server on the server side by using wsadmin commands, read about “Kerberos

authentication commands” on page 1234.

4. A custom JAAS Login Module might be needed if the KDC and WebSphere Application server do not

use the same user registry. Read about “Mapping of a client Kerberos principal name to the

WebSphere user registry ID” on page 254 for more information.

Setting up Kerberos as the authentication mechanism for the pure Java client

End users can set up Kerberos authentication mechanism for the pure Java client.

Read about “Configuring a Java client for Kerberos authentication” on page 258 for more information.

Configuring Kerberos as the authentication mechanism using the

administrative console

You can use the administrative console to configure Kerberos as the authentication mechanism for the

application server. When you have entered and applied the required information to the configuration, the

Kerberos service principal name is formed as <service name>/<fully qualified

hostname>@KerberosRealm, and is used to verify incoming Kerberos token requests.

Before you begin

Read about “Kerberos (KRB5) authentication mechanism support for security” on page 237 for a better

understanding of how to set up Kerberos as the authentication mechanism in this version of WebSphere

Application Server. You must have completed the steps indicated in this information before you attempt to

configure Kerberos as the authentication mechanism using the administrative console.

The following items are required before you attempt to configure Kerberos as the authentication

mechanism using the administrative console:

v If you do not already have a Kerberos configuration file (krb5.ini or krb5.conf), use the

createkrbConfigFile command task to create the Kerberos configuration file. Read about “Creating a

Kerberos configuration file” on page 247 for more information.

v You must have a Kerberos keytab file (krb5.keytab) that contains a Kerberos service principal name

(SPN), <service name>/<fully qualified hostname>@KerberosRealm, for each machine that run

WebSphere application servers. The service name can be anything; the default value is WAS.

For example, if you have two application server machines, host1.austin.ibm.com and

host2.austin.ibm.com, the Kerberos keytab file must contain the <service name>/host1.austin.ibm.com

and service name>/host2.austin.ibm.com SPNs and their Kerberos keys.

Kerberos will only load and use one keytab file per session. For example, if Kerberos is configured, and

you want to use a new keytab file with the same name and location as the previous keytab file, you

must first restart the server to use the new keytab file.

If you are configuring Kerberos for the first time, and you accidentally use a bad keytab file, you must

unconfigure Kerberos and restart the server before you can configure Kerberos again using a new

keytab file.

You must first enable global and application security.

244 Securing applications and their environment

If Kerberos is configured in global security, but you want to configure Simple and Protected GSS-API

Negotiation (SPNEGO) on a domain using a different Kerberos realm, you must first use the klist -m

command to merge existing keytab files into one keytab file. Use that merged keytab file to configure

Kerberos and SPNEGO on global and domain security

1. In the administrative console, click Security > Global security.

2. From Authentication, click Kerberos configuration.

3. Enter your Kerberos service name. By convention, a Kerberos service principal is divided into three

parts: the primary, the instance, and the Kerberos realm name. The format of the Kerberos service

principal name is <serviceName>/<fully qualified hostName>@KERBEROS_REALM. The service name is

the first part of the Kerberos service principal name. For example, in WAS/
test.austin.ibm.com@AUSTIN.IBM.COM, the service name is WAS. In this example, the keytab file must

have the Kerberos service principal name,WAS/test.austin.ibm.com@AUSTIN.IBM.COM, and its keys.

4. Enter the Kerberos configuration file name with its full path, or click Browse to locate it. The Kerberos

client configuration file, krb5.conf or krb5.ini, contains Kerberos configuration information, including

the locations of the Key Distribution Centers (KDCs) for the realm of interest. The krb5.conf file is the

default file name for all platforms except the Windows operating system, which uses the krb5.ini file.

5. Optional: Enter the Kerberos keytab file name with its full path, or click Browse to locate it. The

Kerberos keytab file contains one or more Kerberos service principal names and keys. The default

keytab file is krb5.keytab. It is important for hosts to protect their Kerberos keytab files by storing them

on the local disk, which makes them readable only by authorized users. Read about “Creating a

Kerberos service principal and keytab file” on page 251 for more information. If you do not specify this

parameter, the default keytab in the Kerberos configuration file is used.

6. Enter the name of your Kerberos realm in the Kerberos realm name field. In most cases, your realm

is your domain name in uppercase letters. If you do not specify this parameter, the default Kerberos

realm name in the Kerberos configuration file is used.

For example, a machine with the domain name of test.austin.ibm.com would usually have a Kerberos

realm name of AUSTIN.IBM.COM.

Note: The Kerberos realm name for the Microsoft KDC is an uppercase of the Microsoft Domain

Controller name.

7. Optional: Trim Kerberos realm from principal name is selected by default. You can deselect this

option if you want the suffix of the Kerberos principal name to be retained. This option specifies

whether the Kerberos login module removes the suffix of the principal user name, starting from the @

that precedes the Kerberos realm name. If this attribute is set to true, the suffix of the principal user

name is removed. If this attribute is set to false, the suffix of the principal name is retained. The

default value used is true.

8. Optional: Enable delegation of Kerberos credentials is selected by default. This option specifies

whether the Kerberos delegated credentials are to be stored in the subject by the Kerberos

authentication. This option also enables an application to retrieve the stored credentials and to

propagate them to other applications downstream for additional Kerberos authentication with the

credential from the Kerberos client.

Note: If this parameter is true, and the runtime cannot extract a client GSS delegation credential, then

a warning message is displayed.

9. Click OK.

Note: When you select Apply or OK the Kerberos authentication is automatically tested. If the

Kerberos configuration is not complete, a message is displayed that indicates authentication

failure.

Chapter 5. Authenticating users 245

Results

You have now configured and saved Kerberos as the authentication mechanism for WebSphere

Application Server.

What to do next

To enable SPNEGO, click SPNEGO web authentication enablement from Related Configuration.

SPNEGO Web authentication and Kerberos authentication use the same Kerberos client configuration and

keytab files.

Kerberos authentication

Use this page to configure and to verify Kerberos as the authentication mechanism for the application

server.

When you have entered and applied the required information to the configuration, the server principal

name is created from the service name, realm name, and host name, and is used to automatically verify

authentication to the Kerberos service.

When configured, Kerberos is the primary authentication mechanism. Configure Enterprise JavaBeans

(EJB) authentication to resources by accessing the resource references links on the application details

panel.

To view this administrative console page, click Security > Global security. Under Authentication, click

Kerberos configuration.

Note: When configuring Kerberos, if the configuration fails with an exception such as in the following

example:

org.ietf.jgss.GSSException, major code: 11, minor code: 0 major string: General failure,

unspecified at GSSAPI level minor string: Cannot get credential for

principal service WAS/test@AUSTIN.IBM.COM

the principal service must be in the format: <service name>/<fully qualified

hostname>@KerberosRealm. In the exception example, the fully qualified hostname is not specified,

which is why the failure occurs. For this failure, the hostname of the system is usually obtained

from the /etc/hosts file instead of from the Domain Name Server (DNS). On UNIX or Linux

systems, if the ″hosts″: line in the /etc/nsswitch.conf file is configured to first look in the hosts file

before it looks in DNS, the Kerberos configuration fails if the hosts file contains an entry for the

system that is not the fully qualified hostname.

Kerberos realm name:

The name of your Kerberos realm. In most cases, your realm is your domain name in uppercase letters.

For example, a machine with the domain name of test.austin.ibm.com typically has a Kerberos realm

name of AUSTIN.IBM.COM. If this field is left empty, then the realm name specified in the Kerberos

configuration file is used.

 Data type: String

Kerberos service name:

By convention, a Kerberos service principal is divided into three parts: the primary, the instance, and the

Kerberos realm name. The format of the Kerberos service principal name is service/<fully qualified

hostname>@KERBEROS_REALM.. The service name is the first part of the Kerberos service principal name. For

example, in WAS/test.austin.ibm.com@AUSTIN.IBM.COM, the service name is WAS.

246 Securing applications and their environment

Default: String

Kerberos configuration file with full path:

The Kerberos configuration file, krb5.conf or krb5.ini, contains client configuration information, including the

locations of the Key Distribution Centers (KDCs) for the realm of interest. The krb5.conf file is used for all

platforms except the Windows operating system, which uses the krb5.ini file.

 Data type: String

Kerberos keytab file name with full path:

Specifies the Kerberos keytab file name with its full path. You can click Browse to locate it. If this field is

left empty, then the keytab file name specified in the Kerberos configuration file is used.

 Data type: String

Trim Kerberos realm from principal name:

Specifies whether Kerberos removes the suffix of the principal user name, starting from the @ that

precedes the Kerberos realm name. If this attribute is set to true, the suffix of the principal user name is

removed. If this attribute is set to false, the suffix of the principal name is retained. The default value used

is true.

 Default:: Enabled

Enable delegation of Kerberos credentials:

Specifies whether the Kerberos delegated credentials are to be stored in the subject by the Kerberos

authentication.

 This option also enables an application to retrieve the stored credentials and to propagate them to other

applications downstream for additional Kerberos authentication with the credential from the Kerberos client.

Note: If this parameter is true, and the runtime cannot extract a client GSS delegation credential, then a

warning message is logged.

 Default:: Enabled

Creating a Kerberos configuration file

The Kerberos configuration file contains client configuration information, including the locations of Key

Distribution Centers (KDCs) for the realms of interest, defaults for the current Kerberos realm and

mappings of host names onto Kerberos realms.

Before you begin

About this task

Kerberos configuration settings, the Kerberos key distribution center (KDC) name, and realm settings for

both Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) Web authentication and Kerberos

authentication are provided in the Kerberos configuration file or through the java.security.krb5.kdc and

java.security.krb5.realm JVM system properties.

Chapter 5. Authenticating users 247

If you don’t have a Kerberos configuration file (krb5.ini or krb5.conf), you must first create a Kerberos

configuration file and place it in every instance in a cell using a wsadmin command. The following are the

default Kerberos configuration files and their locations:

v On a Windows platform, the default location is c:\winnt\krb5.ini.

Note: if the krb5.ini file is not located in the c:\winnt directory it might be located in c:\windows.

v On a Linux platform, the default location is /etc/krb5.conf.

v On other Unix platforms, the default location is /etc/krb5/krb5.conf.

v On a z/OS platform, the default location is /etc/krb5/krb5.conf.

v On i5/OS platform, the default location is /etc/krb5/krb5.conf.

Use the wsadmin utility to create a Kerberos configuration file for WebSphere® Application Server:

1. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory.

2. At the wsadmin prompt, enter the following command:

$AdminTask help createKrbConfigFile

You can use the following parameters with the createKrbConfigFile command:

 Option Description

<krbPath> This parameter is required. It provides the fully qualified

file system location of the Kerberos configuration

(krb5.ini or krb5.conf) file.

<realm> This parameter is required. It provides the Kerberos realm

name. The value of this attribute is used by SPNEGO to

form the Kerberos service principal name for each of the

hosts specified with the property

com.ibm.ws.security.spnego.SPN<id>.hostName.

<kdcHost> This parameter is required. It provides the host name of

the Kerberos Key Distribution Center (KDC).

<kdcPort> This parameter is optional. It provides the port number of

the Kerberos Key Distribution Center. If this port is

omitted, it defaults to 88.

<dns> This parameter is required. It is a list of default domain

name services DNS), separated by a pipe character, that

is used to produce a fully qualified host name. The first

one in the list is the default domain name service.

<keytabPath> This parameter is required. It provides the file system

location of the Kerberos keytab path and file name.

<encryption> This parameter is optional. It identifies the list of

supported encryption types, separated by a pipe

character. The default value is des-cbc-md5.

The following encryption types are supported:

v des-cbc-md5

v des-cbc-crc

v des3-cbc-sha1

v rc4-hmac

v arcfour-hmac

v arcfour-hmac-md5

v aes128-cts-hmac-sha1-96

v aes256-cts-hmac-sha1-96

248 Securing applications and their environment

Note: Not all of the KDC solutions available today support all of the encryption types listed above.

Before you choose an encryption type, ensure that your KDC supports the encryption type that

you want to use by consulting your Kerberos Administrator’s and User’s Guide.

Ensure you have a common encryption type for the Kerberos configuration file, the Kerberos keytab

file, the Kerberos service principal name and the Kerberos client. For example, if the Kerberos client

uses the RC4-HMAC encryption type, the target server must also support the RC4-HMAC encryption

type and the Kerberos configuration file must list RC4-HMAC first in default_tgt_enctypes and

default_tkt_enctypes.

The following is an example of the createKrbConfigFile command:

$AdminTask createKrbConfigFile {-krbPath c:/winnt/krb5.ini

 -realm WSSEC.AUSTIN.IBM.COM

 -kdcHost host1.austin.ibm.com|host2.austin.ibm.com

 -dns austin.ibm.com|raleigh.ibm.com

 -keytabPath c:/winnt/krb5.keytab}

This example creates the c:/winnt/krb5.ini file as follows:

[libdefaults]

 default_realm = WSSEC.AUSTIN.IBM.COM

 default_keytab_name = FILE:c:\winnt\krb5.keytab

 default_tkt_enctypes = rc4-hmac des-cbc-md5

 default_tgs_enctypes = rc4-hmac des-cbc-md5

 forwardable = true

 renewable = true

 noaddresses = true

 clockskew = 300

[realms]

 WSSEC.AUSTIN.IBM.COM = {

 kdc = host1.austin.ibm.com:88

 kdc = host2.austin.ibm.com:88

 default_domain = austin.ibm.com

 }

[domain_realm]

 .austin.ibm.com = WSSEC.AUSTIN.IBM.COM

 .raleigh.ibm.com = WSSEC.AUSTIN.IBM.COM

The createKrbConfigFile command creates a simple Kerberos configuration file. You might have to edit

this file as needed, especially when you have a cross or trusted realm environment.

The [domain_realm] section of the Kerberos configuration file is needed for a cross realm environment.

v [domain_realm] - Provides a translation from a domain name or host name to a realm name. The

tag name can be a host name or a domain name. Domain names are indicated by a prefix of a

period (’.’). The value of the relation is the realm name for that particular host or domain. Host

names and domain names should be in lowercase.

If no translation entry applies, the host’s realm is considered to be the host name’s domain portion

converted to uppercase. For example, the following [domain_realm] section maps tech.ibm.com into

the TEST.AUSTIN.IBM.COM realm:

[domain_realm]

 .austin.ibm.com = WSSEC.AUSTIN.IBM.COM

 .raleigh.ibm.com = WSSEC.AUSTIN.IBM.COM

All other hosts in the austin.ibm.com and .raleigh.ibm.com domains map default to

WSSEC.AUSTIN.IBM.COM.

The following example contains more than one Kerberos realm name:

[domain_realm]

 .ibm.com =AUSTIN.IBM.COM

 ibm.com =AUSTIN.IBM.COM

 tech.ibm.com =TEST.AUSTIN.IBM.COM

 .fubar.org =FUBAR.ORG

All other hosts in the ibm.com® domain map by default to the AUSTIN.IBM.COM realm and all hosts

in the fubar.org domain map by default to the FUBAR.ORG realm.

Chapter 5. Authenticating users 249

Note the entries for the hosts, ibm.com and fubar.org. Without these entries, these hosts would map

into the realms COM and ORG, respectively.

For peer trust cross-realm authentication, see your Kerberos Administrator’s and User’s Guide for

information about how to set up the trust cross-realm authentication on the KDC.

You must add information about the foreign realm to the realms and domain_realm sections of the

Kerberos configuration file. For example:

[realms]

 AUSTIN.IBM.COM = {

 kdc = kdc.austin.ibm.com:88

 default_domain = austin.ibm.com

 }

 FUBAR.ORG = {

 kdc = kdc.fubar.org:88

 default_domain = fubar.org

 }

[domain_realm]

 austin.ibm.com = AUSTIN.IBM.COM

 .austin.ibm.com = AUSTIN.IBM.COM

 fubar.org = FUBAR.ORG

 .fubar.org = FUBAR.ORG

In a transitive trust, two realms trust each other if they trust the intermediate realms involved in

granting a ticket. If each realm involved in granting the service ticket is present in the trust path, then

the ticket is trusted. See your Kerberos Administrator’s and User’s Guide for information about how to

configure transitive trust on the KDC.

To set up transitive trust, separate realms with cross-realm authentication must be defined between a

and b and between b and c, but not between a and c. With transitive trust, REALMA and REALMC can

communicate with each other, but only by going through REALMB.

REALMA <-> REALMB <-> REALMC

A [capaths] stanza must be added to each krb5.conf file.

The krb5.conf files on all machines must list all three realms in the [realms] stanza. REALMA must list

itself and REALMB and REALMC; REALMB must list itself and REALMA and REALMC; REALMC must

list itself and REALMA and REALMB. In the [domain_realm] stanza of the krb5.conf files list all three

host names and realm names to be able to execute from REALMA to REALMC and from REALMC to

REALMA.

[capaths]

 REALMA.AUSTIN.IBM.COM = {

 REALMB.AUSTIN.IBM.COM = .

 REALMC.AUSTIN.IBM.COM = REALMB.AUSTIN.IBM.COM

 }

 REALMB.AUSTIN.IBM.COM = {

 REALMC.AUSTIN.IBM.COM = .

 REALMA.AUSTIN.IBM.COM = .

 }

 REALMC.AUSTIN.IBM.COM = {

 REALMB.AUSTIN.IBM.COM = .

 REALMA.AUSTIN.IBM.COM = REALMB.AUSTIN.IBM.COM

 }

The krb5.conf file permission must be set to 644, which means that you can read and write the file.

However, members of the group that the file belongs to and all other users can only read the file.

Since the Kerberos configuration and keytab file are set by the JVM system properties,

java.security.krb5.conf and KRB5_KTNAME respectively, if SPNEGO Web authentication and Kerberos

authentication are both enabled you must use the same Kerberos configuration and keytab files for

both.

Results

You have now created a Kerberos configuration file.

250 Securing applications and their environment

Creating a Kerberos service principal and keytab file

This task is necessary to process SPNEGO Web or Kerberos authentication requests to WebSphere

Application Server. You can create a Kerberos service principal and keytab name using Microsoft

Windows, iSeries, Linux, Solaris, Massachusetts Institute of Technology (MIT) and z/OS KDCs.

About this task

Creating a Kerberos service principal and keytab using Microsoft Windows KDC:

This task is performed on the active directory domain controller machine. Complete the following steps to

ensure that the Microsoft Windows 2000 or Windows 2003 Server that is running the active directory

domain controller is configured properly to the associated key distribution center (KDC).

1. Create a user account in the Microsoft Active Directory for the WebSphere Application Server.

Click Start->Programs->Administrative Tools->Active Directory Users and Computers.

Use the name for the WebSphere Application Server. For example, if the Application Server you are

running on the WebSphere Application Server machine is called myappserver.austin.ibm.com, create a

new user in an Active Directory called myappserver.

Make sure that you do not have the computer name myappserver under Computers and Domain

Controllers. If you already have a computer named myappserver, then you must create a different user

account name.

v Click Start -> Programs -> Administrative Tools -> Active Directory Users and

Computers->Computers.

v Click Programs -> Administrative Tools -> Active Directory Users and Computers->Domain

Controllers.

2. Use the setspn command to map the Kerberos service principal name, <service name>/<fully

qualified host name>, to a Microsoft user account.

The service name for SPNEGO Web authentication must be HTTP, but it can be any strings that are

allowed by the KDC for Kerberos authentication.

An example of the setspn command usage for SPNEGO Web authentication is as follows:

C:\Program Files\Support Tools>

setspn -A HTTP/myappserver.austin.ibm.com myappserver

Note: The host name must be a fully-qualified host name.

Note: Make sure that you do not have the same service principle names (SPNs) mapping to more

than one Microsoft user account. If you map the same SPN to more than one user account, the

web browser client can send an NT LAN manager (NTLM) token instead of a SPNEGO token to

WebSphere Application Server.

3. Create the Kerberos keytab file and make it available to WebSphere Application Server. Use the

ktpass tool from the Windows Server toolkit to create the Kerberos keytab file (krb5.keytab) for the

service principal name (SPN).

Note: A Kerberos keytab file contains a list of keys that are analogous to user passwords. It is

important for hosts to protect their Kerberos keytab files by storing them on the local disk.

Make sure to use the ktpass tool that matches the Windows server level you are using. That is, use

the Windows 2000 version for a Windows 2000 Server, or a Windows 2003 version for a Windows

2003 server. The Windows 2003 server version of the ktpass tool supports the encryption type,

RC4-HMAC, and Single data encryption standard (DES). The Windows 2000 server version of the

ktpass tool is similar, but different options are necessary for the RC4-HMAC encryption type and

single DES. For more information about the ktpass tool, see Windows 2003 Technical Reference

(Kerberos keytab file and ktpass command).

v For a single DES encryption type:

From a command prompt, run the ktpass command as in the following example:

Chapter 5. Authenticating users 251

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/64042138-9a5a-4981-84e9-d576a8db0d05.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/64042138-9a5a-4981-84e9-d576a8db0d05.mspx

ktpass -out c:\temp\myappserver.keytab

-princ HTTP/myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

-mapUser myappserv

-mapOp set -pass was1edu

-crypto DES-CBC-MD5

+DesOnly

 Table 4. Using ktpass for a single DES encryption type

Option Explanation

-out c:\temp\myappserver.keytab The key is written to this output file.

-princ HTTP/myappserver.austin.ibm.com

@WSSEC.AUSTIN.IBM.COM

The concatenation of the user logon name, and the realm must

be in uppercase.

-mapUser The key is mapped to the user, myappserver.

-mapOp This option sets the mapping.

-pass was1edu This option is the password for the user ID.

-crypto DES-CBC-MD5 This option uses the single DES encryption type.

+DesOnly This option generates only DES encryptions.

v For the RC4-HMAC encryption type:

Note: RC4-HMAC encryption is only supported when using a Windows 2003 Server as KDC.

RC4-HMAC encryption is not supported with a Windows 2000 Server as KDC.
From a command prompt, run the ktpass command as in the following example:

ktpass -out c:\temp\myappserver.keytab

-princ HTTP/myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

-mapUser myappserver

-mapOp set

–pass was1edu

-crypto RC4-HMAC

 Table 5. Using ktpass for the RC4-HMAC encryption type

Option Explanation

-out c:\temp\myappserver.keytab The key is written to this output file.

-princ HTTP/myappserver.austin.ibm.com

@WSSEC.AUSTIN.IBM.COM

The concatenation of the user logon name, and the realm must be

in uppercase.

-mapUser The key is mapped to the user, myappserver.

-mapOp This option sets the mapping.

-pass was1edu This option is the password for the user ID.

-crypto RC4-HMAC This option chooses the RC4-HMAC encryption type.

The Kerberos keytab file is created for use with SPNEGO.

Creating a Kerberos service principal and keytab file using iSeries, Linux, Solaris and MIT KDCs:

See your Kerberos implementation documents for the kadmin, kadmin.local addprinc and ktadd

commands for more detailed information.

This task is performed on a Linux, Solaris or MIT KDC machine.

1. Create a Kerberos service principal for Kerberos authentication. For example:

WAS/testmach.austin.ibm.com

kadmin.local: addprinc WAS/testmach.austin.ibm.com

2. Add the newly-created Kerberos service principal, WAS/testmach.austin.ibm.com to a default

krb5.keytab file. For example:

252 Securing applications and their environment

kadmin.local: ktadd WAS/testmach.austin.ibm.com

Creating a Kerberos service principal and keytab file using z/OS KDC:

Before Simple and Protected GSS-API Negotiation (SPNEGO) Web authentication and Kerberos

authentication can be used, the WebSphere Application Server administrator must first create a Kerberos

keytab file on the host that is running WebSphere Application Server.

To create an SPN, do the following:

1. The Kerberos ID (KERBNAME) must be of the form <service>/<fully qualified system name>.

2. The following example creates the Kerberos SPN for SPNEGO Web, HTTP/host1.pok.ibm.com:

ALTUSER ASCR1 KERB(KERBNAME(HTTP/host1.pok.ibm.com))

3. Generate the Kerberos key for this user. To generate this key, a password must be associated with this

ID. You should not allow this ID to log onto the system. Enter the following two lines whenever a new

Kerberos key is required.

Note: The WebSphere or KDC administrator must know this password to create an entry in the keytab

file.
ALTUSER ASCR1 PASSWORD(was1krb) NOEXPIRED

ALTUSER ASCR1 NOPASSWORD

4. Verify that this user has a valid Kerberos segment and a key. For example:

LISTUSER ASCR1 KERB NORACF

 USER=ASCR1

 KERB INFORMATION

 KERBNAME= HTTP/host1.pok.ibm.com

 KEY VERSION= 001

 KEY ENCRYPTION TYPE= DES NODES3 NODESD

To create a Kerberos keytab (krb5.keytab) file, use the Java Kerberos ktab command,

<$WAS_HOME>/java/bin/ktab, by doing the following:

5. From a command line, type the ktab –help command to obtain the proper usage for this command.

For example:

(host1)CTC03:/PYRSA1/usr/lpp/zWebSphere/V7R1/java/J5.0/bin(189):>ktab -help

Usage: java com.ibm.security.krb5.internal.tools.Ktab [options]

Available options:

 -l list the keytab name and entries

 -a <principal_name> [password] add an entry to the keytab

 -d <principal_name> delete an entry from the keytab

 -k <keytab_name> specify keytab name and path with FILE: prefix

6. Also from a command line, use the ktab command to add the SPN to a default keytab file. For

example:

(host1)CTC03:/PYRSA1/usr/lpp/zWebSphere/V7R1/java/J5.0/bin(201):>ktab -a

HTTP/host1.pok.ibm.com@LSREALM.POK.IBM.COM ot56prod

Done!

Service key for principal HTTP/host1.pok.ibm.com@LSREALM.POK.IBM.COM saved

7. Verify that the correct SPN is in the default keytab file. For example:

(host1)CTC03:/PYRSA1/usr/lpp/zWebSphere/V7R1/java/J5.0/bin(202):>ktab

1 entries in keytab, name: /etc/skrb/krb5.keytab

 KVNO Principal

 ---- ---------

 1 HTTP/host1.pok.ibm.com@LSREALM.POK.IBM.COM

Make the keytab file available to WebSphere Application Server. Copy the krb5.keytab file from the KDC

to the WebSphere Application Server machine at the location specified in the Kerberos configuration file

(krb5.ini or krb5.conf). For example:

Chapter 5. Authenticating users 253

ftp> bin

ftp> put c:\temp\KRB5_NT_SEV_HST\krb5.keytab

Note: A Kerberos keytab configuration file contains a list of keys that are analogous to user passwords. It

is important for hosts to protect their Kerberos keytab files by storing them on the local disk, which

makes them readable only by authorized users.

Use the validateKrbConfig command to validate the krb5.conf and krb5.keytab files. For example:

wsadmin>$AdminTask help validateKrbConfig

Note: The Kerberos keytab file is shared by Kerberos and SPNEGO Web authentication. It is loaded once

and cannot be refreshed.

Results

You have created a Kerberos service principal and keytab file on the KDC that WebSphere Application

Server uses to process SPNEGO and or Kerberos authentication requests.

Mapping of a client Kerberos principal name to the WebSphere user registry ID

You can map the Kerberos client principal name to the WebSphere user registry ID for both Simple and

Protected GSS-API Negotiation (SPNEGO) Web authentication and Kerberos authentication.

Before you begin

About this task

Use the Java Authentication and Authorization Service (JAAS) custom login module to perform any custom

mapping of a client Kerberos principal name to the WebSphere user registry identity. The JAAS custom

login module is a plug-in mechanism that is defined for authenticating incoming requests in WebSphere

Application Server. If the active authentication mechanism is LTPA, the JAAS custom login module is

inserted immediately before the ltpaLoginModule.

The JAAS custom login module retrieves a client Kerberos principal name in

javax.security.auth.Subject using the subject.getPrincipals(KerberosPrincipal.class) method, maps

the client Kerberos principal name to the WebSphere user registry identity, and inserts the mapping

identity in the hash table property, com.ibm.wsspi.security.cred.userId. The

wsMapDefaultInboundLoginModule then uses the mapped identity to create a WSCredential.

Note: For SPNEGO Web authentication, the custom login module can also supply the full set of security

properties in the javax.security.auth.Subject in the com.ibm.wsspi.security.tai.TAIResult to

fully assert the mapped identity. When the identity is fully asserted, the

wsMapDefaultInboundLoginModule maps those security properties to a WSCredential.

1. Refer to the following example of a custom login module:

import java.util.Map;

import java.lang.reflect.Array;

import javax.security.auth.Subject;

import javax.security.auth.callback.*;

import javax.security.auth.login.LoginException;

import javax.security.auth.spi.LoginModule;

import javax.security.auth.kerberos.*;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.AttributeNameConstants;

/**

 *

 * @author IBM Corporation

 * @version 1.0

 * @since 1.0

254 Securing applications and their environment

*

 */

public class sampleSpnegoMappingLoginModule implements LoginModule {

 /*

 *

 * Constant that represents the name of this mapping module. Whenever this sample

 * code is used to create a class with a different name, this value should be changed.

 *

 */

 private final static String MAPPING_MODULE_NAME = "com.ibm.websphere.security.sampleSpnegoMappingLoginModule";

 private String mapUid = null;

 /**

 * Construct an uninitialized WSLoginModuleImpl object.

 */

 public sampleSpnegoMappingLoginModule() {

 debugOut("sampleSpnegoMappingLoginModule() entry");

 debugOut("sampleSpnegoMappingLoginModule() exit");

 }

 /**

 * Initialize this login module.

 *

 *

 * This is called by the LoginContext after this login module is

 * instantiated. The relevant information is passed from the LoginContext

 * to this login module. If the login module does not understands any of the data

 * stored in the sharedState and options parameters,

 * they can be ignored.

 *

 *

 * @param subject The subject to be authenticated.

 * @param callbackHandler

 * A CallbackHandler for communicating with the end user to gather login information

 (e.g., username and password).

 * @param sharedState

 * The state shared with other configured login modules.

 * @param options The options specified in the login configuration for this particular login module.

 */

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options) {

 debugOut("initialize(subject = \"" + subject.toString() +

 "\", callbackHandler = \"" + callbackHandler.toString() +

 "\", sharedState = \"" + sharedState.toString() +

 "\", options = \"" + options.toString() + "\")");

 this.subject = subject;

 this.callbackHandler = callbackHandler;

 this.sharedState = sharedState;

 this.options = options;

 debug = "true".equalsIgnoreCase((String)this.options.get("debug"));

 debugOut("initialize() exit");

 }

 /**

 *

 * Method to authenticate a Subject (phase 1).

 *

 *

 *

 * This method authenticates a Subject. It uses CallbackHandler to gather

 * the Subject information, like username and password for example, and verify these

 * information. The result of the authentication is saved in the private state within

 * this login module.

Chapter 5. Authenticating users 255

*

 *

 * @return true if the authentication succeeded, or false

 * if this login module should be ignored.

 * @exception LoginException

 * If the authentication fails.

 */

 public boolean login() throws LoginException

 {

 debugOut("sampleSpnegoMappingLoginModule.login() entry");

 boolean succeeded = false;

 java.util.Set krb5Principals= subject.getPrincipals(KerberosPrincipal.class);

 java.util.Iterator krb5PrincIter = krb5Principals.iterator();

 while (krb5PrincIter.hasNext()) {

 Object princObj = krb5PrincIter.next();

 debugOut("Kerberos principal name: "+ princObj.toString());

 if (princObj != null && princObj.toString().equals("utle@WSSEC.AUSTIN.IBM.COM")){

 mapUid = "user1";

 debugOut("mapUid: "+mapUid);

 java.util.Hashtable customProperties = (java.util.Hashtable)

 sharedState.get(AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY);

 if (customProperties == null) {

 customProperties = new java.util.Hashtable();

 }

 succeeded = true;

 customProperties.put(AttributeNameConstants.WSCREDENTIAL_USERID, mapUid);

 Map<String,java.util.Hashtable>mySharedState=(Map<String,java.

 util.Hashtable>)sharedState;

 mySharedState.put(AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY,

 customProperties);

 debugOut("Add a mapping user ID to Hashtable, mapping ID = "+mapUid);

 debugOut("login() custom properties = " + customProperties);

 }

 }

 succeeded = true;

 debugOut("sampleSpnegoMappingLoginModule.login() exit");

 return succeeded;

 }

 /**

 *

 * Method to commit the authentication result (phase 2).

 *

 *

 *

 * This method is called if the LoginContext’s overall authentication

 * succeeded (the revelant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL login module

 * succeeded).

 *

 *

 * @return true if the commit succeeded, or false

 * if this login module should be ignored.

 * @exception LoginException

 * If the commit fails.

 */

 public boolean commit() throws LoginException

 {

 debugOut("commit()");

256 Securing applications and their environment

debugOut("commit()");

 return true;

 }

 /**

 * Method to abort the authentication process (phase 2).

 *

 *

 * This method is called if the LoginContext’s overall authentication

 * failed (the revelant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL login module

 * did not succeed).

 *

 *

 *

 * If this login module’s authentication attempt succeeded, then this method cleans

 * up the previous state saved in phase 1.

 *

 *

 * @return true if the abort succeeded, or false

 * if this login module should be ignored.

 * @exception LoginException

 * If the abort fails.

 */

 public boolean abort() throws LoginException {

 debugOut("abort() entry");

 debugOut("abort() exit");

 return true;

 }

 /**

 * Method which logs out a Subject.

 *

 * @return true if the logout succeeded, or false

 * if this login module should be ignored.

 * @exception LoginException

 * If the logout fails.

 */

 public boolean logout() throws LoginException

 {

 debugOut("logout() entry");

 debugOut("logout() exit");

 return true;

 }

 private void cleanup()

 {

 debugOut("cleanup() entry");

 debugOut("cleanup() exit");

 }

 /*

 *

 * Private method to print trace information. This implementation uses System.out

 * to print trace information to standard output, but a custom tracing system can

 * be implemented here as well.

 *

 */

 private void debugOut(Object o)

 {

 System.out.println("Debug: " + MAPPING_MODULE_NAME);

 if (o != null) {

 if (o.getClass().isArray()) {

 int length = Array.getLength(o);

 for (int i = 0; i < length; i++) {

Chapter 5. Authenticating users 257

System.out.println("\t" + Array.get(o, i));

 }

 } else {

 System.out.println("\t" + o);

 }

 }

 }

 private Subject subject;

 private CallbackHandler callbackHandler;

 private Map sharedState;

 private Map options;

 protected boolean debug = false;

}

2. For SPNEGO Web authentication without Kerberos authentication, this JAAS custom login module

must first be inserted in the stack login for system logon config for WEB_INBOUND, RMI_INBOUND

and DEFAULT.

3. For Kerberos authentication, this JAAS custom login module must be inserted immediately before the

ltpaLoginModule for system login config for WEB_INBOUND, RMI_INBOUND and DEFAULT.

Results

Using the custom login module, the Kerberos principal name is mapped to the WebSphere Application

Server’s security registry.

Configuring a Java client for Kerberos authentication

A Java client can authenticate with WebSphere Application server with a Kerberos principal name and

password or with the Kerberos credential cache (krb5Ccache).

1. Create a Kerberos configuration file (krb5.ini or krb5.conf). Read about “Creating a Kerberos

configuration file” on page 247 for more information.

2. Place either the krb5.ini or krb5.conf files you have created in a default location. If either file is not

located in the default location you must set com.ibm.COBRA.krb5ConfigFile in the sas.client.props

file with the correct path and Kerberos configuration file name.

On a Windows operating system, the default location is c:\winnt\krb5.ini.

On a Linux operating system, the default location is /etc/krb5.conf.

On other UNIX-based operating systemss, the default location is /etc/krb5/krb5.conf.

On the z/OS operating system, the default location is /etc/krb5/krb5.conf.

On the i5/OS operating system, the default location is /QIBM/UserData/OS400/NetworkAuthentication/
krb5.conf

3. In the sas.client.props file, set the com.ibm.CORBA.authenticationTarget property to KRB5. Read

about Chapter 10, “Configuring security with scripting,” on page 849 for more information.

4. Also in the sas.client.props file, set the com.ibm.CORBA.loginSource property to one of the

supported values shown below:

When authenticationTarget is BasicAuth, the loginSource supported are:

v prompt [default]

v properties

v stdin

v none

When authenticationTarget is KRB5, the loginSource supported are:

v prompt [default]

v properties

v stdin

258 Securing applications and their environment

v none

v krb5Ccache

v krb5Ccache:prompt

v krb5Ccache:properties

v krb5Ccache:stdin

Also consider the following:

krb5Ccache:prompt

Use krb5Ccache to authenticate to WebSphere Application Server first. If it fails, then it falls

back to prompt.

krb5Ccache:properties

Use krb5Ccache to authenticate to WebSphere Application Server first. If it fails, then it falls

back to properties.

krb5Ccache:stdin

Use krb5Ccache to authenticate to WebSphere Application Server first. If it fails, then it falls

back to stdin.

5. If the authenticationTarget is KRB5 and loginSource is the Kerberos credential cache, do the following:

a. In the wsjaas_client.conf file, update the WSKRB5Login entry:

WSKRB5Login{

 com.ibm.ws.security.auth.kerberos.Krb5LoginModuleWrapperClient required

 credsType=INITIATOR useFirstPass=false

forwardable=false renewable=false noAddress=false;

};

b. If the Kerberos credential cache is not at the default location, set the

com.ibm.CORBA.krb5CcacheFile property as a URL: For example:

com.ibm.CORBA.krb5CcacheFile=FILE:/home/smith/krb5cc_smith

The default location of the Kerberos credential cache file depends on which operating system you

use. The user credential cache is located in the following order:

The file referenced by the Java property KRB5CCNAME

<user.home>/krb5cc_<user.name>

<user.home>/krb5cc (if <user.name> cannot be obtained)

6. Optional: If an error occurs, make sure that all WebSphere Application Server machine’s clocks are in

sync with the KDC machines. Validate a Kerberos principal name and password by using the kinit

command. It is recommended that you use the kinit command that comes with the Java SE

Development Kit (JDK) 6.

Type the following to receive help for this command:

kinit -help

An example of the kinit command is as follows. In this example, a Kerberos ticket-granting ticket

(TGT) can be obtained for duke, and the Kerberos credential cache is stored in the default location,

c:\Documents and Settings\duke\krb5cc_duke:

kinit duke@JAVA.SUN.COM

Results

You have now configured a Java client for Kerberos authentication.

You can complete your configuration of Kerberos on the server side by using either the administrative

console or by using wsadmin commands. Read about “Configuring Kerberos as the authentication

mechanism using the administrative console” on page 244 or “Kerberos authentication commands” on

page 1234 respectively for more information.

Chapter 5. Authenticating users 259

RSA token authentication mechanism

An authentication mechanism defines rules about security information, such as whether a credential is

forwardable to another Java process, and the format of how security information is stored in both

credentials and tokens. The Rivest Shamir Adleman (RSA) token authentication mechanism simplifies the

security environment for flexible management topology, that is, the topology where you can locally or

remotely submit and manage administrative jobs through a job manager that manages applications,

perform product maintenance, modify configurations, and control the application server runtime. The RSA

authentication mechanism is only used for server-to-server administrative authentication (admin connector

and file transfer requests). The RSA authentication mechanism does not replace LTPA or Kerboros for use

by applications.

Note: The RSA token authentication mechanism is new to this release of WebSphere Application Server.

It aids the flexible management objective to preserve the base profiles configurations and isolate

them from a security perspective. This mechanism permits the base profiles managed by an

administrative agent to have different Lightweight Third-Party Authentication (LTPA) keys, different

user registries, and different administrative users.

Authentication is the process of establishing whether a client is who or what it claims to be in a particular

context. A client can be either an end user, a machine, or an application. An authentication mechanism in

WebSphere Application Server typically collaborates closely with a user registry. The user registry is the

user and groups account repository that the authentication mechanism consults with when performing

authentication. The authentication mechanism is responsible for creating a credential, which is an internal

product representation of a successfully authenticated client user. Not all credentials are created equally.

The abilities of the credential are determined by the configured authentication mechanism.

Authentication process

The RSA token authentication mechanism ensures that after the RSA root signer certificate (20 year

lifetime) is exchanged between two administrative processes, there is no need to synchronize security

information among disparate profiles for administrative requests. The RSA personal certificate (1 year

lifetime) is used to perform the cryptographic operations on the RSA tokens and can be verified by the

long-lived RSA root. RSA token authentication is different from LTPA where keys are shared and if one

side changes, all sides need to change. Since RSA token authentication is based on a PKI infrastructure, it

benefits from the scalability and manageability of this technology in a large topology.

An RSA token has more advanced security features than LTPA; this includes a nonce value that makes it

a one-time use token, a short expiration period (since it’s a one-time use token), and trust, which is

established based on certificates in the target RSA trust store.

RSA token authentication does not use the same certificates as used by Secure Sockets Layer (SSL). This

is the reason RSA has it’s own keystores. In order to isolate the trust established for RSA, the trust store,

keystore, and root keystore, need to be different from the SSL configuration.

Note: SSL personal certificates given to pure clients are often signed by the same SSL root certificate

used by servers, and this allows a pure client to send an RSA token to a server and act as an

administrator. This should be avoided for the RSA token authentication mechanism. The RSA token

authentication mechanism has its own root certificate which signs personal certificates that are used

to encrypt and sign parts of the token.

The data stored in an RSA token is based on the identity of the client subject. The client subject can be

based on LTPA or Kerberos, but the RSA token does not use this protection for administrative requests.

The RSA token is easier to use while still maintaining a secure transportation of the identity. The data in

an RSA token includes:

v Version

v Nonce

260 Securing applications and their environment

v Expiration

v Realm

v Principal

v Access ID

v Roles (not currently used)

v Groups

v Custom data

Custom data can be added to the WSCredential on the sending side (prior to going outbound) by creating

a properties object, adding custom attributes, and adding this to the WSCredential in the following way.

import com.ibm.websphere.security.cred.WSCredential;

java.util.Properties props = new java.util.Properties();

props.setProperty("myAttribute", "myValue");

WSCredential.put ("customRSAProperties", props);

Once the Subject is created at the target process, you can get access to these attributes in the following

way.

java.util.Properties props = (java.util.Properties) WSCredential.get("customRSAProperties");

This data is placed into a hash table at the target side and the hash table is used in a Java™

Authentication and Authorization Service (JAAS) login to obtain a subject at the target that contains the

same attributes from the RSA token. With the target containing the same attributes from the RSA token,

you can have a subject at the target side that is not from the same realm used by the target. For this

authorization to succeed, a cross-realm mapping is required within the administrative authorization table

unless the identity is a trusted server ID.

The figure (below) is an overview of the RSA token authentication mechanism and describes the process

that takes place when a request is sent from a server-as-client to a target server. The server-as-client has

an administrative subject on the thread that is used as input to create the RSA token. The other

information needed is RSA public certificate of the target server. This certificate must be retrieved by

making a “bootstrap” MBean request to the target process prior to sending any real requests. The target

bootstrap request retrieves the public certificate from the target process. When creating an RSA token, the

primary purpose of obtaining the target’s public certificate is to encrypt the secret key. Only the target can

decrypt the secret key, which is used to encrypt the user data.

The client’s private key is used to sign both the secret key and the user data. The client’s public key is

embedded in the RSA token and validated at the target. If the client’s public key is not trusted when calling

the CertPath APIs at the target, the RSA token validation cannot continue. If the client’s public key is

trusted, it can be used to verify the secret key and user data signatures.

The basic goal is to convert the client subject into a subject at the target by securely propagating the

required information. After the subject is generated at the target, the RSA authentication mechanism

process is complete.

Configuring the RSA token authentication mechanism

You use the WebSphere Application Server administrative console to configure the Rivest Shamir Adleman

(RSA) token authentication mechanism. The RSA token authentication mechanism can only be used for

administrative requests. As such, the authentication mechanism choices for administrative authentication

are part of the Global Security panel of the administrative console.

Chapter 5. Authenticating users 261

Before you begin

RSA token authentication mechanism is the default selection for the application server, administrative

agent, and job manager profiles. LTPA is still the default for the deployment manager profile to preserve

the same behavior for the existing topology.

About this task

You configure Lightweight Third-Party Authentication (LTPA) and Kerberos on the main authentication

mechanism panels of the administrative console as well as configure RSA token authentication. During

registration of a base profile with the administrative agent, the trusted certificates on both sides are

updated with the root signer for the other. The same process occurs during registration of an

administrative agent or deployment manager with a job manager. When removing the registration, the

trusted signers are removed from both sides so that trust is no longer established.

By default, the RSA mechanism is set up correctly during the registration tasks, such as registerNode or

registerWithJobManager. No further actions are necessary to establish trust within these environments.

However, if you need to establish trust between two base servers or between two admin agents, for

example, you can use the following steps to further configure the RSA token authentication mechanism:

1. Click Security > Global security . Under Administrative security click the link to Administrative

authentication.

2. Select the RSA token radio button. Select a data encryption keystore from the drop-down list. The

option is recommend for flexible systems administration.

3. Select the trusted signers keystore from the drop-down list.

4. Enter the nonce cache timeout value.

5. Enter token timeout value.

6. Click Apply and Save.

Results

You configured the use of the RSA token authentication mechanism.

RSA token authentication settings

Use this panel to configure RSA token authentication.

To view this administrative console page, click Security > Global security. Under Administrative security

click Administrative authentication.

The administrative authentication method is used when an administrative process on this profile connects

to another profile. If the primary authentication method is set to RSA token and that primary method fails,

the system attempts to use the current application authentication method (which could be SWAM,

Kerberos, or LTPA for example).

Note: SWAM is deprecated and will be removed in a future release.

RSA token (recommended for flexible systems administration):

RSA token is an authentication mechanism using certificates for signing and encryption portions of the

security information being propagated.

 Default: Enabled

Data encryption keystore:

262 Securing applications and their environment

This is the keystore that contains the personal certificate used to encrypt and sign RSA tokens.

 Data type: text

Personal certificate for encryption:

This is the alias found in the Data encryption keystore that is used to encrypt and sign RSA tokens.

 Data type: text

Trusted signers keystore:

This is the keystore used to contain signer certificates that can validate RSA tokens sent by other servers.

The RSA token contains a sending certificate that needs to be validated by this trust store using a

CertPath validation.

 Data type: text

Nonce cache timeout:

Specifies the amount of time, in minutes, that the issued token is valid.

 This field displays the maximum timeout, in minutes, for a token to be considered valid.

 Data type: Integer

Default: 20

Minimum: 10

Maximum: Integer.MAX_VALUE

Token timeout:

Specifies the amount of time, in minutes, that the issued token is valid.

 This field displays the maximum timeout, in minutes, for a token to be considered valid.

 Data type: Integer

Default: 10

Minimum: 10

Maximum: Integer.MAX_VALUE

Only use the active application authentication mechanism (currently LTPA):

Select to encrypt authentication information so that the application server can send the data from one

server to another in a secure manner.

 The encryption of authentication information that is exchanged between servers involves the Lightweight

Third-Party Authentication (LTPA) mechanism.

Kerberos:

Select to encrypt authentication information so that the application server can send the data from one

server to another in a secure manner.

Chapter 5. Authenticating users 263

The encryption of authentication information that is exchanged between servers involves the Kerberos

mechanism.

Note: Kerberos must be configured before this option can be selected.

RSA token certificate use

The Rivest Shamir Adleman (RSA) token uses certificates in a similar way that Secure Sockets Layer

(SSL) uses them. However, the trust established for SSL and RSA are different, and RSA certificates

should not use SSL certificates and vice versa. The SSL certificates can be used by pure clients, and

when used for the RSA mechanism would allow the client to send an RSA token to the server. The RSA

token authentication mechanism is purely for server-to-server requests and should not be used by pure

clients. The way to prevent this is to control the certificates used by RSA in such as a way so they are

never distributed to any clients. There is a different root certificate for RSA that prevents trust being

established with clients who only need SSL certificates.

RSA root certificate

For each profile there is a root certificate stored in the rsatoken-root-key.p12 keystore. The sole purpose

of this RSA root certificate is to sign the RSA personal certificate which is stored in the rsatoken-key.p12

keystore. The RSA root certificate has a default lifetime of 20 years. The signer from the RSA root

certificate is shared with other processes to establish trust.

The keytool utility is available using the QShell Interpreter. Using the keytool utility, you can list the

contents of these keystores and display the keyEntry (personal certificate). The example below illustrated

how this is accomplished for the rsatoken-root-key.p12 (RSA root certificate) and rsatoken-key.p12 (RSA

personal certificate).

${profile_root}\config\cells\${cellname}\nodes\${nodename}> keytool -list -v -keystore rsatoken-root-key.p12

–storepass WebAS -storetype PKCS12

Alias name: root

Entry type: keyEntry

Certificate[1]:

Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US

Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US

Serial number: 3474fccaf789d

Valid from: 11/12/07 2:50 PM until: 11/7/27 2:50 PM

Certificate fingerprints:

 MD5: 7E:E6:C7:E8:40:4E:9B:96:5A:66:E5:0B:37:0B:08:FD

 SHA1: 36:94:81:55:C4:48:83:27:89:C7:16:D2:AD:3D:3E:67:DF:1D:6E:87

${profile_root}\config\cells\${cellname}\nodes\${nodename}> keytool -list -v -keystore rsatoken-key.p12

–storepass WebAS -storetype PKCS12

Alias name: default

Entry type: keyEntry

Certificate[1]:

Owner: CN=9.41.62.64, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US

Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US

Serial number: 3475073488921

Valid from: 11/12/07 2:50 PM until: 11/11/08 2:50 PM

Certificate fingerprints:

 MD5: FF:1C:42:E3:DA:FF:DC:A4:35:B2:33:30:D1:6E:E0:19

 SHA1: A4:FB:9D:7B:A1:5B:6A:37:9F:20:BD:B2:BD:98:FA:68:71:57:28:62

Certificate[2]:

Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US

Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode

04, O=IBM, C=US

Serial number: 3474fccaf789d

Valid from: 11/12/07 2:50 PM until: 11/7/27 2:50 PM

Certificate fingerprints:

 MD5: 7E:E6:C7:E8:40:4E:9B:96:5A:66:E5:0B:37:0B:08:FD

 SHA1: 36:94:81:55:C4:48:83:27:89:C7:16:D2:AD:3D:3E:67:DF:1D:6E:87

264 Securing applications and their environment

The purpose of the RSA personal certificate is to sign and encrypt information in the RSA token. The RSA

personal certificate has a default lifetime of one year because it is used to sign and encrypt data that is

transmitted over the wire. Refreshing the certificate is performed by the certificate expiration monitor, which

is used for any other certificate in the system including SSL certificates.

RSA token trust is established when the rsatoken-trust.p12 of the target process contains the signer of

the root certificate of the client process that sends a token. Inside the RSA token is the public certificate of

the client, which must be validated at the target before being used to decrypt data. The validation of the

client’s public certificate is performed using the CertPath APIs, which use the rsatoken-trust.p12 as the

source of certificates used during the validation.

The following example shows the use of the keytool utility to list the rsatoken-trust.p12 keystore.

Note: This trust store contains three trustedCertEntry (public certificate) entries. The root public certificate

from the administrative agent, a root public certificate from a job manager to which it is registered,

and a root public certificate from a base profile to which it is registered.
${profile_root}\config\cells\${cellname}\nodes\${nodename}> keytool -list -v -keystore rsatoken-trust.p12

–storepass WebAS -storetype PKCS12

Alias name: root

Entry type: trustedCertEntry

Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US

Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60AACell04, OU=BIRKT60AANode04, O=IBM, C=US

Serial number: 3474fccaf789d

Valid from: 11/12/07 2:50 PM until: 11/7/27 2:50 PM

Certificate fingerprints:

 MD5: 7E:E6:C7:E8:40:4E:9B:96:5A:66:E5:0B:37:0B:08:FD

 SHA1: 36:94:81:55:C4:48:83:27:89:C7:16:D2:AD:3D:3E:67:DF:1D:6E:87

Alias name: cn=9.41.62.64, ou=root certificate, ou=birkt60jobmgrcell02, ou=birkt

60jobmgr02, o=ibm, c=us

Entry type: trustedCertEntry

Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60JobMgrCell02, OU=BIRKT60JobMgr02, O=IBM, C=US

Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60JobMgrCell02, OU=BIRKT60JobMgr02, O=IBM, C=US

Serial number: 34cc4c5d71740

Valid from: 11/12/07 4:30 PM until: 11/7/27 4:30 PM

Certificate fingerprints:

 MD5: AB:65:3A:04:5B:C7:6D:A8:B1:98:B9:7B:65:A8:FA:F8

 SHA1: C0:83:FE:D0:B6:30:FB:A1:10:41:4B:8E:50:4B:78:40:0F:E5:E3:35

Alias name: birkt60node19_signer

Entry type: trustedCertEntry

Owner: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60Node15Cell, OU=BIRKT60Node19, O=IBM, C=US

Issuer: CN=9.41.62.64, OU=Root Certificate, OU=BIRKT60Node15Cell, OU=BIRKT60Node19, O=IBM, C=US

Serial number: 34825d997fda3

Valid from: 11/12/07 3:06 PM until: 11/7/27 3:06 PM

Certificate fingerprints:

 MD5: 66:61:CE:7C:C7:44:8B:A7:23:FF:1B:68:E4:AC:24:55

 SHA1: 25:E0:6B:D9:60:BB:67:5B:C6:67:BD:02:2C:54:E3:DA:24:E5:31:A3

You can replace the RSA personal certificate in the rsa-key.p12 and the public key in the rsa-trust.p12 with

your own personal certificate. If you do this prior to federation to an administrative agent or job manager,

the exchange of certificates is done for you. If you change the certificate after federation, you need to

make sure the rsa-trust.p12 on the administrative agent or job manager is updated with the signer for your

new certificate to establish trust.

Chapter 5. Authenticating users 265

Simple WebSphere authentication mechanism (deprecated)

The Simple WebSphere authentication mechanism (SWAM) defines rules about security information and

the format of how security information is stored in both credentials and tokens. SWAM is intended for

simple, non-distributed, single application server runtime environments.

Note: SWAM was deprecated in WebSphere Application Server Version 7.0 and will be removed in a

future release.

The single application server restriction is due to the fact that SWAM does not support forwardable

credentials. If a servlet or enterprise bean in application server process 1, invokes a remote method on an

enterprise bean living in another application server process 2, the identity of the caller identity in process 1

is not transmitted to server process 2. What is transmitted is an unauthenticated credential, which,

depending on the security permissions configured on the EJB methods, can cause authorization failures.

Because SWAM is intended for a single application server process, single sign-on (SSO) is not supported.

The SWAM authentication mechanism is suitable for simple environments, software development

environments, or other environments that do not require a distributed security solution.

Message layer authentication

Defines the credential information and sends that information across the network so that a receiving server

can interpret it.

When you send authentication information across the network using a token the transmission is

considered message layer authentication because the data is sent with the message inside a service

context.

A pure Java client uses Kerberos (KRB5) or basic authentication, or Generic Security Services Username

Password (GSSUP), as the authentication mechanism to establish client identity.

However, a servlet can use either basic authentication (GSSUP) or the authentication mechanism of the

server, Kerberos (KRB5) or Lightweight Third Party Authentication (LTPA), to send security information in

the message layer. Use KRB5 or LTPA by authenticating or by mapping the basic authentication

credentials to the security mechanism of the server.

The security token that is contained in a token-based credential is authentication mechanism-specific. The

way that the token is interpreted is only known by the authentication mechanism. Therefore, each

authentication mechanism has an object ID (OID) representing it. The OID and the client token are sent to

the server, so that the server knows which mechanism to use when reading and validating the token. The

following list contains the OIDs for each mechanism:

BasicAuth (GSSUP): oid:2.23.130.1.1.1

KRB5: OID: 1.2.840.113554.1.2.2

LTPA: oid:1.3.18.0.2.30.2

SWAM: No OID because it is not forwardable

Note: SWAM is deprecated in WebSphere Application Server Version 7.0 and will be removed in a future

release.

On the server, the authentication mechanisms can interpret the token and create a credential, or they can

authenticate basic authentication data from the client, and create a credential. Either way, the created

credential is the received credential that the authorization check uses to determine if the user has access

to invoke the method. You can specify the authentication mechanism by using the following property on

the client side:

v com.ibm.CORBA.authenticationTarget

266 Securing applications and their environment

Basic authentication (BasicAuth) and KRB5 are currently the only valid values. You can configure the

server through the administrative console.

Note: When perform basic authentication is enabled, if the client is not similarly configured (and does

not pass a credential such as a user ID and password), the server object request broker (ORB)

does not.

Configuring authentication retries

Situations occur where you want a prompt to display again if you entered your user ID and password

incorrectly or you want a method to retry when a particular error occurs back at the client. If you can

correct the error by information at the client side, the system automatically performs a retry without the

client seeing the failure, if the system is configured appropriately.

Some of these errors include:

v Entering a user ID and password that are not valid

v Having an expired credential on the server

v Failing to find the stateful session on the server

By default, authentication retries are enabled and perform three retries before returning the error to the

client. Use the com.ibm.CORBA.authenticationRetryEnabled property (True or False) to enable or disable

authentication retries. Use the com.ibm.CORBA.authenticationRetryCount property to specify the number

of retry attempts.

Trust associations

Trust association enables the integration of IBM WebSphere Application Server security and third-party

security servers. More specifically, a reverse proxy server can act as a front-end authentication server

while the product applies its own authorization policy onto the resulting credentials that are passed by the

proxy server.

Demand for such an integrated configuration has become more compelling, especially when a single

product cannot meet all of the customer needs or when migration is not a viable solution. This article

provides a conceptual background behind the approach.

In this setup, WebSphere Application Server is used as a back-end server to further exploit its fine-grained

access control. The reverse proxy server passes the HTTP request to WebSphere Application Server that

includes the credentials of the authenticated user. WebSphere Application Server then uses these

credentials to authorize the request.

Trust association model

The idea that WebSphere Application Server can support trust association implies that the product

application security recognizes and processes HTTP requests that are received from a reverse proxy

server. WebSphere Application Server and the proxy server engage in a contract in which the product

gives its full trust to the proxy server and the proxy server applies its authentication policies on every Web

request that is dispatched to WebSphere Application Server. This trust is validated by the interceptors that

reside in the product environment for every request received. The method of validation is agreed upon by

the proxy server and the interceptor.

Running in trust association mode does not prohibit WebSphere Application Server from accepting

requests that did not pass through the proxy server. In this case, no interceptor is needed for validating

trust.

WebSphere Application Server supports the following trust association interceptor (TAI) interfaces:

Chapter 5. Authenticating users 267

com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus

This TAI interceptor implementation that implements the new WebSphere Application Server

interface supports WebSphere Application Server Version 5.1.1 and later. The interface supports

WebSEAL Version 5.1, but does not support WebSEAL Version 4.1. For an explanation of security

attribute propagation, see “Security attribute propagation” on page 436.

com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl

This interceptor is new to this release. SPNEGO has replaced SPNEGO TAI as the Web

authenticator for WebSphere Application Server.

IBM WebSphere Application Server: WebSEAL Integration

The integration of WebSEAL and WebSphere Application Server security is achieved by placing the

WebSEAL server at the front-end as a reverse proxy server. From a WebSEAL management perspective,

a junction is created with WebSEAL on one end, and the product Web server on the other end. A junction

is a logical connection that is created to establish a path from the WebSEAL server to another server.

In this setup, a request for Web resources that are stored in a protected domain of the product is

submitted to the WebSEAL server where it is authenticated against the WebSEAL security realm. If the

requesting user has access to the junction, the request is transmitted to the WebSphere Application Server

HTTP server through the junction, and then to the application server.

Meanwhile, WebSphere Application Server validates every request that comes through the junction to

ensure that the source is a trusted party. This process is referenced as validating the trust and it is

performed by a WebSEAL product-designated interceptor. If the validation is successful, WebSphere

Application Server authorizes the request by checking whether the client user has the required

permissions to access the Web resource. If so, the Web resource is delivered to the WebSEAL server

through the Web server, which then gives the resource to the client user.

WebSEAL server

The policy director delegates all of the Web requests to its Web component, the WebSEAL server. One of

the major functions of the server is to perform authentication of the requesting user. The WebSEAL server

consults a Lightweight Directory Access Protocol (LDAP) directory. It can also map the original user ID to

another user ID, such as when global single sign-on (GSO) is used.

Trust association model

User ID and password in basic authentication data

Trusted server ID and password in data

and user ID in the HTTP request header

basic authentication

Web application server

Requested

resource

HTTP

request

Web

client

Reverse

proxy

server

Modified

HTTP

request

Requested

resource

(4)

(1)

(6)

(2)

(5)

(3)

User ID

User ID

or Subject

if trust is valid

(using the old TAI interface)

(using the version 5.1.1
TAI++ interface)

Credentials

Modified HTTP

HTTP Request:

Modified HTTP Request:

Trust

association

interceptor

User

request

Web

authenticator

268 Securing applications and their environment

For successful authentication, the server plays the role of a client to WebSphere Application Server when

channeling the request. The server needs its own user ID and password to identify itself to WebSphere

Application Server. This identity must be valid in the security realm of WebSphere Application Server. The

WebSEAL server replaces the basic authentication information in the HTTP request with its own user ID

and password. In addition, WebSphere Application Server must determine the credentials of the requesting

client so that the application server has an identity to use as a basis for its authorization decisions. This

information is transmitted through the HTTP request by creating a header called iv-creds, with the Tivoli

Access Manager user credentials as its value.

HTTP server

The junction that is created in the WebSEAL server must get to the HTTP server that serves as the

product front end. However, the HTTP server is shielded from knowing that trust association is used. As

far as it is concerned, the WebSEAL product is just another HTTP client, and as part of its normal

routines, it sends the HTTP request to the product. The only requirement on the HTTP server is a Secure

Sockets Layer (SSL) configuration using server authentication only. This requirement protects the requests

that flow within the junction.

HitCount

servlet

HitCountBean

Servlet engine

Enterprise beans

container

WebSEAL

trust

Security

collaborator

Security

application

Authorization

and delegation

Product

resources

Trust

validation

Requested

resource

HTTP

request with

credentials

Web server

Web server and

WebSphere Application Server

Web server

plug-in

Web server

resource

Requested

resource

HTTP

request

Web

client
WebSEAL

Chapter 5. Authenticating users 269

Web collaborator

When trust association is enabled, the Web collaborator manages the interceptors that are configured in

the system. The Web collaborator loads and initializes these interceptors when you restart your servers.

When a request is passed to WebSphere Application Server by the Web server, the Web collaborator

eventually receives the request for a security check. Two actions must take place:

1. The request must be authenticated.

2. The request must be authorized.

The Web authenticator is called to authenticate the request by passing the HTTP request. If successful, a

good credential record is returned by the authenticator, which the Web collaborator uses to base its

authorization for the requested resource. If the authorization succeeds, the Web collaborator indicates to

WebSphere Application Server that the security check has succeeded and that the requested resource can

be served.

Web authenticator

The Web authenticator is asked by the Web collaborator to authenticate a given HTTP request. Knowing

that trust association is enabled, the task of the Web authenticator is to find the appropriate trust

association interceptor to direct the request for processing. The Web authenticator queries every available

interceptor. If no target interceptor is found, the Web authenticator processes the request as though trust

association is not enabled.

Note:

WebSphere Application Server Version 4 through WebSphere Application Server Version 6.x

support the com.ibm.websphere.security.TrustAssociationInterceptor.java interface. WebSphere

Application Server Version 7.0.x and later supports the

com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl interface.

HTTP

request

HTTP

request
HTTP

server

WebSphere Application Server

WebSEAL

WebSEAL

trust association

interceptor

HTTP request

HTTP

request

Authorization

policy

HitCount

servlet

HitCountBean

Servlet engine

Enterprise beans

container

Web

collaborator

Web

authenticator

270 Securing applications and their environment

Trust association interceptor interface

The intent of the trust association interceptor interface is to have reverse proxy security servers (RPSS)

exist as the exposed entry points to perform authentication and coarse-grained authorization, while

WebSphere Application Server enforces further fine-grained access control. Trust associations improve

security by reducing the scope and risk of exposure.

In a typical e-business infrastructure, the distributed environment of a company consists of Web

application servers, Web servers, existing systems, and one or more RPSS, such as the Tivoli WebSEAL

product. Such reverse proxy servers, front-end security servers, or security plug-ins registered within Web

servers, guard the HTTP access requests to the Web servers and the Web application servers. While

protecting access to the Uniform Resource Identifiers (URIs), these RPSS perform authentication,

coarse-grained authorization, and request routing to the target application server.

Integrating third-party HTTP reverse proxy servers

These steps are required to use a trust association interceptor with a reverse proxy security server.

About this task

WebSphere Application Server enables you to use multiple trust association interceptors. The application

server uses the first interceptor that can handle the request.

1. Access the administrative console.

Type http://server_name:port_number/ibm/console in a Web browser.

Port 9060 is the default port number for accessing the administrative console. During installation,

however, you might have specified a different port number. Use the appropriate port number.

2. Click Security > Global security.

3. Under Web and SIP security, click Trust association.

4. Select the Enable trust association option.

5. Under Additional properties, click Interceptors. The default value appears.

6. Verify that the appropriate trust association interceptors are listed.

Results

Trust association is enabled.

What to do next

1. If you are enabling security, make sure that you complete the remaining steps for enabling security.

2. Save, stop and restart all of the product servers (deployment managers, nodes and application

servers) for the changes to take effect.

Trust association settings

Use this page to enable trust association, which integrates application server security and third-party

security servers. More specifically, a reverse proxy server can act as a front-end authentication server

while the product applies its own authorization policy onto the resulting credentials passed by the proxy

server.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand Web security and click Trust association.

When security is enabled and any of these properties change, go to the Global security panel and click

Apply to validate the changes.

Chapter 5. Authenticating users 271

Enable trust association

Specifies whether trust association is enabled.

 Data type: Boolean

Default: Disable

Range: Enable or Disable

Trust association interceptor collection

Use this page to specify trust information for reverse security proxy servers.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand Web and SIP security and click Trust association.

3. Under Additional Properties, click Interceptors.

When security is enabled and any of these properties are changed, go to the Global security panel and

click Apply to validate the changes.

Interceptor class name

Specifies the trust association interceptor class name.

Data type

String

Trust association interceptor settings

Use this page to specify trust information for reverse security proxy servers.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Web and SIP security.

3. Click Trust association.

4. Under Additional Properties, click Interceptors > New.

Interceptor class name

Specifies the trust association interceptor class name.

Data type

String

Single sign-on

With single sign-on (SSO) support, Web users can authenticate once when accessing both WebSphere

Application Server resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans,

and Lotus Domino resources, such as documents in a Domino database, or accessing resources in

multiple WebSphere Application Server domains.

There are various ways to accomplish SSO, with the most common in WebSphere using LTPA cookies.

LTPA cookies do not require any particular client and allow SSO across different cells provide the registry

and LTPA keys are the same.

There are other flavors of SSO, including Simple and Protected GSS-API Negotiation (SPNEGO), which is

a way to use the token from a Kerberos login (typically Windows) to authenticate to WebSphere

Application Server. This prevents the user from having to type in their userid and passwords again.

272 Securing applications and their environment

Note: In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

TAIs are also a form of single sign-on when used in combination with a Proxy server that does the

front-end authentication. The TAI allows the credentials to flow to WebSphere from the Proxy server and to

be used to login without the need to re-authenticate the user.

Single sign-on using LTPA cookies

With single sign-on (SSO) support, Web users can authenticate once when accessing both WebSphere

Application Server resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans,

and Lotus Domino resources, such as documents in a Domino database, or accessing resources in

multiple WebSphere Application Server domains.

Application servers distributed in multiple nodes and cells can securely communicate using the Lightweight

Third Party Authentication (LTPA) protocol. LTPA is intended for distributed, multiple application server and

machine environments. LTPA can support security in a distributed environment through cryptography. This

support permits LTPA to encrypt, digitally sign, and securely transmit authentication-related data, and later

decrypt and verify the signature.

LTPA also provides the SSO feature wherein a user is required to authenticate only once in a domain

name system (DNS) domain and can access resources in other WebSphere Application Server cells

without getting prompted. Web users can authenticate once to a WebSphere Application Server or to a

Domino server. This authentication is accomplished by configuring WebSphere Application Servers and the

Domino servers to share authentication information.

Without logging in again, Web users can access other WebSphere Application Servers or Domino servers

in the same DNS domain that are enabled for SSO. You can enable SSO among WebSphere Application

Servers by configuring SSO for WebSphere Application Server. To enable SSO between WebSphere

Application Servers and Domino servers, you must configure SSO for both WebSphere Application Server

and for Domino.

Prerequisites and conditions

To take advantage of support for SSO between WebSphere Application Servers or between WebSphere

Application Server and a Domino server, applications must meet the following prerequisites and conditions:

v Verify that all servers are configured as part of the same DNS domain. The realm names on each

system in the DNS domain are case sensitive and must match identically. For example, if the DNS

domain is specified as mycompany.com, then SSO is effective with any Domino server or WebSphere

Application Server on a host that is part of the mycompany.com domain, for example, a.mycompany.com

and b.mycompany.com.

v Verify that all servers share the same registry.

This registry can be either a supported Lightweight Directory Access Protocol (LDAP) directory server

or, if SSO is configured between two WebSphere Application Servers, a standalone custom

registry.Domino servers do not support standalone custom registries, but you can use a

Domino-supported registry as a standalone custom registry within WebSphere Application Server.

You can use a Domino directory that is configured for LDAP access or other LDAP directories for the

registry. The LDAP directory product must have WebSphere Application Server support. Supported

products include both Domino and LDAP servers, such as IBM Tivoli Directory Server. Regardless of

the choice to use an LDAP or a standalone custom registry, the SSO configuration is the same. The

difference is in the configuration of the registry.

Chapter 5. Authenticating users 273

v Define all users in a single LDAP directory. Using multiple Domino directory assistance documents to

access multiple directories also is not supported.

v Enable HTTP cookies in browsers because the authentication information that is generated by the

server is transported to the browser in a cookie. The cookie is used to propagate the authentication

information for the user to other servers, exempting the user from entering the authentication

information for every request to a different server.

v For a Domino server:

– Domino Release 6.5.4 for iSeries and other platforms are supported.

– A Lotus Notes® client Release 5.0.5 or later is required for configuring the Domino server for SSO.

– You can share authentication information across multiple Domino domains.
v For WebSphere Application Server:

– WebSphere Application Server Version 3.5 or later for all platforms are supported.

– You can use any HTTP Web server that is supported by WebSphere Application Server.

– You can share authentication information across multiple product administrative domains.

– Basic authentication (user ID and password) using the basic and form-login mechanisms is

supported.

– By default, WebSphere Application Server does a case-sensitive comparison for authorization. This

comparison implies that a user who is authenticated by Domino matches the entry exactly (including

the base distinguished name) in the WebSphere Application Server authorization table. If case

sensitivity is not considered for the authorization, enable the Ignore Case property in the LDAP user

registry settings.

Enterprise Identity Mapping

Enterprise Identity Mapping (EIM) for iSeries is the OS/400® implementation of an IBM infrastructure that

allows administrators and application developers to solve the problem of managing multiple user registries

across their enterprise.

Most network enterprises face the problem of multiple user registries, which require each person or entity

within the enterprise to have a user identity in each registry. The need for multiple user registries quickly

grows into a large administrative problem that affects users, administrators, and application developers.

EIM enables inexpensive solutions for easier management of multiple user registries and user identities in

your enterprise.

EIM is a mechanism for mapping and associating a person or entity to the appropriate user identities in

various registries throughout the enterprise. EIM provides application programming interfaces (API) for

creating and managing these identity mapping relationships and provides APIs that applications use to

query this information. In addition, OS/400 uses EIM and Kerberos capabilities to provide a single sign-on

environment.

iSeries Navigator, the iSeries graphical user interface, provides wizards to configure and manage EIM. In

addition, administrators can manage EIM relationships for user profiles through iSeries Navigator.

For more information on Enterprise Identity Mapping, see Enterprise Identity Mapping concepts.

Global single sign-on principal mapping

You can use the Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager to

manage authentication to enterprise information systems (EIS) such as databases, transaction processing

systems, and message queue systems that are located within the WebSphere Application Server security

domain. Such authentication is achieved using the global single sign-on (GSO) principal mapper Java

Authentication and Authorization Service (JAAS) login module for Java Platform, Enterprise Edition (Java

EE) Connector Architecture resources.

With GSO principal mapping, a special-purpose JAAS login module inserts a credential into the subject

header. This credential is used by the resource adapter to authenticate to the EIS. The JAAS login module

used is configured on a per-connection factory basis. The default principal mapping module retrieves the

274 Securing applications and their environment

user name and password information from XML configuration files. The JACC provider for Tivoli Access

Manager bypasses the credential that is stored in the Extensible Markup Language (XML) configuration

files and uses the Tivoli Access Manager global sign-on (GSO) database instead to provide the

authentication information for the EIS security domain.

WebSphere Application Server provides a default principal mapping module that associates user credential

information with EIS resources. The default mapping module is defined in the WebSphere Application

Server administrative console on the Application login panel. To access the panel, click Security > Global

security. Under Java Authentication and Authorization Service, click Application logins. The mapping

module name is DefaultPrincipalMapping.

The EIS security domain user ID and password are defined under each connection factory by an

authDataAlias attribute. The authDataAlias attribute does not contain the user name and password; this

attribute contains an alias that refers to a user name and password pair that is defined elsewhere.

The Tivoli Access Manager principal mapping module uses the authDataAlias attribute to determine the

GSO resource name and the user name that is required to perform the lookup on the Tivoli Access

Manager GSO database. The Tivoli Access Manager Policy Server retrieves the GSO data from the user

registry.

Tivoli Access Manager stores authentication information on the Tivoli Access Manager GSO database

against a resource and user name pair.

GSO principal mapping architecture

Implementing single sign-on to minimize Web user authentications

With single sign-on (SSO) support, Web users can authenticate once when accessing Web resources

across multiple WebSphere Application Servers. Form login mechanisms for Web applications require that

SSO is enabled. Use this topic to configure single sign-on for the first time.

WebSphere Application Server

User

Application

Java 2 Connector (J2C)

Tivoli Access
Manager principal
mapping module

Resource
adapter

User name
and password

authDataAlias

User name
and password

GSO
resource

name

user user name
password

User name
and password

GSO resource
name and
user name

Security.xml

LDAP
global single signon (GSO)

database

Tivoli Access
Manager

Policy Server

Enterprise
information

system

Chapter 5. Authenticating users 275

Before you begin

SSO is supported only when Lightweight Third Party Authentication (LTPA) is the authentication

mechanism.

When SSO is enabled, a cookie is created containing the LTPA token and inserted into the HTTP

response. When the user accesses other Web resources in any other WebSphere Application Server

process in the same domain name service (DNS) domain, the cookie is sent in the request. The LTPA

token is then extracted from the cookie and validated. If the request is between different cells of

WebSphere Application Servers, you must share the LTPA keys and the user registry between the cells for

SSO to work. The realm names on each system in the SSO domain are case sensitive and must match

identically.

The realm name is the same as the host name.

For the Lightweight Directory Access Protocol (LDAP) the realm name is the host:port realm name of the

LDAP server. The LTPA authentication mechanism requires that you enable SSO if any of the Web

applications have form login as the authentication method.

Because single sign-on is a subset of LTPA, it is recommended that you read “Lightweight Third Party

Authentication” on page 227 for more information.

When you enable security attribute propagation, the following cookie is always added to the response:

LtpaToken2

LtpaToken2 contains stronger encryption and enables you to add multiple attributes to the token.

This token contains the authentication identity and additional information such as the attributes that

are used for contacting the original login server and the unique cache key for looking up the

Subject when considering more than just the identity in determining uniqueness.

Note: The following cookie is optionally added to the response when the Interoperability mode

flag is enabled:

LtpaToken

LtpaToken is used for inter-operating with previous releases of WebSphere Application Server.

This token contains the authentication identity attribute only.

Note: LtpaToken is generated for releases prior to WebSphere Application Server Version 5.1.1.

LtpaToken2 is generated for WebSphere Application Server Version 5.1.1 and beyond.

 Token type Purpose How to specify

LtpaToken2 only This is the default token type. It uses

the AES-CBC-PKCS5 padding

encryption strength (128-bit key size).

This token is stronger than the older

LtpaToken used prior to WebSphere

Application Server Version 6.02. This

is the recommended option when

interoperability with older releases is

not necessary.

Disable the Interoperability mode

option in the SSO configuration panel

within the administrative console. To

access this panel, complete the

following steps:

1. Click Security > Global security.

2. Under Web security, click Single

sign-on (SSO).

276 Securing applications and their environment

Token type Purpose How to specify

LtpaToken and LtpaToken2 Use to interoperate with releases

prior to WebSphere Application

Server Version 5.1.1. The older

LtpaToken cookie is present along

with the new LtpaToken2 cookie.

Provided the LTPA keys are correctly

shared, you should be able to

interoperate with any version of

WebSphere using this option.

Enable the Interoperability mode

option in the SSO configuration panel

within the administrative console. To

access this panel, complete the

following steps:

1. Click Security > Global security.

2. Under Web security, click Single

sign-on (SSO).

About this task

The following steps are required to configure SSO for the first time.

1. Open the administrative console.

Type http://server_name:port_number/ibm/console to access the administrative console in a Web

browser.

Port 9060 is the default port number for accessing the administrative console. During installation,

however, you might have specified a different port number. Use the appropriate port number.

2. Click Security > Global security.

3. Under Web security, click Single sign-on (SSO).

4. Click the Enabled option if SSO is disabled. After you click the Enabled option, make sure that you

complete the remaining steps to enable security.

5. Click Requires SSL if all of the requests are expected to use HTTPS.

6. Enter the fully qualified domain names in the Domain name field where SSO is effective. If you specify

domain names, they must be fully qualified. If the domain name is not fully qualified, WebSphere

Application Server does not set a domain name value for the LtpaToken cookie and SSO is valid only

for the server that created the cookie.

When you specify multiple domains, you can use the following delimiters: a semicolon (;), a space (),

a comma (,), or a pipe (|). WebSphere Application Server searches the specified domains in order from

left to right. Each domain is compared with the host name of the HTTP request until the first match is

located. For example, if you specify ibm.com; austin.ibm.com and a match is found in the ibm.com

domain first, WebSphere Application server does not continue to search for a match in the

austin.ibm.com domain. However, if a match is not found in either the ibm.com or austin.ibm.com

domains, then WebSphere Application Server does not set a domain for the LtpaToken cookie.

You can configure the Domain name field using any of the following values:

 Domain name value type Example Purpose

Blank The domain is not set. This causes the

browser to set the domain to the

request host name. The sign-on is

valid on that single host only.

Single domain name austin.ibm.com If the request is to a host within the

configured domain, the sign-on is valid

for all hosts within that domain.

Otherwise, it is valid on the request

host name only.

UseDomainFromURL UseDomainFromURL If the request is to a host within the

configured domain, the sign-on is valid

for all hosts within that domain.

Otherwise, it is valid on the request

host name only.

Chapter 5. Authenticating users 277

Domain name value type Example Purpose

Multiple domain names austin.ibm.com;raleigh.ibm.com The sign-on is valid for all hosts within

the domain of the request host name.

Multiple domain names and

UseDomainFromURL

v austin.ibm.com;raleigh.ibm.com;

UseDomainFromURL

The sign-on is valid for all hosts within

the domain of the request host name.

If you specify the UseDomainFromURL, WebSphere Application Server sets the SSO domain name

value to the domain of the host that makes the request. For example, if an HTTP request comes from

server1.raleigh.ibm.com, WebSphere Application Server sets the SSO domain name value to

raleigh.ibm.com .

Note: The value, UseDomainFromURL, is case insensitive. You can type usedomainfromurl to use this

value.

For more information, see “Single sign-on settings” on page 343.

7. Optional: Enable the Interoperability mode option if you want to support SSO connections in

WebSphere Application Server version 5.1.1 or later to interoperate with previous versions of the

application server. This option sets the old-style LtpaToken token into the response so it can be sent to

other servers that work only with this token type. Otherwise, only the LtpaToken2 token is added to the

response. If the Web inbound security attribute propagation option is disabled, then only the

LtpaToken token is added to the response.

8. Optional: Enable the Web inbound security attribute propagation option if you want information

added during the login at a specific front-end server to propagate to other front-end servers. The SSO

token does not contain any sensitive attributes, but does understand where the original login server

exists in cases where it needs to contact that server to retrieve serialized information. For more

information, see “Security attribute propagation” on page 436.

Note: If the following statements are true, it is recommended that you disable the Web inbound

security attribute propagation option for performance reasons:

v You do not have any specific information added to the Subject during a login that cannot be

obtained at a different front-end server.

v You did not add custom attributes to the PropagationToken token using WSSecurityHelper

application programming interfaces (APIs).

If you find that you are missing custom information in the Subject, re-enable the Web inbound

security attribute propagation option to see if the information is propagated successfully to

other front-end application servers.

The following two custom properties might help to improve performance when security attribute

propagation is enabled:

v com.ibm.CSI.propagateFirstCallerOnly

When this custom property is set to true the first caller in the propagation token that stays on

the thread is logged when security attribute propagation is enabled. Without setting this

property, all of the caller switches are logged, which can affect performance.

v com.ibm.CSI.disablePropagationCallerList

When this custom property is set to true the ability to add a caller or host list in the

propagation token is completely disabled. This function is beneficial when the caller or host

list in the propagation token is not needed in the environment.

9. Click OK.

What to do next

For the changes to take effect, save, stop, and restart all the product servers.

278 Securing applications and their environment

Creating a single sign-on for HTTP requests using SPNEGO Web

authentication

Creating single sign-ons for HTTP requests using the Simple and Protected GSS-API Negotiation

Mechanism (SPNEGO) Web authentication for WebSphere Application Server requires the performance of

several distinct, yet related functions that when completed, allow HTTP users to log in and authenticate

only once at their desktop and receive automatic authentication from the WebSphere Application Server.

Before you begin

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide the following enhancements:

v You can configure and enable SPNEGO Web authentication and filters on the WebSphere

Application Server server side by using the administrative console.

v Dynamic reload of SPNEGO is provided without the need to stop and restart the WebSphere

Application Server server.

v Fallback to an application login method is provided if the SPNEGO Web authentication fails.

You can enable either SPNEGO TAI or SPNEGO Web Authentication but not both.

Read about “Single sign-on for HTTP requests using SPNEGO Web authentication” on page 280 for a

better understanding of what SPNEGO Web authentication is and how it is supported in this version of

WebSphere Application Server.

Before starting this task, complete the following checklist:

v The domain member has users who can log on to the domain. Specifically, you need to have a

functioning Microsoft Windows 2000 or Windows 2003 active directory domain that includes:

– Domain controller

– Client workstation

– Users who can login to the client workstation
v A server platform with WebSphere Application Server running and application security enabled.

v Users on the active directory must be able to access WebSphere Application Server protected

resources using a native WebSphere Application Server authentication mechanism.

v The domain controller and the host of WebSphere Application Server should have the same local time.

v Ensure the clock on clients, Microsoft Active Directory and WebSphere Application Server are

synchronized to within five minutes.

v Be aware that client browsers must be SPNEGO enabled, which you perform on the client application

machine (with details explained in step 2 of this task).

About this task

The objective of this machine arrangement is to permit users to successfully access WebSphere

Application Server resources without having to authenticate again and thus achieve Microsoft Windows

desktop single sign-on capability.

Configuring the members of this environment to establish Microsoft Windows single sign-on involves

specific activities that are performed on three distinct machines:

v Microsoft Windows 2000 or Windows 2003 Server running the Active Directory Domain Controller and

associated Kerberos Key Distribution Center (KDC).

Chapter 5. Authenticating users 279

v A Microsoft Windows 2000 or Windows 2003 domain member (client application), such as a browser or

Microsoft .NET client.

v A server platform with WebSphere Application Server running.

Perform the following steps on the indicated machines to create single sign-on for HTTP requests using

SPNEGO:

1. Domain Controller Machine - Configure the Microsoft Windows 2000 or Windows 2003 Server

running the Active Directory Domain Controller and associated Kerberos Key Distribution Center (KDC)

This configuration activity has the following steps:

v Create a user account for the WebSphere Application Server in a Microsoft Active Directory. This

account will be eventually mapped to the Kerberos service principal name (SPN).

v On the Microsoft Active Directory machine where the Kerberos key distribution center (KDC) is

active, map the user account to the Kerberos service principal name (SPN). This user account

represents the WebSphere Application Server as being a Kerberos service with the KDC. Use the

Microsoft setspn command to map the Kerberos service principal name to a Microsoft user account.

v Create the Kerberos keytab file and make it available to WebSphere Application Server. Use the

Microsoft ktpass tool to create the Kerberos keytab file (krb5.keytab).

Note: After you have configured your domain controller, the following operations must lead to the

following results:

v A user account is created in the Microsoft Active Directory and mapped to a Kerberos service

principal name.

2. WebSphere Application Server Machine - Configure and enable the Application Server and

SPNEGO using the administrative console. Read about “Enabling and configuring SPNEGO Web

authentication using the administrative console” on page 284 for more information.

3. Client Application Machine - Configure the client application. Client-side applications are responsible

for generating the SPNEGO token. You begin this configuration process by configuring your Web

browser to use SPNEGO authentication. Read about “Configuring the client browser to use SPNEGO”

on page 292 for more information.

Single sign-on for HTTP requests using SPNEGO Web authentication

You can securely negotiate and authenticate HTTP requests for secured resources in WebSphere

Application Server by using the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) as the

Web authentication service for WebSphere Application Server.

Note: In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide the following enhancements:

v You can configure and enable SPNEGO Web authentication and filters on WebSphere

Application Server by using the administrative console.

v Dynamic reload of SPNEGO is provided without the need to stop and restart WebSphere

Application Server.

v Fallback to an application login method is provided if the SPNEGO Web authentication fails.

v SPNEGO can be customized at the WebSphere security domain level. Read about “Multiple

security domains” on page 60 for more information.

You can enable either SPNEGO TAI or SPNEGO Web Authentication but not both.

The following sections describe SPNEGO Web authentication in more detail:

v “What is SPNEGO?” on page 281

v “The benefits of SPNEGO Web authentication” on page 282

280 Securing applications and their environment

v “SPNEGO Web authentication in a single Kerberos realm” on page 282

v “SPNEGO Web authentication in a trusted Kerberos realm” on page 283

v “Setting up SPNEGO as the Web authentication mechanism for WebSphere Application Server” on

page 284

What is SPNEGO?

SPNEGO is a standard specification defined in The Simple and Protected GSS-API Negotiation

Mechanism (IETF RFC 2478).

When WebSphere Application Server global and application security are enabled, and SPNEGO Web

authentication is enabled, SPNEGO is initialized when processing a first inbound HTTP request. The Web

authenticator component then interacts with SPNEGO, which is defined and enabled in the security

configuration repository. When the filter criteria is met, SPNEGO is responsible for authenticating access to

the secured resource that is identified in the HTTP request.

In addition to WebSphere Application Server security runtime services, some external components are

required to enable the operation of SPNEGO. These external components include:

v A client application, for example, Microsoft .NET, or Web service and J2EE client that supports the

SPNEGO Web authentication mechanism, as defined in IETF RFC 2478. Microsoft Internet Explorer

Version 5.5 or later and Mozilla Firefox Version 1.0 are browser examples. Any browser must be

configured to use the SPNEGO Web authentication mechanism. For more information on performing

this configuration, see “Configuring the client browser to use SPNEGO” on page 292.

The authentication of HTTP requests is triggered by the requestor (the client-side), which generates a

SPNEGO token. WebSphere Application Server receives this token. Specifically, the SPNEGO Web

authentication decodes and retrieves the requester’s identity from the SPNEGO token. The identity is used

to establish a secure context between the requester and the application server.

SPNEGO Web authentication is a server-side solution in WebSphere Application Server. Client-side

applications are responsible for generating the SPNEGO token for use by SPNEGO Web authentication.

The requester’s identity in the WebSphere Application Server security registry must be identical to the

identity that the SPNEGO Web authentication retrieves. An identical match does occur when Microsoft

Windows Active Directory server is the Lightweight Directory Access Protocol (LDAP) server that is used in

WebSphere Application Server. A custom login module is available as a plug-in to support custom mapping

of the identity from the Active Directory to the WebSphere Application Server security registry.

Read about “Mapping of a client Kerberos principal name to the WebSphere user registry ID” on page 254

for more information about using this custom login module.

WebSphere Application Server validates the identity against its security registry. If the validation is

successful, the client Kerberos ticket and GSS delegation credential are retrieved and placed in the client

subject, which then produces a Lightweight Third Party Authentication (LTPA) security token. It then places

and returns a cookie to the requester in the HTTP response. Subsequent HTTP requests from this same

requester to access additional secured resources in WebSphere Application Server use the LTPA security

token previously created to avoid repeated login challenges.

The Web administrator has access to the following SPNEGO security components and associated

configuration data, as shown in the following figure:

Chapter 5. Authenticating users 281

ftp://ftp.isi.edu/in-notes/rfc2478.txt
ftp://ftp.isi.edu/in-notes/rfc2478.txt

The benefits of SPNEGO Web authentication

The benefits of having WebSphere Application Server use SPNEGO as the Web authentication service for

WebSphere Application Server include the following:

v The cost of administering a large number of ids and passwords is reduced.

v A secure and mutually authenticated transmission of security credentials from the Web browser or

Microsoft .NET clients is established.

v Interoperability with Web services and Microsoft .NET, or Web service applications that use SPNEGO

authentication at the transport level is achieved.

v With Kerberos authentication support, SPNEGO Web authentication can provide an end-to-end

SPNEGO to Kerberos solution and preserve the Kerberos credential from the client.

SPNEGO Web authentication in a single Kerberos realm

SPNEGO Web authentication is supported in a single Kerberos realm. The challenge-response handshake

process is shown in the following figure:

In the figure above, the following events occur:

1. The client sends an HTTP/Post/Get/Web-Service request to WebSphere Application Server.

2. WebSphere Application Server returns HTTP 401 Authenticate/Negotiate.

3. The client obtains a Ticket Granting Ticket (TGT).

Web
Authentication

Module

Security Config
Module

SPNEGO JGSS/KRB5

krb5.conf
krb5.keytab

Figure 10. SPNEGO Web authentication and security configuration elements

Active Directory REALM1 KDC

Windows 2003 server machine

Browser Client

Web
Authenticator

SPNEGO

WebSphere
User Registry

Windows client machine

WebSphere Application Server

krb5.conf krb5.keytab

REALM1 KDC

5.

3.

4.

1.

6.

2.

9.

8.

7.

Figure 11. SPNEGO Web authentication in a single Kerberos realm

282 Securing applications and their environment

4. The client requests a Service Ticket (TGS_REQ).

5. The client obtains a Service Ticket (TGS_REP).

6. The client sends HTTP/Post/Get/Web-Service and an authorization SPNEGO token to WebSphere

Application Server.

7. WebSphere Application Server validates the SPNEGO token. If the validation is successful, it retrieves

the user ID, the client Kerberos ticket and the GSS delegation credential from the SPNEGO token.

8. WebSphere Application Server validates the user ID with the WebSphere user registry and creates an

LTPA token.

9. WebSphere Application Server returns HTTP 200, content and the LTPA token to the client.

Note: Other clients (for example, Web Services, .NET and J2EE) that support SPNEGO do not have to

follow the challenge-response handshake process as shown above. Those clients can obtain a

ticket-granting ticket (TGT) and a Kerberos service ticket for the target server, create a SPNEGO

token, insert it in the HTTP header, and then follow the normal process for creating an HTTP

request.

SPNEGO Web authentication in a trusted Kerberos realm

SPNEGO Web authentication is also supported in a trusted Kerberos realm. The challenge-response

handshake process is shown in the following figure:

In the figure above, the following events occur:

1. The client sends an HTTP/Post/Get/Web-Service request to WebSphere Application Server.

2. WebSphere Application Server returns HTTP 401 Authenticate/Negotiate

3. The client obtains a Ticket Granting Ticket (TGT).

4. The client requests a cross realm ticket (TGS_REQ) for REALM2 from the REALM1 KDC.

5. The client uses the cross-realm ticket from step 4 to request a Service Ticket from the REALM2 KDC.

6. The client sends HTTP/Post/Get/Web-Service and an authorization SPNEGO token to WebSphere

Application Server.

7. WebSphere Application Server validates the SPNEGO token. If the validation is successful, it retrieves

the user ID, the client Kerberos ticket and the GSS delegation credential from the SPNEGO token.

Active Directory REALM1 KDC

Windows 20003 server machine

Browser Client

Web
Authenticator

SPNEGO

WebSphere
User Registry

Windows client machine

krb5.conf krb5.keytab

Realm2 KDC
Trusted

3.

WebSphere Application Server

4. 5.

1.

6.

2.

9.

8.

7.

Figure 12. SPNEGO Web authentication in a trusted Kerberos realm

Chapter 5. Authenticating users 283

8. WebSphere Application Server validates the user ID with the WebSphere user registry and creates an

LTPA token.

9. WebSphere Application Server returns HTTP 200, content and the LTPA token to the client.

In the trusted Kerberos realms environment, be aware of the following:

v The Kerberos trusted realm setup must be done on each of the Kerberos KDCs. See your Kerberos

Administrator and User’s guide for more information about how to set up Kerberos trusted realms.

v The Kerberos client principal name from the SPNEGO token might not exist in the WebSphere user

registry; the Kerberos principal mapping to the WebSphere user registry might require it.

Read about “Mapping of a client Kerberos principal name to the WebSphere user registry ID” on page

254 for more information.

Setting up SPNEGO as the Web authentication mechanism for WebSphere Application

Server

Before you set up SPNEGO Web authentication in the administrative console or by using wsadmin

commands, you must perform the following steps to set up Kerberos as the authentication mechanism for

WebSphere Application Server.

Note: Kerberos authentication mechanism on the server side must be done by the system administrator.

The Kerberos keytab file must be protected.

1. Ensure that the KDC is configured.

See your Kerberos Administrator and User’s guide for more information.

2. The IBM Java Generic Security Service (JGSS) and KRB5 require a Kerberos configuration file

(krb5.conf or krb5.ini) on each node or Java virtual machine (JVM). In this release of WebSphere

Application Server, this configuration file should be placed in the config/cells/<cell_name> directory so

that all application servers can access this file. If you do not have a Kerberos configuration file, use a

wsadmin command to create one.

Read about “Creating a Kerberos configuration file” on page 247 for more information.

Create a Kerberos keytab file that contains the Kerberos service principal (SPN) for each SPNEGO

Web authentication filter host name. The format of the SPN is HTTP/<fully qualified hostname>.

SPNEGO uses this SPN to validate and establish the security context with the SPNEGO requester.

To use a remote HTTP server, you must create the SPN for the remote proxy server and add the proxy

SPN and key to the keytab file.

The Kerberos keytab file (krb5.keytab) contains all of the SPNs for the node and must be protected.

This file can be placed in the config/cells/<cell_name> directory.

Read about “Creating a Kerberos service principal and keytab file” on page 251 for more information.

Note: SPNEGO Web authentication and Kerberos authentication both use the same Kerberos

configuration and keytab files.

3. Set up SPNEGO Web authentication for WebSphere Application Server by using the administrative

console.

Read about “Enabling and configuring SPNEGO Web authentication using the administrative console”

for more information.

For information about how to set up SPNEGO Web authentication for WebSphere Application Server

by using wsadmin commands, read about “SPNEGO Web authentication configuration commands” on

page 1230.

Enabling and configuring SPNEGO Web authentication using the administrative

console

You can enable and configure the Simple and Protected GSS-API Negotiation (SPNEGO) as the Web

Authenticator for the application server by using the administrative console

284 Securing applications and their environment

Before you begin

Note: You must have completed the steps as described in “Creating a single sign-on for HTTP requests

using SPNEGO Web authentication” on page 279 before enabling SPNEGO Web authentication

using the administrative console.

If you do not have a Kerberos keytab file (krb5.keytab) then you cannot use the

createkrbConfigFile command to create a Kerberos configuration file. Read about “Creating a

Kerberos configuration file” on page 247 for more information.

You must have a Kerberos keytab file (krb5.keytab) that contains the Kerberos service principal

name, HTTP/<fully qualified hostname>@KerberosReam, for any WebSphere application server that

processes an HTTP request.

 1. In the administrative console, click Security > Global security.

 2. Under Authentication, expand Web and SIP Security and then click SPNEGO Web authentication.

Note: You must configure the filter before enabling SPNEGO Web authentication.

 3. Optional: Select the Dynamically update SPNEGO option if you want to dynamically update the

SPNEGO run time when SPNEGO changes occur without restarting the application server.

 4. Select Enable SPNEGO to enable the Simple and Protected GSS-API Negotiation Mechanism

(SPNEGO) as a Web Authenticator for WebSphere Application Server. The Dynamically update

SPNEGO and Allow fall back to application authentication mechanism options are disabled

unless you select Enable SPNEGO.

 5. Optional: When you select Allow fall back to application authentication mechanism, if SPNEGO

authentication fails the authentication mechanism that is defined during application assembly time is

used.

 6. Enter the Kerberos configuration file name with its full path, or click Browse to locate it. The Kerberos

client configuration file, krb5.conf or krb5.ini, contains Kerberos configuration information, including

the locations of the Key Distribution Centers (KDCs) for the realm of interest. The krb5.conf file is the

default name for all platforms except the Windows operating system, which uses the krb5.ini file.

 7. Optional: Enter the Kerberos keytab file name with its full path, or click Browse to locate it. The

Kerberos keytab file contains one or more Kerberos service principal names and keys. The default

keytab file is krb5.keytab. It is important for hosts to protect their Kerberos keytab files by storing

them on the local disk, which makes them readable only by authorized users. Read about “Creating a

Kerberos service principal and keytab file” on page 251 for more information. If you do not specify

this parameter, the default Kerberos realm name in the Kerberos configuration file is used.

 8. From SPNEGO filters, select an existing host name to edit or select New to create a new one. By

convention, a Kerberos service principal name (SPN) is divided into three parts: the primary, the

instance, and the Kerberos realm name. The SPNEGO service name must be HTTP, so the Kerberos

service principal name for SPNEGO Web is HTTP/<fully qualified host name>@KERBEROS_REALM. The

SPN is used to validate the incoming SPNEGO token and to establish security context with a

requestor.

a. Required: On the next page, enter a fully qualified host name in the Host name field. The host

name is part of the Kerberos service principal name (SPN), HTTP/<fully qualified host name>,

used by SPNEGO to establish a Kerberos secure context. For each filter entry, the configuration

code forms the Kerberos service principal as HTTP/<fully qualified host

name>@KERBEROS_REALM, the Kerberos realm that you must specify in the next step. The Kerberos

keytab must content this Kerberos service principal and its keys.

b. Optional: In the Kerberos realm name field, enter the Kerberos realm name. In most cases, your

realm is your domain name in uppercase letters. For example, a machine with the domain name

of test.austin.ibm.com typically has a Kerberos realm name of AUSTIN.IBM.COM. If you do not

specify this parameter, the default Kerberos realm name in the Kerberos configuration file is used.

Chapter 5. Authenticating users 285

c. Enter a filter criteria in the Filter criteria field. The filter criteria is the filtering parameter used by

the Java class that is used by SPNEGO. It defines arbitrary criteria that is meaningful to the

implementation class used.

The com.ibm.ws.security.spnego.HTTPHeaderFilter default implementation class uses this

property to define a list of selection rules that represent conditions that are matched against the

HTTP request headers to determine whether or not the HTTP request is selected for SPNEGO

authentication.

Each condition is specified with a key-value pair, separated from each other by a semicolon. The

conditions are evaluated from left to right, as they display in the specified property. If all conditions

are met, the HTTP request is selected for SPNEGO authentication.

The key and value in the key-value pair are separated by an operator that defines which condition

is checked. The key identifies an HTTP request header to extract from the request and its value is

compared with the value that is specified in the key-value pair according to the operator

specification. If the header that is identified by the key is not present in the HTTP request, the

condition is treated as not being met.

Any of the standard HTTP request headers can be used as the key in the key-value pairs. Refer

to the HTTP specification for the list of valid headers. In addition, two keys are defined to extract

information from the request, also useful as a selection criterion, which is not available through

standard HTTP request headers. The remote-address key is used as a pseudo header to retrieve

the remote TCP/IP address of the client application that sent the HTTP request. The request-URL

key is used as a pseudo header to retrieve the URL that is used by the client application to make

the request. The interceptor uses the result of the getRequestURL operation in the

javax.servlet.http.HttpServletRequest interface to construct the Web address. If a query string is

present, the result of the getQueryString operation in the same interface is also used. In this case,

the complete URL is constructed as follows:

String url = request.getRequestURL() + ‘?’ + request.getQueryString();

The following operators and conditions are defined:

 Table 6. Filter conditions and operations

Condition Operator Example

Match exactly = =

Arguments are compared as

equal.

host=host.my.company.com

Match partially (includes) %=

Arguments are compared with a

partial match being valid.

user-agent%=IE 6

Match partially (includes one of

many)

^=

Arguments are compared with a

partial match being valid for one

of many arguments specified.

request-url^=webApp1|webApp2|webApp3

Does not match !=

Arguments are compared as not

equal.

request-url!=noSPNEGO

Greater than >

Arguments are compared

lexogaphically as greater than.

remote-address>192.168.255.130

Less than <

Arguments are compared

lexographically as less than.

remote-address<192.168.255.135

286 Securing applications and their environment

d. In the Filter class field, enter the name of the Java class that is used by SPNEGO to select

which HTTP requests are subject to SPNEGO Web authentication. If you do not specify this

parameter, the default filter class, com.ibm.ws.security.spnego.HTTPHeaderFilter, is used.

e. Optional: In the SPNEGO not supported error page URL field you can optionally enter the URL

of a resource that contains the content that SPNEGO includes in the HTTP response that is

displayed by the (browser) client application if it does not support SPNEGO authentication. This

property can specify a Web (http://) or a file (file://) resource.

If the SPNEGO not supported error page URL field is not specified, or the SPNEGO that is

authenticated cannot find the specified resource, the following content is used:

<html><head><title>SPNEGO authentication is not supported</title></head>

<body>SPNEGO authentication is not supported on this client</body></html>;

f. Optional: In the NTLM token received error page URL field you can optionally specify the URL of

a resource that contains the content that SPNEGO includes in the HTTP response, which is

displayed by the browser client application. The browser client application displays this HTTP

response when the browser client sends a NT LAN manager (NTLM) token instead of the

expected SPNEGO token during the challenge-response handshake.

If the NTLM token received error page URL field is not specified, or the SPNEGO that is

authenticated cannot find the specified resource, the following content is used:

<html><head><title>An NTLM Token was received.</title></head>

<body>Your browser configuration is correct, but you have not logged into a supported

Microsoft(R) Windows(R) Domain.

<p>Please login to the application using the normal login page.</html>

g. Optional: Select Trim Kerberos realm from principal name to specify whether SPNEGO

removes the suffix of the principal user name, starting from the @ that precedes the Kerberos

realm name. If this option is selected, the suffix of the principal user name is removed. If this

attribute is not selected, the suffix of the principal name is retained. The default is for this option

to not be selected.

h. Optional: Select Enable delegation of Kerberos credentials to indicate whether the Kerberos

delegated credentials are stored by SPNEGO. This option also enables an application to retrieve

the stored credentials and to propagate them to other applications downstream for additional

Kerberos authentication with the client Kerberos credential. An attempt is made to retrieve the

GSS delegation credential and Kerberos tickets and to place these Kerberos credentials in the

subject.

 9. Click Apply. The filter criteria and filter class are validated if they were specified.

10. Click OK. This complete the SPNEGO Web Authentication page.

Results

SPNEGO is now enabled as the Web Authenticator for the application server.

Adding or modifying SPNEGO web authentication filters using the administrative console:

The Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) filter values control different

aspects of SPNEGO. You can specify different filter values for each application server by using the

administrative console.

 1. In the administrative console, click Security > Global security.

 2. Under Authentication, expand Web and SIP Security and then click SPNEGO Web authentication.

 3. Under SPNEGO filters, select an existing host name to edit or click New.

 4. Enter a Kerberos host name if creating a new filter. This is the host name in the Kerberos service

principal name (SPN) used by SPNEGO to establish a Kerberos secure context.

Chapter 5. Authenticating users 287

5. Enter a Kerberos realm name. In most cases, the realm is your domain name in uppercase letters.

For example, a machine with the domain name of test.austin.ibm.com would usually have a Kerberos

realm name of AUSTIN.IBM.COM

 6. Enter a filter criteria in the Filter criteria field. The filter criteria is the filtering parameter used by the

Java class that is used by SPNEGO. It defines arbitrary criteria that is meaningful to the

implementation class used.

Read about “Enabling and configuring SPNEGO Web authentication using the administrative console”

on page 284 for more information about the filter criteria.

 7. In the Filter class field, enter the name of the Java class that is used by SPNEGO to select which

HTTP requests are subject to SPNEGO authentication. If you do not specify this parameter, the

default filter class, com.ibm.ws.security.spnego.HTTPHeaderFilter, is used.

 8. Optional: In the SPNEGO not supported error page URL field you can optionally enter the URL of a

resource that contains the content which SPNEGO includes in the HTTP response that is displayed

by the (browser) client application if it does not support SPNEGO authentication. This property can

specify a Web (http://) or a file (file://) resource.

 9. Optional: In the NTLM token received error page URL field you can optionally specify the URL of a

resource that contains the content which SPNEGO includes in the HTTP response, which is displayed

by the (browser) client application. The (browser) client application displays this HTTP response when

the browser client sends a NT LAN manager (NTLM) token instead of the expected SPNEGO token

during the challenge-response handshake.

10. Optional: Select Trim Kerberos realm from principal name to specify whether SPNEGO should

remove the suffix of the principal user name, starting from the @ that precedes the Kerberos realm

name. If this option is selected, the suffix of the principal user name is removed. If this attribute is not

selected, the suffix of the principal name is retained. The default is for this option to be selected.

11. Optional: Select Enable delegation of Kerberos credentials to indicate whether the Kerberos

delegated credentials should be stored by SPNEGO. This option also enables an application to

retrieve the stored credentials and to propagate them to other applications downstream for additional

SPNEGO authentication.

12. Click OK.

Results

You have modified existing or created new SPNEGO filter values for your application server.

SPNEGO Web authentication enablement:

You can enable the Simple and Protected GSS-API Negotiation (SPNEGO) as the Web Authenticator for

WebSphere Application Server.

 SPNEGO Web authentication provides client-server single sign-on by negotiating use of SPNEGO tokens.

To view this administrative console page, click Security > Global security. From Authentication, expand

Web and SIP Security, and then click SPNEGO Web authentication.

Dynamically update SPNEGO:

Enables you to dynamically update the SPNEGO runtime when SPNEGO changes occur without restarting

the application server.

Note: This option is disabled if the Enable SPNEGO option is not selected.

 Default: Enabled

Enable SPNEGO:

288 Securing applications and their environment

Specifies the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) as a Web Authenticator

for the application server.

 Default: Disabled

Allow fall back to application authentication mechanism:

Specifies that SPNEGO as a Web authenticator is used to log in to WebSphere Application Server first.

However, if the login fails, then the application authentication mechanism is used to log in to WebSphere

Application Server.

Note: This option is disabled if the Enable SPNEGO option is not selected.

 Default: Disabled

Kerberos configuration file with full path:

The Kerberos configuration file name with its full path. You can click Browse to locate it.

 The Kerberos client configuration file, krb5.conf or krb5.ini, contains Kerberos configuration information,

including the locations of the Key Distribution Centers (KDCs) for the realm of interest. The krb5.conf file

is the default name for all platforms except the Windows operating system, which uses the krb5.ini file.

 Data type: String

Kerberos keytab file name with full path:

The Kerberos keytab file name with its full path. You can click Browse to locate it.

 The Kerberos keytab file contains one or more Kerberos service principal names and keys. The default

keytab file is krb5.keytab. It is important for hosts to protect their Kerberos keytab files by storing them on

the local disk, which makes them readable only by authorized users. Read about “Creating a Kerberos

service principal and keytab file” on page 251 for more information.

If you do not specify a Kerberos keytab file then the default keytab file that is defined in the Kerberos

configuration file is used.

 Data type: String

SPNEGO Web authentication filter values:

The Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) Web Authentication filter values

control different aspects of SPNEGO. Use this page to specify different filter values for each application

server.

 To view this administrative console page, click Security > Global security. From Authentication, expand

Web and SIP Security, and then click SPNEGO Web authentication. Under SPNEGO Filters, click New

or select a filter to edit.

Host name:

Specifies the fully-qualified host name in the Kerberos service principal name (SPN) that is used by

SPNEGO to establish a Kerberos secure context.

Chapter 5. Authenticating users 289

The host name is the fully qualified form of the hostname. For example, myHostname.austin.ibm.com.

The Kerberos SPN is a string of the form HTTP/<fully qualified hostname>@KERBEROS_REALM . The

complete SPN is used with the Java Generic Security Service (JGSS) by the SPNEGO provider to obtain

the security credential and security context that are used in the authentication process.

 Data type: String

Kerberos realm name:

Specifies the name of your Kerberos realm. In most cases, your realm is your domain name in uppercase

letters. For example, a machine with the domain name of test.austin.ibm.com might usually have a

Kerberos realm name of AUSTIN.IBM.COM.

 If you do not specify the Kerberos realm name, then the default realm that is defined in the Kerberos

configuration file is used.

Filter criteria:

The filtering criteria used by the Java class that is used by SPNEGO.

 The com.ibm.ws.security.spnego.HTTPHeaderFilter default implementation class uses this property to

define a list of selection rules that represent conditions that are matched against the HTTP request

headers to determine whether or not the HTTP request is selected for SPNEGO authentication.

Each condition is specified with a key-value pair, separated from each other by a semicolon. The

conditions are evaluated from left to right, as they display in the specified property. If all conditions are

met, the HTTP request is selected for SPNEGO authentication.

The key and value in the key-value pair are separated by an operator that defines which condition is

checked. The key identifies an HTTP request header to extract from the request and its value is compared

with the value that is specified in the key-value pair according to the operator specification. If the header

that is identified by the key is not present in the HTTP request, the condition is treated as not being met.

Any of the standard HTTP request headers can be used as the key in the key-value pairs. Refer to the

HTTP specification for the list of valid headers. In addition, two keys are defined to extract information

from the request, also useful as a selection criterion, which is not available through standard HTTP

request headers. The remote-address key is used as a pseudo header to retrieve the remote TCP/IP

address of the client application that sent the HTTP request. The request-URL key is used as a pseudo

header to retrieve the URL that is used by the client application to make the request. The interceptor uses

the result of the getRequestURL operation in the javax.servlet.http.HttpServletRequest interface to

construct the Web address. If a query string is present, the result of the getQueryString operation in the

same interface is also used. In this case, the complete URL is constructed as follows:

String url = request.getRequestURL() + ‘?’ + request.getQueryString();

The following operators and conditions are defined:

 Table 7. Filter conditions and operations

Condition Operator Example

Match exactly = =

Arguments are compared as

equal.

host=host.my.company.com

290 Securing applications and their environment

Table 7. Filter conditions and operations (continued)

Condition Operator Example

Match partially (includes) %=

Arguments are compared with a

partial match being valid.

user-agent%=IE 6

Match partially (includes one of

many)

^=

Arguments are compared with a

partial match being valid for one

of many arguments specified.

request-url^=webApp1|webApp2|webApp3

Does not match !=

Arguments are compared as not

equal.

request-url!=noSPNEGO

Greater than >

Arguments are compared

lexogaphically as greater than.

remote-address>192.168.255.130

Less than <

Arguments are compared

lexographically as less than.

remote-address<192.168.255.135

 Data type: String

Filter class:

Specifies the name of the Java class that is used by SPNEGO to select which HTTP requests are subject

to SPNEGO authentication. If you do not specify this parameter, the default filter class,

com.ibm.ws.security.spnego.HTTPHeaderFilter, is used.

 Data type: String

SPNEGO not supported error page URL:

This choice is optional. It specifies the URL of a resource that contains the content which SPNEGO

includes in the HTTP response that is displayed by the browser client application if it does not support

SPNEGO authentication.

 This property can specify a Web (http://) or a file (file://) resource.

If this property is not specified, or the interceptor cannot find the specified resource, the following content

is used:

<html><head><title>SPNEGO authentication is not supported</title></head>

<body>SPNEGO authentication is not supported on this client</body></html>;

 Data type: String

NTLM token received error page URL:

This property is optional. It specifies the URL of a resource that contains the content which SPNEGO

includes in the HTTP response, which is displayed by the browser client application.

Chapter 5. Authenticating users 291

The browser client application displays this HTTP response when the browser client sends an NT LAN

manager (NTLM) token instead of the expected SPNEGO token during the challenge-response

handshake.

If this property is not specified or the interceptor cannot find the specified resource, the following content is

used:

<html><head><title>An NTLM Token was received.</title></head>

<body>Your browser configuration is correct, but you have not logged into a supported

Microsoft(R) Windows(R) Domain.

<p>Please login to the application using the normal login page.</html>

 Data type: String

Enable delegation of Kerberos credentials:

Specifies whether the Kerberos delegated credentials should be stored by SPNEGO. It also enables an

application to retrieve the stored credentials and to propagate them to other applications downstream for

additional SPNEGO authentication.

 This option requires the use of the advanced Kerberos credential delegation feature and the development

of custom logic by the application developer. The developer must interact directly with the Kerberos Ticket

Granting Service (TGS) to obtain a Ticket Granting Ticket (TGT) using the delegated Kerberos credentials

on behalf of the user who originated the request. The developer must also construct the appropriate

Kerberos SPNEGO token and include it in the HTTP request to continue the downstream SPNEGO

authentication process, including handling additional SPNEGO challenge-response exchange, if necessary.

 Default: Disabled

Trim Kerberos realm from principal name:

This choice is optional. It specifies whether SPNEGO removes the suffix of the principal user name,

starting from the @ that precedes the Kerberos realm name. If this attribute is set to true, the suffix of the

principal user name is removed. If this attribute is set to false, the suffix of the principal name is retained.

The default value used is true.

 Default: Disabled

Configuring the client browser to use SPNEGO

You can configure your browser to utilize the Simple and Protected GSS-API Negotiation (SPNEGO)

mechanism.

Before you begin

You need to know how to display and set options in the Microsoft Internet Explorer browser or any other

browser (such as Firefox). You must have a browser installed that supports SPNEGO authentication.

About this task

Complete the following steps to ensure that your Microsoft Internet Explorer browser is enabled to perform

SPNEGO authentication.

1. At the desktop, log in to the windows active directory domain.

2. Activate Internet Explorer.

3. In the Internet Explorer window, click Tools > Internet Options > Security tab.

4. Select the Local intranet icon and click Sites.

292 Securing applications and their environment

5. In the Local intranet window, ensure that the ″check box″ to include all local (intranet) not listed in

other zones is selected, then click Advanced.

6. In the Local intranet window, fill in the Add this Web site to the zone field with the Web address of the

host name so that the single sign-on (SSO) can be enabled to the list Web sites shown in the Web

sites field. Your site information technology staff provides this information. Click OK to complete this

step and close the Local intranet window.

7. On the Internet Options window, click the Advanced tab and scroll to Security settings. Ensure that

the Enable Integrated Windows Authentication (requires restart) box is selected.

8. Click OK. Restart your Microsoft Internet Explorer to activate this configuration.

Results

Complete the following steps to ensure that your Firefox browser is enabled to perform SPNEGO

authentication.

1. At the desktop, log in to the windows active directory domain.

2. Activate Firefox.

3. At the address field, type about:config.

4. In the Filter, type network.n

5. Double click on network.negotiate-auth.trusted-uris. This preference lists the sites that are permitted

to engage in SPNEGO Authentication with the browser. Enter a comma-delimited list of trusted

domains or URLs.

Note: You must set the value for network.negotiate-auth.trusted-uris.

6. If the deployed SPNEGO solution is using the advanced Kerberos feature of Credential Delegation

double click on network.negotiate-auth.delegation-uris. This preference lists the sites for which the

browser may delegate user authorization to the server. Enter a comma-delimited list of trusted domains

or URLs.

7. Click OK. The configuration appears as updated.

8. Restart your Firefox browser to activate this configuration.

Your Internet browser is properly configured for SPNEGO authentication. You can use applications that are

deployed in WebSphere Application Server that use secured resources without being repeatedly requested

for an ID and password.

Creating SPNEGO tokens for J2EE, .NET, Java, Web service clients for HTTP

requests

You can create a Simple and Protected GSS-API Negotiation (SPNEGO) token for your applications and

insert this token into the HTTP headers to authenticate to the WebSphere Application Server.

Before you begin

1. Create a client GSS credential. Choose one of the following 4 options:

a. Create a GSS credential for the Kerberos credential cache. For example:

 System.setProperty("javax.security.auth.useSubjectCredsOnly", "false");

 Oid krb5MechOid = new Oid("1.2.840.113554.1.2.2");

 Oid spnegoMechOid = new Oid("1.3.6.1.5.5.2");

 GSSManager manager = GSSManager.getInstance();

 GSSName gssUserName = manager.createName(userName, GSSName.NT_USER_NAME, krb5MechOid);

 clientGssCreds = manager.createCredential(gssUserName.canonicalize(krb5MechOid),

 GSSCredential.INDEFINITE_LIFETIME,

 krb5MechOid,

 GSSCredential.INITIATE_ONLY);

 clientGssCreds.add (gssUserName,

 GSSCredential.INDEFINITE_LIFETIME,

Chapter 5. Authenticating users 293

GSSCredential.INDEFINITE_LIFETIME,

 spnegoMechOid,

 GSSCredential.INITIATE_ONLY);

b. Create a GSS credential from a subject that has Kerberos tickets. For example:

 Oid krb5MechOid = new Oid("1.2.840.113554.1.2.2");

 Oid spnegoMechOid = new Oid("1.3.6.1.5.5.2");

 GSSManager manager = GSSManager.getInstance();

 clientGssCreds = (GSSCredential) Subject.doAs(subject, new PrivilegedExceptionAction()

 {

 public Object run() throws GSSException, Exception

 {

 try {

 gssName = manager.createName(userName,

 GSSName.NT_USER_NAME,

 getKrb5MechOid());

 GSSCredential gssCred = manager.createCredential(

 gssName.canonicalize(krb5MechOid),

 GSSCredential.DEFAULT_LIFETIME,

 krb5MechOid,

 GSSCredential.INITIATE_ONLY);

 gssCred.add (gssUserName,

 GSSCredential.INDEFINITE_LIFETIME,

 GSSCredential.INDEFINITE_LIFETIME,

 spnegoMechOid,

 GSSCredential.INITIATE_ONLY);

 return gssCred;

 } catch (GSSException gsse) {

 } catch (Exception e) {

 }

 return null;

 }

 });

c. Create a GSS credential after calling the WSKRB5Login login module. For example:

 Oid krb5MechOid = new Oid("1.2.840.113554.1.2.2");

 Oid spnegoMechOid = new Oid("1.3.6.1.5.5.2");

 System.setProperty("javax.security.auth.useSubjectCredsOnly", "true");

 GSSManager manager = GSSManager.getInstance();

 GSSName gssUserName = manager.createName(userName, GSSName.NT_USER_NAME, krb5MechOid);

 clientGssCreds = manager.createCredential(gssUserName.canonicalize(krb5MechOid),

 GSSCredential.INDEFINITE_LIFETIME,

 krb5MechOid,

 GSSCredential.INITIATE_ONLY);

 clientGssCreds.add (gssUserName,

 GSSCredential.INDEFINITE_LIFETIME,

 GSSCredential.INDEFINITE_LIFETIME,

 spnegoMechOid,

 GSSCredential.INITIATE_ONLY);

d. Create a GSS credential using the Microsoft native Kerberos credential cache. For example:

 Oid krb5MechOid = new Oid("1.2.840.113554.1.2.2");

 Oid spnegoMechOid = new Oid("1.3.6.1.5.5.2");

 System.setProperty("javax.security.auth.useSubjectCredsOnly", "false");

 GSSManager manager = GSSManager.getInstance();

 clientGssCreds = manager.createCredential(null,

 GSSCredential.INDEFINITE_LIFETIME,

 krb5MechOid,

 GSSCredential.INITIATE_ONLY);

 clientGssCreds.add(null,

294 Securing applications and their environment

GSSCredential.INDEFINITE_LIFETIME,

 GSSCredential.INDEFINITE_LIFETIME,

 spnegoMechOid, GSSCredential.INITIATE_ONLY);

2. After you have created a client GSS credential, you can now create the SPNEGO token and insert it in

the HTTP header as in the following example:

 // create target server SPN

 GSSName gssServerName = manager.createName(targetServerSpn, GSSName.NT_USER_NAME);

 GSSContext clientContext = manager.createContext(gssServerName.canonicalize(spnegoMechOid),

 spnegoMechOid,

 clientGssCreds,

 GSSContext.DEFAULT_LIFETIME);

 // optional enable GSS credential delegation

 clientContext.requestCredDeleg(true);

 byte[] spnegoToken = new byte[0];

 // create a SPNEGO token for the target server

 spnegoToken = clientContext.initSecContext(spnegoToken, 0, spnegoToken.length);

 URL url = new URL(targetUrl);

 HttpURLConnection con= (HttpURLConnection) url.openConnection();

 try {

 // insert SPNEGO token in the HTTP header

 con.setRequestProperty("Authorization", "Negotiate " + Base64.encode(spnegoToken));

 con.getResponseCode();

 } catch (IOException e) {

 } catch (Exception ex) {

 }

Results

Your application might need a Kerberos configuration file (krb5.ini or krb5.conf). Read about for more

information.

Creating a single sign-on for HTTP requests using the SPNEGO TAI

(deprecated)

Creating single sign-ons for HTTP requests using the Simple and Protected GSS-API Negotiation

Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application Server requires the

performance of several distinct, yet related functions that when completed, allow HTTP users to log in and

authenticate only once at their desktop and receive automatic authentication from the WebSphere

Application Server.

Before you begin

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

Before starting this task, complete the following checklist:

v The domain member has users who can log on to the domain. Specifically, you need to have a

functioning Microsoft Windows 2000 or Windows 2003 active directory domain that includes:

– Domain controller

Chapter 5. Authenticating users 295

– Client workstation

– Users who can login to the client workstation
v A server platform with WebSphere Application Server running and application security enabled.

v Users on the active directory must be able to access WebSphere Application Server protected

resources using a native WebSphere Application Server authentication mechanism.

v The domain controller and the host of WebSphere Application Server should have the same local time.

v Ensure the clock on clients, Microsoft Active Directory and WebSphere Application Server are

synchronized to within five minutes.

v Be aware that client browsers have to be SPNEGO enabled, which you perform on the client application

machine (with details explained in step 2 of this task).

About this task

The objective of this machine arrangement is to permit users to successfully access WebSphere

Application Server resources without having to reauthenticate and thus achieve Microsoft Windows

desktop single sign-on capability.

Configuring the members of this environment to establish Microsoft Windows single sign-on involves

specific activities that are performed on three distinct machines:

v Microsoft Windows 2000 or Windows 2003 Server running the Active Directory Domain Controller and

associated Kerberos Key Distribution Center (KDC)

v A Microsoft Windows 2000 or Windows 2003 domain member (client application), such as a browser or

Microsoft .NET client.

v A server platform with WebSphere Application Server running.

Perform the following steps on the indicated machines to create single sign-on for HTTP requests using

SPNEGO

1. Domain Controller Machine - Configure the Microsoft Windows 2000 or Windows 2003 Server

running the Active Directory Domain Controller and associated Kerberos Key Distribution Center (KDC)

This configuration activity has the following steps:

v Create a user account for the WebSphere Application Server in a Microsoft Active Directory. This

account will be eventually mapped to the Kerberos service principal name (SPN).

v On the Microsoft Active Directory machine where the Kerberos key distribution center (KDC) is

active, map the user account to the Kerberos service principal name (SPN). This user account

represents the WebSphere Application Server as being a Kerberize’d service with the KDC. Use the

setspn command to map the Kerberos service principal name to a Microsoft user account. The

topic, “Creating a Kerberos service principal and keytab file that is used by the WebSphere

Application Server SPNEGO TAI (deprecated)” on page 301 has more details about using the

setspn command.

v Create the Kerberos keytab file and make it available to WebSphere Application Server. Use the

ktpass tool to create the Kerberos keytab file (krb5.keytab). The topic, “Creating a Kerberos service

principal and keytab file that is used by the WebSphere Application Server SPNEGO TAI

(deprecated)” on page 301 has more details about using the ktpass command. to create the keytab

file.

Note: You make the keytab file available to WebSphere Application Server by copying the

krb5.keytab file from the Domain Controller (LDAP machine) to the WebSphere Application

Server machine. See “Using the ktab command to manage the Kerberos keytab file” on page

304 for more details.

Note: Your domain controller operations must lead to the following results:

v A user account is created in the Microsoft Active Directory and mapped to a Kerberos service

principal name.

296 Securing applications and their environment

v A Kerberos keytab file (krb5.keytab) is created and made available to the WebSphere

Application Server. The Kerberos keytab file contains the Kerberos service principal keys

WebSphere Application Server uses to authenticate the user in the Microsoft Active Directory

and the Kerberos account.

2. Client Application Machine - Configure the client application. Client-side applications are responsible

for generating the SPNEGO token for use by the SPNEGO TAI. You begin this configuration process

by configuring your Web browser to use SPNEGO authentication. See “Configuring the client browser

to use SPNEGO TAI (deprecated)” on page 317 for the detailed steps required for your browser.

3. WebSphere Application Server Machine - Configure and enable the Application Server and the

associated SPNEGO TAI by performing the following tasks:

v Ensure that LTPA is enabled. See “Configuring the Lightweight Third Party Authentication

mechanism” on page 228 for more details.

v Enable the SPNEGO TAI. See “Configuring WebSphere Application Server and enabling the

SPNEGO TAI (deprecated)” on page 305 for more details.

v Create SPNEGO TAI properties using either the wsadmin command task or the administrative

console.

– For using the wsadmin command task, see

- “SpnegoTAICommands group for the AdminTask object (deprecated)” on page 1222

– For using the administrative console, see “Configuring WebSphere Application Server and

enabling the SPNEGO TAI (deprecated)” on page 305 for more details.

v Configure JVM properties and enable the SPNEGO TAI in Application Server in which it is defined.

See “Configuring JVM custom properties, filtering HTTP requests, and enabling SPNEGO TAI in

WebSphere Application Server (deprecated)” on page 318 or “Enabling the SPNEGO TAI as JVM

custom property using scripting (deprecated)” on page 319 for more details.

v Install the Kerberos keytab file (created in step 1) on the WebSphere Application Server machine.

“Creating a Kerberos service principal and keytab file that is used by the WebSphere Application

Server SPNEGO TAI (deprecated)” on page 301 provides the details.

v Create a basic Kerberos configuration file (krb5.ini or krb5.conf). See “The Kerberos configuration

file” on page 1227 for details.

v Map the client Kerberos principal name to the WebSphere user registry ID, but only if the

WebSphere Application Server does not use Micorsoft Active Directory. See “Mapping Kerberos

client principal name to WebSphere user registry ID for SPNEGO TAI (deprecated)” on page 323 for

more details.

4. Optional: Using a remote HTTP server - To use a remote server, you must complete the following

steps, which assume that you have already configured the JVM properties and enabled the SPNEGO

TAI in the Application Server in which it is defined (as described in the previous three steps).

a. Complete the steps in “Creating a Kerberos service principal and keytab file that is used by the

WebSphere Application Server SPNEGO TAI (deprecated)” on page 301 for the remote proxy

server.

b. Merge the previous keytab file created in step 1 with the keytab file created in step 4a. See “Using

the ktab command to manage the Kerberos keytab file” on page 304 for more information.

c. Create the SPN for the remote proxy server using the addSpnegoTAIProperties wsadmin command

task. For more information, see “SpnegoTAICommands group for the AdminTask object

(deprecated)” on page 1222.

d. Restart the WebSphere Application Server.

Single sign-on for HTTP requests using SPNEGO TAI (deprecated)

WebSphere Application Server provides a trust association interceptor (TAI) that uses the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP

requests for secured resources in WebSphere Application Server.

Note:

Chapter 5. Authenticating users 297

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

Read about “Creating a single sign-on for HTTP requests using SPNEGO Web authentication” on

page 279 for more information.

SPNEGO is a standard specification defined in The Simple and Protected GSS-API Negotiation

Mechanism (IETF RFC 2478).

When WebSphere Application Server administrative security is enabled, the SPNEGO TAI is initialized.

While processing inbound HTTP requests, the Web authenticator component interacts with the SPNEGO

TAI, which is defined and enabled in the security configuration repository. One interceptor is selected and

is responsible for authenticating access to the secured resource that is identified in the HTTP request.

Note: The use of TAIs is an optional feature. If no TAI is selected, the authentication process continues

normally.

HTTP users log in and authenticate only once at their desktop and are subsequently authenticated

(internally) with WebSphere Application Server. The SPNEGO TAI is invisible to the end-user of

WebSphere applications. The SPNEGO TAI is only visible to the Web administrator who is responsible for

ensuring a proper configuration, capacity, and maintenance of the Web environment.

In addition to WebSphere Application Server security runtime services, some external components are

required to completely enable operation of the SPNEGO TAI. The external components include:

v A client application, for example, a browser or Microsoft .NET client, that supports the SPNEGO

authentication mechanism, as defined in IETF RFC 2478. Microsoft Internet Explorer Version 5.5 or later

and Mozilla Firefox Version 1.0 are browser examples. Any browser needs to be configured to use the

SPNEGO mechanism. For more information on performing this configuration, see “Configuring the client

browser to use SPNEGO TAI (deprecated)” on page 317.

The authentication of HTTP requests is triggered by the requestor (the client-side), which generates a

SPNEGO token. WebSphere Application Server receives this token and validates trust between the

requester and WebSphere Application Server. Specifically, the SPNEGO TAI decodes and retrieves the

requester’s identity from the SPNEGO token. The identity is used to establish a secure context between

the requester and the application server.

Note: The SPNEGO TAI is a server-side solution in WebSphere Application Server. Client-side

applications are responsible for generating the SPNEGO token for use by the SPNEGO TAI. The

requester’s identity in WebSphere Application Server security registry must be identical to that

identity the SPNEGO TAI retrieves. An identical match does occur when Microsoft Windows Active

Directory server is the Lightweight Directory Access Protocol (LDAP) server that is used in

WebSphere Application Server. A custom login module is available as a plug-in to support custom

mapping of the identity from the Active Directory to the WebSphere Application Server security

registry. See “Mapping Kerberos client principal name to WebSphere user registry ID for SPNEGO

TAI (deprecated)” on page 323 for details on using this custom login module.
WebSphere Application Server validates the identity against its security registry and, if the validation is

successful, produces a Lightweight Third Party Authentication (LTPA) security token and places and

returns a cookie to the requester in the HTTP response. Subsequent HTTP requests from this same

requester to access additional secured resources in WebSphere Application Server use the LTPA security

token previously created, to avoid repeated login challenges.

The challenge-response handshake process is illustrated in the following graphic:

298 Securing applications and their environment

ftp://ftp.isi.edu/in-notes/rfc2478.txt
ftp://ftp.isi.edu/in-notes/rfc2478.txt

The SPNEGO TAI can be enabled for all or for selected WebSphere Application Servers in a WebSphere

Application Server cell configuration. Also, the behavior of each SPNEGO TAI instance is controlled by

custom configuration properties that are used to identify, for example, the criteria used to filter HTTP

requests, such as the host name and security realm name used to construct the Kerberos Service

Principal Name (SPN). For more information regarding establishing and setting the SPNEGO TAI custom

configuration properties, see the following topics:

v Setting up the Kerberos configuration properties. See “The Kerberos configuration file” on page 1227.

v Setting or adjusting the SPNEGO TAI custom properties. See “SPNEGO TAI custom properties

configuration (deprecated)” on page 312.

v Adjusting the SPNEGO TAI filter settings. See “Configuring JVM custom properties, filtering HTTP

requests, and enabling SPNEGO TAI in WebSphere Application Server (deprecated)” on page 318

v Using the custom login module to map the identity from the Active Directory to the WebSphere

Application Server registry. See Mapping user Ids from client to server for SPNEGO.

v Setting the major and additional Java virtual machine (JVM) custom properties. See “SPNEGO TAI JVM

configuration custom properties (deprecated)” on page 320

The Web administrator has access to the following SPNEGO TAI security components and associated

configuration data, as illustrated in the following graphic.

Active Directory Kerberos KDC
WebSphere

Registry

SPNEGO TAI
WebSphere

Application Server
Browser/.NET Client

Client
Machine

Server Machine

8. Get userid from SPNEGO token
9. Validate user with Registry
10. Create LTPA Token

1. HTTP/Post/Get/Web-Service

2. HTTP 401 Authenticate/Negotiate

7. HTTP/Post/Get/Web-Service + Authorization SPNEGO Token

11. HTTP 200, Content, LTPA Token

Windows 2000/3
Server

3. Request Ticket Granting Ticket (AS_REQ)
4. Get Ticket Granting Ticket (AS_REP)
5. Request Service Ticket (TGS_REQ)
6. Get Service Ticket (TGS_REP)

Figure 13. HTTP request processing, WebSphere Application Server - SPNEGO TAI

Chapter 5. Authenticating users 299

v The Web authentication module and the Lightweight Third Party Authentication (LTPA) mechanism

provide the plug-in runtime framework for trust association interceptors. See “Configuring the

Lightweight Third Party Authentication mechanism” on page 228 for more detail is configuring the LTPA

mechanism for use with the SPNEGO TAI.

v The Java Generic Security Service (JGSS) provider is included in the Java SDK (app_server_root/
java/endorsed/ibmjgssprovider.jar) and used to obtain the Kerberos security context and credentials

that are used for authentication. IBM JGSS 1.0 is a Java Generic Security Service Application

Programming Interface (GSSAPI) framework with Kerberos V5 as the underlying default security

mechanism. GSSAPI is a standardized abstract interface under which can be plugged different security

mechanisms based on private-key, public-key and other security technologies. GSSAPI shields secure

applications from the complexities and peculiarities of the different underlying security mechanisms.

GSSAPI provides identity and message origin authentication, message integrity, and message

confidentiality. For more information, see JGSS.

v The Kerberos configuration properties (krb5.conf or krb5.ini) and Kerberos encryption keys (stored in

a Kerberos keytab file) are used to establish secure mutual authentication.

The Kerberos key table manager (Ktab), which is part of JGSS, allows you to manage the principal

names and service keys stored in a local Kerberos keytab file. Principal name and key pairs listed in the

Kerberos keytab file allow services running on a host to authenticate themselves to the Kerberos Key

Distribution Center (KDC). Before a server can use Kerberos, a Kerberos keytab file must be initialized

on the host that runs the server.

“Using the ktab command to manage the Kerberos keytab file” on page 304 highlights the Kerberos

configuration requirements for the SPNEGO TAI as well as the use of Ktab.

v The SPNEGO provider supplies the implementation of the SPNEGO authentication mechanism, located

at app_server_root/java/ext/ibmspnego.jar.

v The custom configuration properties control the runtime behavior of the SPNEGO TAI. Configuration

operations are performed with the administrative console or scripting facilities. Refer to “SPNEGO TAI

custom properties configuration (deprecated)” on page 312 for more information about these custom

configuration properties.

v Java virtual machine (JVM) custom properties control diagnostic trace information for problem

determination of the JGSS security provider and use of the property reload feature.“SPNEGO TAI JVM

configuration custom properties (deprecated)” on page 320 describes these JVM custom properties

The benefits of having WebSphere Application Server use the SPNEGO TAI include:

v The cost of administering a large number of ids and passwords is reduced.

v A secure and mutually authenticated transmission of security credentials from the Web browser or

Microsoft .NET clients is established.

v Interoperability with Web services and Microsoft .NET applications that use SPNEGO authentication at

the transport level is achieved.

Web
Authentication

module

SPNEGO
Trust

Association
Interceptor

JGSS and
SPNEGO
security

providers

Kerberos
configuration

(krb5.conf) and
keytab

file
Kerberos

SPNEGO TAI
configuration

properties

JVM
System

properties

Figure 14. SPNEGO TAI security and configuration elements

300 Securing applications and their environment

http://www-128.ibm.com/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html

Using the SPNEGO TAI in your WebSphere Application Server environment requires planning then

implementation. See “Single sign-on capability with SPNEGO TAI - checklist (deprecated)” on page 327 in

planning for SPNEGO TAI. Implementing the use of the SPNEGO TAI is divided into the following areas of

responsibility:

End browser user

The end user must configure the Web browser or Microsoft .NET application to issue HTTP

requests that are processed by the SPNEGO TAI.

Web administrator

The Web administrator is responsible for configuring the SPNEGO TAI of WebSphere Application

Server to respond to HTTP requests of the client.

WebSphere Application Server administrator

The WebSphere Application Server administrator is responsible for configuring WebSphere

Application Server and the SPNEGO TAI for optimum installation performance.

See “Creating a single sign-on for HTTP requests using the SPNEGO TAI (deprecated)” on page 295 for

an explanation of the tasks required to use the SPNEGO TAI and how the responsible party performs

these tasks.

Creating a Kerberos service principal and keytab file that is used by the

WebSphere Application Server SPNEGO TAI (deprecated)

You perform this configuration task on the Microsoft Active Directory domain controller machine. This task

is a necessary part of preparing to process single sign on browser requests to WebSphere Application

Server and thee SPNEGO trust association interceptor (TAI).

Before you begin

You need to have a running domain controller and at least one client machine in that domain.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

About this task

This task is performed on the active directory domain controller machine. Complete the following

steps to ensure that the Microsoft Windows 2000 or Windows 2003 Server that is running the active

directory domain controller is configured properly to the associated key distribution center (KDC).

1. Create a user account in the Microsoft Active Directory for the WebSphere Application Server.

Click Start->Programs->Administrative Tools->Active Directory Users and Computers

Use the name for the WebSphere Application Server. For example, if the Application Server you are

running on the WebSphere Application Server machine is called myappserver.austin.ibm.com, create a

new user in Active Directory called myappserver.

Note: Do not select ″User must change password at next logon.″

Note: Make sure that you do not have the computer name myappserver under Computers and Domain

Controllers (You check for this condition as illustrated below.). If you already have a computer

name myappserver, then you need to create a different user account name.

Chapter 5. Authenticating users 301

v Goto Start -> Programs -> Administrative Tools -> Active Directory Users and

Computers->Computers

v Goto Start -> Programs -> Administrative Tools -> Active Directory Users and

Computers->Domain Controllers

2. Use the setspn command to map the Kerberos service principal name, HTTP/<host name>, to a

Microsoft user account. An example of setspn usage is as follows:

C:\Program Files\Support Tools>

setspn -A HTTP/myappserver.austin.ibm.com myappserver

Note: There may already be some SPNs related to the Microsoft Windows hosts that have been

added to the domain. You can display those that exist by using the setspn -L command, but

you still have to add an HTTP SPN for WebSphere Application Server. For example, setspn -L

myappserver would list the SPNs.

Note: Make sure that you do not have the same SPNs mapping to more than one Microsoft user

account. If you map the same SPN to more than one user account, the web browser client can

send a NTLM instead of SPNEGO token to WebSphere Application Server.

More information about the setspn command can be found here, Windows 2003 Technical Reference

(setspn command)

3. Create the Kerberos keytab file and make it available to WebSphere Application Server. Use the

ktpass command to create the Kerberos keytab file (krb5.keytab).

Below is a summary of the functions available when you enter ktpass -? on the command line.

C:\MS SDK>ktpass -?

Command line options:

---------------------most useful args

[- /] out : Keytab to produce

[- /] princ : Principal name (user@REALM)

[- /] pass : password to use

 use "*" to prompt for password.

---------------------less useful stuff

[- /] mapuser : map princ (above) to this user account (default: don’t)

[- /] mapOp : how to set the mapping attribute (default: add it)

[- /] mapOp : is one of:

[- /] mapOp : add : add value (default)

[- /] mapOp : set : set value

[- +] DesOnly : Set account for des-only encryption (default:no)

[- /] in : Keytab to read/digest

---------------------options for key generation

[- /] crypto : Cryptosystem to use

[- /] crypto : is one of:

[- /] crypto : DES-CBC-CRC : for compatibility

[- /] crypto : DES-CBC-MD5 : default

[- /] crypto : RC4 :

[- /] ptype : principal type in question

[- /] ptype : is one of:

[- /] ptype : KRB5_NT_PRINCIPAL : The general ptype-- recommended

[- /] ptype : KRB5_NT_SRV_INST : user service instance

[- /] ptype : KRB5_NT_SRV_HST : host service instance

[- /] kvno : Override Key Version Number

 Default: query DC for kvno. Use /kvno 1 for Win2K compat.

[- +] Answer : +Answer answers YES to prompts. -Answer answers NO.

[- /] Target : Which DC to use. Default:detect

Depending on the encryption type, you use the ktpass tool in one of the following ways to create the

Kerberos keytab file:

302 Securing applications and their environment

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/b3a029a1-7ff0-4f6f-87d2-f2e70294a576.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/b3a029a1-7ff0-4f6f-87d2-f2e70294a576.mspx

Note: Do not use the -pass switch on the ktpass command to reset a password for a Microsoft

Windows server account.
See Windows 2003 Technical Reference (Kerberos keytab file and ktpass command) for more

information.

v For a single DES encryption type

From a command prompt, run the ktpass command:

ktpass -out c:\temp\myappserver.keytab

-princ HTTP/myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

-mapUser myappserv

-mapOp set -pass was1edu

-crypto DES-CBC-MD5

+DesOnly

 Table 8. Using ktpass for a single DES encryption type

Option Explanation

-out c:\temp\myappserver.keytab The key is written to this output file.

-princ HTTP/myappserver.austin.ibm.com

@WSSEC.AUSTIN.IBM.COM

The concatenation of the user logon name, and the realm must

be in uppercase.

-mapUser The key is mapped to the user, myappserver.

-mapOp This option sets the mapping.

-pass was1edu This option is the password for the user ID.

-crypto DES-CBC-MD5 This option uses the single DES encryption type.

+DesOnly This option generates only DES encryptions.

v For the RC4-HMAC encryption type

Note: RC4-HMAC encryption is only supported when using a Windows 2003 Server as KDC.

RC4-HMAC encryption is not supported with a Windows 2000 Server as KDC.
From a command prompt, run the ktpass command.

ktpass -out c:\temp\myappserver.keytab

-princ HTTP/myappserver.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

-mapUser myappserver

-mapOp set

–pass was1edu

-crypto RC4-HMAC

 Table 9. Using ktpass for the RC4-HMAC encryption type

Option Explanation

-out c:\temp\myappserver.keytab The key is written to this output file.

-princ HTTP/myappserver.austin.ibm.com

@WSSEC.AUSTIN.IBM.COM

The concatenation of the user logon name, and the realm must be

in uppercase.

-mapUser The key is mapped to the user, myappserver.

-mapOp This option sets the mapping.

-pass was1edu This option is the password for the user ID.

-crypto RC4-HMAC This option chooses the RC4-HMAC encryption type.

The Kerberos keytab file is created for use with the SPNEGO TAI.

Note: A Kerberos keytab configuration file contains a list of keys that are analogous to user

passwords. It is important for hosts to protect their Kerberos keytab files by storing them on the

local disk, which makes them readable only be authorized users.

Chapter 5. Authenticating users 303

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/64042138-9a5a-4981-84e9-d576a8db0d05.mspx

You make the keytab file available to WebSphere Application Server by copying the krb5.keytab file

from the Domain Controller (LDAP machine) to the WebSphere Application Server machine.

ftp> bin

ftp> put c:\temp\KRB5_NT_SEV_HST\krb5.keytab

Results

Your active directory domain controller is properly configured to process single sign on requests to

WebSphere Application Server and the SPNEGO TAI

Using the ktab command to manage the Kerberos keytab file:

The Kerberos key table manager command (Ktab) allows the WebSphere administrator to manage the

Kerberos service principal names and keys stored in a local Kerberos keytab file. In JDK 1.6 or later, you

can use the ktab command to merge two Kerberos keytab files.

 Kerberos service principal (SPN) name and keys listed in the Kerberos keytab file allow services running

on the host to validate the incoming Kerberos or SPNEGO token request. Before configuring Kerberos or

SPNEGO web authentication, the WebSphere Application Server administrator must setup a Kerberos

keytab file on the host that is running WebSphere Application Server.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated.

SPNEGO Web authentication has taken its place to provide the following enhancements:

v Configure and enable SPNEGO Web Authentication and filters on the WebSphere Application

server side by using the administrative console.

v Provide dynamic reload of SPNEGO without having to stop and restart the WebSphere

Application server.

v Provide fallback to an application login method if the SPNEGO Web authentication fails.

Note:

v It is important to protect the keytab files, making them readable only by authorized WebSphere

users.

v Any updates to the Kerberos keytab file using Ktab do not affect the Kerberos database. If you

change the keys in the Kerberos keytab file, you must also make the corresponding changes to

the Kerberos database.

The syntax of Ktab is illustrated below by using Ktab with the -help operand.

$ ktab -help

Usage: java com.ibm.security.krb5.internal.tools.Ktab [options]

Available options:

-l list the keytab name and entries

-a <principal_name> [password] add an entry to the keytab

-d <principal_name> delete an entry from the keytab

-k <keytab_name> specify keytab name and path with FILE: prefix

-m <keytab_name> <keytab_name> specify merging source keytab file name and destination keytab file name

Below is an example of how Ktab is used to merge krb5Host1.conf to the krb5.conf file:

304 Securing applications and their environment

[root@wssecjibe bin]# ./ktab -m /etc/krb5Host1.conf /etc/krb5.conf

Merging keytab files: source=krb5Host1.conf destination=krb5.conf

Done!

[root@wssecjibe bin]# ls /etc/krb5.*

/etc/krb5Host1.conf/etc/krb5.conf

/etc/krb5.keytab

Below is an example of how Ktab is used on a LINUX platform to add new principal names to the

Kerberos keytab file, where ot56prod is the password for the Kerberos principal name:

[root@wssecjibe bin]# ./ktab -a

HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM ot56prod -k /etc/krb5.keytab

Done!

Service key for principal HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM saved

Below is an example of how Ktab is used on a Linux platform to list Kerberos keytab file content.

[root@wssecjibe bin]# ./ktab

 KVNO Principal

 ---- ---------

 1 HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

[root@wssecjibe bin]# ls /etc/krb5.*

/etc/krb5.conf

/etc/krb5.keytab

Configuring WebSphere Application Server and enabling the SPNEGO TAI

(deprecated)

Performing this task helps you, as Web administrator, to ensure that WebSphere Application Server is

properly configured to enable the operation of the Simple and Protected GSS-API Negotiation (SPNEGO)

trust association interceptor (TAI).

Before you begin

You need to know how to use the WebSphere Application Server administrative console to manage the

security configuration and have the proper authority to modify the security configuration of the application

server.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

About this task

Complete the following steps to enable the operation of the SPNEGO TAI.

1. Log on to the WebSphere Application Server administrative console.

2. Click Security > Global security.

3. Expand Web security and click Trust association.

4. Under the General Properties heading, select the Enable trust association check box, then click

Interceptors.

5. Select the SPNEGO TAI in the list of interceptors.

6. Then click Custom properties.

Chapter 5. Authenticating users 305

7. Click New and then fill in the Name and Value fields. Click OK. Repeat this step for each custom

property that you want to apply to the SPNEGO TAI. See “SPNEGO TAI custom properties

configuration (deprecated)” on page 312 for a complete list of SPNEGO TAI custom properties.

Note: It is recommended that you use the wsadmin utility to manage the SPNEGO TAI properties.

You can add, modify, and delete SPNEGO TAI properties as well as display them using

wsadmin. See “Adding SPNEGO TAI properties using the wsadmin utility (deprecated)” to add,

“Modifying SPNEGO TAI properties using the wsadmin utility (deprecated)” on page 308 to

modify, and “Deleting SPNEGO TAI properties using the wsadmin utility (deprecated)” on page

310 to delete SPNEGO TAI properties.

8. After you finish defining your custom properties, click Save to store the updated SPNEGO TAI

configuration.

Results

Your SPNEGO TAI configuration is now configured for WebSphere Application Server.

Adding SPNEGO TAI properties using the wsadmin utility (deprecated):

You use the wsadmin utility to add properties for the Simple and Protected GSS-API Negotiation

Mechanism (SPNEGO) trust association interceptor (TAI) in the security configuration for WebSphere

Application Server.

 About this task

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

Use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory from the Qshell command line.

3. At the wsadmin prompt, enter the following command:

$AdminTask addSpnegoTAIProperties

You can use the following parameters with this command:

 Option Description

<spnId> This parameter is optional. It is the SPN identifier for the

group of custom properties that are to be defined with this

command. If you do not specify this parameter, an

unused SPN identifier is assigned.

<host> This parameter is required. It specifies the host name

portion in the SPN used by the SPNEGO TAI to establish

a Kerberos secure context.

306 Securing applications and their environment

Option Description

<filter> This parameter is optional. It defines the filtering criteria

used by the class specified with the above attribute. If

you do not specify this parameter, all HTTP requests are

subject to SPNEGO authentication.

<filterClass> This parameter is optional. It specifies the name of the

Java class used by the SPNEGO TAI to select which

HTTP requests will be subject to SPNEGO authentication.

If you do not specify this paramter, the default filter class,

com.ibm.ws.security.spnego.HTTPHeaderFilter, is used.

<noSpnegoPage> This parameter is optional. It specifies the URL of a

resource that contains the content the SPNEGO TAI will

include in the HTTP response to be displayed by the

(browser) client application if it does not support

SPNEGO authentication.

If you do not specify the noSpnegoPage paramter then

the default is used:

"<html><head><title>SPNEGO

authentication is not supported.

</title></head>" +

"<body>SPNEGO authentication is

not supported on this client.

</body></html>";

<ntlmTokenPage> This parameter is optional. It specifies the URL of a

resource that contains the content the SPNEGO TAI will

include in the HTTP response that is to be displayed by

the (browser) client application when the SPNEGO token

received by the interceptor (after the challenge-response

handshake) contains a NT LAN manager (NTLM) token

instead of the expected SPNEGO token.

If you do not specify the ntlmTokenPage parameter then

the default is used:

"<html><head><title>An NTLM

Token was received.</title></head>"

+ "<body>Your browser configuration

is correct, but you have not

logged into a supported Windows

Domain."

+ "<p>Please login to the application

using the normal login page.</html>";

<trimUserName> This parameter is optional. It specifies whetheror not the

SPNEGO TAI is to remove the suffix of the principal user

name, starting from the ″@″ that precedes the Kerberos

realm name. If this parameter is set to true, the suffix of

the principal user name is removed. If this paramter is set

to false, the suffix of the principal name is retained. The

default value used is true.

Results

SPNEGO TAI properties have been added for this WebSphere Application Server.

Example

Example 1

The following example configures the SPNEGO TAI to intercept HTTP requests that contain IE 6 in

Chapter 5. Authenticating users 307

the user agent request header. The SPNEGO TAI uses the SPN of HTTP/
myhost.ibm.com@<default_realm> to authenticate the request originator.

$AdminTask addSpnegoTAIProperties -host myhost.ibm.com -filter user-agent%=IE 6

Example 2

 The following is an example of adding SPNEGOTAIProperties for SPN1 to use the default filterClass

and to intercept all requests for the host, central01.austin.ibm.com.

wsadmin>$AdminTask addSpnegoTAIProperties -interactive

Add SPNEGO TAI properties

Add SPNEGO TAI configuration properties.

*Host name in Service Principal Name (host): central01.austin.ibm.com

Service Principal Name identifier (spnId): 1

HTTP header filter rule (filter):

Name of class used to filter HTTP requests (filterClass):

SPNEGO not supported browser response (noSpnegoPage):

NTLM Token received browser response (ntlmTokenPage):

Trim User Name browser response (trimUserName):

Add SPNEGO TAI properties

F (Finish)

C (Cancel)

Select [F, C]: [F] f

WASX7278I: Generated command line: $AdminTask addSpnegoTAIProperties {-host central01.austin.ibm.com}

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

wsadmin>

Modifying SPNEGO TAI properties using the wsadmin utility (deprecated):

You use the wsadmin utility to modify the properties in the configuration of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application

Server.

 About this task

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory from the Qshell command line.

3. At the wsadmin prompt, enter the following command:

$AdminTask modifySpnegoTAIProperties

308 Securing applications and their environment

You can use the following parameters with this command:

 Option Description

<spnId> This parameter is required. It is the SPN identifier for the

group of custom properties that are to be defined with this

command.

<host> This parameter is optional. It specifies the host name

portion in the SPN used by the SPNEGO TAI to establish

a Kerberos secure context.

<filter> This parameter is optional. It defines the filtering criteria

used by the class specified with the above attribute.

<filterClass> This parameter is optional. It specifies the name of the

Java class used by the SPNEGO TAI to select which

HTTP requests will be subject to SPNEGO authentication.

If no class is specified, all HTTP requests will be subject

to SPNEGO authentication.

<noSpnegoPage> This parameter is optional. It specifies the URL of a

resource that contains the content the SPNEGO TAI will

include in the HTTP response to be displayed by the

(browser) client application if it does not support

SPNEGO authentication.

If you do not specify the noSpnegoPage attribute then the

default is used:

"<html><head><title>SPNEGO

authentication is not supported.

</title></head>" +

"<body>SPNEGO authentication is

not supported on this client.

</body></html>";

<ntlmTokenPage> This parameter is optional. The ntlmTokenPage

parameter specifies the URL of a resource that contains

the content the SPNEGO TAI will include in the HTTP

response, which will be displayed by the (browser) client

application. The (browser) client application displays this

HTTP response when the browser client sends a NT LAN

manager (NTLM) token instead of the expected SPNEGO

token during the challange-response handshake.

If you do not specify the ntlmTokenPage attribute then the

default is used:

"<html><head><title>An NTLM Token

was received.</title></head>"

+ "<body>Your browser configuration

is correct, but you have not

logged into a supported Windows

Domain."

+ "<p>Please login to the application

using the normal login page.</html>";

<trimUserName> This parameter is optional. It specifies whether (true) or

not (false) the SPNEGO TAI is to remove the suffix of

the principal user name, starting from the ″@″ that

precedes the Kerberos realm name. If this attribute is set

to true, the suffix of the principal user name is removed.

If this attribute is set to false, the suffix of the principal

name is retained. The default value used is true.

Chapter 5. Authenticating users 309

Results

SPNEGO TAI properties are modified for this WebSphere Application Server.

Example

Example 1

The following example configures the SPNEGO TAI to intercept HTTP requests that contain IE 6 in

the user agent request header. The SPNEGO TAI uses the SPN of HTTP/
myhost.ibm.com@<default_realm> to authenticate the request originator. Then the example modifies

the value of the filter custom property that was defined and changes it from user-agent%=IE 6 to

host==myhost.company.com.

$AdminTask addSpnegoTAIProperties -host myhost.ibm.com -filter user-agent%=IE 6

$AdminTask modifySpnegoTAIProperties -spnId 1 -filter host==myhost.company.com

Example 2

This is an example of modifying the SPNEGO TAI for SPN1 properties to add a filter for host

central01.austin.ibm.com.

wsadmin>$AdminTask modifySpnegoTAIProperties -interactive

Modify SPNEGO TAI properties

Modify SPNEGO TAI configuration properties

*Service Principal Name identifier (spnId): 1

Host name in Service Principal Name (host): central01.austin.ibm.com

HTTP header filter rule (filter): request-url!=noSPNEGO;request-url%=snoop

Name of class used to filter HTTP requests (filterClass):

SPNEGO not supported browser response (noSpnegoPage):

NTLM Token received browser response (ntlmTokenPage):

Trim User Name browser response (trimUserName):

Modify SPNEGO TAI properties

F (Finish)

C (Cancel)

Select [F, C]: [F] f

WASX7278I: Generated command line: $AdminTask modifySpnegoTAIProperties {-spnId

1 -host w2003secdev.austin.ibm.com -filter request-url!=noSPNEGO;request-url%=sn

oop}

com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

wsadmin>

Deleting SPNEGO TAI properties using the wsadmin utility (deprecated):

You use the wsadmin utility to delete properties in the configuration of the Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application Server.

 About this task

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

310 Securing applications and their environment

You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory from the Qshell command line.

3. At the wsadmin prompt, enter the following command:

$AdminTask deleteSpnegoTAIProperties

You can use the following parameters with this command:

 Option Description

<spnId> This is an optional parameter. It is the SPN identifier for

the group of custom properties that are to be deleted with

this command. If you do not specify this parameter, all

SPNEGO TAI custom properties are deleted.

Results

SPNEGO TAI properties are deleted for this WebSphere Application Server.

Example

Example 1

The following example deletes all the SPNEGO TAI properties for SPN2

wsadmin>$AdminTask deleteSpnegoTAIProperties {-spnId 2}

Example 2

The following example deletes all SPNEGO TAI properties

wsadmin>$AdminTask deleteSpnegoTAIProperties

com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

com.ibm.ws.security.spnego.SPN2.hostName=wssecpd.austin.ibm.com

wsadmin>

Displaying SPNEGO TAI properties using the wsadmin utility (deprecated):

You use the wsadmin utility to display the properties in the configuration of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application

Server.

 About this task

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory from the Qshell command line.

3. At the wsadmin prompt, enter the following command:

Chapter 5. Authenticating users 311

$AdminTask showSpnegoTAIProperties

You can use the following parameters with this command:

 Option Description

<spnId> This is an optional parameter. It is the service principal

name (SPN) identifier for the group of custom properties

that are to be displayed with this command. If you do not

specify this parameter, all SPNEGO TAI custom

properties are displayed.

Results

SPNEGO TAI properties are displayed for this WebSphere Application Server.

Example

Example 1

The following example displays all SPNEGO TAI properties.

wsadmin>$AdminTask showSpnegoTAIProperties

com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

com.ibm.ws.security.spnego.SPN2.hostName=wssecpd.austin.ibm.com

wsadmin>

Example 2

The following example displays SPNEGO TAI properties for SPN1 and host, central01.austin.ibm.com.

wsadmin>$AdminTask showSpnegoTAIProperties -interactive

Show SPNEGO TAI configuration properties.

Display SPNEGO TAI configuration properties.

Service Principal Name identifier (spnId): 1

Show SPNEGO TAI configuration properties.

F (Finish)

C (Cancel)

Select [F, C]: [F]

WASX7278I: Generated command line: $AdminTask showSpnegoTAIProperties {-spnId 1}

com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

com.ibm.ws.security.spnego.SPN1.trimUserName=true

wsadmin>

SPNEGO TAI custom properties configuration (deprecated):

The Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI)

custom configuration properties control different operational aspects of the SPNEGO TAI. You can specify

different property values for each application server.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

312 Securing applications and their environment

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

Each of the properties defined in the following table is specified in the Custom Properties panel for the

SPNEGO TAI using the administrative console facility. For convenience, you can optionally place these

properties in a properties file. In this case, the SPNEGO TAI loads the configuration properties from the file

instead of the Custom Properties panel definition. Refer to com.ibm.ws.security.spnego.propertyReloadFile

property as defined in “SPNEGO TAI JVM configuration custom properties (deprecated)” on page 320.

To assign unique property names that identify each possible SPN, an SPN<id> is embedded in the

property name and used to group the properties that are associated with each SPN. The SPN<id>s are

numbered sequentially for each property group.

 Table 10.

Property Name Required Default Value

com.ibm.ws.security.spnego.SPN<id>.hostName Yes None

com.ibm.ws.security.spnego.SPN<id>.filterClass No See the description that

follows.

com.ibm.ws.security.spnego.SPN<id>.filter No See the description that

follows.

com.ibm.ws.security.spnego.SPN<id>.enableCredDelegate No false

com.ibm.ws.security.spnego.SPN<id>.spnegoNotSupportedPage No See the description that

follows.

com.ibm.ws.security.spnego.SPN<id>.NTLMTokenReceivedPage No See the description that

follows.

com.ibm.ws.security.spnego.SPN<id>.trimUserName No true

Note: The following commands tasks can be used to operate on these SPNEGO TAI properties:

v “Adding SPNEGO TAI properties using the wsadmin utility (deprecated)” on page 306

v “Deleting SPNEGO TAI properties using the wsadmin utility (deprecated)” on page 310

v “Modifying SPNEGO TAI properties using the wsadmin utility (deprecated)” on page 308

v “Displaying SPNEGO TAI properties using the wsadmin utility (deprecated)” on page 311

Related concepts

“Single sign-on for HTTP requests using SPNEGO TAI (deprecated)” on page 297
WebSphere Application Server provides a trust association interceptor (TAI) that uses the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP

requests for secured resources in WebSphere Application Server.

Related tasks

“Mapping Kerberos client principal name to WebSphere user registry ID for SPNEGO TAI (deprecated)” on

page 323
You can use a system programming interface to customize the behavior of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) by implementing arbitrary

mappings of the end-user’s identity, which is retrieved from Microsoft Active Directory to the identity that is

used in the WebSphere Application Server security registry.

com.ibm.ws.security.spnego.SPN<id>.hostName:

This property is required. It specifies the hostname in the SPN used by the SPNEGO TAI to establish a

Kerberos secure context. It has no default value.

Chapter 5. Authenticating users 313

Note: The hostname is the long form of hostname. For example, myHostName.austin.ibm.com.
The Kerberos SPN is a string of the form HTTP/hostname@realm. The complete SPN is used with the Java

Generic Security Service (JGSS) by the SPNEGO provider to obtain the security credential and security

context that are used in the authentication process.

com.ibm.ws.security.spnego.SPN<id>.filterClass:

This property is optional. It specifies the name of the Java class that is used by the SPNEGO TAI to select

which HTTP requests are subject to SPNEGO authentication.

 If no class is specified, the default com.ibm.ws.security.spnego.HTTPHeaderFilter implementation class is

used. The Java class that is specified must implement the com.ibm.wsspi.security.spnego.SpnegoFilter

interface. A default implementation of this interface is provided. Specify the

com.ibm.ws.security.spnego.HTTPHeaderFilter class to use the default implementation. This class uses

the selection rules specified with the com.ibm.ws.security.spnego.SPN<id>.filter property.

com.ibm.ws.security.spnego.SPN<id>.filter:

This property is optional. It defines the filtering criteria that is used by the specified class with the

com.ibm.ws.security.spnego.SPN<id>.filterClass property. It defines arbitrary criteria that is meaningful to

the implementation class used.

 The com.ibm.ws.security.spnego.HTTPHeaderFilter default implementation class uses this property to

define a list of selection rules that represent conditions that are matched against the HTTP request

headers to determine whether or not the HTTP request is selected for SPNEGO authentication.

Each condition is specified with a key-value pair, separated from each other by a semicolon. The

conditions are evaluated from left to right, as they display in the specified property. If all conditions are

met, the HTTP request is selected for SPNEGO authentication.

The key and value in the key-value pair are separated by an operator that defines which condition is

checked. The key identifies an HTTP request header to extract from the request and its value is compared

with the value that is specified in the key-value pair according to the operator specification. If the header

that is identified by the key is not present in the HTTP request, the condition is treated as not being met.

Any of the standard HTTP request headers can be used as the key in the key-value pairs. Refer to the

HTTP specification for the list of valid headers. In addition, two keys are defined to extract information

from the request, also useful as a selection criterion, which is not available through standard HTTP

request headers. The remote-address key is used as a pseudo header to retrieve the remote TCP/IP

address of the client application that sent the HTTP request. The request-URL key is used as a pseudo

header to retrieve the URL that is used by the client application to make the request. The interceptor uses

the result of the getRequestURL operation in the javax.servlet.http.HttpServletRequest interface to

construct the Web address. If a query string is present, the result of the getQueryString operation in the

same interface is also used. In this case, the complete URL is constructed as follows:

String url = request.getRequestURL() + ‘?’ + request.getQueryString();

The following operators and conditions are defined:

 Table 11. Filter conditions and operations

Condition Operator Example

Match exactly = =

Arguments are compared as

equal.

host=host.my.company.com

314 Securing applications and their environment

Table 11. Filter conditions and operations (continued)

Condition Operator Example

Match partially (includes) %=

Arguments are compared with a

partial match being valid.

user-agent%=IE 6

Match partially (includes one of

many)

^=

Arguments are compared with a

partial match being valid for one

of many arguments specified.

request-url^=webApp1|webApp2|webApp3

Does not match !=

Arguments are compared as not

equal.

request-url!=noSPNEGO

Greater than >

Arguments are compared

lexogaphically as greater than.

remote-address>192.168.255.130

Less than <

Arguments are compared

lexographically as less than.

remote-address<192.168.255.135

com.ibm.ws.security.spnego.SPN<id>.enableCredDelegate:

This property is optional. It indicates whether or not the Kerberos delegated credentials are stored by the

SPNEGO TAI. This property enables the capability for an application to retrieve the stored credentials and

propagate them to other applications downstream for additional SPNEGO authentication.

 This property requires use of the advanced Kerberos credential delegation feature and requires

development of custom logic by the application developer. The developer must interact directly with the

Kerberos Ticket Granting Service (TGS) to obtain a Ticket Granting Ticket (TGT) using the delegated

Kerberos credentials on behalf of the end-user who originated the request. The developer must also

construct the appropriate Kerberos SPNEGO token and include it in the HTTP request to continue the

downstream SPNEGO authentication process, including handling additional SPNEGO challenge-response

exchange, if necessary.

com.ibm.ws.security.spnego.SPN<id>.spnegoNotSupportedPage:

This property is optional. It specifies the Web address of a resource that contains the content that the

SPNEGO TAI includes in the HTTP response that the (browser) client application displays if it does not

support SPNEGO authentication. It can specify a Web (http://) or a file (file://) resource.

 If this property is not specified or the interceptor cannot find the specified resource, the following content is

used:

<html><head><title>SPNEGO authentication is not supported</title></head>

<body>SPNEGO authentication is not supported on this client</body></html>;

com.ibm.ws.security.spnego.SPN<id>.NTLMTokenReceivedPage:

This property is optional. It specifies the Web address of a resource that contains the content that the

SPNEGO TAI includes in the HTTP response that the (browser) client application displays when the

SPNEGO token is received by the interceptor when the challenge-response handshake contains a NT LAN

Manager (NTLM) token instead of the expected SPNEGO token.

Chapter 5. Authenticating users 315

It can specify a Web (http://) or a file (file://) resource. If this property is not specified or the interceptor

cannot find the specified resource, the following content is used:

<html><head><title>An NTLM Token was received.</title></head>

<body>Your browser configuration is correct, but you have not logged into a supported

Microsoft(R) Windows(R) Domain.

<p>Please login to the application using the normal login page.</html>

com.ibm.ws.security.spnego.SPN<id>.trimUserName:

This property is optional. It specifies whether (true) or not (false) the SPNEGO TAI is to remove the suffix

of the principal user name, starting from the ″@″ that precedes the Kerberos realm name.

 If this property is set to true, the suffix of the principal user name is removed. If this property is set to

false, the suffix of the principal name is retained. The default value used is true. For example,

When com.ibm.ws.security.spnego.SPN<id>.trimUserName = true

bobsmith@myKerberosRealm becomes bobsmith

When com.ibm.ws.security.spnego.SPN<id>.trimUserName = false

bobsmith@myKerberosRealm remains bobsmith@myKerberosRealm

SPNEGO TAI configuration requirements (deprecated):

The configuration that is used by the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)

trust association interceptor (TAI) on each selected application server is governed by various system

requirements.

 Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

The following list of configuration requirements highlights those attributes, properties, qualities, restrictions,

exclusions, inclusions, and dependencies that you need to be aware of when planning a WebSphere

Application Server configuration that incorporates the use of the SPNEGO TAI.

 Table 12. SPNEGO TAI requirements

Function item Description

SPNEGO TAI The SPNEGO TAI is a server side solution in WebSphere Application Server.

Client-side applications are responsible for generating the SPNEGO token for

use by the SPNEGO TAI.

Microsoft Windows Windows 2000 or Windows 2003 servers with Active Directory domain and its

associated Kerberos key distribution center (KDC) is required.

Client application (browser or .NET

client)

A browser (client application) or .NET client that supports the SPNEGO

authentication mechanism, as defined in IETF RFC 2478 is required.

Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO)

SPNEGO authentication, as defined in IETF RFC 2478 is used.

Internet browsers v Use Microsoft Internet Explorer version 5.5 or higher

v Use Mozilla Firefox version 1.0

Kerberos Level Kerberos version 5 is required.

316 Securing applications and their environment

Table 12. SPNEGO TAI requirements (continued)

Function item Description

WebSphere Application Server Version 7.0 is required.

Java SDK level Java 6.0 SDK is required.

Encryption Types RC4-HMAC encryption is only supported when using a Windows 2003 Server

as Kerberos key distribution center (KDC) and is not supported with a Windows

2000 Server.

J2EE client Client application (browser or .NET client) A browser (client application) or .NET

client that supports the SPNEGO authentication mechanism, as defined in IETF

RFC 2478 is required.

Configuring the client browser to use SPNEGO TAI (deprecated)

You can configure your browser to utilize the Simple and Protected GSS-API Negotiation (SPNEGO)

mechanism. Authentication of your browser requests are processed by the SPNEGO trust association

interceptor (TAI) in the WebSphere Application Server.

Before you begin

You need to know how to display and set options in the Microsoft Internet Explorer browser or any other

browser (such as Firefox). You must have a browser installed that supports SPNEGO authentication.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

About this task

Complete the following steps to ensure that your Microsoft Internet Explorer browser is enabled to perform

SPNEGO authentication.

1. At the desktop, log in to the windows active directory domain.

2. Activate Internet Explorer.

3. In the Internet Explorer window, click Tools > Internet Options > Security tab.

4. Select the Local intranet icon and click Sites.

5. In the Local intranet window, ensure that the ″check box″ to include all local (intranet) not listed in

other zones is selected, then click Advanced.

6. In the Local intranet window, fill in the Add this Web site to the zone field with the Web address of the

host name so that the single sign-on (SSO) can be enabled to the list Web sites shown in the Web

sites field. Your site information technology staff provides this information. Click OK to complete this

step and close the Local intranet window.

7. On the Internet Options window, click the Advanced tab and scroll to Security settings. Ensure that

the Enable Integrated Windows Authentication (requires restart) box is selected.

8. Click OK. Restart your Microsoft Internet Explorer to activate this configuration.

Results

Complete the following steps to ensure that your Firefox browser is enabled to perform SPNEGO

authentication.

Chapter 5. Authenticating users 317

1. At the desktop, log in to the windows active directory domain.

2. Activate Firefox.

3. At the address field, type about:config.

4. In the Filter, type network.n

5. Double click on network.negotiate-auth.trusted-uris. This preference lists the sites that are permitted

to engage in SPNEGO Authentication with the browser. Enter a comma-delimited list of trusted

domains or URLs.

Note: You must set the value for network.negotiate-auth.trusted-uris.

6. If the deployed SPNEGO solution is using the advanced Kerberos feature of Credential Delegation

double click on network.negotiate-auth.delegation-uris. This preference lists the sites for which the

browser may delegate user authorization to the server. Enter a comma-delimited list of trusted domains

or URLs.

7. Click OK. The configuration appears as updated.

8. Restart your Firefox browser to activate this configuration.

Your Internet browser is properly configured for SPNEGO authentication. You can use applications that are

deployed in WebSphere Application Server that use secured resources without being repeatedly requested

for an ID and password.

Configuring JVM custom properties, filtering HTTP requests, and enabling

SPNEGO TAI in WebSphere Application Server (deprecated)

Performing this task helps you, as Web administrator, to ensure that WebSphere Application Server is

configured to enable the operation of the Simple and Protected GSS-API Negotiation mechanism

(SPNEGO) trust association interceptor (TAI) with the required Java virtual machine (JVM) property and

with the appropriate filtering of HTTP requests.

Before you begin

You need to know how to use the WebSphere Application Server administrative console to manage the

security configuration and have the proper authority to modify the security configuration of the application

server.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

About this task

Verify the configuration of your SPNEGO TAI. The deployment of the SPNEGO TAI can vary from a single

WebSphere Application Server system on which a single application is running to a large multinode

WebSphere Application Server Network Deployment (ND) cell, with dozens of application servers, hosting

many applications. Every SPNEGO TAI is installed at the cell level. You must be aware of your particular

SPNEGO TAI configuration.

The default behavior of the SPNEGO TAI is to not intercept HTTP requests. This default behavior ensures

that the SPNEGO TAI can be installed into an existing cell, configured for a single application server and

not change any other application servers in the cell. Other WebSphere Application Servers can run exactly

as before within a given configuration.

318 Securing applications and their environment

Decide whether or not to use the sample SPN<id>.filterClass and determine the exact filter properties to

use.

Note: The default behavior of the SPNEGO TAI is to use the

com.ibm.ws.security.spnego.SPN<id>.filterClass and intercept all requests.

If the default behavior is not appropriate, you can use a customer provided class, or extend or modify the

sample class as required. The system programmer interface, com.ibm.ws.security.spnego.SpnegoFilter

allows you to implement a custom filter to determine whether or not to intercept a particular HTTP request.

With the default implementation, you can set filter rules for coarse as well as fine-grained criteria in

selecting which HTTP requests to intercept.

Note: For an alternative to the steps below for enabling the SPNEGO TAI, you can use scripting to

perform the operation. See “Enabling the SPNEGO TAI as JVM custom property using scripting

(deprecated)” for the details.

Complete the following steps to enable the operation of the SPNEGO TAI with your selected filtering and

with the JVM required property.

1. Log on to WebSphere Application Server administrative console.

2. Click Servers > Application servers.

3. Select the appropriate server. Under Server Infrastructure, expand Java and process management >

Process Definition.

4. Click Java virtual machine. Under Additional Properties, click Custom Properties. Create a new

custom property, if required, by clicking New, then code com.ibm.ws.security.spnego.isEnabled in the

name field and true in the value field.

5. Click Apply > OK to save the configuration

6. Identify when the SPNEGO TAI intercepts a given request. A set of filter properties is provided, but you

must determine what is appropriate and modify the com.ibm.ws.security.spnego.SPN<id>.filterClass

accordingly.

Results

The application server is configured and ready to provide a single sign-on environment for end users who

have successfully authenticated in a Microsoft Active Directory domain. You must restart each application

server that is configured for SPNEGO Web authentication. Then your SPNEGO TAI is set to filter HTTP

request when it is operating.

Enabling the SPNEGO TAI as JVM custom property using scripting (deprecated):

You use the wsadmin utility to enable the Simple and Protected GSS-API Negotiation Mechanism

(SPNEGO) trust association interceptor (TAI) for WebSphere Application Server.

 Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

Chapter 5. Authenticating users 319

About this task

Perform the following steps to enable the SPNEGO TAI:

1. Identify the server and assign it to the server1 variable:

v Using Jacl:

set server1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

server1 = AdminConfig.getid("/Cell:mycell/Node:mynode/Server:server1/")

print server1

Example output:

server1(cells/mycell/nodes/mynode|servers/seerver1|server.xml#Server_1)

2. Identify the Java virtual machine (JVM) belonging to this server and assign it to the jvm variable:

v Using Jacl:

set jvm [$AdminConfig list JavaVirtualMachine $server1]

v Using Jython:

jvm = AdminConfig.list(’JavaVirtualMachine’,server1)

Example output:

(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaVirtualMachine_1)

(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaVirtualMachine_2)

3. Identify the controller JVM of the server:

v Using Jacl:

set cjvm [lindex $jvm 0]

v Using Jython:

get line separator

import java

lineSeparator = java.lang.System.getProperty(’line.separator’)

arrayJVMs = jvm.split(lineSeparator)

cjvm = arrayJVMs[0]

4. Modify the generic JVM arguments to enable SPNEGO TAI:

v Using Jacl:

set attr_name [list name com.ibm.ws.security.spnego.isEnabled]

set attr_value [list value true]

set attr_required [list required false]

set attr_description [list description "Enabled SPNEGO TAI"]

set attrs [list $attr_name $attr_value $attr_required $attr_description]

$AdminConfig create Property $cjvm $attrs

v Using Jython:

attr_name = [’name’, "com.ibm.ws.security.spnego.isEnabled"]

attr_value = [’value’, "true"]

attr_required = [’required’, "false"]

attr_description = [’description’, "Enabled SPNEGO TAI"]

attr_list = [attr_name, attr_value, attr_required, attr_description]

property=[’systemProperties’,[attr_list]]

AdminConfig.modify(cjvm, [property])

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

SPNEGO TAI JVM configuration custom properties (deprecated):

Java virtual machine (JVM) custom properties control the operation of the Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) trust association interceptor (TAI).

320 Securing applications and their environment

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

The following JVM custom properties control operation of the SPNEGO TAI. Different custom property

values can be specified for each application server.

 Table 13. JVM configuration custom properties

Custom Property Name Required

Value

Type

Default

Value Recommended Value

com.ibm.ws.security.spnego.isEnabled No Boolean False True

com.ibm.ws.security.spnego.propertyReloadFile No String None For Windows

C:\temp\TAI.props

For UNIX

/tmp/TestTAI.Properties

com.ibm.ws.security.spnego.propertyReloadTimeout No Integer None 120

com.ibm.ws.security.spnego.isEnabled

Use this custom property to enable or disable operation of the SPNEGO TAI in a given application

server. When set to false, the SPNEGO TAI is disabled and not used by the Web authentication

module for authenticating any Web requests. When set to true, the SPNEGO TAI is enabled and used

by the Web authentication module for authenticating any Web requests.

com.ibm.ws.security.spnego.propertyReloadFile

Use this custom property to identify the file that contains configuration properties for the SPNEGO TAI,

when it is not convenient to stop and restart the application server. The properties contained in this file

can be reloaded to configure the SPNEGO TAI.

Note: The properties that are defined in the specified file override any properties defined using the

administrative console.

A sample of this reload file follows:

Template properties files for SPNEGO TAI

Where possible defaults have been provided.

#---

Hostname

#---

#com.ibm.ws.spnego.SPN1.HostName=wsecurity.austin.ibm.com

#---

(Optional) SpnegoNotSupportedPage

#---

#com.ibm.ws.spnego.SPN1.SpnegoNotSupportedPage=

#---

(Optional) NTLMTokenReceivedPage

#---

#com.ibm.ws.spnego.SPN1.NTLMTokenReceivedPage=

Chapter 5. Authenticating users 321

#---

(Optional) FilterClass

#---

#com.ibm.ws.spnego.SPN1.FilterClass=com.ibm.ws.spnego.HTTPHeaderFilter

#---

(Optional) Filter

#---

#com.ibm.ws.spnego.SPN1.Filter=

Note: If com.ibm.ws.security.spnego.propertyReloadFile custom property is set, but the

com.ibm.ws.security.spnego.propertyReloadTimeout custom property is not, then the SPNEGO

TAI is not initialized.

com.ibm.ws.security.spnego.propertyReloadTimeout

Use this custom property to specify a time interval in seconds that elapses after which the SPNEGO

TAI reloads the configuration properties. Also, the SPNEGO TAI reloads the configuration properties if

the file that is identified by the com.ibm.ws.security.spnego.propertyReloadFile custom property

changed since the last time the configuration custom properties were retrieved. This time interval in

seconds must be specified as a positive integer.

Note:

v If the com.ibm.ws.security.spnego.propertyReloadFile custom property and the

com.ibm.ws.security.spnego.propertyReloadTimeout custom property are not set, then the

SPNEGO TAI properties are only loaded once from the SPNEGO TAI custom properties defined

in the WebSphere Application Server configuration data. This one time loading occurs when the

JVM is initialized.

v If com.ibm.ws.security.spnego.propertyReloadTimeout custom property is set, but the

com.ibm.ws.security.spnego.propertyReloadFile custom property is not, then the SPNEGO TAI is

not initialized. “Configuring JVM custom properties, filtering HTTP requests, and enabling

SPNEGO TAI in WebSphere Application Server (deprecated)” on page 318 or how to configure

the JVM custom properties for SPNEGO TAI.

Note: You can also use the wsadmin command for the AdminConfig scripting object to interactively set

the com.ibm.ws.security.spnego.isEnabled custom property. See “Enabling the SPNEGO TAI as

JVM custom property using scripting (deprecated)” on page 319 for more information.

The following custom properties are not used directly by the SPNEGO TAI; however, they affect the

operation of the core security runtime and can also be used for problem determination.

 Table 14. JVM configuration custom properties

Custom Property Name Required Value Type Default Value Recommended Value

java.security.properties No String None

com.ibm.security.jgss.debug No String None ″off″ or ″all″

com.ibm.security.krb5.Krb5Debug No String None ″off″ or ″all″

javax.security.auth.useSubjectCredsOnly Yes Boolean True False

java.security.properties

This property is optional. It can be used when different application servers in a cell have different

security requirements and it is not convenient to modify the global java.security file for the entire cell.

In such situations, the java.security.properties custom property is used to specify the location of the

java.security file used by the JVM for each application server.

com.ibm.security.jgss.debug

This custom property is optional. It can be used to collect diagnostic trace information for problem

322 Securing applications and their environment

determination in the Java Generic Security Service (JGSS) application programmer interface (API)

implementation. The value can be set to all or off to enable or disable tracing, respectively. See Java

Generic Security Service User’s Guide for specific JGSS API information.

com.ibm.security.krb5.Krb5Debug

This custom property is optional. It can be used to collect additional diagnostic trace information for

problem determination in the JGSS implementation. The value can be set to all or off to enable or

disable tracing, respectively.

javax.security.auth.useSubjectCredsOnly

JGSS includes an optional Java Authentication and Authorization Service (JAAS) login facility that

saves Principal credentials and secret keys in the Subject of the application’s JAAS login context.

JGSS retrieves credentials and secret keys from the Subject by default. This feature can be disabled

by setting the Java property javax.security.auth.useSubjectCredsOnly to false.

Note: The SPNEGO TAI does not use the optional JAAS login module. The

javax.security.auth.useSubjectCredsOnly property must be set to false.

Mapping Kerberos client principal name to WebSphere user registry ID for

SPNEGO TAI (deprecated)

You can use a system programming interface to customize the behavior of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) by implementing arbitrary

mappings of the end-user’s identity, which is retrieved from Microsoft Active Directory to the identity that is

used in the WebSphere Application Server security registry.

Before you begin

You need to perform some administrative tasks in the WebSphere Application Server environment to use

SPNEGO TAI and to ensure that the requester’s identity matches the identity in the WebSphere

Application Server user registry.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

Note: Make sure the following tasks have been performed successfully:

1. Configuring the Web browser to use SPNEGO. See “Configuring the client browser to use

SPNEGO TAI (deprecated)” on page 317

2. Configuring Java virtual machine (JVM) properties, custom SPNEGO TAI properties, and

enabling the SPNEGO TAI. See “Configuring JVM custom properties, filtering HTTP requests,

and enabling SPNEGO TAI in WebSphere Application Server (deprecated)” on page 318

About this task

In the simplest deployment of the SPNEGO TAI, it is assumed that the requester’s identity in the

WebSphere Application Server user registry is identical to the identity retrieved. This is the case when

Microsoft Windows Active Directory server is the lightweight directory access protocol (LDAP) server used

in WebSphere Application Server. This is default behavior of the SPNEGO TAI.

You do not need to use this simple deployment of the SPNEGO TAI. WebSphere Application Server can

use a different registry, such as a local OS, LDAP, or custom registry instead of the Microsoft Active

Directory. If WebSphere Application Server uses a different registry than the Microsoft Active Directory,

Chapter 5. Authenticating users 323

http://dwmaster.raleigh.ibm.com/dwcontent/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html
http://dwmaster.raleigh.ibm.com/dwcontent/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html

then a mapping from the Microsoft Windows user Id to a WebSphere Application Server user Id is

necessary.

Use the JAAS custom login module to perform any custom mapping of a client Kerberos principal name

from the Microsoft Active Directory to the WebSphere user registry identity. The JAAS custom login module

is a plug-in mechanism that is defined for authenticating incoming and outgoing requests in WebSphere

Application Server and is inserted before the ltpaLoginModule. The JAAS custom login module retrieves a

client Kerberos principal name in the javax.security.auth.Subject using

subject.getPrincipals(KerberosPrincipal.class) method, maps the client Kerberos principal name to

the WebSphere user registry identity, and inserts the mapping identity in the hash table property

com.ibm.wsspi.security.cred.userId. The ltpaLoginModule then uses the mapped identity to create a

WSCredential.

Note: The custom login module can also supply the full set of security properties in

the javax.security.auth.Subject in the com.ibm.wsspi.security.tai.TAIResult to fully assert

the mapped identity. When the identity is fully asserted, the wsMapDefaultInboundLoginModule maps

those security properties to a WSCredential.
A sample of the custom login module follows:

package com.ibm.ws.security.server.lm;

import java.util.Map;

import java.lang.reflect.Array;

import javax.security.auth.Subject;

import javax.security.auth.callback.*;

import javax.security.auth.login.LoginException;

import javax.security.auth.spi.LoginModule;

import javax.security.auth.kerberos.*;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.AttributeNameConstants;

/**

 *

 * @author IBM Corporation

 * @version 1.0

 * @since 1.0

 *

 */

public class sampleSpnegoMappingLoginModule implements LoginModule {

 /*

 *

 * Constant that represents the name of this mapping module. Whenever this sample

 * code is used to create a class with a different name, this value should be changed.

 *

 */

 private final static String MAPPING_MODULE_NAME = "com.ibm.websphere.security.sampleSpnegoMappingLoginModule";

 private String mapUid = null;

 /**

 * Construct an uninitialized WSLoginModuleImpl object.

 */

 public sampleSpnegoMappingLoginModule() {

 debugOut("sampleSpnegoMappingLoginModule() entry");

 debugOut("sampleSpnegoMappingLoginModule() exit");

 }

 /**

 * Initialize this login module.

 *

 *

 * This is called by the LoginContext after this login module is

 * instantiated. The relevant information is passed from the LoginContext

 * to this login module. If the login module does not understands any of the data

324 Securing applications and their environment

* stored in the sharedState and options parameters,

 * they can be ignored.

 *

 *

 * @param subject The subject to be authenticated.

 * @param callbackHandler

 * A CallbackHandler for communicating with the end user to gather

 login information (e.g., username and password).

 * @param sharedState

 * The state shared with other configured login modules.

 * @param options The options specified in the login configuration for this particular login module.

 */

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options) {

 debugOut("initialize(subject = \"" + subject.toString() +

 "\", callbackHandler = \"" + callbackHandler.toString() +

 "\", sharedState = \"" + sharedState.toString() +

 "\", options = \"" + options.toString() + "\")");

 this.subject = subject;

 this.callbackHandler = callbackHandler;

 this.sharedState = sharedState;

 this.options = options;

 debug = "true".equalsIgnoreCase((String)this.options.get("debug"));

 debugOut("initialize() exit");

 }

 /**

 *

 * Method to authenticate a Subject (phase 1).

 *

 *

 *

 * This method authenticates a Subject. It uses CallbackHandler to gather

 * the Subject information, like username and password for example, and verify these

 * information. The result of the authentication is saved in the private state within

 * this login module.

 *

 *

 * @return true if the authentication succeeded, or false

 * if this login module should be ignored.

 * @exception LoginException

 * If the authentication fails.

 */

 public boolean login() throws LoginException

 {

 debugOut("sampleSpnegoMappingLoginModule.login() entry");

 boolean succeeded = false;

 java.util.Set krb5Principals= subject.getPrincipals(KerberosPrincipal.class);

 java.util.Iterator krb5PrincIter = krb5Principals.iterator();

 while (krb5PrincIter.hasNext()) {

 Object princObj = krb5PrincIter.next();

 debugOut("Kerberos principal name: "+ princObj.toString());

 if (princObj != null && princObj.toString().equals("utle@WSSEC.AUSTIN.IBM.COM")){

 mapUid = "user1";

 debugOut("mapUid: "+mapUid);

 java.util.Hashtable customProperties = (java.util.Hashtable)

 sharedState.get(AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY);

 if (customProperties == null) {

 customProperties = new java.util.Hashtable();

 }

Chapter 5. Authenticating users 325

succeeded = true;

 customProperties.put(AttributeNameConstants.WSCREDENTIAL_USERID, mapUid);

 Map<String,java.util.Hashtable)>

 mySharedState=(Map<String,java.util.Hashtable>)sharedState;

 mySharedState.put((AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY.customProperties);

 debugOut("Add a mapping user ID to Hashtable, mapping ID = "+mapUid);

 }

 debugOut("login() custom properties = " + customProperties);

 }

 }

 succeeded = true;

 debugOut("sampleSpnegoMappingLoginModule.login() exit");

 return succeeded;

 }

 /**

 *

 * Method to commit the authentication result (phase 2).

 *

 *

 *

 * This method is called if the LoginContext’s overall authentication

 * succeeded (the revelant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL login module

 * succeeded).

 *

 *

 * @return true if the commit succeeded, or false

 * if this login module should be ignored.

 * @exception LoginException

 * If the commit fails.

 */

 public boolean commit() throws LoginException

 {

 debugOut("commit()");

 debugOut("commit()");

 return true;

 }

 /**

 * Method to abort the authentication process (phase 2).

 *

 *

 * This method is called if the LoginContext’s overall authentication

 * failed (the revelant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL login module

 * did not succeed).

 *

 *

 *

 * If this login module’s authentication attempt succeeded, then this method cleans

 * up the previous state saved in phase 1.

 *

 *

 * @return true if the abort succeeded, or false

 * if this login module should be ignored.

 * @exception LoginException

 * If the abort fails.

 */

 public boolean abort() throws LoginException {

 debugOut("abort() entry");

 debugOut("abort() exit");

326 Securing applications and their environment

return true;

 }

 /**

 * Method which logs out a Subject.

 *

 * @return true if the logout succeeded, or false

 * if this login module should be ignored.

 * @exception LoginException

 * If the logout fails.

 */

 public boolean logout() throws LoginException

 {

 debugOut("logout() entry");

 debugOut("logout() exit");

 return true;

 }

 private void cleanup()

 {

 debugOut("cleanup() entry");

 debugOut("cleanup() exit");

 }

 /*

 *

 * Private method to print trace information. This implementation uses System.out

 * to print trace information to standard output, but a custom tracing system can

 * be implemented here as well.

 *

 */

 private void debugOut(Object o)

 {

 System.out.println("Debug: " + MAPPING_MODULE_NAME);

 if (o != null) {

 if (o.getClass().isArray()) {

 int length = Array.getLength(o);

 for (int i = 0; i < length; i++) {

 System.out.println("\t" + Array.get(o, i));

 }

 } else {

 System.out.println("\t" + o);

 }

 }

 }

 private Subject subject;

 private CallbackHandler callbackHandler;

 private Map sharedState;

 private Map options;

 protected boolean debug = false;

}

Results

Using the custom login module, Microsoft Active Directory identities are mapped to the WebSphere

Application Server’s security registry and the behavior of the SPNEGO TAI is customized.

Single sign-on capability with SPNEGO TAI - checklist (deprecated)

WebSphere Application Server provides a trust association interceptor (TAI) that uses the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP

requests for secured resources in WebSphere Application Server. To deploy and use the SPNEGO TAI you

need to examine your installation and decide on how best to configure the SPNEGO TAI.

Chapter 5. Authenticating users 327

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

Lightweight Third Party Authentication (LTPA) is the default authentication mechanism for WebSphere

Application Server. However, you may need to configure LTPA prior to configuring the SPNEGO TAI. LTPA

is the required authentication mechanism for all trust association interceptors. You can configure LTPA by

clicking Security > Global security > Authentication mechanisms and expiration.

Note: Enabling Web security single sign-on (SSO) is optional when you configure the SPNEGO TAI. For

more information, see “Implementing single sign-on to minimize Web user authentications” on page

275.

Answer the following questions to establish how the SPNEGO TAI is deployed.

1. What is your criteria for intercepting HTTP requests?

You must decide if the SPNEGO TAI deployment will use the HTTPHeaderFilter class as the default. If

you do use this class, then you must specify the exact filter properties for this class. The default

behavior of the SPNEGO TAI is to use the com.ibm.ws.spnego.HTTPHeaderFilter class to intercept all

requests.

If you do not use the sample com.ibm.ws.spnego.HTTPHeaderFilter class, then you must define a new

class that implements the com.ibm.wsspi.security.spnego.SpnegoTAIFilter interface.

You can decide to further control what HTTP requests are intercepted using the Service Provider

Programming Interface (SPI), “Filtering HTTP requests for SPNEGO TAI (deprecated)” on page 329

See “SPNEGO TAI custom properties configuration (deprecated)” on page 312 for descriptions of

v com.ibm.ws.security.spnego.SPN<id>.filterClass

v com.ibm.ws.security.spnego.SPN<id>.filter

2. Is user Id mapping to be used? If not, why not?

WebSphere Application Server enables you to define or develop a custom login module to map user

IDs. See “Mapping Kerberos client principal name to WebSphere user registry ID for SPNEGO TAI

(deprecated)” on page 323 for more detail about performing this mapping.

You must decide, before deploying the TAI, whether or not to use this custom login module to perform

the SPNEGO TAI identity mapping

3. What type of encryption is to be used to process the SPNEGO tokens?

Microsoft Windows Active Directory supports two different Kerberos encryption types: RC4-HMAC and

DES-CBC-MD5. The IBM Java Generic Security Service (JGSS) library (and SPNEGO library) support

both of these encryption types.

Note: RC4-HMAC encryption is only supported with a Windows 2003 Server key distribution center

(KDC). RC4-HMAC encryption is not supported when using a Windows 2000 Server as a

Kerberos KDC.

4. How will you handle credential delegation?

Kerberos supports the delegation of credentials. A server that receives Kerberos credentials from a

client can impersonate that client to other servers by using delegated credentials. Since SPNEGO TAI

tokens are a wrapping of a Kerberos credential, a server that receives Kerberos credentials within an

SPNEGO token can use those Kerberos credentials to impersonate the original user. That server can

interact using SPNEGO over HTTP as a SPNEGO client to other SPNEGO servers by composing an

appropriate HTTP Authorization header.

328 Securing applications and their environment

5. Will the SPNEGO TAI be deployed in a single or multiple domain name service (DNS) domain

environment?

Web browsers running on Windows are sensitive to DNS domains. They only send a SPNEGO token

when the target host name identifies a host name defined in the DNS domain of the client machine.

You can use HTTP redirection to support this configuration with the creation of a pseudo Kerberos

service principal name (SPN) in each DNS domain. All SPNs that WebSphere Application Server

supports must have their secret keys available in Kerberos keytab files. To enable single sign-on

across multiple DNS domains, a separate Kerberos keytab file is generated for each SPN per domain.

These individual Kerberos keytab files must be merged before they can be used by WebSphere

Application Server.

6. How frequently will application servers reload the SPNEGO TAI properties?

The SPNEGO TAI has an optional property reload feature that allows the reloading of the TAI

properties without restarting the Java virtual machine (JVM). This reload feature is controlled by the

system properties com.ibm.ws.security.spnego.propertyReloadFile and

com.ibm.ws.security.spnego.propertyReloadTimeout. These properties taken together enable the

SPNEGO TAI internal properties to be reloaded from a file on the file system after a certain time

period. If the com.ibm.ws.security.spnego.propertyReloadTimeout attribute is set to a valid integer

value, and the com.ibm.ws.security.spnego.propertyReloadFile attribute points to a file on the file

system, then each JVM reloads the SPNEGO TAI properties from the file after the timeout period

expires. Also, the SPNEGO TAI properties are reloaded only if the date on the file has changed. If

these reload properties are not set, then the SPNEGO TAI properties are only loaded once, at JVM

initialization, from the SPNEGO TAI custom properties that are defined in WebSphere Application

Server configuration data. See “SPNEGO TAI JVM configuration custom properties (deprecated)” on

page 320 for more information about these reload properties.

The Windows Active Directory (Web) administrator, the WebSphere Application Server administrator, and

the application team review and answer these questions to determine the best deployment and

configuration settings for the SPNEGO TAI.

Filtering HTTP requests for SPNEGO TAI (deprecated)

You can use a system programming interface to customize the behavior of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) by specifying whether or

not a particular HTTP request should be intercepted.

Before you begin

Before you begin, you need to understand the deployment of the SPNEGO TAI in your installation.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

About this task

Verify the configuration of your SPNEGO TAI. The deployment of the SPNEGO TAI can vary from a single

WebSphere Application Server system on which a single application is running to a large multinode

WebSphere Application Server Network Deployment (ND) cell, with dozens of application servers, hosting

many applications. Every SPNEGO TAI is installed at the cell level. You must be aware of your particular

SPNEGO TAI configuration.

Chapter 5. Authenticating users 329

The default behavior of the SPNEGO TAI is to not intercept HTTP requests. This default behavior ensures

that the SPNEGO TAI can be installed into an existing cell, configured for a single application server and

not change any other application servers in the cell. Other WebSphere Application Servers can run exactly

as before within a given configuration.

Then decide whether or not to use the sample SPN<id>.filter class and determine the exact filter

properties to use.

Note: The default behavior of the SPNEGO TAI is to use the com.ibm.ws.security.spnego.SPN<id>.filter

class and intercept all requests.

If the default behavior is not appropriate, you can use a customer provided class, or extend or modify the

sample class as required. The system programmer interface, com.ibm.ws.security.spnego.SpnegoFilter

allows you to implement a custom filter to determine whether or not to intercept a particular HTTP request.

With the default implementation, you can set filter rules for coarse as well as fine-grained criteria in

selecting which HTTP requests to intercept.

1. Set the com.ibm.ws.security.spnego.isEnabled Java virtual machine (JVM) custom property to true to

enable the SPNEGO TAI on any JVM.

2. Identify when the SPNEGO TAI intercepts a given request. A set of filter properties is provided, but you

must determine what is appropriate and modify the com.ibm.ws.security.spnego.SPN<id>.filter

class accordingly.

Results

Your SPNEGO TAI is set to filter HTTP requests when it is operating.

Configuring single sign-on capability with Enterprise Identity Mapping

The Enterprise Identity Mapping (EIM) identity token connection factory is a type of Java 2 Connector

(J2C) connection factory. Using EIM identity token connection factories along with EIM identity

token-enabled products, such as IBM Toolbox for Java, provides a single sign-on capability for WebSphere

Application Server applications that need to access server data and resources through your user ID.

Before you begin

The EIM identity token connection factory is supported on the following WebSphere Application Server

products.

Note: Either Lightweight Third Party Authentication (LTPA) or Simple WebSphere Authentication

Mechanism (SWAM) may be used with the EIM identity token connection factory. Enabling Web

security single sign-on (SSO) is optional when LTPA is used with the EIM identity token connection

factory. For more information, see “Implementing single sign-on to minimize Web user

authentications” on page 275.

 Table 15. Supported editions per product

Edition name Supported products

Version 7.0 WebSphere Application Server - Express for i5/OS

Version 6.1 WebSphere Application Server - Express for i5/OS

Version 6.0.x WebSphere Application Server - Express for OS/400

Version 5.1.x WebSphere Application Server - Express for iSeries

This topic describes how to configure EIM identity token connection factories for Version 7.0 only and

provides information about a sample application that might be helpful to you when you develop your own

applications.

330 Securing applications and their environment

Note: Configuration tasks can vary slightly for other WebSphere Application Server products and editions.

About this task

The sample application uses an EIM identity token connection factory to provide EIM identity tokens for

use with IBM Toolbox for Java com.ibm.as400.access.AS400 objects. For example, if the sample

application is deployed on SERVER A, you can log in once to WebSphere Application Server and use the

sample application to perform i5/OS server commands under your i5/OS user profiles on SERVER B,

SERVER C, or SERVER D.

When you make a request to the sample application, you must log in with your WebSphere Application

Server user ID and password. Each request contains the server command and the target server name

where the command runs. When the request is received, the application calls the connection factory to

generate an identity token. The connection factory extracts your user ID from a Java Authentication and

Authorization Service (JAAS) subject object provided by WebSphere Application Server security, and it

collaborates with the EIM domain controller to create the identity token that is returned to the application.

The application then creates a com.ibm.as400.access.AS400 object for SERVER B and provides it with

the identity token (instead of your i5/OS user profile) before it passes the server command to run.

Note: A new identity token and com.ibm.as400.access.AS400 object are created each time you send a

request that contains a new target server. All com.ibm.as400.access.AS400 objects are stored in an

HTTP Session for use with subsequent requests.

1. Verify that you have all of the necessary prerequisites installed to use the EIM token connection

factory. You must verify that you have installed the necessary program temporary fixes (PTF) to your

server and applications. For more information, see “Verifying Enterprise Identity Mapping identity token

connection factory prerequisite applications.”

2. Configure EIM work with the identity token connection factory. These instructions explain how to

complete the following tasks:

a. Create a domain in EIM.

b. Add the domain to domain management.

c. Create a source user registry definition.

d. Create a user identifier.

e. Create a target association.

f. Create a source association.

g. Test the connection to the EIM domain controller

For more information, see “Configuring Enterprise Identity Mapping” on page 332.

3. Configure the EIM identity token connection factory. This step involves configuring two Java Archive

(JAR) files and a shared library. For more information, see “Configuring the Enterprise Identity Mapping

identity token connection factory” on page 335.

4. Configure the connection factory. For more information, see “Automatically configuring the connection

factory” on page 340.

Results

After completing the previous steps, you have configured single sign-on for Enterprise Identity Mapping.

Verifying Enterprise Identity Mapping identity token connection factory

prerequisite applications

Use the following procedure to verify that the necessary prerequisites have been installed before using the

Enterprise Identity Mapping (EIM) identity token connection factory.

Chapter 5. Authenticating users 331

Before you begin

Before you can use the EIM identity token connection factory, you must have the required cumulative

program temporary fix (PTF) applied to your server. You might also need to apply PTFs to run the sample

application.

About this task

Perform the following steps to verify that you have the necessary prerequisites installed to use the EIM

identity token connection factory:

1. Verify that OS/400 - Extended Base Directory Support (5722-SS1 or 5761–SS1 option 3) is installed on

the i5/OS system that hosts WebSphere Application Server. This product is a requirement for the EIM

Identity Token Connection Factory.

2. Verify that the latest operating system PTFs are applied to your i5/OS system for the EIM Identity

Token Connection Factory. For information about the latest operating system PTFs, search the

Technotes for ″EIM Identity Token Connection Factory″ on the WebSphere Application Server support

page at: http://www.ibm.com/software/webservers/appserv/support.html.

3. Install the required PTFs for the sample application.

To run the sample application, verify that the latest IBM Toolbox for Java service packs and the

required operating system PTFs are installed on all of your iSeries servers. For information on

obtaining the latest service packs and required operating system PTFs, see Toolbox for Java and

JTOpen Service Packs.

Results

After verifying that you have the necessary prerequisite applications installed, you can configure EIM for

use with the identity token connection factory.

What to do next

Configure EIM. See “Configuring Enterprise Identity Mapping.”

Configuring Enterprise Identity Mapping

Use the iSeries Navigator to configure Enterprise Identity Mapping (EIM) for use with the identity token

connection factory.

Before you begin

For these steps, assume that your EIM controller, which is your Lightweight Directory Access Protocol

(LDAP) directory server, is your local directory server and that it resides on the iSeries server that is being

configured for EIM. For detailed information about EIM, see “Enterprise Identity Mapping” on page 274.

You need the LDAP server administrator distinguished name (DN) and password to perform this task.

Note: A server can participate only in one EIM domain at a time. If your server is already joined to an EIM

domain and the domain is added to domain management, use that domain, and skip to Create a

source user registry definition in EIM.

1. The identity token connection factory requires you to configure an EIM domain.

Create a domain in EIM:

Note: Depending on the setup of the machine, these steps might appear in a slightly different order.

This assumes that LDAP is already configured and the network authentication service has not

been configured.

332 Securing applications and their environment

http://www.ibm.com/software/webservers/appserv/support.html
http://www.ibm.com/servers/eserver/iseries/toolbox/servicepacks.htm
http://www.ibm.com/servers/eserver/iseries/toolbox/servicepacks.htm

a. Make sure that the LDAP server started. You can verify the LDAP server administrator

distinguished name (DN) and password. However, be aware that the LDAP server is stopped by

the wizard later on.

b. In iSeries Navigator, expand server_name > Network > Enterprise Identity Mapping, where

server_name is the name of your iSeries server.

c. Click Enterprise Identity Mapping.

d. Right-click Configuration and select Configure to start the EIM Configuration wizard.

Note: This option is labeled Reconfigure if EIM has been previously configured on the system.

e. On the Welcome page of the wizard, select Create and join a new domain.

f. Click Next.

g. On the Specify EIM Domain Location page, select On the local Directory server and then click

Next.

h. If the network authentication service has not been configured on the system to set up a single

sign-on environment, the Configure Network Authentication Service page is displayed. Network

Authentication Service is not required for the EIM identity token connection factory. Select No and

then click Next.

i. On the Specify User for Connection page, specify the distinguished name and password for the

LDAP administrator to ensure that the wizard has enough authority to administer the EIM domain

and the objects in it. Click Next.

Note: If you have not configured the local directory server before you use the EIM Configuration

wizard, the Configure Directory Server page displays instead. Use this page to specify the

distinguished name and password for the LDAP administrator and continue with the next

step in this procedure. The LDAP distinguished name (DN) identifies the LDAP administrator

for the directory server. The EIM Configuration wizard creates this LDAP administrator DN

and uses it to configure the directory server as the domain controller for the new domain that

you are creating.

j. On the Specify Domain page, provide the name of the EIM domain, and click Next.

k. On the Specify Parent DN for Domain page, select Yes to specify a parent DN for the domain that

you are creating, or specify No to have EIM data stored in a directory location with a suffix whose

name is derived from the EIM domain name. Click Next.

l. A message is displayed that indicates that you must stop the LDAP server. Click Yes to continue.

m. On the Registry Information page, select Local OS/400 and then click Next.

n. On the Specify EIM System User page, select Distinguished name and password as the user

type, provide the DN and password for the directory server administrator, and optionally, verify the

DN and password. Click Next.

o. In the Summary panel, review the configuration information that you have provided. If all

information is correct, click Finish.

2. Add the domain to domain management:

a. In the iSeries Navigator, expand system_name> Network > Enterprise Identity Mapping >

Domain Management.

b. Right-click Domain Management and then select Add Domain.

c. In the Add Domain dialog, specify the domain you created earlier and click OK.

3. Create a source user registry definition in EIM.

The identity token connection factory requires a source user registry definition entry in EIM. The source

user registry definition represents the registry that WebSphere Application Server uses for

authentication. This registry can be a local OS registry or an LDAP registry.

a. In iSeries Navigator, expand system_name > Network > Enterprise Identity Mapping > Domain

Management > domain_name> User Registries.

Chapter 5. Authenticating users 333

b. If you are prompted for the LDAP server password, provide the password and click OK.

c. Right-click User Registries and select Add Registry > System to start the configuration wizard

that adds the registry to your domain.

Provide the registry name and type. If your application server is hosted on an iSeries server and

configured to use the local OS user registry, select OS/400 as the EIM user registry type. If your

application server is configured to use the LDAP user registry, enter LDAP - short name as the EIM

registry type.

Note: Prior to i5/OS V5R4, instead of LDAP - short name use 1.3.18.02.33.14-caseIgnore. The

value 1.3.18.02.33.14-caseIgnore is the ObjectIdentifier-normalization form of the user

registry type and principals are identified by the LDAP short name attribute. The wizard does

not handle the descriptive name for this registry type.

d. Click OK.

4. Create user identifier in EIM

The identity token connection factory requires a user identifier entry, which is equivalent to an EIM

identifier; in EIM, the user identifier entry represents the user of the application.

a. In iSeries Navigator, expand system > Network > Enterprise Identity Mapping > Domain

Management > domain > Identifiers.

b. Right-click Identifiers, and select New Identifier.

c. Enter an identifier name, such as your full name, and click OK.

5. Create a target association in EIM for the user identifier.

A target association represents the user profile on the target iSeries server for the identifier created

earlier.

a. In iSeries Navigator, expand system > Network > Enterprise Identity Mapping > Domain

Management > domain > Identifiers.

b. Double-click the Application Identifier for the user created previously.

c. Click the Associations tab.

d. Click Add.

e. Provide the i5/OS user profile for the EIM identifier in the User field and click OK.

f. Click OK to save the association.

6. Create a source association in EIM for the user identifier.

A source association is used to authenticate to WebSphere Application Server.

a. In iSeries Navigator, expand system > Network > Enterprise Identity Mapping > Domain

Management > domain > Identifiers.

b. Double-click the Application Identifier for the user created previously.

c. Click the Associations tab.

d. Click Add.

e. Click Browse and select the WebSphere Application Server user registry.

f. Specify your WebSphere Application Server user ID, such as my_id.

g. Select Source.

h. Click OK to add the new association.

i. Click OK to save the association.

7. Optional: Test the connection to the EIM domain controller.

Use the idsldapsearch command to test the connection to the EIM domain controller. For example, if

the LDAP server is located on the my_server host, the EIM domain name is My_EIM_Domain, and the

source user registry is WAS Registry, the steps to test the connection are as follows:

a. Log on to the iSeries server that hosts your WebSphere Application Server profile.

b. From a CL command line, specify QSH and press Enter.

334 Securing applications and their environment

c. Specify the following command and press Enter:

idsldapsearch -h my_server -p 389 -D cn=administrator

-w secret -b "ibm-eimDomainName=My_EIM_Domain"

"ibm-eimRegistryName=WAS_Registry"

where:

v my_server is the name of the host server of the LDAP server.

v 389 is the port that is used by the LDAP server.

v cn=administrator is the LDAP DN of the LDAP administrator.

v secret is the LDAP administrator password.

v ibm-eimDomainName=My_EIM_Domain is the LDAP DN of the EIM domain name entry.

The previous lines display as multiple lines for illustrative purposes only. Specify the command as

one continuous line.

In this example, no EIM domain parent name exists. If an EIM domain parent name did exist, such

as dc=myserver,dc=ibm,dc=com, the LDAP DN is ibm-
eimDomainName=My_EIM_Domain,dc=myserver,dc=ibm,dc=com.

Results

The expected output looks similar to the following example:

ibm-eimRegistryName=WAS Registry,cn=Registries,ibm-eimdomainname=My_EIM_Domain

 objectclass=top

 objectclass=ibm-eimRegistry

 objectclass=ibm-eimSystemRegistry

 ibm-eimRegistryName=WAS_Registry

 ibm-eimRegistryType=1.3.18.0.2.33.9-caseIgnore

 description=Example Registry for WebSphere Application Server

What to do next

Configure the EIM identity token connection factory. See “Configuring the Enterprise Identity Mapping

identity token connection factory.”

Configuring the Enterprise Identity Mapping identity token connection factory

The Enterprise Identity Mapping (EIM) identity token connection factory requires the eim.jar file to be

located in the class path for the connection factory. The jt400.jar file must be in the class path for the

sample application.

About this task

Perform the following steps to configure the eim.jar and jt400.jar files:

1. “Configuring the eim.jar and jt400.jar files” on page 337

2. “Configuring a shared library for the jt400.jar file” on page 337

Enterprise Identity Mapping identity token connection factory parameters:

The following table is a summary of the parameters or custom properties that are referenced by the

Enterprise Identity Mapping (EIM) identity token connection factory. These parameters are necessary when

you configure the EIM identity token connection factory.

 Parameter description Parameter example Required Initially set by Referenced by

LDAP administrator ID

and password

cn=administrator Yes LDAP administrator

using the iSeries

Navigator when

configuring LDAP

J2C Authentication Data

entry

Chapter 5. Authenticating users 335

Parameter description Parameter example Required Initially set by Referenced by

LDAP host name and

port

mysystem.com and 389 Yes LDAP administrator

using the iSeries

Navigator

LdapHostName and

LdapHostPort identity token

resource adaptor properties

EIM domain name and

parent domain

EIM and

dc=mysystem,dc=com

Yes EIM administrator

using the iSeries

Navigator when

configuring EIM

EimDomainName and

ParentDomain identity token

resource adaptor properties

sourceRegistryName LDAP Yes EIM administrator

using the iSeries

Navigator when

configuring EIM

user registries that

are used by

applications

sourceRegistryName

identity token resource

adaptor property

Key time out and size 1200 and 512 No WebSphere

Application Server

administrator using

the administrative

console

KeyTimeoutSeconds and

KeySize identity token

resource adaptor properties

UseSSL false No WebSphere

Application Server

administrator using

the administrative

console

UseSSL identity token

resource adaptor property

TrustStoreName profile_root/etc/
idtokTrustFile.jks

No WebSphere

Application Server

administrator using

the administrative

console

TrustStoreName identity

token resource adaptor

property

TrustStorePassword tspwd No WebSphere

Application Server

administrator using

the administrative

console

TrustStorePassword identity

token resource adaptor

property

KeyStoreName profile_root/etc/
idtokKeyFile.jks

No WebSphere

Application Server

administrator using

the administrative

console

KeyStoreName identity

token resource adaptor

property

KeyStorePassword kspwd No WebSphere

Application Server

administrator using

the administrative

console

KeyStorePassword identity

token resource adaptor

property

Identity token files

After applying the required PTFs, all of the files in the table below can be found on the server where you

have WebSphere Application Server installed.

 File Name Directory

idTokenRA.rar /QIBM/ProdData/OS400/security/eim

testIdentityToken.ear /QIBM/ProdData/OS400/security/eim

336 Securing applications and their environment

File Name Directory

cfgIdToken.jacl /QIBM/ProdData/OS400/security/eim

eim.jar /QIBM/ProdData/OS400/security/eim

jt400.jar /QIBM/ProdData/HTTP/public/jt400/lib

idTokenRA.JCA15.rar /QIBM/ProdData/OS400/security/eim

Related tasks

“Configuring Enterprise Identity Mapping” on page 332
Use the iSeries Navigator to configure Enterprise Identity Mapping (EIM) for use with the identity token

connection factory.

Configuring the eim.jar and jt400.jar files:

You can configure the EIM identity token factory by using the following procedure.

 About this task

Completing the steps in this topic is the first part of configuring the EIM identity token connection factory.

The eim.jar file is already configured on your iSeries server and no additional action is required.

Results

The eim.jar and the jt400.jar files are configured.

What to do next

If you copy the jt400.jar file to a different directory, you must configure a shared library for the file. For

OS/400 or i5/OS, JTOpen Version 4.3 or later of the jt400.jar file is already on your server. However, you

still must configure a shared library for the jt400.jar file. See the “Configuring a shared library for the

jt400.jar file” topic for more information.

Configuring a shared library for the jt400.jar file:

Use the WebSphere Application Server administrative console to create a shared library for the jt400.jar

file.

 About this task

If you copied the jt400.jar file to a different directory, completing the steps in this topic is part of configuring

the Enterprise Identity Mapping (EIM) token connection factory.

1. Create a shared library:

a. In the WebSphere Application Server administrative console, expand Environment.

b. Click Shared Libraries.

c. Click to expand the Scope field.

d. Select the node where you want to create the shared library.

e. Click Apply.

f. Click New.

g. Specify the name of the shared library in the Name field.

h. Specify the full path name of the jt400.jar file in the Classpath field. The default path name is

/QIBM/ProdData/HTTP/public/jt400/lib/jt400.jar.

i. Click OK.

Chapter 5. Authenticating users 337

2. Create an application class loader for the shared library. This step makes the jt400.jar file available

to all applications that are deployed on the application server.

a. In the WebSphere Application Server administrative console, click Servers > Application servers

> server_name.

b. Under the Server Infrastructure heading, click Java and Process Management > Class loader >

New.

c. Keep the Class loader order default as Classes loaded with parent class loader first and click

OK.

d. Click the Class loader ID for the class loader that was created.

e. Under Additional properties, click Shared library references.

f. Click Add.

g. Select the name of the shared library you created earlier.

h. Click OK.

3. Grant the java.security.AllPermission permission to the jt400.jar file in the server.policy file.

To grant the required permission to the jt400.jar file, edit the server.policy file for your WebSphere

Application Server profile and add the following statement. The server.policy file is in the

profile_root/properties directory.

grant codeBase "file:path_name/jt400.jar" {

 permission java.security.AllPermission;

};

where path_name is the fully qualified path name of the directory that contains the jt400.jar file. The

default path name is /QIBM/ProdData/HTTP/public/jt400/lib/jt400.jar.

4. Save your configuration changes.

a. Expand System administration and click Save Changes to Master Repository.

b. Click Save.

Results

The shared library for the jt400.jar file is configured.

What to do next

After completing these steps, continue with configuring the connection factory. See “Manually configuring

the connection factory” to configure the connection factory manually, or see “Automatically configuring the

connection factory” on page 340 to use a Jacl script to automatically configure the connection factory.

Manually configuring the connection factory

The following steps help you manually configure the connection factory.

Before you begin

Configure the eim.jar and jt400.jar files.

About this task

After you configure the eim.jar and jt400.jar files, you can choose to manually or automatically

configure the connection factory. If you choose to automatically configure the connection factory, see

“Automatically configuring the connection factory” on page 340 for more information. Perform the following

steps to manually configure the Java 2 Connector (J2C) authentication data, the resource adapter, and the

connection factory.

1. Configure the Java 2 Connector (J2C) authentication data.

a. In the WebSphere Application Server administrative console, click Security >Global security.

338 Securing applications and their environment

b. Under Java Authentication and Authorization Service, click J2C Authentication data > New

c. Specify the values for each of the required fields. The User ID (cn=administrator for example) and

Password values are those that are used by the connection factory to bind to the Lightweight

Directory Access Protocol (LDAP) server that contains your Enterprise Identity Mapping (EIM) data.

d. Click OK.

2. Configure the resource adapter.

a. In the WebSphere Application Server administrative console, click Resources > Resource

adapters > Resource adapters.

b. Select the node where you want to install the resource adapter.

c. Click Apply.

d. Click Install RAR.

e. Select Local path if you have a drive that is mapped to your iSeries server. Otherwise, select

Server path.

f. Specify the path name or browse to the path name for the idTokenRA.JCA15.rar RAR file.

g. Click Next.

h. Specify the name of your adapter in the Name field. For example, specify identitytoken.

i. Click OK.

3. Configure the connection factory.

a. On the Resource Adapters panel, click the name of your newly created resource adapter.

b. Under Additional Properties, click J2C connection factories > New.

c. Specify the name of your connection factory in the Name field. For example, specify

idtokenconnection.

d. Specify eis/IdentityToken in the Java Naming and Directory Interface (JNDI) name field. This

name must match the JNDI name used during the deployment of the sample application. The

name is used for reference binding.

e. In the Component-managed authentication alias and Container-managed authentication alias fields,

select the authentication data alias that you created earlier.

f. In the Mapping-configuration alias field, select DefaultPrincipalMapping.

g. Click Apply.

h. Under Additional Properties, click Custom properties. The custom properties are used by the

connection factory to communicate with the EIM controller. View the custom property descriptions,

and determine whether the properties are required or optional. For more information, see

“Enterprise Identity Mapping identity token connection factory parameters” on page 335.

To set a property value, complete the following steps:

1) Click the name of the custom property.

2) Type the value of the property in the Value field.

3) Click OK.

4. Save your configuration changes.

a. Expand System administration and click Save Changes to Master Repository.

b. Click Save.

Results

You have manually configured the connection factory.

What to do next

After saving your configuration changes, you can deploy the EIM sample application into the WebSphere

Application Server environment. The source code files that are used in the sample application can be used

Chapter 5. Authenticating users 339

as a model for creating your own applications. See “Deploying the Enterprise Identity Mapping sample

application” on page 341 for more information.

Automatically configuring the connection factory

You can use the cfgIdToken.jacl script to automatically configure the Java 2 Connector (J2C)

authentication data, the resource adapter, and the connection factory.

Before you begin

Configure the eim.jar and jt400.jar files.

About this task

After you configure the eim.jar and the jt400.jar files, you can choose to manually or automatically

configure the connection factory. If you choose to manually configure the connection factory, see “Manually

configuring the connection factory” on page 338 for more information.

Perform the following steps to create a connection factory named CF1 in the my_profile WebSphere

Application Server profile:

1. Verify that your application server is started.

2. On the CL command line, enter QSH. This command starts the Qshell environment.

3. Change to the app_server_root/bin directory and specify the following command:

wsadmin -profileName my_profile -f /QIBM/ProdData/OS400/security/eim/cfgIdToken.jacl

 CF1 sys1.ibm.com 389 "Eim Domain 1" "Registry For my_profile"

 -rarFile /QIBM/ProdData/OS400/security/eim/idTokenRA.JCA15.rar -authAlias myAlias1

 -authUserName cn=administrator -authPassword pwd1

Note: The /QIBM/ProdData/OS400/security/eim directory contains two resource adapter archive files,

idTokenRA.rar and idTokenRA.JCA15.rar. The resource adapter contained in idTokenRA.rar is

implemented to the Java EE Connector Architecture (JCA) 1.0 specification, while the adapter in

idTokenRA.JCA15.rar is implemented to the JCA 1.5 specification. The JCA 1.5 specification is

included in the Java EE 1.4 specification.

where:

v my_profile is the name of the WebSphere Application Server profile.

v /QIBM/ProdData/OS400/security/eim/cfgIdToken.jacl is the path name to the cfgIdToken.jacl

script.

v CF1 is the name of the connection factory.

v sys1.ibm.com is the Lightweight Directory Access Protocol (LDAP) server host name for the

Enterprise Identity Mapping (EIM) domain controller.

v 389 is the LDAP server port.

v Eim Domain 1 is the EIM domain name.

v Registry For my_profile is the EIM source user registry.

v /QIBM/ProdData/OS400/security/eim/idTokenRA.JCA15.rar is the path name to the

idTokenRA.JCA15.rar file.

v myAlias1 is the authentication alias name that is referenced by the connection factory when it

authenticates to the EIM domain controller (LDAP server).

v cn=administrator is the distinguished name that is associated with the authentication alias.

v pwd1 is the password that is associated with the authentication alias.

Notes®:

v The previous sample displays on multiple lines for illustrative purposes only. Type the command on

one continuous line.

v Quote all argument values that contain embedded blanks.

340 Securing applications and their environment

Results

You have automatically configured the connection factory.

What to do next

After performing the previous steps, you can deploy the EIM sample application into the WebSphere

Application Server environment. The source code files that are used in the sample application can be used

as a model for creating your own applications. See “Deploying the Enterprise Identity Mapping sample

application” for more information.

Deploying the Enterprise Identity Mapping sample application

You can deploy the sample application into the WebSphere Application Server environment.

Before you begin

Using Enterprise Identity Mapping (EIM) identity token connection factories requires that WebSphere

Application Server administrative security be enabled. However, no restrictions or limitations exist on how

you choose to configure administrative security.

Before you deploy the sample application, you must enable WebSphere Application Server administrative

security. This step is not required if you already have administrative security enabled for your WebSphere

Application Server profile. For more information on how to configure security, see “Enabling security” on

page 28.

About this task

The source code files that are used to implement the sample application are contained in the

testIdentityToken.ear file and can be used as a model for creating your own applications.

The com.ibm.identitytoken.IdentityTokenTest class is a servlet in the sample application. After the

application is deployed, the source code file for the IdentityTokenTest servlet is in this directory:

profile_root/installedApps/testIdentityToken.ear/testIdentityTokenWeb.war

/WEB-INF/source/com/ibm/identityToken/IdentityTokenTest.java

Note the IdentityTokenTest servlet design features when you implement your own application.

v A profile variable with a String type and the name, sourceApplicationID, is set in the init method of the

IdentityTokenTest servlet. This variable is later used with the setSourceApplicationID method of a

ConnectionSpecImpl object to uniquely identify the application to Enterprise Identity Mapping (EIM).

When you implement your own applications, use a similar convention to assign a unique

SourceApplicationID ID.

v After an identity token is generated, it is used to create a com.ibm.as400.access.AS400 object, which is

stored in an HTTPSession object immediately after the AS400 object is used to run the OS/400 server

command on the selected host server. Only the AS400 object persists across requests to the server (not

the IdentityToken object), which provides improved performance for subsequent requests, and the

identity token does not expire.

The following steps help you deploy the sample application into the WebSphere Application Server

environment.

1. Restart your application server.

See Starting an application server and Stopping an application server for more information on how to

restart your application server.

2. Deploy the sample application.

a. In the WebSphere Application Server administrative console, click Applications > Install

applications.

Chapter 5. Authenticating users 341

b. Select Local path if you have a drive mapped to your iSeries server. Otherwise, select Server

path.

c. Specify the path name or browse to the path name for the testidentitytoken.ear enterprise

archive (EAR) file. This file is found in the /QIBM/ProdData/OS400/security/eim/ directory on your

server.

d. Click Next.

e. Optional: Change the virtual host values.

f. Click Next.

g. Select your installation options, and click Next.

h. Decide whether to map modules to servers and click Next.

i. Select your module in the Map resource references to resources panel and click Next.

j. Optional: Change the Java Naming and Directory Interface (JNDI) name for the

eis/IdentityToken_Shared_Reference reference binding . Do this step if you configured your

connection factory with a JNDI name other than eis/IdentityToken.

k. Accept the default values for the remainder of the panels and click Next.

l. On the Summary panel, click Finish.

m. Expand System administration and click Save Changes to Master Repository.

n. Click Save.

3. Run the sample application.

a. In the WebSphere Application Server administrative console, click Applications > Enterprise

applications.

b. Select the testIdentityToken application.

c. Click Start.

d. Open a new session of your Web browser.

e. If you mapped the sample application Web module to an external Web server, refresh your

WebSphere Application Server Web server plug-in.

To refresh the Web server plug-in, perform the following steps:

1) Click Servers > Web servers > Web_server_name.

2) Click Generate Plug-in.

f. Specify the application welcome page from your Web browser. Use the following Web address:

http://your.server.name:port/testIdentityTokenWeb/IDTknTest.jsp

The your.server.name and port variables are the values for your external Web server or internal

HTTP transport (WebSphere Application Server container).

g. Specify a value for OS/400 host system name and for OS/400 command. For example, if you have

EIM configured for the my_server server, specify my_server in the OS/400 host system name

field. Specify crtlib my_library in the OS/400 command field.

h. Click Submit.

i. Specify a user ID and password at the login prompt.

After you click Submit, the request is sent to the IdentityTokenTest servlet, which is protected by

the allUsers role. The allUsers role is bound to the AllAuthenticated special subject so any user in

the WebSphere Application Server user registry is authorized to access the IdentityTokenTest

servlet.

j. Click OK. If you specified my_library, the response is similar to the following example:

Library my_library created.

k. Verify that the library is created under the user profile that is mapped by EIM:

1) From a CL command line, enter wrklnk ’/QSYS.LIB/my_library.lib’.

2) On the Work with Object Links screen, enter 8 in the option field to the left of my_library.lib.

342 Securing applications and their environment

3) Verify that the value of the Owner attribute for the my_library library is the user profile that is

mapped by EIM.

Configuring single sign-on capability with Tivoli Access Manager or

WebSEAL

Use the following information to enable single sign-on to WebSphere Application Server using either

WebSEAL or the plug-in for Web servers.

About this task

Either Tivoli Access Manager WebSEAL or Tivoli Access Manager plug-in for Web servers can be used as

reverse proxy servers to provide access management and single sign-on (SSO) capability to WebSphere

Application Server resources. With such an architecture, either WebSEAL or the plug-in authenticates

users and forwards the collected credentials to WebSphere Application Server in the form of an IV Header.

Two types of single sign-on are available, the TAI interface and the TAI++ interface, so named as both use

WebSphere Application Server trust association interceptors (TAI). With the TAI, the end-user name is

extracted from the HTTP header and forwarded to embedded Tivoli Access Manager where the end-user

name is used to construct the client credential information and authorize the user. With the TAI++, all of

the user credential information is available in the HTTP header and not just the user name. The TAI++ is

the more efficient of the two solutions because a Lightweight Directory Access Protocol (LDAP) call is not

required. TAI functionality is retained for backwards compatibility.

Complete the following tasks to enable single sign-on to WebSphere Application Server using either

WebSEAL or the plug-in for Web servers. These tasks assume that embedded Tivoli Access Manager is

configured for use.

1. Create a trusted user account for Tivoli Access Manager in the shared Lightweight Directory Access

Protocol (LDAP) user registry. For more information, see “Creating a trusted user account in Tivoli

Access Manager” on page 349.

2. Configure either WebSEAL or the Tivoli Access Manager plug-in for Web servers to work with

WebSphere Application Server. For more information, see either of the following articles:

v “Configuring WebSEAL for use with WebSphere Application Server” on page 350

v “Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Application

Server” on page 350

3. Configure single sign-on using either the TAI or TAI++ interface. For more information, see either of the

following articles:

v “Configuring single sign-on using trust association” on page 351

v “Configuring single sign-on using trust association interceptor ++” on page 352

Single sign-on settings

Use this page to set the configuration values for single sign-on (SSO).

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Web and SIP security > Single sign-on (SSO).

Enabled:

Specifies that the single sign-on function is enabled.

 Web applications that use J2EE FormLogin style login pages, such as the administrative console, require

single sign-on (SSO) enablement. Only disable SSO for certain advanced configurations where LTPA

SSO-type cookies are not required.

Chapter 5. Authenticating users 343

Data type: Boolean

Default: Enabled

Range: Enabled or Disabled

Requires SSL:

Specifies that the single sign-on function is enabled only when requests are made over HTTPS Secure

Sockets Layer (SSL) connections.

 Data type: Boolean

Default: Disable

Range: Enable or Disable

Domain name:

Specifies the domain name (.ibm.com, for example) for all single sign-on hosts.

 The application server uses all the information after the first period, from left to right, for the domain

names. If this field is not defined, the Web browser defaults the domain name to the host name where the

Web application is running. Also, single sign-on is then restricted to the application server host name and

does not work with other application server host names in the domain.

You can specify multiple domains separated by a semicolon (;), a space (), a comma (,), or a pipe (|).

Each domain is compared with the host name of the HTTP request until the first match is located. For

example, if you specify ibm.com;austin.ibm.com and a match is found in the ibm.com domain first, the

application server does not match the austin.ibm.com domain. However, if a match is not found in either

ibm.com or austin.ibm.com, then the application server does not set a domain for the LtpaToken cookie.

If you specify the UseDomainFromURL value, the application server sets the SSO domain name value to the

domain of the host that is used in the Web address. For example, if an HTTP request comes from

server1.raleigh.ibm.com, the application server sets the SSO domain name value to raleigh.ibm.com.

Note: The UseDomainFromURL value is case insensitive. You can type usedomainfromurl to use this

value.

 Data type: String

Interoperability mode:

Specifies that an interoperable cookie is sent to the browser to support back-level servers.

 In WebSphere Application Server, Version 6 and later, a new cookie format is needed by the security

attribute propagation functionality. When the interoperability mode flag is enabled, the server can send a

maximum of two single sign-on (SSO) cookies back to the browser. In some cases, the server just sends

the interoperable SSO cookie.

Web inbound security attribute propagation:

When Web inbound security attribution propagation is enabled, security attributes are propagated to

front-end application servers. When this option is disabled, the single sign-on (SSO) token is used to log in

and recreate the Subject from the user registry.

 With this information, the receiving server can contact the originating server using an MBean call to get the

original serialized security attributes.

344 Securing applications and their environment

com.tivoli.pd.jcfg.PDJrteCfg utility for Tivoli Access Manager single sign-on

The com.tivoli.pd.jcfg.PDJrteCfg utility configures the Java Runtime Environment component for Tivoli

Access Manager. This component enables WebSphere Application Server to use Tivoli Access Manager

security.

Purpose

Steps

To run the pdjrtecfg script, perform the following steps:

1. Log into your system with a user profile and the all object (*ALLOBJ) authority.

2. On the command line, enter the Start Qshell (STRQSH) command.

3. Change to the /bin subdirectory of WebSphere Application Server. For example:

cd app_server_rootBase/bin

4. Run the script. For example:

 pdjrtecfg -action config -profileName myprofile

-host mypolicy.mycompany.com -config_type full

The previous example was split onto multiple lines for illustrative purposes only.

Syntax

The following syntax diagram shows the usage of the pdjrtecfg script:

pdjrtecfg

 -action config

 -profileName profile_name

 -host policy_server_name

 -config_type { full | standalone }

 -cfgfiles_path configuration_file_path

 -action unconfig

 -profileName profile_name

Parameters

-action {config|unconfig}

Specifies the action to be performed. Actions include:

config Use to configure the Access Manager Java Runtime Environment component.

unconfig

Use to reconfigure the Access Manager Java Runtime Environment component.

-cfgfiles_path

Specifies where the generated configuration files will be placed.

Note: This parameter is required.

-config_type {full|standalone}

Specifies the configuration type of Java Runtime Environment for Tivoli Access Manager. Specify full

or standalone with this argument. This option is required.

-host policy_server_host

Specifies the policy server host name.

 Valid values for policy_server_host include any valid IP host name.

Examples include:

host = libra

host = libra.dallas.ibm.com

Chapter 5. Authenticating users 345

Notifies Tivoli Access Manager Runtime for Java that the WebSphere Application Server version is

being configured so it is not necessary to perform certain steps such as copying the Java security jar

files and PD.jar file since they were already placed in the appropriate directory by the WebSphere

Application Server installer.

-profileName

Specifies the name of the WebSphere Application Server profile. If not specified, the default profile is

used.

 Specifies the fully qualified path to the Java runtime (such as the directory ending in jre). If this

parameter is not specified, the home directory for the jre in the PATH statement is used. If the home

directory for the jre is not in the PATH statement, this utility can create an incorrect parameter in the

output files.

Comments

This command copies Tivoli Access Manager Java libraries to a library extensions directory that exists for

a Java runtime that has already been installed on the system.

You can install more than one Java Runtime Environment (JRE) on a given machine. The pdjrtecfg

command can be used to configure the Tivoli Access Manager Java Runtime Environment component

independently for each of the JRE configurations.

Related information

Application Programming Interface documentation for IBM Tivoli Access Manager V2R1

The pdjrtecfg utility for IBM Tivoli Access Manager V2R1

com.tivoli.pd.jcfg.SvrSslCfg utility for Tivoli Access Manager single sign-on

The utility is used to configure and remove the configuration information associated with WebSphere

Application Server and the Tivoli Access Manager server.

Purpose

The svrsslcfg script creates a user account and server entries that represent your WebSphere Application

Server profile in the Tivoli Access Manager user registry. In addition, a configuration file and a Java

keystore file, which securely stores a client certificate, are created in the application server profile. This

client certificate permits callers to use Tivoli Access Manager authentication services. You can also choose

to remove the user and server entries from the user registry and clean up the local configuration and

keystore files.

The svrsslcfg script wraps the SvrSslCfg class and provides support for multiple WebSphere Application

Server profiles. The use of multiple profiles allows you to create multiple WebSphere Application Server

environments that are completely isolated from one another.

Steps

To run the svrsslcfg script, perform the following steps:

1. Log on with a user profile and all object (*ALLOBJ) authority.

2. On the CL command line, enter the Start Qshell (STRQSH) command.

3. Change directories to the app_server_root/bin directory.

4. Enter the svrsslcfg command with the options that you want.

For example:

346 Securing applications and their environment

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/overview-summary.html#main
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/am60_cmdref172.htm

svrsslcfg -profileName myprofile -action config -admin_id sec_master

 -admin_pwd pwd123 -appsvr_id ibm9 -appsvr_pwd ibm9pwd -mode remote

 -port 8888 -policysvr ourserv.rochester.ibm.com:7135:1

 -authzsvr ourserv.rochester.ibm.com:7136:1

 -key_file profile_root/myprofile/etc/ibm9.kdb

 -cfg_action create

The previous example displays on multiple lines for illustrative purposes only.

Syntax

The configuration syntax is:

svrsslcfg -action config

 [-profileName profile_name]

 -admin_id admin_user_id

 -admin_pwd admin_password

 -appsvr_id application_server_name

 -port port_number

 -mode { local | remote }

 -policysvr policy_server_name

 -authzsvr authorization_server_name

 -key_file fully_qualified_name_of_key_file

 -appsvr_pwd application_server_password

 -cfg_action { create | replace }

 [-domain Tivoli_Access_Manager_domain]

The unconfigure syntax is:

svrsslcfg -action unconfig

 [-profileName profile_name]

 -admin_id admin_user_id

 -admin_pwd admin_password

 -appsvr_id application_server_name

 -policysvr policy_server_name

 [-domain Tivoli_Access_Manager_domain]

You can enter the previous syntax as one continuous line.

Parameters

-action {config | unconfig}

Specifies the configuration action that is performed by the script. The following options apply:

-action config

Configuring a server creates user and server information in the user registry and creates local

configuration and key store files on the application server. Use the -action unconfig option to

reverse this operation.

 If this action is specified, the following options are required: -admin_id, -admin_pwd,

-appsvr_id, -port, -mode, -policysvr, -authzsvr, and -key_file.

-action unconfig

Reconfigures an application server to complete the following actions:

v Remove the user and server information from the user registry

v Delete the local key store file

v Remove information for this application from the configuration file without deleting the file

The reconfiguration operation fails only if the caller is unauthorized or the policy server cannot

be contacted.

This action can succeed when a configuration file does not exist. When the configuration file

does not exist, it is created and used as a temporary file to hold configuration information

during the operation, and then the file is deleted completely.

Chapter 5. Authenticating users 347

If this action is specified, the following options are required: -admin_id, -admin_pwd,

-appsvr_id, and -policysvr.

-admin_id admin_user_ID

Specifies the Tivoli Access Manager administrator name. If this option is not specified, sec_master is

the default.

 A valid administrative ID is an alphanumeric, case-sensitive string. String values are expected to be

characters that are part of the local code set. You cannot use a space in the administrative ID.

For example, for U.S. English the valid characters are the letters a-Z, the numbers 0-9, a period (.), an

underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&), and an asterisk (*).

The minimum and maximum lengths of the administrative ID, if there are limits, are imposed by the

underlying registry.

-admin_password admin_password

 Specifies the password of the Tivoli Access Manager administrator user that is associated with the

-admin_id parameter. The password restrictions depend upon the password policy for your Tivoli

Access Manager configuration.

-appsvr_id application_server_name

Specifies the name of the application server. The name is combined with the host name to create

unique names for Tivoli Access Manager objects created for your application. The following names are

reserved for Tivoli Access Manager applications: ivacld, secmgrd, ivnet, and ivweb.

-appsvr_pwd application_server_password

Specifies the password of the application server. This option is required. A password is created by the

system and the configuration file is updated with the password created by the system.

 If this option is not specified, the server password will be read from standard input.

-authzsvr authorization_server_name

Specifies the name of the Tivoli Access Manager authorization server with which the application server

communicates. The server is specified by fully qualified host name, the SSL port number, and the

rank. The default SSL port number is 7136. For example: myauth.mycompany.com:7136:1. You can

specify multiple servers if the entries are separated by a comma (,).

-cfg_action {create | replace}

Specifies the action to take when creating the configuration and key files. Valid values are create or

replace. Use the create option to initially create the configuration and keystore files. Use the replace

option if these files already exist. If you use the create option and the configuration or keystore files

already exist, an exception is created.

 Options are as follows:

create Specifies to create the configuration and key store files during server configuration.

Configuration fails if either of these files already exists.

replace

Specifies to replace the configuration and key store files during server configuration.

Configuration deletes any existing files and replaces them with new ones.

-domain Tivoli_Access_Manager_domain

Specifies the Tivoli Access Manager domain name to which the administrator is authenticated. This

domain must exist and an the administrator ID and password must be valid for this domain. The

application server is specified in this domain.

 If not specified, the local domain that was specified during Tivoli Access Manager runtime configuration

will be used. The local domain value will be retrieved from the configuration file.

A valid domain name is an alphanumeric, case-sensitive string. String values are expected to be

characters that are part of the local code set. You cannot use a space in the domain name.

348 Securing applications and their environment

For example, for U.S. English the valid characters for domain names are the letters a-Z, the numbers

0-9, a period (.), an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&),

and an asterisk (*). The minimum and maximum lengths of the domain name, if there are limits, are

imposed by the underlying registry.

-key_file fully_qualified_name_of_keystore_file

Specifies the directory that is to contain the key files for the server. A valid directory name is

determined by the operating system. Use a fully qualified file name that contains the application server

certificate and key file.

 Make sure that server user (for example, ivmgr) or all users have permission to access the .kdb file

and the folder that contains the .kdb file.

This option is required.

-mode server_mode

Specifies the mode in which the application server processes requests. Only the remote mode is

supported.

-policysvr policy_server_name

Specifies the names of servers that run the Tivoli Access Manager policy server (ivmgrd) with which

the application server communicates. A server is specified by a fully qualified host name, the SSL port

number, and the rank. The default SSL port number is 7135. For example:

mypolicy.mycompany.com:7135:1. You can specify multiple servers if the entries are separated by a

comma (,).

-port port_number

Specifies the TCP/IP communications port on which the application server listens for communications

from the policy servers.

-profileName profile_name

Specifies the name of your WebSphere Application Server profile. If this option is not specified, the

default server1 profile is used.

Creating a trusted user account in Tivoli Access Manager

Tivoli Access Manager trust association interceptors require the creation of a trusted user account in the

shared LDAP user registry.

About this task

This account includes the ID and password that WebSEAL uses to identify itself to WebSphere Application

Server. To prevent potential vulnerabilities, do not use the sec_master ID as the trusted user account and

ensure that the password you use is unique and generated randomly. Use the trusted user account for the

TAI or TAI++ only.

1. Use either the Tivoli Access Manager pdadmin command-line utility or Web Portal Manager to create

the trusted user. For example, from the pdadmin command line.

2. Reference the code listed below as an example for creating a trusted user account.

3. Reference the following additional resources for more information:

a. “Configuring WebSEAL for use with WebSphere Application Server” on page 350

b. “Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Application

Server” on page 350

Example

pdadmin> user create webseal_userid webseal_userid_DN firstname

 surname password

pdadmin> user modify webseal_userid account-valid yes

Chapter 5. Authenticating users 349

Configuring WebSEAL for use with WebSphere Application Server

Use this topic to set the SSO password in WebSEAL for single sign-on to WebSphere Application Server.

About this task

A junction must be created between WebSEAL and WebSphere Application Server. This junction carries

the iv-credentials (for TAI++) or iv-user (for TAI) and the HTTP basic authentication headers with the

request. You can configure WebSEAL to pass the end user identity in other ways, the iv-credentials header

is the only one supported by the TAI++ and the iv-user is the only one supported by TAI.

We recommend that communications over the junction use Secure Sockets Layer (SSL) for increased

security. Setting up SSL across this junction requires that you configure the HTTP Server used by

WebSphere Application Server, and WebSphere Application Server itself, to accept inbound SSL traffic and

route it correctly to WebSphere Application Server. This activity requires importing the necessary signing

certificates into the WebSEAL certificate keystore, and possibly also the HTTP Server certificate keystore.

Create the junction between WebSEAL and WebSphere Application Server using the -c iv_creds option

for TAI++ and -c iv_user for TAI. Enter either of the following commands as one line using the variables

that are appropriate for your environment:

TAI++

server task webseald-server create -t ssl -b supply -c iv_creds

 -h host_name -p websphere_app_port_number junction_name

TAI

server task webseald-server create -t ssl -b supply -c iv_user

 -h host_name -p websphere_app_port_number junction_name

Note:

1. If warning messages are displayed about the incorrect setup of certificates and key databases,

delete the junction, correct problems with the key databases, and recreate the junction.

2. The junction can be created as -t tcp or -t ssl, depending on your requirements.

For single sign-on (SSO) to WebSphere Application Server the SS) password must be set in WebSEAL.

To set the password, complete the following steps:

1. Edit the WebSEAL configuration file webseal_install_directory/etc/webseald-default.conf Set the

following parameter: basicauth-dummy-passwd=webseal_userid_passwd

where webseal_userid_passwd is the SSO password for the trusted user account set in “Creating a

trusted user account in Tivoli Access Manager” on page 349.

2. Restart WebSEAL.

What to do next

For more details and options about how to configure junctions between WebSEAL and WebSphere

Application Server, including other options for specifying the WebSEAL server identity, refer to the Tivoli

Access Manager WebSEAL Administration Guide as well as to the documentation for the HTTP Server

you are using with your WebSphere Application Server. Tivoli Access Manager documentation is available

at http://publib.boulder.ibm.com/tividd/td/tdprodlist.html.

Configuring Tivoli Access Manager plug-in for Web servers for use with

WebSphere Application Server

Tivoli Access Manager plug-in for Web servers can be used as a security gateway for your protected

WebSphere Application Server resources.

350 Securing applications and their environment

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

About this task

With such an arrangement the plug-in authorizes all user requests before passing the credentials of the

authorized user to WebSphere Application Server in the form of an iv-creds header. Trust between the

plug-in and WebSphere Application Server is established through use of basic authentication headers

containing the single sign-on (SSO) user password.

1. The Tivoli Access Manager plug-in for Web servers configuration shows IV headers configured for

post-authorization processing, and basic authentication that is configured as the authentication

mechanism and for post-authorization processing, as shown in the example below.

2. After a request is authorized, the basic authentication header is removed from the request

(strip-hdr=always) and a new one is added (add-hdr=supply).

3. Included in this new header is the password that is set when the SSO user is created in “Creating a

trusted user account in Tivoli Access Manager” on page 349.

4. Specify this password in the supply-password parameter and it is passed in the newly created

header. This basic authentication header enables trust between WebSphere Application Server and the

plug-in.

5. An iv-creds header is also added (generate=iv-creds), which contains the credential information of the

user passed onto WebSphere Application Server. Session cookies are used to maintain session state.

Example

[common-modules]

authentication = BA

session = session-cookie

post-authzn = BA

post-authzn = iv-headers

[iv-headers]

accept = all

generate = iv-creds

[BA]

strip-hdr = always

add-hdr = supply

supply-password = sso_user_password

What to do next

“Configuring single sign-on using trust association” or “Configuring single sign-on using trust association

interceptor ++” on page 352

Configuring single sign-on using trust association

This task is performed to enable single sign-on using trust association. Trust association is used to

connect reversed proxy servers to the application server.

Before you begin

Note: Use of TAIs for Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) authentication is

deprecated in this release. The SPNEGO Web authentication panels provide a much easier and

less error-prone way to configure SPNEGO.

To establish the trust association for the single sign-on, perform the following steps:

1. From the administrative console for WebSphere Application Server, click Security > Global security.

2. From Authentication mechanisms, click Web and SIP security > Trust association.

3. Select the Enable trust association option.

4. Under Additional properties, click the Interceptors link.

Chapter 5. Authenticating users 351

5. Click com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus to use a WebSEAL

interceptor, or com.ibm.ws.security.spnego.TrustAssociationInterceptorImpl to use a SPNEGO

interceptor.

6. Under Custom properties, select a custom property to edit or click New to create a new one. Enter the

property name and value pairs.

7. Click OK.

8. Save the configuration and log out.

9. Restart WebSphere Application Server.

Configuring single sign-on using trust association interceptor ++

Perform this task to enable single sign-on using trust association interceptor ++. The steps involve setting

up trust association and creating the interceptor properties.

Before you begin

Although you can use Simple WebSphere Authentication Mechanism (SWAM) by selecting the Use

SWAM-no authenticated communication between servers option on the Authentication mechanisms

and expiration panel, single sign-on (SSO) requires LTPA as the configured authentication mechanism.

To establish the trust association for the single sign-on, perform the following steps:

1. Click Enable Trust Association.

2. Click Interceptors.

3. Click com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus to use a WebSEAL

interceptor. This interceptor is one of two WebSEAL interceptors that are supplied for your use. You

choose to use this interceptor by supplying properties as described in the next step.

Note: WebSphere Application Server attempts to initialize both of these interceptors even if you only

supplied properties for the com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus

interceptor. As a result, messages AWXRB0008E and SECJ0384E can appear during

initialization to indicate that the interceptor you did not choose has failed to initialize. This is

normal processing and does not affect the initialization of the interceptor you did select. To

inhibit the display of messages AWXRB0008E and SECJ0384E, you can delete the interceptor

you do not want to use prior to beginning the initialization. You can add that interceptor back

later if your environment changes.

4. Click Custom Properties.

5. Click New to enter the property name and value pairs. Ensure that the following parameters are set:

 Table 16. Custom properties

Option Description

com.ibm.websphere.security.

webseal.checkViaHeader

You can configure TAI so that the via header can be ignored when validating trust

for a request. Set this property to false if none of the hosts in the via header

need to be trusted. When set to false you do not need to set the trusted host

names and host ports properties. The only mandatory property to check when via

header is false is com.ibm.websphere.security.webseal.loginId.

The default value of the check via header property is false. When using Tivoli

Access Manager plug-in for Web servers, set this property to false.

Note: The via header is part of the standard HTTP header that records the

server names the request that passed through.

com.ibm.websphere.security.

webseal.loginId

The WebSEAL trusted user as created in “Creating a trusted user account in

Tivoli Access Manager” on page 349 The format of the username is the short

name representation. This property is mandatory. If it is not set in WebSphere

Application Server, the TAI initialization fails.

352 Securing applications and their environment

Table 16. Custom properties (continued)

Option Description

com.ibm.websphere.security.

webseal.id

A comma-separated list of headers that exists in the request. If all of the

configured headers do not exist in the request, trust cannot be established. The

default value for the ID property is iv-creds. Any other values set in WebSphere

Application Server are added to the list along with iv-creds, separated by

commas.

com.ibm.websphere.security.

webseal.hostnames

Do not set this property if using Tivoli Access Manager Plug-in for Web Servers.

The property specifies the host names (case sensitive) that are trusted and

expected in the request header. Requests arriving from un-listed hosts might not

be trusted. If the checkViaHeader property is not set or is set to false then the

trusted host names property has no influence. If the checkViaHeader property is

set to true, and the trusted host names property is not set, TAI initialization fails.

com.ibm.websphere.security.

webseal.ports

Do not set this property if using Tivoli Access Manager plug-in for Web servers.

This property is a comma-separated list of trusted host ports. Requests that

arrive from unlisted ports might not be trusted. If the checkViaHeader property is

not set, or is set to false this property has no influence. If the checkViaHeader

property is set to true, and the trusted host ports property is not set in

WebSphere Application Server, the TAI initialization fails.

com.ibm.websphere.security.

webseal.viaDepth

A positive integer that specifies the number of source hosts in the via header to

check for trust. By default, every host in the via header is checked, and if any

host is not trusted, trust cannot be established. The via depth property is used

when only some of the hosts in the via header have to be trusted. The setting

indicates the number of hosts that are required to be trusted.

As an example, consider the following header:

Via: HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

If the viaDepth property is not set, is set to 2 or is set to 0, and a request with the

previous via header is received then both webseal1:7002 and webseal2:7001

need to be trusted. The following configuration applies:

com.ibm.websphere.security.webseal.hostnames = webseal1,webseal2

com.ibm.websphere.security.webseal.ports = 7002,7001

If the via depth property is set to 1, and the previous request is received, then

only the last host in the via header needs to be trusted. The following

configuration applies:

com.ibm.websphere.security.webseal.hostnames = webseal2

com.ibm.websphere.security.webseal.ports = 7001

The viaDepth property is set to 0 by default, which means all of the hosts in the

via header are checked for trust.

com.ibm.websphere.security.

webseal.ssoPwdExpiry

After trust is established for a request, the single sign-on user password is

cached, eliminating the need to have the TAI re-authenticate the single sign-on

user with Tivoli Access Manager for every request. You can modify the cache

timeout period by setting the single sign-on password expiry property to the

required time in seconds. If the password expiry property is set to 0, the cached

password never expires. The default value for the password expiry property is

600.

com.ibm.websphere.security.

webseal.ignoreProxy

This property can be used to tell the TAI to ignore proxies as trusted hosts. If set

to true the comments field of the hosts entry in the via header is checked to

determine if a host is a proxy. Remember that not all proxies insert comments in

the via header indicating that they are proxies. The default value of the

ignoreProxy property is false. If the checkViaHeader property is set to false then

the ignoreProxy property has no influence in establishing trust.

Chapter 5. Authenticating users 353

Table 16. Custom properties (continued)

Option Description

com.ibm.websphere.security.

webseal.configURL

Set this property to profile_root/etc/pd/PolicyDirector/PDPerm.properties.

For the TAI to establish trust for a request, it requires that a PDPerm.properties

file exists in each node within the cell. Also, the correct URL of the properties file

must be set in the config URL property. If this property is not set or the

PDPerm.properties file is not in the specified location, the TAI initialization fails.

The PDPerm.properties file is part of the Tivoli Access Manager configuration for

a node. To create the Tivoli Access Manager configuration, run the pdjrtecfg

script and then the svrsslcfg script for each node in the cell. The

PDPerm.properties file is created in theprofile_root/etc/pd/PolicyDirector/

directory.

6. Click OK.

7. Save the configuration and log out.

8. Restart WebSphere Application Server.

Configuring global sign-on principal mapping

You can create a new application login that uses the Tivoli Access Manager GSO database to store the

login credentials.

 1. Click Security > Global security.

 2. Under Authentication, click Java Authentication and Authorization Service > Application logins.

 3. Click New to create a new Java Authentication and Authorization Service (JAAS) login configuration.

 4. Enter the alias name of the new application login. Click Apply.

 5. Under Additional properties, click JAAS login modules to define the JAAS Login Modules.

 6. Click New and enter the following information:

Module class name: com.tivoli.pdwas.gso.AMPrincipalMapper

Use Login Module Proxy: enable

Authentication strategy: REQUIRED

 7. Click Apply

 8. Under Additional Properties section, click Custom Properties to define login module-specific values

that are passed directly to the underlying login modules.

 9. Click New.

The Tivoli Access Manager principal mapping module uses the authDataAlias configuration string to

retrieve the correct user name and password from the security configuration.

The authDataAlias attribute that is passed to the module is configured for the J2C connection factory.

Because the authDataAlias attribute is an arbitrary string that is entered at configuration time, the

following scenarios are possible:

v The authDataAlias attribute contains both the global sign-on (GSO) resource name and the user

name. The format of this string is ″Resource/User″.

v The authDataAlias attribute contains the GSO Resource name only. The user name is determined

by using the Subject of the current session.

The scenario to use is determined by a JAAS configuration option, as shown here:

 Name: com.tivoli.pd.as.gso.AliasContainsUserName

 Value: True, if the alias contains the user name; false, if the user name must be retrieved from the

security context

When entering authDataAlias attributes through the WebSphere Application Server administrative

console, the node name is automatically pre-pended to the alias. The JAAS configuration entry

determines whether this node name is removed or included as part of the resource name, as shown

here:

354 Securing applications and their environment

Name: com.tivoli.pd.as.gso.AliasContainsNodeName

 Value: True, if the alias contains the node name

Note: If the PdPerm.properties configuration file is not located in the JAVA_HOME/PdPerm.properties

default location, then you also need to add the following property:

 Name: com.tivoli.pd.as.gso.AMCfgURL

 Value: file:///path to PdPerm.properties

Enter each new parameter using the following scenario information as a guide, then click Apply.

Scenario 1

Auth Data Alias - BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 2

Auth Data Alias - BackendEIS

Resource - BackEndEIS

User - Currently authenticated WebSphere Application Server user

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 3

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Chapter 5. Authenticating users 355

Scenario 4

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - nodename/BackEndEIS (notice that node name is not removed)

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 5

Auth Data Alias - BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 6

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - nodename/BackendEIS/eisUser

 (notice that the resource is the same as Auth Data Alias).

User - Currently authenticated WebSphere Application Server user

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

10. Create the Java 2 Connector (J2C) authentication aliases. The user name and password that are

assigned to these alias entries are irrelevant because Tivoli Access Manager is responsible for

providing user names and passwords. However, the user name and password that are assigned to

the J2C authentication aliases need to exist so that they can be selected for the J2C connection

factory in the administrative console.

To create the J2C authentication aliases, from the WebSphere Application Server administrative

console, click Security >Global security. Under Authentication, click Java Authentication and

Authorization Service > J2C authentication data, and then click New for each new entry. Refer to

the previous table for scenario inputs.

356 Securing applications and their environment

The connection factories for each resource adapter that need to use the GSO database must be

configured to use the Tivoli Access Manager Principal mapping module:

a. From the WebSphere Application Server administrative console, click Applications > Enterprise

Applications > application_name > Resourcer references. Note that J2C connection factories

must be already configured for the selected application. To configure a new J2C connection

factory, see tdat_confconfac.dita.

b. Under Additional properties, click Resource Adapter.

The resource adapter can be standalone and does not need to be packaged with the application.

The resource adapter is configured from Resources > Resource Adapters for standalone

scenarios.

c. Under Additional properties, click J2C Connection Factories.

d. Click New and enter the connection factory properties.

e. When finished, click Apply > Save.

Note:

Custom mapping configuration for the connection factory is deprecated in WebSphere Application

Server Version 6. To configure the GSO credential mapping, use the Map Resource References to

Resources panel on the administrative console. For more information, see J2EE connector security.

Configuring administrative authentication

An authentication mechanism defines rules about security information, such as whether a credential is

forwardable to another Java process, and the format of how security information is stored in both

credentials and tokens. The Rivest Shamir Adleman (RSA) token authentication mechanism simplifies the

security environment for flexible management topology, that is, the topology where you can locally or

remotely submit and manage administrative jobs through a job manager that manages applications,

perform product maintenance, modify configurations, and control the application server runtime. You use

the administrative console to configure administrative authentication, which involves the configuring of the

Rivest Shamir Adleman (RSA) token authentication mechanism.

Before you begin

The following keystore, truststore, and rootstore descriptions give you an idea of where certificates are

stored and how trust is configured between processes.

The NodeRSATokenKeyStore contains the Rivest Shamir Adleman (RSA) token personal certificate used

for this process. Not only is the public/private key from this certificate used to create RSA tokens, but the

public key is used by other processes to create tokens. The RSA personal certificate is signed by an RSA

root certificate.

The NodeRSATokenTrustStore contains all RSA signer certificates from other processes that are trusted

to send RSA tokens to this process. The signers in this trust store are placed there automatically during

the registration process. However, this task allows an administrator to configure trust between to

processes not normally involved in the same administrative domain. There may be requirements where

two base servers are communicating administratively. When using the RSA token authentication

mechanism, the base servers need to share RSA signers if administrative communications is operating in

both directions.

The NodeRSATokenRootStore contains the root personal certificate that is used to create new RSA

personal certificates. Do not use the root certificate to create RSA tokens because this usage

compromises the long-lived keys. Only use the root certificate to sign other certificates.

No manual steps are required with these keystores, and this allows uncommon trust establishment among

processes not in the same administrative domain. You can also replace the RSA personal certificate with a

Chapter 5. Authenticating users 357

tdat_confconfac.dita

personal certificate obtained from a certificate authority (CA) if desired. In this case, make sure the CA root

certificate is placed in all RSA trust stores in the same administrative domain.

1. Click SSL certificate and key management > Global security . Under Keystore usages select RSA

token keystores from the drop-down list.

2. Select the RSA token key store you want to administer.

3. Modify the description if required.

4. Modify the path if required.

5. Select read only, initialize at setup, or both if required.

6. Enter the correct password to make these modifications

7. Click Apply and Save.

Results

You configured administrative authentication.

What to do next

In cases where the process is back-level or a target RSA certificate cannot be obtained, the fallback

mechanism is Lightweight Third-Party Authentication (LTPA) which is supported in all previous releases for

administrative communications. The fallback occurs automatically. If the LTPA keys are not shared and a

fallback occurs, LTPA will fail as well. However, this situation is typically an error case in the RSA

mechanism and should occur infrequently.

Java Authentication and Authorization Service

The standard Java 2 security application programming interface (API) helps enforce access control based

on the location of the code source or the author or packager of the code that signed the jar file. The

current principal of the running thread is not considered in the Java 2 security authorization. Instances

where authorization is based on the principal, as opposed to the code base, and the user exist. The Java

Authentication and Authorization Service is a standard Java API that supports the Java 2 security

authorization to extend the code base on the principal as well as the code base and users.

The Java Authentication and Authorization Service (JAAS) Version 1.0 extends the Java 2 security

architecture of the Java 2 platform with additional support to authenticate and enforce access control with

principals and users. JAAS implements a Java version of the standard Pluggable Authentication Module

(PAM) framework, and extends the access control architecture of the Java 2 platform in a compatible

fashion to support user-based authorization or principal-based authorization. WebSphere Application

Server fully supports the JAAS architecture. JAAS extends the access control architecture to support

role-based authorization for Java Platform, Enterprise Edition (Java EE) resources including servlets,

JavaServer Pages (JSP) files, and Enterprise JavaBeans (EJB) components.

Refer to “Java 2 security” on page 32 for more information.

The following sections cover the JAAS implementation and programming model:

v “Login configuration for Java Authentication and Authorization Service” on page 394

v “Programmatic login” on page 381

v “Java Authentication and Authorization Service authorization”

The JAAS documentation can be found at http://www.ibm.com/developerworks/java/jdk/security. Scroll

down to find the JAAS documentation for your platform.

Java Authentication and Authorization Service authorization

Java 2 security architecture uses a security policy to specify which access rights are granted to running

code. This architecture is code-centric. The permissions are granted based on code characteristics

358 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security

including where the code is coming from, whether it is digitally signed, and by whom. Authorization of the

Java Authentication and Authorization Service (JAAS) augments the existing code-centric access controls

with new user-centric access controls. Permissions are granted based on what code is running and who is

running it.

When using JAAS authentication to authenticate a user, a subject is created to represent the authenticated

user. A subject is comprised of a set of principals, where each principal represents an identity for that user.

You can grant permissions in the policy to specific principals. After the user is authenticated, the

application can associate the subject with the current access control context. For each subsequent

security-checked operation, the Java runtime automatically determines whether the policy grants the

required permission to a specific principal only. If so, the operation is supported if the subject that is

associated with the access control context contains the designated principal only.

Associate a subject with the current access control context by calling the static doAs method from the

subject class, passing it an authenticated subject and the java.security.PrivilegedAction or

java.security.PrivilegedExceptionAction method. The doAs method associates the provided subject with the

current access control context and then invokes the run method from the action. The run method

implementation contains all the code that ran as the specified subject. The action runs as the specified

subject.

In the Java 2 Platform, Enterprise Edition (J2EE) programming model, when invoking the Enterprise

JavaBeans (EJB) method from an enterprise bean or servlet, the method runs under the user identity that

is determined by the run-as setting. The J2EE Version 1.4 Specification does not indicate which user

identity to use when invoking an enterprise bean from a Subject.doAs action block within either the EJB

code or the servlet code. A logical extension is to use the proper identity that is specified in the subject

when invoking the EJB method within the Subject doAs action block.

Letting the Subject.doAs action overwrite the run-as identity setting is an ideal way to integrate the JAAS

programming model with the J2EE run-time environment. However, JAAS introduced an issue into the

Software Development Kit (SDK), Java Technology Edition Versions 1.3 or later when integrating the JAAS

Version 1.0 or later implementation with the Java 2 security architecture. A subject, which is associated

with the access control context is cut off by a doPrivileged call when a doPrivileged call occurs within the

Subject.doAs action block. Until this problem is corrected, no reliable and run-time efficient way is

available to guarantee the correct behavior of Subject.doAs action in a J2EE run-time environment.

The problem can be explained better with the following example:

Subject.doAs(subject, new java.security.PrivilegedAction() {

 Public Object run() {

 // Subject is associated with the current thread context

 java.security.AccessController.doPrivileged(new

 java.security.PrivilegedAction() {

 public Object run() {

 // Subject was cut off from the current

 // thread context

 return null;

 }

 });

 // Subject is associated with the current thread context

 return null;

 }

});

In the previous code example, the Subject object is associated with the context of the current thread.

Within the run method of a doPrivileged action block, the Subject object is removed from the thread

context. After leaving the doPrivileged block, the Subject object is restored to the current thread context.

Chapter 5. Authenticating users 359

Because doPrivileged blocks can be placed anywhere along the running path and instrumented quite often

in a server environment, the run-time behavior of a doAs action block becomes difficult to manage.

To resolve this difficulty, WebSphere Application Server provides a WSSubject helper class to extend the

JAAS authorization to a J2EE EJB method invocation, as described previously. The WSSubject class

provides static doAs and doAsPrivileged methods that have identical signatures to the subject class. The

WSSubject.doAs method associates the Subject to the currently running thread. The WSSubject.doAs and

WSSubject.doAsPrivileged methods then invoke the corresponding Subject.doAs and

Subject.doAsPrivileged methods. The original credential is restored and associated with the running thread

upon leaving the WSSubject.doAs and WSSubject.doAsPrivileged methods.

The WSSubject class is not a replacement of the subject object, but rather a helper class to ensure

consistent run-time behavior as long as an EJB method invocation is a concern.

The following example illustrates the run-time behavior of the WSSubject.doAs method:

WSSubject.doAs(subject, new java.security.PrivilegedAction() {

 Public Object run() {

 // Subject is associated with the current thread context

 java.security.AccessController.doPrivileged(new

 java.security.PrivilegedAction() {

 public Object run() {

 // Subject was cut off from the current thread

 // context.

 return null;

 }

 });

 // Subject is associated with the current thread context

 return null;

 }

});

The Subject.doAs and Subject.doAsPrivileged methods are not integrated with the J2EE run-time

environment. EJB methods that are invoked within the Subject.doAs and Subject.doAsPrivileged action

blocks run under the identity that is specified by the run-as setting and not by the subject identity.

v The Subject object that is generated by the WSLoginModuleImpl instance and the

WSClientLoginModuleImpl instance contains a principal that implements the WSPrincipal interface.

Using the getCredential method for a WSPrincipal object returns an object that implements the

WSCredential interface. You can also find the WSCredential object instance in the PublicCredentials list

of the subject instance. Retrieve the WSCredential object from the PublicCredentials list instead of using

the getCredential method.

v The getCallerPrincipal method for the WSSubject class returns a string that represents the caller

security identity. The return type differs from the getCallerPrincipal method of the java.security.Principal

EJBContext interface.

v The Subject object that is generated by the Java 2 Connector (J2C) DefaultPrincipalMapping module

contains a resource principal and a PasswordCredentials list. The resource principal represents the

RunAs identity.

For more information, see J2EE connector security.

360 Securing applications and their environment

Related tasks

Chapter 5, “Authenticating users,” on page 93
The process of authenticating users involves a user registry and an authentication mechanism. Optionally,

you can define trust between WebSphere Application Server and a proxy server, configure single sign-on

capability, and specify how to propagate security attributes between application servers.

Using the Java Authentication and Authorization Service programming

model for Web authentication

WebSphere Application Server supports the Java Platform, Enterprise Edition (Java EE) declarative

security model. You can define the authentication and access control policy using the Java EE deployment

descriptor. You can further stack custom login modules to customize the WebSphere Application Server

authentication mechanism.

Before you begin

A custom login module can perform principal and credential mapping, custom security token and custom

credential-processing, and error-handling among other possibilities. Typically, you do not need to use

application code to perform authentication function. Use the programming techniques that are described in

this section if you have to perform authentication function in application code. For example, if you have

applications that programmed to the SSOAuthenticator helper function, you can use the following

programming interface. The SSOAuthenticator helper function was deprecated starting with WebSphere

Application Server Version 4.0. Use declarative security as a rule; use the techniques that are described in

this section as a last resort.

About this task

When the Lightweight Third-Party Authentication (LTPA) mechanism single sign-on (SSO) option is

enabled, the Web client login session is tracked by an LTPA SSO token cookie after successful login. At

logout, this token is deleted to terminate the login session, but the server-side subject is not deleted. When

you use the declarative security model, the WebSphere Application Server Web container performs client

authentication and login session management automatically. You can perform authentication in application

code by setting a login page without a Java EE security constraint and by directing client requests to your

login page first. Your login page can use the Java Authentication and Authorization Service (JAAS)

programming model to perform authentication. To enable WebSphere Application Server Web login

modules to generate SSO cookies, use the following steps.

1. Create a new system login JAAS configuration. To access the panel, click Security > Global security.

Under Java Authentication and Authorization Service, click System logins.

2. Manually clone the WEB_INBOUND login configuration, and give it a new alias. To clone the login

configuration, click New, enter a name for the configuration, click Apply, then click JAAS login

modules under Additional properties. Click New and configure the JAAS login module. For more

information, see “Login module settings for Java Authentication and Authorization Service” on page

405. WebSphere Application Server Web container uses the WEB_INBOUND login configuration to

authenticate Web clients. Changing the WEB_INBOUND login configuration affects all Web

applications in the cell. You should create your own login configuration by cloning the contents of the

WEB_INBOUND login configuration.

3. Select the wsMapDefaultInboundLoginModule login module and click Custom properties. There are two

login modules defined in your login configuration: ltpaLoginModule and

wsMapDefaultInboundLoginModule.

4. Add a login property name cookie with a value of true. The two login modules are enabled to generate

LTPA SSO cookies. Do not add the cookie login option to the original WEB_INBOUND login

configuration.

5. Stack your custom LoginModule(s) in the new login configuration (optional).

Chapter 5. Authenticating users 361

6. Use your login page for programmatic login by perform a JAAS LoginContext.login using your newly

defined login configuration. After a successful login, either the ltpaLoginModule or the

wsMapDefaultInboundLoginModule generates an LTPA SSO cookie upon a successful authentication.

Exactly which LoginModule generates the SSO cookie depends on many factors, including system

authentication configuration and runtime condition (which is beyond the scope of this section).

7. Call the modified WSSubject.setRunAsSubject method to add the subject to the authentication cache.

The subject must be a WebSphere Application Server JAAS subject created by LoginModule. Adding

the subject to the authentication cache recreates a subject from SSO token.

8. Use your programmatic logout page to revoke SSO cookies by invoking the revokeSSOCookies method

from the WSSecurityHelper class. The term cookies is used because WebSphere Application Server

Release 5.1.1 (and later) release supports a new LTPA SSO token with a different encryption

algorithm, but can be configured to generate the original LTPA SSO token for backward compatibility.

Note that the subject is still in the authentication cache and only the SSO cookies are revoked.

Example

Use the following code sample to perform authentication:

Suppose you wrote a LoginServlet.java:

 Import com.ibm.wsspi.security.auth.callback.WSCallbackHandlerFactory;

 Import com.ibm.websphere.security.auth.WSSubject;

 public Object login(HttpServletRequest req, HttpServletResponse res)

 throws ServletException {

 PrintWriter out = null;

 try {

 out = res.getWriter();

 res.setContentType("text/html");

 } catch (java.io.IOException e){

 // Error handling

 }

 Subject subject = null;

 try {

 LoginContext lc = new LoginContext("system.Your_login_configuration",

WSCallbackHandlerFactory.getInstance().getCallbackHandler(

userid, null, password, req, res, null));

 lc.login();

 subject = lc.getSubject();

 WSSubject.setRunAsSubject(subject);

 } catch(Exception e) {

 // catch all possible exceptions if you want or handle them separately

 out.println("Exception in LoginContext login + Exception = " +

 e.getMessage());

 throw new ServletException(e.getMessage());

 }

The following is sample code to revoke the SSO cookies upon a programming logout:

The LogoutServlet.java:

 public void logout(HttpServletRequest req, HttpServletResponse res,

 Object retCreds) throws ServletException {

 PrintWriter out =null;

 try {

 out = res.getWriter();

 res.setContentType("text/html");

 } catch (java.io.IOException e){

 // Error Handling

 }

 try {

362 Securing applications and their environment

WSSecurityHelper.revokeSSOCookies(req, res);

 } catch(Exception e) {

 // catch all possible exceptions if you want or handle them separately

 out.println("JAASLogoutServlet: logout Exception = " + e.getMessage());

 throw new ServletException(e);

 }

 }

What to do next

For more information on JAAS authentication, refer to Developing programmatic logins with the Java

Authentication and Authorization Service. For more information on the AuthenLoginModule login module,

refer to Example: Customizing a server-side Java Authentication and Authorization Service authentication

and login configuration.

Developing custom login modules for a system login configuration

For WebSphere Application Server, multiple Java Authentication and Authorization Service (JAAS) plug-in

points exist for configuring system logins. WebSphere Application Server uses system login configurations

to authenticate incoming requests, outgoing requests, and internal server logins.

About this task

Application login configurations are called by Java Platform, Enterprise Edition (Java EE) applications for

obtaining a Subject that is based on specific authentication information. This login configuration enables

the application to associate the Subject with a specific protected remote action. The Subject is picked up

on the outbound request processing. The following list identifies the main system plug-in points. If you

write a login module that adds information to the Subject of a system login, these are the main login

configurations to plug in:

v WEB_INBOUND

v RMI_OUTBOUND

v RMI_INBOUND

v DEFAULT

v Authenticate Web requests with the WEB_INBOUND login configuration.

The WEB_INBOUND login configuration authenticates Web requests.

For more detailed information on the WEB_INBOUND configuration including its associated callbacks,

see ″RMI_INBOUND, WEB_INBOUND, DEFAULT″ in “System login configuration entry settings for Java

Authentication and Authorization Service” on page 397. Figure 1 shows an example of a configuration

using a trust association interceptor (TAI) that creates a Subject with the initial information that is

passed into the WEB_INBOUND login configuration. If the trust association interceptor is not configured,

the authentication process goes directly to the WEB_INBOUND system login configuration, which

consists of all the login modules combined in Figure 1. Figure 1 shows where you can plug in custom

login modules and where the ltpaLoginModule and the wsMapDefaultInboundLoginModule login

modules are required.

Figure 1

Chapter 5. Authenticating users 363

Custom

login

module

Authenticated?

Trust

association

interceptor?

Authenticate

Use trust

association

interceptor

Web request

requiring

authorization

Custom

login

module

Web

container

Custom

login

module

Trust

association

interceptor

wsMapDefaultInboundLoginModule

Optional

custom credential

Hashtable

in Subject

ItpaLoginModule

Subject,

security name

or unique I.D.

Already authenticated

IBM required

authentication

modules

Single application server

Web authentication

plug points

v Handle outbound requests with the RMI_OUTBOUND login configuration.

The RMI_OUTBOUND login configuration is a plug point for handling outbound requests. WebSphere

Application Server uses this plug point to create the serialized information that is sent downstream

based on the invocation Subject passed in and other security context information such as propagation

tokens. A custom login module can use this plug point to change the identity. For more information, see

“Configuring outbound mapping to a different target realm” on page 431. Figure 2 shows where you can

plug in custom login modules and shows where the wsMapCSIv2OutboundLoginModule login module is

required.

Figure 2

364 Securing applications and their environment

Custom

login

module

Common Secure

Interoperability version 2

session established

Authenticate

Outbound

RMI request

Single application server

Remote

enterprise bean

container

Possibly modified

Subject and propagation

attributes. Opportunity

for mapping, if needed.

Already established

IBM required

authentication module

Custom

login

module

wsMapCSIv2OutoundLoginModule

RMI outbound

authentication

plug points

For more information on the RMI_OUTBOUND login configuration, including its associated callbacks,

see ″RMI_OUTBOUND″ in “System login configuration entry settings for Java Authentication and

Authorization Service” on page 397.

v Handle inbound authentication for enterprise bean requests with the RMI_INBOUND login configuration.

The RMI_INBOUND login configuration is a plug point that handles inbound authentication for enterprise

bean requests. WebSphere Application Server uses this plug point for either an initial login or a

propagation login. For more information about these two login types, see “Security attribute propagation”

on page 436. During a propagation login, this plug point is used to deserialize the information that is

received from an upstream server. A custom login module can use this plug point to change the identity,

handle custom tokens, add custom objects into the Subject, and so on. For more information on

changing the identity using a Hashtable object, which is referenced in figure 3, see “Configuring inbound

identity mapping” on page 423. Figure 3 shows where you can plug in custom login modules and shows

that the ltpaLoginModule and the wsMapDefaultInboundLoginModule login modules are required.

Figure 3

Chapter 5. Authenticating users 365

Custom

login

module

Authenticated?

Authenticate

RMI inbound

request

Single application server

Enterprise

bean

container

Custom

login

module

Optional custom credential

Hashtable in Subject

RMI inbound

authentication

plug points

Already authenticated

IBM required

authentication modules

Custom

login

module

wsMapDefaultInboundLoginModuleItpaLoginModule

For more information on the RMI_INBOUND login configuration, including its associated callbacks, see

″RMI_INBOUND, WEB_INBOUND, DEFAULT″ in “System login configuration entry settings for Java

Authentication and Authorization Service” on page 397.

v Handle all other types of authentication requests with the DEFAULT login configuration. DEFAULT login

configuration

The DEFAULT login configuration is a plug point that handles all of the other types of authentication

requests, including administrative SOAP requests and internal authentication of the server ID.

Propagation logins typically do not occur at this plug point.

For more information on the DEFAULT login configuration including its associated callbacks, see

″RMI_INBOUND, WEB_INBOUND, DEFAULT″ in “System login configuration entry settings for Java

Authentication and Authorization Service” on page 397.

v Develop login configuration logic to know when specific information is present and how to use the

information. Writing a login module

When you write a login module that plugs into a WebSphere Application Server application login or

system login configuration, read the JAAS programming model, which is located at:

http://java.sun.com/products/jaas. The JAAS programming model provides basic information about

JAAS. However, before writing a login module for the WebSphere Application Server environment, read

the following sections in this article:

– Useable callbacks

– Shared state variables

– Initial versus propagation logins

– Sample custom login module

Useable Callbacks

Each login configuration must document the callbacks that are recognized by the login configuration.

However, the callbacks are not always passed data. The login configuration must contain logic to know

when specific information is present and how to use the information. For example, if you write a custom

login module that can plug into all four of the pre-configured system login configurations mentioned

previously, three sets of callbacks might be presented to authenticate a request. Other callbacks might

be present for other reasons, including propagation and making other information available to the login

configuration.

366 Securing applications and their environment

http://java.sun.com/products/jaas

Login information can be presented in the following combinations:

User name (NameCallback) and password (PasswordCallback)

This information is a typical authentication combination.

User name only (NameCallback)

This information is used for identity assertion, trust association interceptor (TAI) logins, and

certificate logins.

Token (WSCredTokenCallbackImpl)

This information is for Lightweight Third Party Authentication (LTPA) token validation.

Propagation token list (WSTokenHolderCallback)

This information is used for a propagation login.

The first three combinations are used for typical authentication. However, when the

WSTokenHolderCallback callback is present in addition to one of the first three information

combinations, the login is called a propagation login. A propagation login means that some security

attributes are propagated to this server from another server. The servers can reuse these security

attributes if the authentication information validates successfully. In some cases, a

WSTokenHolderCallback callback might not have sufficient attributes for a full login. Check the

requiresLogin method on the WSTokenHolderCallback callback to determine if a new login is required.

You can always ignore the information returned by the requiresLogin method, but, as a result, you might

duplicate information. The following list contains the callbacks that might be present in the system login

configurations. The list includes the callback name and a description of their responsibility.

callbacks[0] = new javax.security.auth.callback.NameCallback(″Username: ″);

This callback handler collects the user name for the login. The result can be the user name for

a basic authentication login (user name and password) or a user name for an identity assertion

login.

callbacks[1] = new javax.security.auth.callback.PasswordCallback(″Password: ″, false);

This callback handler collects the password for the login.

callbacks[2] = new

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl(″Credential Token: ″);

This callback handler collects the Lightweight Third Party Authentication (LTPA) token or other

token type for the login. This callback handler is typically present when a user name and

password are not present.

callbacks[3] = new com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback(″Authz Token

List: ″);

This callback handler collects the ArrayList of TokenHolder objects that are returned from a call

to the WSOpaqueTokenHelper.createTokenHolderListFromOpaqueToken API using the Common

Secure Interoperability Version 2 (CSIv2) authorization token as input.

callbacks[4] = new

com.ibm.websphere.security.auth.callback.WSServletRequestCallback(″HttpServletRequest: ″);

This callback handler collects the HTTP servlet request object, if present. This callback handler

enables login modules to get information from the HTTP request for use in the login, and is

presented from the WEB_INBOUND login configuration only.

callbacks[5] = new

com.ibm.websphere.security.auth.callback.WSServletResponseCallback(″HttpServletResponse:

″); This callback handler collects the HTTP servlet response object, if present. This callback

handler enables login modules to put information into the HTTP response as a result of the

login. An example of this situation might be adding the SingleSignonCookie cookie to the

response.This callback handler is presented from the WEB_INBOUND login configuration only.

callbacks[6] = new

com.ibm.websphere.security.auth.callback.WSAppContextCallback(″ApplicationContextCallback:

″); This callback handler collects the Web application context that is used during the login. This

Chapter 5. Authenticating users 367

callback handler consists of a HashMap object, which contains the application name and the

redirect web address, if present. The callback handler is presented from the WEB_INBOUND

login configuration only.

callbacks[7] = new WSRealmNameCallbackImpl(″Realm Name: ″, default_realm);

This callback handler collects the realm name for the login information. The realm information

might not always be provided. If the realm information is not provided, assume that it is the

current realm.

callbacks[8] = new WSX509CertificateChainCallback(″X509Certificate[]: ″);

This callback handler contains the certificate that was validated by Secure Sockets Layer (SSL)

if the login source is an X509Certificate from SSL client authentication. The ltpaLoginModule

calls the same mapping functions as WebSphere Application Server releases prior to version

6.1. However, having it passed into the login gives a custom login module the opportunity to

map the certificate in a custom way. Then, it performs a Hashtable login. See “Configuring

inbound identity mapping” on page 423 for more information on a Hashtable login.

v Use shared state variables to share information between login modules during the login phase.

If you want to access the objects that WebSphere Application Server creates during a login, refer to the

following shared state variables. The variables are set in the following login modules: ltpaLoginModule,

swamLoginModule, and wsMapDefaultInboundLoginModule.

Shared state variable

com.ibm.wsspi.security.auth.callback.Constants.WSPRINCIPAL_KEY

Purpose

Specifies the com.ibm.websphere.security.auth.WSPrincipal object. See the WebSphere

Application Server API documentation for application programming interface (API) usage. This

shared state variable is for read-only purposes. Do not set this variable in the shared state for

custom login modules.

The login module in which variables are set

ltpaLoginModule, swamLoginModule, and wsMapDefaultInboundLoginModule

Shared state variable

com.ibm.wsspi.security.auth.callback.Constants.WSCREDENTIAL_KEY

Purpose

Specifies the com.ibm.websphere.security.cred.WSCredential object. See the WebSphere

Application Server API documentation for API usage. This shared state variable is for read-only

purposes. Do not set this variable in the shared state for custom login modules.

Login module in which variables are set

wsMapDefaultInboundLoginModule

Shared state variable

com.ibm.wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY

Purpose

Specifies the default com.ibm.wsspi.security.token.AuthorizationToken object. Login modules

can use this object to set custom attributes plugged in after the

wsMapDefaultInboundLoginModule login module. The information set here is propagated

downstream and is available to the application. See the WebSphere Application Server API

documentation for API usage.

Initial versus propagation logins

As mentioned previously, some logins are considered initial logins because of the following reasons:

– It is the first time authentication information is presented to WebSphere Application Server.

– The login information is received from a server that does not propagate security attributes so this

information must be gathered from a user registry.

368 Securing applications and their environment

Other logins are considered propagation logins when a WSTokenHolderCallback callback is present and

contains sufficient information from a sending server to recreate all the required objects needed by

WebSphere Application Server runtime. In cases where there is sufficient information for the WebSphere

Application Server runtime, the information you might add to the Subject is likely to exist from the

previous login. To verify if your object is present, you can get access to the ArrayList object that is

present in the WSTokenHolderCallback callback, and search through this list looking at each

TokenHolder getName method. This search is used to determine if WebSphere Application Server is

deserializing your custom object during this login. Check the class name returned from the getName

method using the String startsWith method because the runtime might add additional information at the

end of the name to know which Subject is set to add the custom object after deserialization.

v Code your login() method to determine when sufficient information is present.

The following code snippet can be used in your login() method to determine when sufficient information

is present. For another example, see “Configuring inbound identity mapping” on page 423.

// This is a hint provided by WebSphere Application Server that

// sufficient propagation information does not exist and, therefore,

// a login is required to provide the sufficient information. In this

// situation, a Hashtable login might be used.

boolean requiresLogin = ((com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback) callbacks[1]).requiresLogin();

if (requiresLogin)

{

// Check to see if your object exists in the TokenHolder list,

if not, add it.

java.util.ArrayList authzTokenList = ((WSTokenHolderCallback) callbacks[6]).

getTokenHolderList();boolean found = false;

if (authzTokenList != null)

{

Iterator tokenListIterator = authzTokenList.iterator();

while (tokenListIterator.hasNext())

{

com.ibm.wsspi.security.token.TokenHolder th = (com.ibm.wsspi.security.token.

TokenHolder) tokenListIterator.next();

if (th != null && th.getName().startsWith("com.acme.myCustomClass"))

{

found=true;

break;

}

}

if (!found)

{

// go ahead and add your custom object.

}

}

}

else

{

// This code indicates that sufficient propagation information is present.

// User registry calls are not needed by WebSphere Application Server to

// create a valid Subject. This code might be a no-op in your login module.

}

Sample custom login module

You can use the following sample to get ideas on how to use some of the callbacks and shared state

variables.

{

 // Defines your login module variables

 com.ibm.wsspi.security.token.AuthenticationToken customAuthzToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthzToken = null;

 com.ibm.websphere.security.cred.WSCredential credential = null;

Chapter 5. Authenticating users 369

com.ibm.websphere.security.auth.WSPrincipal principal = null;

 private javax.security.auth.Subject _subject;

 private javax.security.auth.callback.CallbackHandler _callbackHandler;

 private java.util.Map _sharedState;

 private java.util.Map _options;

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 _subject = subject;

 _callbackHandler = callbackHandler;

 _sharedState = sharedState;

 _options = options;

 }

 public boolean login() throws LoginException

 {

 boolean succeeded = true;

 // Gets the CALLBACK information

 javax.security.auth.callback.Callback callbacks[] = new javax.security.

 auth.callback.Callback[7];

 callbacks[0] = new javax.security.auth.callback.NameCallback(

 "Username: ");

 callbacks[1] = new javax.security.auth.callback.PasswordCallback(

 "Password: ", false);

 callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl ("Credential Token: ");

 callbacks[3] = new com.ibm.wsspi.security.auth.callback.

 WSServletRequestCallback ("HttpServletRequest: ");

 callbacks[4] = new com.ibm.wsspi.security.auth.callback.

 WSServletResponseCallback ("HttpServletResponse: ");

 callbacks[5] = new com.ibm.wsspi.security.auth.callback.

 WSAppContextCallback ("ApplicationContextCallback: ");

 callbacks[6] = new com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback ("Authz Token List: ");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exceptions

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 // Sees which callbacks contain information

 uid = ((NameCallback) callbacks[0]).getName();

 char password[] = ((PasswordCallback) callbacks[1]).getPassword();

 byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

 javax.servlet.http.HttpServletRequest request = ((WSServletRequestCallback)

 callbacks[3]).getHttpServletRequest();

 javax.servlet.http.HttpServletResponse response = ((WSServletResponseCallback)

 callbacks[4]).getHttpServletResponse();

 java.util.Map appContext = ((WSAppContextCallback)

 callbacks[5]).getContext();

 java.util.List authzTokenList = ((WSTokenHolderCallback)

 callbacks[6]).getTokenHolderList();

 // Gets the SHARED STATE information

 principal = (WSPrincipal) _sharedState.get(com.ibm.wsspi.security.

 auth.callback.Constants.WSPRINCIPAL_KEY);

 credential = (WSCredential) _sharedState.get(com.ibm.wsspi.security.

 auth.callback.Constants.WSCREDENTIAL_KEY);

 defaultAuthzToken = (AuthorizationToken) _sharedState.get(com.ibm.

 wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY);

370 Securing applications and their environment

// What you tend to do with this information depends upon the scenario

 // that you are trying to accomplish. This example demonstrates how to

 // access various different information:

 // - Determine if a login is initial versus propagation

 // - Deserialize a custom authorization token (For more information, see

 // “Security attribute propagation” on page 436

 // - Add a new custom authorization token (For more information, see

 // “Security attribute propagation” on page 436

 // - Look for a WSCredential and read attributes, if found.

 // - Look for a WSPrincipal and read attributes, if found.

 // - Look for a default AuthorizationToken and add attributes, if found.

 // - Read the header attributes from the HttpServletRequest, if found.

 // - Add an attribute to the HttpServletResponse, if found.

 // - Get the Web application name from the appContext, if found.

 // - Determines if a login is initial versus propagation. This is most

 // useful when login module is first.

 boolean requiresLogin = ((WSTokenHolderCallback) callbacks[6]).requiresLogin();

 // initial login - asserts privilege attributes based on user identity

 if (requiresLogin)

 {

 // If you are validating a token from another server, there is an

 // application programming interface (API) to get the uniqueID from it.

 if (credToken != null && uid == null)

 {

 try

 {

 String uniqueID = WSSecurityPropagationHelper.

 validateLTPAToken(credToken);

 String realm = WSSecurityPropagationHelper.getRealmFromUniqueID

 (uniqueID);

 // Now set it to the UID so you can use that to either map or

 // login with.

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 }

 catch (Exception e)

 {

 // handle exception

 }

 }

 // Adds a Hashtable to shared state.

 // Note: You can perform custom mapping on the NameCallback value returned

 // to change the identity based upon your own mapping rules.

 uid = mapUser (uid);

 // Gets the default InitialContext for this server.

 javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 // Gets the local UserRegistry object.

 com.ibm.websphere.security.UserRegistry reg = (com.ibm.websphere.security.

 UserRegistry) ctx.lookup("UserRegistry");

 // Gets the user registry uniqueID based on the uid specified in the

 // NameCallback.

 String uniqueid = reg.getUniqueUserId(uid);

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 // Gets the display name from the user registry based on the uniqueID.

 String securityName = reg.getUserSecurityName(uid);

 // Gets the groups associated with this uniqueID.

 java.util.List groupList = reg.getUniqueGroupIds(uid);

 // Creates the java.util.Hashtable with the information you gathered from

Chapter 5. Authenticating users 371

// the UserRegistry.

 java.util.Hashtable hashtable = new java.util.Hashtable();

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID, uniqueid);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME, securityName);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS, groupList);

 // Adds a cache key that is used as part of the lookup mechanism for

 // the created Subject. The cache key can be an Object, but should

 // implement the toString() method. Make sure the cacheKey contains

 // enough information to scope it to the user and any additional

 // attributes that you use. If you do not specify this property the

 // Subject is scoped to the WSCREDENTIAL_UNIQUEID returned, by default.

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_CACHE_KEY,

 "myCustomAttribute" + uniqueid);

 // Adds the hashtable to the sharedState of the Subject.

 _sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_PROPERTIES_KEY,hashtable);

 }

 // propagation login - process propagated tokens

 else

 {

 // - Deserializes a custom authorization token. For more information, see

 // “Security attribute propagation” on page 436.

 // This can be done at any login module plug in point (first,

 // middle, or last).

 if (authzTokenList != null)

 {

 // Iterates through the list looking for your custom token

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom AuthorizationToken

 // implementation

 if (tokenHolder.getName().equals("com.ibm.websphere.security.token.

 CustomAuthorizationTokenImpl") && tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom AuthorizationToken constructor

 // to deserialize

 customAuthzToken = new

 com.ibm.websphere.security.token.

 CustomAuthorizationTokenImpl(tokenHolder.getBytes());

 }

 }

 }

 // - Adds a new custom authorization token (For more information,

 // see “Security attribute propagation” on page 436)

 // This can be done at any login module plug in point (first, middle,

 // or last).

 else

 {

 // Gets the PRINCIPAL from the default AuthenticationToken. This must

 // match all of the tokens.

 defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)

 sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.

 WSAUTHTOKEN_KEY);

 String principal = defaultAuthToken.getPrincipal();

 // Adds a new custom authorization token. This is an initial login.

 // Pass the principal into the constructor

 customAuthzToken = new com.ibm.websphere.security.token.

372 Securing applications and their environment

CustomAuthorizationTokenImpl(principal);

 // Adds any initial attributes

 if (customAuthzToken != null)

 {

 customAuthzToken.addAttribute("key1", "value1");

 customAuthzToken.addAttribute("key1", "value2");

 customAuthzToken.addAttribute("key2", "value1");

 customAuthzToken.addAttribute("key3", "something different");

 }

 }

 }

 // - Looks for a WSCredential and read attributes, if found.

 // This is most useful when plugged in as the last login module.

 if (credential != null)

 {

 try

 {

 // Reads some data from the credential

 String securityName = credential.getSecurityName();

 java.util.ArrayList = credential.getGroupIds();

 }

 catch (Exception e)

 {

 // Handles exceptions

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 // - Looks for a WSPrincipal and read attributes, if found.

 // This is most useful when plugged as the last login module.

 if (principal != null)

 {

 try

 {

 // Reads some data from the principal

 String principalName = principal.getName();

 }

 catch (Exception e)

 {

 // Handles exceptions

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 // - Looks for a default AuthorizationToken and add attributes, if found.

 // This is most useful when plugged in as the last login module.

 if (defaultAuthzToken != null)

 {

 try

 {

 // Reads some data from the defaultAuthzToken

 String[] myCustomValue = defaultAuthzToken.getAttributes ("myKey");

 // Adds some data if not present in the defaultAuthzToken

 if (myCustomValue == null)

 defaultAuthzToken.addAttribute ("myKey", "myCustomData");

 }

 catch (Exception e)

 {

 // Handles exceptions

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 // - Reads the header attributes from the HttpServletRequest, if found.

 // This can be done at any login module plug in point (first, middle,

Chapter 5. Authenticating users 373

// or last).

 if (request != null)

 {

 java.util.Enumeration headerEnum = request.getHeaders();

 while (headerEnum.hasMoreElements())

 {

 System.out.println ("Header element: " + (String)headerEnum.nextElement());

 }

 }

 // - Adds an attribute to the HttpServletResponse, if found

 // This can be done at any login module plug in point (first, middle,

 // or last).

 if (response != null)

 {

 response.addHeader ("myKey", "myValue");

 }

 // - Gets the Web application name from the appContext, if found

 // This can be done at any login module plug in point (first, middle,

 // or last).

 if (appContext != null)

 {

 String appName = (String) appContext.get(com.ibm.wsspi.security.auth.

 callback.Constants.WEB_APP_NAME);

 }

 return succeeded;

 }

 public boolean commit() throws LoginException

 {

 boolean succeeded = true;

 // Add any objects here that you have created and belong in the

 // Subject. Make sure the objects are not already added. If you added

 // any sharedState variables, remove them before you exit. If the abort()

 // method gets called, make sure you cleanup anything added to the

 // Subject here.

 if (customAuthzToken != null)

 {

 // Sets the customAuthzToken token into the Subject

 try

 {

 // Do this in a doPrivileged code block so that application code

 // does not need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Adds the custom authorization token if it is not

 // null and not already in the Subject

 if ((customAuthzTokenPriv != null) &&

 (!_subject.getPrivateCredentials().contains(customAuthzTokenPriv)))

 {

 _subject.getPrivateCredentials().add(customAuthzTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

374 Securing applications and their environment

}

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 return succeeded;

 }

 public boolean abort() throws LoginException

 {

 boolean succeeded = true;

 // Makes sure to remove all objects that have already been added (both into the

 // Subject and shared state).

 if (customAuthzToken != null)

 {

 // remove the customAuthzToken token from the Subject

 try

 {

 final AuthorizationToken customAuthzTokenPriv = customAuthzToken;

 // Do this in a doPrivileged block so that application code does not need

 // to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Removes the custom authorization token if it is not

 // null and not already in the Subject

 if ((customAuthzTokenPriv != null) &&

 (_subject.getPrivateCredentials().

 contains(customAuthzTokenPriv)))

 {

 _subject.getPrivateCredentials().

 remove(customAuthzTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 return succeeded;

 }

 public boolean logout() throws LoginException

 {

 boolean succeeded = true;

 // Makes sure to remove all objects that have already been added

Chapter 5. Authenticating users 375

// (both into the Subject and shared state).

 if (customAuthzToken != null)

 {

 // Removes the customAuthzToken token from the Subject

 try

 {

 final AuthorizationToken customAuthzTokenPriv = customAuthzToken;

 // Do this in a doPrivileged code block so that application code does

 // not need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.

 PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Removes the custom authorization token if it is not null and not

 // already in the Subject

 if ((customAuthzTokenPriv != null) && (_subject.

 getPrivateCredentials().

 contains(customAuthzTokenPriv)))

 {

 _subject.getPrivateCredentials().remove(customAuthzTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 return succeeded;

 }

}

v Configure the system login for your custom login module.

Customizing application login with Java Authentication and

Authorization Service

Using Java Authentication and Authorization Service (JAAS), you can customize your application login.

About this task

Java Authentication and Authorization Service (JAAS) is an API that enables applications to access

authentication and access control services without being tied to those services. The following topics

explaining customizing your application with JAAS are covered in this section:

v Developing programmatic logins with the Java Authentication and Authorization Service (JAAS)

v Configuring programmatic logins for JAAS

v Configuring a server-side Java Authentication and Authorization Service authentication and login

configuration

376 Securing applications and their environment

Developing programmatic logins with the Java Authentication and Authorization

Service

Use this topic to develop programmatic logins with the Java Authentication and Authorization Service.

Before you begin

Java Authentication and Authorization Service (JAAS) represents the strategic application programming

interfaces (API) for authentication.

JAAS replaces the Common Object Request Broker Architecture (CORBA) programmatic login application

programming interfaces (APIs).

WebSphere Application Server provides some extension to JAAS:

v Refer to the Developing applications that use CosNaming (CORBA Naming interface) article for details

on how to set up the environment for thin client applications to access remote resources on a server.

v If the application uses a custom JAAS login configuration, verify that the JAAS login configuration is

properly defined. See “Configuring programmatic logins for Java Authentication and Authorization

Service” on page 391 for details.

v Some of the JAAS APIs are protected by Java 2 security permissions. If these APIs are used by

application code, verify that these permissions are added to the application was.policy file.

For details, see the following articles:

– “Adding the was.policy file to applications” on page 737

– “Using PolicyTool to edit policy files” on page 724

– “Configuring the was.policy file” on page 731

For more details on which APIs are protected by Java 2 security permissions, check the IBM Developer

Kit, Java Technology Edition; JAAS and WebSphere Application Server public APIs documentation in

Security: Resources for learning.

Some of the APIs that are used in the sample code in this documentation and the Java 2 security

permissions that are required by these APIs are in the following list:

– javax.security.auth.login.LoginContext constructors are protected by the

javax.security.auth.AuthPermission ″createLoginContext″ object.

– javax.security.auth.Subject.doAs and com.ibm.websphere.security.auth.WSSubject.doAs methods are

protected by the javax.security.auth.AuthPermission ″doAs″ object.

– javax.security.auth.Subject.doAsPrivileged and

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged methods are protected by the

javax.security.auth.AuthPermission ″doAsPrivileged″ object.
v Enhanced model to Java Platform, Enterprise Edition (Java EE) resources for authorization

checks.

Due to a design oversight in JAAS Version 1.0, the javax.security.auth.Subject.getSubject method does

not return the Subject that is associated with the running thread inside a

java.security.AccessController.doPrivileged code block. This oversight can present inconsistent behavior,

which might have unwanted effects. The com.ibm.websphere.security.auth.WSSubject class provides a

workaround to associate a Subject to a running thread. The

com.ibm.websphere.security.auth.WSSubject class extends the JAAS model to Java Platform,

Enterprise Edition (Java EE) resources for authorization checks. If the Subject associates with the

running thread within the com.ibm.websphere.security.auth.WSSubject.doAs method or if the

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged code block contains product credentials,

the Subject is used for Java EE resource authorization checks.

v User interface support for defining new JAAS login configuration.

You can configure a JAAS login configuration in the administrative console and store the JAAS login

configuration in a configuration repository. Applications can define a new JAAS login configuration in the

administrative console and the data is persisted in the configuration repository. However, WebSphere

Application Server still supports the default JAAS login configuration format (plain text file) that is

provided by the JAAS default implementation. If duplicate login configurations are defined in both the

Chapter 5. Authenticating users 377

configuration repository and the plain text file format, the one in the repository takes precedence.

Advantages to defining the login configuration in the configuration repository includes:

– Administrative console support in defining JAAS login configuration

– Central management of the JAAS login configuration
v Application support for programmatic authentication.

WebSphere Application Server provides JAAS login configurations for applications to perform

programmatic authentication to the WebSphere security runtime. These configurations perform

authentication to the WebSphere Application Server-configured authentication mechanism (Simple

WebSphere Authentication Mechanism (SWAM) or Lightweight Third Party Authentication (LTPA)) and

user registry (Local OS, Lightweight Directory Access Protocol (LDAP), custom registries, or federated

repositories) based on the authentication data that is supplied. The authenticated Subject from these

JAAS login configurations contains the required principal and credentials that the WebSphere security

runtime can use to perform authorization checks on Java EE role-based protected resources.

Note: SWAM is deprecated in WebSphere Application Server Version 7.0 and will be removed in a

future release.

Here are the JAAS login configurations that are provided by WebSphere Application Server:

– WSLogin JAAS login configuration. A generic JAAS login configuration can use Java clients, client

container applications, servlets, JavaServer Pages (JSP) files, and Enterprise JavaBeans (EJB)

components to perform authentication based on a user ID and password, or a token to the security

runtime for WebSphere Application Server. However, this configuration does not honor the

CallbackHandler handler that is specified in the client container deployment descriptor.

– ClientContainer JAAS login configuration. This JAAS login configuration honors the

CallbackHandler handler that is specified in the client container deployment descriptor. The login

module of this login configuration uses the CallbackHandler handler in the client container

deployment descriptor if one is specified, even if the application code specified one callback handler

in the login context. This is for a client container application.

A Subject authenticated with the previously mentioned JAAS login configurations contains a

com.ibm.websphere.security.auth.WSPrincipal principal and a

com.ibm.websphere.security.cred.WSCredential credential. If the authenticated Subject is passed in

the com.ibm.websphere.security.auth.WSSubject.doAs or the other doAs methods, the product

security runtime can perform authorization checks on Java EE resources based on the

com.ibm.websphere.security.cred.WSCredential Subject.
v Customer-defined JAAS login configurations.

You can define other JAAS login configurations to perform programmatic login which creates a custom

Subject in either the client or server process. Certain credentials and principals are required in the

Subject for the product security runtime to use it for sending authentication information from the client

over a protocol or to use it for handling authorization on the server. The required credentials are

generated from provided login modules.

The login module needed for a pure Java client login is as follows:

– com.ibm.ws.security.common.auth.module.WSLoginModuleImpl required;

In addition to using this login module, the callback handler used must be able to handle the following

callback classes.

– javax.security.auth.callback.NameCallback

– javax.security.auth.callback.PasswordCallback

A username and password must be specified in the callback handler. Custom classes that are added to

the Subject on the client side should get propagated to the server automatically whenever security

attribute propagation is enabled. For information about enabling propagation for a pure Java client, see

the corresponding step in “Propagating security attributes among application servers” on page 440.

Note: The classes added to the Subject must be Java serializable and de-serializable for this to occur

properly.

The login modules needed for a server login are as follows:

378 Securing applications and their environment

– com.ibm.ws.security.server.lm.ltpaLoginModule required;

– com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule required;

For information about the callbacks used for a server-side login configuration, see “Customizing a

server-side Java Authentication and Authorization Service authentication and login configuration” on

page 413.

v Naming requirements for programmatic login on a pure Java client.

When programmatic login occurs on a pure Java client and the property

com.ibm.CORBA.validateBasicAuth equals true, it is necessary for the security code to know where the

SecurityServer resides. Typically, the default InitialContext is sufficient when a java.naming.provider.url

property is set as a system property or when the property is set in the jndi.properties file. In other

cases it is not desirable to have the same java.naming.provider.url properties set in a system-wide

scope. In this case, there is a need to specify security specific bootstrap information in the

sas.client.props file. The following steps present the order of precedence for determining how to find

the SecurityServer in a pure Java client:

1. Use the sas.client.props file and look for the following properties:

com.ibm.CORBA.securityServerHost=myhost.mydomain

com.ibm.CORBA.securityServerPort=mybootstrap port

If you specify these properties, you are guaranteed that security looks here for the SecurityServer. The

host and port specified can represent any valid WebSphere host and bootstrap port. The

SecurityServer resides on all server processes and therefore it is not important which host or port you

choose. If specified, the security infrastructure within the client process look up the SecurityServer

based on the information in the sas.client.props file.

2. Place the following code in your client application to get a new InitialContext():

...

 import java.util.Hashtable;

 import javax.naming.Context;

 import javax.naming.InitialContext;

 ...

// Perform an InitialContext and default lookup prior to logging

// in so that target realm and bootstrap host/port can be

// determined for SecurityServer lookup.

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY, "

 com.ibm.websphere.naming.WsnInitialContextFactory");

 env.put(Context.PROVIDER_URL,

 "corbaloc:iiop:myhost.mycompany.com:2809");

 Context initialContext = new InitialContext(env);

 Object obj = initialContext.lookup("");

 // programmatic login code goes here.

Complete this step prior to running any programmatic login. It is in this code that you specify a URL

provider for your naming context, but it must point to a valid WebSphere Application Server within the

cell to which you are authenticating. Pointing to one cell allows thread specific programmatic logins

going to different cells to have a single system-wide SecurityServer location.

3. Use the new default InitialContext() method relying on the naming precedence rules. These rules are

defined in the article, Example: Getting the default initial context.

Example

See the “Example: Programmatic logins” article.

Example: Programmatic logins:

Chapter 5. Authenticating users 379

This example illustrates how application programs can perform a programmatic login using Java

Authentication and Authorization Service (JAAS).

LoginContext lc = null;

 try {

 lc = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl("userName", "password"));

 } catch (LoginException le) {

 System.out.println("Cannot create LoginContext. " + le.getMessage());

 // Insert the error processing code

 } catch(SecurityException se) {

 System.out.println("Cannot create LoginContext." + se.getMessage());

 // Insert the error processing code

 }

 try {

 lc.login();

 } catch(LoginException le) {

 System.out.println("Fails to create Subject. " + le.getMessage());

 // Insert the error processing code

As shown in the example, the new login context is initialized with the WSLogin login configuration and the

WSCallbackHandlerImpl callback handler. Use the WSCallbackHandlerImpl instance on a server-side

application where you do not want prompting. A WSCallbackHandlerImpl instance is initialized by the

specified user ID, password, and realm information. The present WSLoginModuleImpl class

implementation that is specified by the WSLogin login configuration can only retrieve authentication

information from the specified callback handler. You can construct a login context with a Subject object, but

the Subject is disregarded by the present WSLoginModuleImpl implementation. For product

client-container applications, replace WSLogin login configuration by ClientContainer login configuration,

which specifies the WSClientLoginModuleImpl implementation that is tailored for client container

requirements.

For a pure Java application client, the product provides two other callback handler implementations:

WSStdinCallbackHandlerImpl and WSGUICallbackHandlerImpl, which prompt for user ID, password, and

realm information on the command line and pop-up panel, respectively. You can choose either of these

product callback handler implementations, depending on the particular application environment. You can

develop a new callback handler if neither of these implementations fit your particular application

requirement.

You also can develop your own login module if the default WSLoginModuleImpl implementation fails to

meet all your requirements. This product provides utility functions that the custom login module can use,

which are described in the next section.

In cases where no java.naming.provider.url property is set as a system property or in the jndi.properties

file, a default InitialContext context does not function if the product server is not at the sever_name:2809

location. In this situation, construct a new InitialContext context programmatically ahead of the JAAS login.

JAAS needs to know where the security server resides to verify that the entered user ID or password is

correct, prior to performing a commit method. By constructing a new InitialContext context in the way

specified below, the security code has the information that is needed to find the security server location

and the target realm.

Note: The first line starting with env.put was split into two lines for illustration purposes only.
import java.util.Hashtable;

 import javax.naming.Context;

 import javax.naming.InitialContext;

 ...

// Perform an InitialContext and default lookup prior to logging in so that target realm

380 Securing applications and their environment

// and bootstrap host/port can be determined for SecurityServer lookup.

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

 env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");

 Context initialContext = new InitialContext(env);

 Object obj = initialContext.lookup("");

 LoginContext lc = null;

 try {

 lc = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl("userName", "realm", "password"));

 } catch (LoginException le) {

 System.out.println("Cannot create LoginContext. " + le.getMessage());

 // insert error processing code

 } catch(SecurityException se) {

 System.out.printlin("Cannot create LoginContext." + se.getMessage();

 // Insert error processing

 }

 try {

 lc.login();

 } catch(LoginException le) {

 System.out.printlin("Fails to create Subject. " + le.getMessage());

 // Insert error processing code

 }

Programmatic login

Programmatic login is a type of form login that supports application presentation site-specific login forms

for the purpose of authentication.

When enterprise bean client applications require the user to provide identifying information, the writer of

the application must collect that information and authenticate the user. The work of the programmer can be

broadly classified in terms of where the actual user authentication is performed:

v In a client program

v In a server program

Users of Web applications can receive prompts for authentication data in many ways. The <login-config>

element in the Web application deployment descriptor file defines the mechanism that is used to collect

this information. Programmers who want to customize login procedures, rather than relying on general

purpose devices like a 401 dialog window in a browser, can use a form-based login to provide an

application-specific HTML form for collecting login information.

No authentication occurs unless administrative security is enabled. If you want to use form-based login for

Web applications, you must specify FORM in the auth-method tag of the <login-config> element in the

deployment descriptor of each Web application.

Applications can present site-specific login forms by using the WebSphere Application Server form-login

type. The Java Platform, Enterprise Edition (Java EE) specification defines form login as one of the

authentication methods for Web applications. WebSphere Application Server provides a form-logout

mechanism.

Java Authentication and Authorization Service programmatic login

Java Authentication and Authorization Service (JAAS) is a new feature in WebSphere Application Server. It

is also mandated by the Java EE 1.4 Specification. JAAS is a collection of strategic authentication

application programming interfaces (API) that replace the Common Object Request Broker Architecture

(CORBA) programmatic login APIs. WebSphere Application Server provides some extensions to JAAS:

Before you begin developing with programmatic login APIs, consider the following points:

Chapter 5. Authenticating users 381

v For the pure Java client application or client container application, initialize the client Object Request

Broker (ORB) security prior to performing a JAAS login. Do this by running the following code prior to

the JAAS login:

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

// Perform an InitialContext and default lookup prior to logging

// in to initialize ORB security and for the bootstrap host/port

// to be determined for SecurityServer lookup. If you do not want

// to validate the userid/password during the JAAS login, disable

// the com.ibm.CORBA.validateBasicAuth property in the

// sas.client.props file.

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL,

 "corbaloc:iiop:myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

Object obj = initialContext.lookup("");

For more information, see “Example: Programmatic logins” on page 379.

v For the pure Java client application or the client container application, make sure that the host name

and the port number of the target Java Naming and Directory Interface (JNDI) bootstrap properties are

specified properly. See the Developing applications that use CosNaming (CORBA Naming interface)

section for details.

v If the application uses custom JAAS login configuration, make sure that the custom JAAS login

configuration is properly defined. See the “Configuring programmatic logins for Java Authentication and

Authorization Service” on page 391 section for details.

v Some of the JAAS APIs are protected by Java 2 security permissions. If these APIs are used by

application code, make sure that these permissions are added to the application was.policy file. See

“Adding the was.policy file to applications” on page 737, “Using PolicyTool to edit policy files” on page

724 and “Configuring the was.policy file” on page 731 sections for details. For more details of which

APIs are protected by Java 2 Security permissions, check the IBM Developer Kit, Java Technology

Edition; JAAS and the WebSphere Application Server public APIs documentation for more details. The

following list contains the APIs that are used in the samples code provided in this documentation.

– javax.security.auth.login.LoginContext constructors are protected by

javax.security.auth.AuthPermission ″createLoginContext″.

– javax.security.auth.Subject.doAs and com.ibm.websphere.security.auth.WSSubject.doAs are

protected by javax.security.auth.AuthPermission ″doAs″.

– javax.security.auth.Subject.doAsPrivileged and

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged are protected by

javax.security.auth.AuthPermission ″doAsPrivileged″.
v com.ibm.websphere.security.auth.WSSubject: Due to a design oversight in JAAS Version 1.0,

javax.security.auth.Subject.getSubject does not return the Subject associated with the running thread

inside a java.security.AccessController.doPrivileged code block. This can present an inconsistent

behavior that is problematic and causes an undesirable effort to work around. The

com.ibm.websphere.security.auth.WSSubject API provides a workaround to associate the Subject to the

running thread. The com.ibm.websphere.security.auth.WSSubject API extends the JAAS model to Java

EE resources for authorization checks. The Subject that is associated with the running thread within

com.ibm.websphere.security.auth.WSSubject.doAs or

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged code block is used for Java EE resources

authorization checks.

v Administrative console support for defining new JAAS login configuration: You can configure JAAS login

configuration in the administrative console and store it in the WebSphere Application Server

configuration API. Applications can define new JAAS login configuration in the administrative console

and the data is persisted in the configuration repository that is stored with the WebSphere Application

382 Securing applications and their environment

Server configuration API. However, WebSphere Application Server still supports the default JAAS login

configuration format that is provided by the JAAS default implementation. If duplication login

configurations are defined in both the WebSphere Application Server configuration API and the plain text

file format, the login configuration in the WebSphere Application Server configuration API takes

precedence. Advantages to define the login configuration in the WebSphere Application Server

configuration API include:

– Defining the JAAS login configuration using the administrative console.

– Managing the JAAS login configuration centrally.
v JAAS login configurations for WebSphere Application Server: WebSphere Application Server provides

JAAS login configurations for applications to perform programmatic authentication to the WebSphere

Application Server security runtime. These JAAS login configurations for WebSphere Application Server

perform authentication to the configured authentication mechanism, Simple WebSphere Authentication

Mechanism (SWAM) or Lightweight Third-Party Authentication (LTPA), and user registry (Local OS,

LDAP, or Custom) based on the authentication data supplied. The authenticated Subject from these

JAAS login configurations contain the required principal and credentials that can be used by the

WebSphere Application Server security runtime to perform authorization checks on Java EE role-based

protected resources.

Note: SWAM is deprecated in WebSphere Application Server Version 7.0 and will be removed in a

future release.
Here are the JAAS login configurations that are provided by WebSphere Application Server:

– WSLogin JAAS login configuration: A generic JAAS login configuration that a Java client, client

container application, servlet, JSP file, enterprise bean, and so on, can use to perform authentication

that is based on a user ID and password, or a token to the WebSphere Application Server security

runtime. However, this configuration does not support the CallbackHandler handler that is specified in

the client container deployment descriptor.

– ClientContainer JAAS login configuration: This JAAS login configuration recognizes the

CallbackHandler handler that is specified in the client container deployment descriptor. The login

module of this login configuration uses the CallbackHandler handler in the client container

deployment descriptor if one is specified, even if the application code specified one CallbackHandler

handler in the login context. This is for client container application.

– The Subjects that are authenticated with the previously mentioned JAAS login configurations contain

a com.ibm.websphere.security.auth.WSPrincipal principal and a

com.ibm.websphere.security.auth.WSCredential credential. If the authenticated Subject is passed to

the com.ibm.websphere.security.auth.WSSubject.doAs method or the other doAs methods, the

WebSphere Application Server security runtime can perform authorization checks on Java EE

resources, based on the Subject com.ibm.websphere.security.auth.WSCredential credential.
v Customer-defined JAAS login configurations: You can define other JAAS login configurations. See

“Configuring programmatic logins for Java Authentication and Authorization Service” on page 391 for

details. Use these login configurations to perform programmatic authentication to the custom

authentication mechanism. However, the subjects from these customer-defined JAAS login

configurations might not be used by the WebSphere Application Server security runtime to perform

authorization checks if the subject does not contain the required principal and credentials.

Finding the root cause login exception from a JAAS login

If you get a LoginException exception after issuing the LoginContext.login API, you can find the root cause

exception from the configured user registry. In the login modules, the registry exceptions are wrapped by a

com.ibm.websphere.security.auth.WSLoginFailedException class. This exception has a getCause method

with which you can pull out the exception that was wrapped after issuing the previous command.

You are not always guaranteed to get a WSLoginFailedException exception, but most of the exceptions

that are generated from the user registry display here. The following example illustrates a

LoginContext.login API with the associated catch block. Cast the WSLoginFailedException exception to

com.ibm.websphere.security.auth.WSLoginFailedException class if you want to issue the getCause API.

Chapter 5. Authenticating users 383

The following determineCause example can be used for processing CustomUserRegistry exception types.

try

 {

 lc.login();

 }

 catch (LoginException le)

 {

 // drill down through the exceptions as they might cascade through the runtime

 Throwable root_exception = determineCause(le);

 // now you can use "root_exception" to compare to a particular exception type

 // for example, if you have implemented a CustomUserRegistry type, you would

 // know what to look for here.

 }

/* Method used to drill down into the WSLoginFailedException to find the

"root cause" exception */

 public Throwable determineCause(Throwable e)

 {

 Throwable root_exception = e, temp_exception = null;

 // keep looping until there are no more embedded WSLoginFailedException or

 // WSSecurityException exceptions

 while (true)

 {

 if (e instanceof com.ibm.websphere.security.auth.WSLoginFailedException)

 {

 temp_exception = ((com.ibm.websphere.security.auth.WSLoginFailedException)

 e).getCause();

 }

 else if (e instanceof com.ibm.websphere.security.WSSecurityException)

 {

 temp_exception = ((com.ibm.websphere.security.WSSecurityException)

 e).getCause();

 }

 else if (e instanceof javax.naming.NamingException)

 // check for Ldap embedded exception

 {

 temp_exception = ((javax.naming.NamingException)e).getRootCause();

 }

 else if (e instanceof your_custom_exception_here)

 {

 // your custom processing here, if necessary

 }

 else

 {

 // this exception is not one of the types we are looking for,

 // lets return now, this is the root from the WebSphere

 // Application Server perspective

 return root_exception;

 }

 if (temp_exception != null)

 {

 // we have an exception; go back and see if this has another

 // one embedded within it.

 root_exception = temp_exception;

 e = temp_exception;

 continue;

 }

 else

384 Securing applications and their environment

{

 // we finally have the root exception from this call path, this

 // has to occur at some point

 return root_exception;

 }

 }

 }

Finding the root cause login exception from a Servlet filter

You can also receive the root cause exception from a servlet filter when addressing post-form login

processing. This exception is useful because it shows the user what happened. You can issue the

following API to obtain the root cause exception:

Throwable t = com.ibm.websphere.security.auth.WSSubject.getRootLoginException();

if (t != null)

 t = determineCause(t);

When you have the exception, you can run it through the previous determineCause example to get the

native registry root cause.

Enabling root cause login exception propagation to pure Java clients

Currently, the root cause does not get propagated to a pure client for security reasons. However, you

might want to propagate the root cause to a pure client in a trusted environment. If you want to enable

root cause login exception propagation to a pure client, click Security > Global security > Custom

Properties on the WebSphere Application Server Administrative Console and set the following property:

com.ibm.websphere.security.registry.propagateExceptionsToClient=true

Non-prompt programmatic login

WebSphere Application Server provides a non-prompt implementation of the

javax.security.auth.callback.CallbackHandler interface, which is called

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl. Using this interface, an application can

push authentication data to the WebSphere LoginModule instance to perform authentication. This

capability is useful for server-side application code to authenticate an identity and to use that identity to

invoke downstream Java EE resources.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl("user",

 "securityrealm", "securedpassword"));

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication data is "push" to the authentication mechanism

// implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "

+ e.getMessage());

e.printStackTrace();

// maybe javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

Chapter 5. Authenticating users 385

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a Java EE resource using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is a protected EJB

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

You can use the com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl callback handler with

a pure Java client, a client application container, enterprise bean, JavaServer Pages (JSP) files, servlet, or

other Java 2 Platform, Enterprise Edition (Java EE) resources. See “Example: Programmatic logins” on

page 379 for more information about Object Request Broker (ORB) security initialization requirements in a

pure Java client.

Note: The WSCallbackHandlerImpl callback handler is different depending on whether you use

WebSphere Application Server security or Web services security. It is located in the sas.jar file for

security, and in the was-wssecurity.jar file for Web services security.

User interface prompt programmatic login

WebSphere Application Server also provides a user interface implementation of the

javax.security.auth.callback.CallbackHandler implementation to collect authentication data from a user

through user interface login prompts. The

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl callback handler presents a user

interface login panel to prompt users for authentication data.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by GUI login prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "

+ e.getMessage());

e.printStackTrace();

// maybe javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

386 Securing applications and their environment

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a Java EE resources using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is a protected enterprise bean

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

Note: Do not use the com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl callback

handler for server-side resources like enterprise bean, servlet, JSP files, and so on. The user

interface login prompt blocks the server for user input. This behavior is not good for a server

process.

WebSphere Application Server also provides a Kerberos credential cache implementation of the

javax.security.auth.callback.CallbackHandler interface. The callback handler,

com.ibm.websphere.security.auth.callback.WSCcacheCallBackHandlerImpl. Using this interface, an

application can push authentication data to the WebSphere LoginModule instance to perform

authentication.

This capability is only for the client side application code to authenticate to WebSphere Application Server

with the Kerberos credential cache.

If the following options exist in the wsjaas_client.conf file, set them to false:

 useDefaultKeytab=false

 useDefaultCcache=false

 tryFirstPass=false

 useFirstPass=false

 forwardable=false

 renewable=false

 renewable=false

 noaddress=false

javax.security.auth.login.LoginContext lc = null;

String krb5Ccache = /etc/krb5/krb5cc_utle;

try {

lc = new javax.security.auth.login.LoginContext("WSKRB5Login",

Chapter 5. Authenticating users 387

new com.ibm.websphere.security.auth.callback.WSCcacheCallBackHandlerImpl(user, krb5Realm, krb5Ccache, false));

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determines how authentication data is collected

// in this case, the authentication date is collected by stdin prompt

// and passed to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception:

 " + e.getMessage());

e.printStackTrace();

// maybe javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a Java EE resource using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00);

// where bankAccount is a protected enterprise bean

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

 + e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

Application Server with the default Kerberos credential cache.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext("WSKRB5Login",

new com.ibm.websphere.security.auth.callback.WSCcacheCallBackHandlerImpl(user, krb5Realm, null, true));

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determines how authentication data is collected

// in this case, the authentication date is collected by stdin prompt

// and passed to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception:

 " + e.getMessage());

e.printStackTrace();

// maybe javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

388 Securing applications and their environment

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a Java EE resource using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00);

// where bankAccount is a protected enterprise bean

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

 + e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

Application Server with the Microsoft native Kerberos credential cache. The client must

login to the Microsoft Domain Controller.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext("WSKRB5Login",

new com.ibm.websphere.security.auth.callback.WSCcacheCallBackHandlerImpl(null, null, null, true));

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determines how authentication data is collected

// in this case, the authentication date is collected by stdin prompt

// and passed to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception:

 " + e.getMessage());

e.printStackTrace();

// maybe javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a Java EE resource using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00);

// where bankAccount is a protected enterprise bean

Chapter 5. Authenticating users 389

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

 + e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

WSKRB5Login module

The WSKRB5Login JAAS login configuration: is a generic JAAS login configuration that a Java client,

client container application, servlet, JSP file, or enterprise bean can use to perform authentication that is

based on a Kerberos principal name password or a Kerberos credential cache to the WebSphere

Application Server security runtime. However, this configuration does not support the CallbackHandler

handler that is specified in the client container deployment descriptor.

Place either the krb5.ini or krb5.conf files you have created in a default location. If either file is not

located in the default location you must set the java.security.krb5.conf JVM system property with the

correct path and Kerberos configuration file name.

On a WindowsÃ‚Â® platform, the default location is c:\winnt\krb5.ini.

On a LinuxÃ‚Â® platform, the default location is /etc/krb5.conf.

On other Unix platforms, the default location is /etc/krb5/krb5.conf.

On a z/OS platform, the default location is /etc/krb5/krb5.conf.

Kerberos configuration settings, the Kerberos key distribution center (KDC) name, and realm settings are

provided in the Kerberos configuration file or through java.security.krb5.kdc and java.security.krb5.realm

system property files.

Stdin prompt programmatic login

WebSphere Application Server also provides a stdin implementation of the

javax.security.auth.callback.CallbackHandler interface. The callback handler,

com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl, prompts and collects

authentication data from a user through the stdin prompt.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determines how authentication data is collected

// in this case, the authentication date is collected by stdin prompt

// and passed to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception:

 " + e.getMessage());

390 Securing applications and their environment

e.printStackTrace();

// maybe javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a Java EE resource using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00);

// where bankAccount is a protected enterprise bean

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

 + e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

Note: Do not use the com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl callback

handler for server-side resources like enterprise beans, servlets, JSP files, and so on. The input

from the stdin prompt is not sent to the server environment. Most servers run in the background

and do not have a console. However, if the server does have a console, the stdin prompt blocks the

server for user input. This behavior is not good for a server process.

Configuring programmatic logins for Java Authentication and Authorization

Service

A new JAAS login configuration can be added and modified using the administrative console. The changes

are saved in the cell-level security document and are available to all managed application servers.

Before you begin

Java Authentication and Authorization Service (JAAS) is a feature in WebSphere Application Server. JAAS

is a collection of WebSphere Application Server strategic authentication APIs and replaces the Common

Object Request Broker Architecture (CORBA) programmatic login APIs.

WebSphere Application Server provides some extensions to JAAS:

v com.ibm.websphere.security.auth.WSSubject. The com.ibm.websphere.security.auth.WSSubject API

extends the JAAS authorization model to Java Platform, Enterprise Edition (Java EE) resources.

v You can configure the JAAS login in the administrative console and store this login configuration in the

Application Server configuration. However, WebSphere Application Server still supports the default

JAAS login configuration format (plain text file) that is provided by the JAAS default implementation. If

duplicate login configurations are defined in both the WebSphere Application Server configuration API

Chapter 5. Authenticating users 391

and the plain text file format, the one in the WebSphere Application Server configuration API takes

precedence. Advantages to defining the login configuration in the WebSphere configuration API include:

– User interface support in defining JAAS login configuration

– Central management of the JAAS login configuration

Due to a design oversight in JAAS Version 1.0, the javax.security.auth.Subject.getSubject method does

not return the subject that is associated with the running thread inside a

java.security.AccessController.doPrivileged code block. This problem presents an inconsistent behavior

that might cause unfavorable results. The com.ibm.websphere.security.auth.WSSubject API provides a

workaround to associate the subject to a running thread.

v Proxy LoginModule. The Proxy LoginModule loads the actual LoginModule module. The default JAAS

implementation does not use the thread context class loader to load classes. The LoginModule module

cannot load if the LoginModule class file is not in the application class loader or the Java extension

class loader class path. Due to this class loader visibility problem, WebSphere Application Server

provides a proxy LoginModule module to load the JAAS LoginModule using the thread context class

loader. You do not need to place the LoginModule implementation on the application class loader or the

class path for the Java extension class loader with this proxy LoginModule module.

If you do not want to use the Proxy LoginModule module, you can place the LoginModule module in the

/QIBM/UserData/Java400/ext/ directory to add it to the class path for the Java extended directories.

Also, grant *PUBLIC *RX authority to the file. However, when you add the file to the

/QIBM/UserData/Java400/ext/ directory, the file is also added to the default class path for the Java

extended directories, which is accessible to the entire operating system

JAAS login configurations are defined in the WebSphere Application Server configuration application

programming interface (API) security document. Click Security > Global security. Under Java

Authentication and Authorization Service, click Application logins. The following JAAS login

configurations are available:

ClientContainer

Defines a login configuration and a LoginModule implementation that is similar to that of the

WSLogin configuration, but enforces the requirements of the WebSphere Application Server client

container. For more information, see “Configuration entry settings for Java Authentication and

Authorization Service” on page 396.

DefaultPrincipalMapping,

Defines a special LoginModule module that is typically used by Java EE connectors to map an

authenticated WebSphere Application Server user identity to a set of user authentication data

(user ID and password) for the specified back-end enterprise information system (EIS). For more

information about Java EE Connector and the DefaultMappingModule module, refer to the Java

EE security section.

WSLogin

Defines a login configuration and a LoginModule implementation that applications can use in

general.

A new JAAS login configuration can be added and modified using the administrative console. The changes

are saved in the cell-level security document and are available to all managed application servers. An

application server restart is required for the changes to take effect at run time.

Note: Do not remove or delete the predefined JAAS login configurations (such as, ClientContainer,

WSLogin, and DefaultPrincipalMapping). Deleting or removing them can cause other enterprise

applications to fail.

1. Delete a JAAS login configuration.

a. Click Security > Global security.

392 Securing applications and their environment

b. Under Java Authentication and Authorization Service, click Application logins. The Application

Login Configuration panel is displayed.

c. Select the check box for the login configurations to delete and click Delete.

2. Create a new JAAS login configuration.

a. Click Security > Global security.

b. Under Java Authentication and Authorization Service, click Application logins.

c. Click New. The Application Login Configuration panel is displayed.

d. Specify the alias name of the new JAAS login configuration and click Apply. This value is the

name of the login configuration that you pass in the javax.security.auth.login.LoginContext

implementation for creating a new LoginContext context.

Click Apply to save changes and to add the extra node name that precedes the original alias

name. Clicking OK does not save the new changes in the security.xml file.

e. Under Additional properties, click JAAS Login Modules.

f. Click New.

g. Specify the Module class name. Specify the WebSphere Application Server proxy LoginModule

module because of the limitation of the class loader visibility.

h. Specify the LoginModule implementation as the delegate property of the Proxy LoginModule

module. The WebSphere Application Server proxy LoginModule class name is

com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy.

i. Select Authentication strategy from the list and click Apply.

j. Under Additional properties, click Custom properties. The Custom properties panel is displayed for

the selected LoginModule.

k. Create a new property with the name delegate and the value of the real LoginModule

implementation. You can specify other properties like debug with the true value. These properties

are passed to the LoginModule class as options to the initialize method of the LoginModule

instance.

l. Click Save.

Several locations are within the WebSphere Application Server directory structure where you can place

a JAAS login module. The following list provides locations for the JAAS login module in order of

recommendation:

v Within an enterprise archive (EAR) file for a specific Java Platform, Enterprise Edition (Java EE)

application.

If you place the login module within the EAR file, the login module is accessible by the specific

application only.

v In the WebSphere Application Server-shared library.

If you place the login module in the shared library, you must specify which applications can access

the module. For more information on shared libraries, see Managing shared libraries.

v In the Java extensions directory.

If you place the JAAS login module in the Java extensions directory, the login module is available to

all applications.

Place the class file in the /QIBM/UserData/Java400/ext directory to add it to the class path for the

Java extended directories. Also, grant *PUBLIC *RX authority to the file. However, when you add the

file to the /QIBM/UserData/Java400/ext directory, you are adding the file to the default class path for

the Java extended directories, which is accessible to the entire operating system

Although the Java extensions directory provides the greatest availability for the login module, place the

login module in an application EAR file. If other applications need to access the same login module,

consider using shared libraries.

3. Change the plain text file.

Chapter 5. Authenticating users 393

WebSphere Application Server supports the default JAAS login configuration format, which is a plain

text file, that is provided by the JAAS default implementation. However, a tool is not provided that edits

plain text files in this format. You can define the JAAS login configuration in the profile_root/
properties/wsjaas.conf file. Any syntax errors can cause the incorrect parsing of the plain JAAS login

configuration text file. This problem can cause other applications to fail.

Java client programs that use JAAS for authentication must invoke with the JAAS configuration file

specified. This configuration file is set in the launchClient QShell script. If you do not use the

launchClient script to invoke the Java client program, verify that the appropriate JAAS configuration

file is passed to the Java virtual machine using the -Djava.security.auth.login.config flag.

Results

A new JAAS login configuration is created or an old JAAS login configuration is removed. An enterprise

application can use a newly created JAAS login configuration without restarting the application server

process.

However, new JAAS login configurations that are defined in the profile_root/properties/wsjaas.conf

file, do not refresh automatically. Restart the application servers to validate changes. These JAAS login

configurations are specific to a particular node and are not available for other application servers running

on other nodes.

What to do next

Create new JAAS login configurations that are used by enterprise applications to perform custom

authentication. Use these newly defined JAAS login configurations to perform programmatic login.

Login configuration for Java Authentication and Authorization Service:

Java Authentication and Authorization Service (JAAS) is a new feature in WebSphere Application Server.

JAAS is WebSphere Application Server strategic application programming interface (API) for authentication

that replaces the Common Object Request Broker Architecture (CORBA) programmatic login API.

 WebSphere Application Server provides some extensions to JAAS:

v com.ibm.websphere.security.auth.WSSubject: The com.ibm.websphere.security.auth.WSSubject API

extends the JAAS authorization model to Java 2 Platform, Enterprise Edition (J2EE) resources. You can

configure JAAS login in the administrative console or by using the scripting functions and store this

configuration in the WebSphere Application Server configuration API. However, WebSphere Application

Server still supports the default JAAS login configuration format, a plain text file, which is provided by

the JAAS default implementation. If duplicate login configurations are defined in both the WebSphere

Application Server configuration API and the plain text file format, the one in the WebSphere Application

Server configuration API takes precedence. Advantages to defining the login configuration in the

WebSphere configuration API include:

– User interface support in defining JAAS login configuration

– Central management of the JAAS login configuration

– Distribution of the JAAS login configuration in a Network Deployment product installation

Due to a design oversight in JAAS 1.0, the javax.security.auth.Subject.getSubject method does not

return the Subject that is associated with the running thread inside a

java.security.AccessController.doPrivileged code block. This action can present an inconsistent behavior

that is problematic. The com.ibm.websphere.security.auth.WSSubject extension provides a workaround

to associate the Subject to the running thread. The com.ibm.websphere.security.auth.WSSubject

extension expands the JAAS authorization model to J2EE resources.

Why WebSphere Application Server has its own subject class: You can retrieve the subjects in a

Subject.doAs block with the Subject.getSubject call. However, this procedure does not work if an

AccessController.doPrivileged call is contained within the Subject.doAs block. In the following example,

s1 is equal to s, but s2 is null:

394 Securing applications and their environment

* AccessController.doPrivileged() not only truncates the Subject propagation,

* but also reduces the permissions. It does not include the JAAS security

* policy defined for the principals in the Subject.

Subject.doAs(s, new PrivilegedAction() {

 public Object run() {

 System.out.println("Within Subject.doAsPrivileged()");

 Subject s1 = Subject.getSubject(AccessController.getContext());

 AccessController.doPrivileged(new PrivilegedAction() {

 public Object run() {

 Subject s2 = Subject.getSubject(AccessController.getContext());

 return null;

 }

 });

 return null;

}

});

v JAAS Login Configuration can be configured in either the administrative console or by using the

scripting functions and stored in the WebSphere Application Server configuration repository. An

application can define a new JAAS login configuration in the administrative console and persist the data

in the configuration repository that is stored in the WebSphere Application Server configuration API.

However, WebSphere Application Server still supports the default JAAS login configuration format that is

provided by the JAAS default implementation. If duplicate login configurations are defined in both the

WebSphere Application Server configuration API and the plan text file format, the one in the WebSphere

Application Server configuration API takes precedence. The advantages to defining the login

configuration in the WebSphere Application Server configuration API include:

– UI support in defining JAAS login configuration.

– The JAAS configuration login configuration can be managed centrally.

– The JAAS configuration login configuration is distributed in a Network Deployment installation.
v Proxy LoginModule: The Proxy.LoginModule is a proxy to the configured user or the system-defined

module that the context class loader uses to load the module instead of the system class loader. The

default JAAS implementation does not use the thread context class loader to load classes. The

LoginModule module cannot be loaded if the LoginModule class file is not in the application class loader

or the class loader class path for the Java extension. WebSphere Application Server provides a proxy

LoginModule module to load the JAAS LoginModule using the thread context class loader. You do not

need to place the LoginModule implementation on the application class loader or the class loader class

path for the Java extension with this proxy LoginModule module.

Note: Do not remove or delete the predefined JAAS login configurations (ClientContainer, WSLogin and

DefaultPrincipalMapping). Deleting or removing them can cause other enterprise applications to fail.

A system administrator determines the authentication technologies, or login modules, to use for each

application and configures them in a login configuration. The source of the configuration information, for

example, a file or a database, is up to the current javax.security.auth.login.Configuration implementation.

The WebSphere Application Server implementation permits the definition of the login configuration in both

the WebSphere Application Server configuration API security document and in a JAAS configuration file,

where the former takes precedence.

JAAS login configurations are defined in the API security document for WebSphere Application Server

configuration for applications to use. To access the configurations, complete the following steps:

1. Click Security > Global security.

2. Under Java Authentication and Authorization Service, click Application logins.

The WSLogin module defines a login configuration and the LoginModule implementation that can be used

by applications in general.

The ClientContainer module defines a login configuration and the LoginModule implementation that is

similar to the WSLogin module, but enforces the requirements of the WebSphere Application Server client

container.

Chapter 5. Authenticating users 395

The DefaultPrincipalMapping module defines a special LoginModule that is typically used by Java 2

Connector to map an authenticated WebSphere Application Server user identity to a set of user

authentication data (user ID and password) for the specified back-end enterprise information system (EIS).

For more information about Java 2 Connector and the DefaultMappingModule, see the Java 2 Security

section.

A new JAAS login configuration can be added and modified using the administrative console. The changes

are saved in the cell-level security document and are available to all managed application servers. An

application server restart is required for the changes to take effect at runtime and for the client container

login configuration to be made available.

WebSphere Application Server also reads JAAS configuration information from the wsjaas.conf file under

the properties subdirectory of the root directory under which WebSphere Application Server is installed.

Changes made to the wsjaas.conf file are used only by the local application server and take effect after

the application server restarts. The JAAS configuration in the WebSphere Application Server configuration

API security document takes precedence over that defined in the wsjaas.conf file. A configuration entry in

the wsjaas.conf is overridden by an entry of the same alias name in the WebSphere Application Server

configuration API security document.

The Java Authentication and Authorization Service (JAAS) login configuration entries in the administrative

console are propagated to the server runtime when they are created, not when the configuration is saved.

However, the deleted JAAS login configuration entries are not removed from the server runtime. To

remove the entries, save the new configuration, then stop and restart the server.

The Samples Gallery provides a JAAS login sample that demonstrates how to use JAAS with WebSphere

Application Server. The sample uses a server-side login with JAAS to authenticate a user with the security

runtime for WebSphere Application Server. The sample demonstrates the following technology:

v Java 2 Platform, Enterprise Edition (J2EE) Java Authentication and Authorization Service (JAAS)

v JAAS for WebSphere Application Server

v WebSphere Application Server security

The form login sample is a component of the technology samples. For more information on how to access

the form login sample, see Accessing the Samples (Samples Gallery).

Configuration entry settings for Java Authentication and Authorization Service:

Use this page to specify a list of Java Authentication and Authorization Service (JAAS) login configurations

for the application code to use, including Java 2 Platform, Enterprise Edition (J2EE) components such as

enterprise beans, JavaServer Pages (JSP) files, servlets, resource adapters, and message-driven beans

(MDBs).

 To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Java Authentication and Authorization Service > Application logins.

Read the JAAS specifications before you begin defining additional login modules for authenticating to the

application server security run time. You can define additional login configurations for your applications.

However, if the application server LoginModule

com.ibm.ws.security.common.auth.module.WSLoginModuleImpl module is not used or the LoginModule

module does not produce a credential that is recognized by the application server. The application server

security run time cannot use the authenticated subject from these login configurations for an authorization

check for resource access.

You must invoke Java client programs that use Java Authentication and Authorization Service (JAAS) for

authentication with a JAAS configuration file that is specified.

396 Securing applications and their environment

The application server supplies the default JAAS configuration file in the profile_root/properties/
wsjaas_client.conf file. This configuration file is set in the launchClient Qshell script.

ClientContainer:

Specifies the login configuration used by the client container application, which uses the CallbackHandler

API that is defined in the client container deployment descriptor.

 The ClientContainer configuration is the default login configuration for the application server. Do not

remove this default, as other applications that use it fail.

 Default: ClientContainer

DefaultPrincipalMapping:

Specifies the login configuration that is used by Java 2 Connectors to map users to principals that are

defined in the J2C authentication data entries.

 The ClientContainer configuration is the default login configuration for the application server. Do not

remove this default, as other applications that use it fail.

 Default: ClientContainer

WSLogin:

Indicates whether all of the applications can use the WSLogin configuration to perform authentication for

the application server security run time.

 This login configuration does not honor the CallbackHandler handler that is defined in the client container

deployment descriptor. To use this functionality, use the ClientContainer login configuration.

The WSLogin configuration is the default login configuration for the application server. Do not remove this

default because other administrative applications that use it fail. This login configuration authenticates

users for the application server security run time. Use the credentials from the authenticated subject that

are returned from this login configuration as an authorization check for access to application server

resources.

 Default: ClientContainer

System login configuration entry settings for Java Authentication and Authorization Service:

Use this page to specify a list of Java Authentication and Authorization Service (JAAS) system login

configurations.

 To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Java Authentication and Authorization Service > System logins.

Read the Java Authentication and Authorization Service documentation before you begin defining

additional login modules for authenticating to the application server security runtime. Do not remove the

following system login modules:

v RMI_INBOUND

v WEB_INBOUND

Chapter 5. Authenticating users 397

v DEFAULT

v RMI_OUTBOUND

v SWAM

v wssecurity.IDAssertion

v wssecurity.signature

v wssecurity.PKCS7

v wssecurity.PkiPath

v wssecurity.UsernameToken

v wssecurity.X509BST

v LTPA

v LTPA_WEB

RMI_INBOUND, WEB_INBOUND, DEFAULT:

Processes inbound login requests for Remote Method Invocation (RMI), Web applications, and most of the

other login protocols.

RMI_INBOUND

This login configuration handles logins for inbound RMI requests. Typically, these logins are

requests for authenticated access to Enterprise JavaBeans (EJB) files. When using the RMI

connector, these logins might be requests for Java Management Extensions (JMX).

WEB_INBOUND

This login configuration handles logins for Web application requests, which include servlets and

JavaServer Pages (JSP) files. This login configuration can interact with the output that is

generated from a trust association interceptor (TAI), if configured. The Subject that is passed into

the WEB_INBOUND login configuration might contain objects that are generated by the TAI.

DEFAULT

This login configuration handles the logins for inbound requests that are made by most of the

other protocols and internal authentications.

 These three login configurations will pass in the following callback information, which is handled by the

login modules within these configurations. These callbacks are not passed in at the same time. However,

the combination of these callbacks determines how the application server authenticates the user.

Callback

callbacks[0] = new javax.security.auth.callback.

NameCallback(″Username: ″);

Responsibility

Collects the user name that is provided during a login. This information can be the user name for

the following types of logins:

v User name and password login, which is known as basic authentication.

v User name only for identity assertion.

Callback

callbacks[1] = new javax.security.auth.callback.

PasswordCallback(″Password: ″, false);

Responsibility

Collects the password that is provided during a login.

Callback

callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl(″Credential Token: ″);

398 Securing applications and their environment

Responsibility

Collects the Lightweight Third Party Authentication (LTPA) token or other token type during a login.

Typically, this information is present when a user name and a password are not present.

Callback

callbacks[3] = new com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback(″Authz Token List: ″);

Responsibility

Collects the ArrayList list of the TokenHolder objects that are returned from the call to the

WSOpaqueTokenHelper. The callback uses the createTokenHolderListFromOpaqueToken method

with the Common Secure Interoperability version 2 (CSIv2) authorization token as input.

Note: This callback is present only when the Security Attribute Propagation option is enabled

and this login is a propagation login. In a propagation login, sufficient security attributes are

propagated with the request to prevent having to access the user registry for additional

attributes. You must enable security attribute propagation for both the outbound and

inbound authentication.

You can enable the Security attribute propagation option for CSIv2 outbound

authentication by completing the following steps:

1. Click Security > Global security.

2. Under Authentication, expand RMI/IIOP security and click CSIv2 outbound

authentication.

3. Enable the Security attribute propagation option.

You can enable the Security attribute propagation option for CSIv2 inbound

authentication by completing the following steps:

1. Click Security > Global security.

2. Under Authentication, expand RMI/IIOP security and click CSIv2 inbound

authentication.

3. Enable the Security attribute propagation option.

 In system login configurations, the application server authenticates the user based upon the information

that is collected by the callbacks. However, a custom login module does not need to act upon any of these

callbacks. The following list explains the typical combinations of these callbacks:

v The callbacks[0] = new javax.security.auth.callback.NameCallback(″Username: ″); callback only

This callback occurs for CSIv2 identity assertion, Web and CSIv2 X509 certificate logins, old-style trust

association interceptor logins, and so on. In Web and CSIv2 X509 certificate logins, the application

server maps the certificate to a user name. This callback is used by any login type that establishes trust

with the user name only.

v Both the callbacks[0] = new javax.security.auth.callback.NameCallback(″Username: ″); callback

and the callbacks[1] = new javax.security.auth.callback.PasswordCallback(″Password: ″, false);

callbacks.

This combination of callbacks is typical for basic authentication logins. Most user authentications occur

using these two callbacks.

v The callbacks[2] = new

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl(″Credential Token: ″); only

This callback is used to validate a Lightweight Third Party Authentication (LTPA) token. This validation

typically occurs during a single sign-on (SSO) or downstream login. Any time a request originates from

the application server, instead of a pure client, the LTPA token flows to the target server. For single

sign-on (SSO), the LTPA token is received in the cookie and the token is used for login. If a custom

login module needs the user name from an LTPA token, the module can use the following method to

retrieve the unique ID from the token:

Chapter 5. Authenticating users 399

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

validateLTPAToken(byte[])

After retrieving the unique ID, use the following method to get the user name:

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

getUserFromUniqueID(uniqueID)

Note: Any time a custom login module is plugged in ahead of the application server login modules and

it changes the identity using a credential mapping service, it is important that this login module

validates the LTPA token, if present. Calling the following method is sufficient to validate the trust

in the LTPA token:

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

validateLTPAToken(byte[])

The receiving server must have the same LTPA keys as the sending server for this validation to

be successful. A security exposure is possible if you do not validate this LTPA token, when

present.

v A combination of any of the previously mentioned callbacks plus the callbacks[3] = new

com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback(″Authz Token List: ″); callback.

This callback indicates that some propagated attributes arrived at the server. The propagated attributes

still require one of the following authentication methods:

– callbacks[0] = new javax.security.auth.callback.

NameCallback(″Username: ″);

– callbacks[1] = new javax.security.auth.callback.

PasswordCallback(″Password: ″, false);

– callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl(″Credential Token: ″);

If the attributes are added to the Subject from a pure client, then the NameCallback and

PasswordCallback callbacks authenticate the information and the objects that are serialized in the token

holder are added to the authenticated Subject.

If both CSIv2 identity assertion and propagation are enabled, the application server uses the

NameCallback callback and the token holder, which contains all of the propagated attributes, to

deserialize most of the objects. The application server uses the NameCallback callback because trust is

established with the servers that you indicate in the CSIv2 trusted server list. To specify trusted servers,

complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click CSIv2 inbound authentication.

A custom login module needs to handle custom serialization. For more information, see ″Security

attribute propagation″ in the information center.

In addition to the callbacks that are defined previously, the WEB_INBOUND login configuration can contain

the following additional callbacks only:

Callback

callbacks[4] = new com.ibm.websphere.security.auth.callback.

WSServletRequestCallback(″HttpServletRequest: ″);

Responsibility

Collects the HTTP servlet request object, if presented. This callback enables login modules to

retrieve information from the HTTP request to use during a login.

400 Securing applications and their environment

Callback

callbacks[5] = new com.ibm.websphere.security.auth.callback.

WSServletResponseCallback(″HttpServletResponse: ″);

Responsibility

Collects the HTTP servlet response object, if presented. This callback enables login modules to

add information into the HTTP response as a result of the login. For example, login modules might

add the SingleSignonCookie cookie to the response.

Callback

callbacks[6] = new com.ibm.websphere.security.auth.callback.

WSAppContextCallback(″ApplicationContextCallback: ″);

Responsibility

Collects the Web application context used during the login. This callback consists of a hashtable,

which if present contains the application name and the redirected Web address.

Callback

callbacks[7] = new WSRealmNameCallbackImpl(″Realm Name: ″, <default_realm>);

Responsibility

Collects the realm name for the login information. The realm information might not always be

provided and should be assumed to be the current realm if it is not provided.

Callback

callbacks[8] = new WSX509CertificateChainCallback(″X509Certificate[]: ″);

Responsibility

If the login source is an X509Certificate from SSL client authentication, this callback contains the

certificate that was validated by SSL. The ltpaLoginModule calls the same mapping functions as in

previous releases. Once it is passed into the login, it provides a custom login module with the

opportunity to map the certificate in a custom way. It then performs a hashtable login (see the

related link, Custom login module for inbound mapping, for an example of a hashtable login.).

If you want to use security attribute propagation with the WEB_INBOUND login configuration, you can

enable Web inbound security attribute propagation option on the Single sign-on panel.

1. Click Security > Global security.

2. Under Authentication, expand Web security and click Single sign-on (SSO).

3. Select the Web inbound security attribute propagation option.

The following login modules are predefined for the RMI_INBOUND, WEB_INBOUND, and DEFAULT

system login configurations. You can add custom login modules before, between, or after any of these

login modules, but you cannot remove these predefined login modules:

v com.ibm.ws.security.server.lm.ltpaLoginModule

Performs the primary login when attribute propagation is either enabled or disabled. A primary login

uses normal authentication information such as a user ID and password, an LTPA token, or a trust

association interceptor (TAI) and a certificate distinguished name (DN). If any of the following scenarios

are true, this login module is not used and the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule module performs the primary login:

– The java.util.Hashtable object with the required user attributes is contained in the Subject.

– The java.util.Hashtable object with the required user attributes is present in the sharedState

HashMap of the LoginContext.

– The WSTokenHolderCallback callback is present without a specified password. If a user name and a

password are present with a WSTokenHolderCallback callback, which indicates propagated

information, the request likely originates from either a pure client or a server from a different realm

that mapped the existing identity to a user ID and password.

v com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule

Chapter 5. Authenticating users 401

This login module performs the primary login using the normal authentication information if any of the

following conditions are true:

– A java.util.Hashtable object with required user attributes is contained in the Subject.

– A java.util.Hashtable object with required user attributes is present in the sharedState HashMap of

the LoginContext context.

– The WSTokenHolderCallback callback is present without a PasswordCallback callback.

When the java.util.Hashtable object is present, the login module maps the object attributes into a valid

Subject. When the WSTokenHolderCallback callback is present, the login module deserializes the byte

token objects and regenerates the serialized Subject contents. The java.util.Hashtable hashtable takes

precedence over all of the other forms of login. Be careful to avoid duplicating or overriding what the

application server might have propagated previously.

By specifying a java.util.Hashtable hashtable to take precedence over other authentication information,

the custom login module must have already verified the LTPA token, if present, to establish sufficient

trust. The custom login module can use the

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.validationLTPAToken(byte[]) method to

validate the LTPA token present in the WSCredTokenCallback callback. Failure to validate the LTPA

token presents a security risk.

For more information on adding a hashtable containing well-known and well-formed attributes used by

the application server as sufficient login information, see ″Configuring inbound identity mapping″ in the

information center.

RMI_OUTBOUND:

Processes Remote Method Invocation (RMI) requests that are sent outbound to another server when

either the com.ibm.CSI.rmiOutboundLoginEnabled or the com.ibm.CSIOutboundPropagationEnabled

properties are true.

 These properties are set in the CSIv2 authentication panel. To access the panel, complete the following

steps:

1. Click Security > Global security.

2. Under Authentication, expand RMI/IIOP security and click CSIv2 outbound authentication.

To set the com.ibm.CSI.rmiOutboundLoginEnabled property, select Custom outbound mapping. To set

the com.ibm.CSIOutboundPropagationEnabled property, select the Security attribute propagation option.

This login configuration determines the security capabilities of the target server and its security domain.

For example, if the application server Version 5.1.1 or later (or 5.1.0.2 for z/OS) communicates with a

Version 5.x Application Server, then the Version 5.1.1 Application Server sends the authentication

information only, using an LTPA token, to the Version 5.x Application Server. However, if WebSphere

Application Server Version 5.1.1 or later communicates with a Version 5.1.x Application Server, the

authentication and authorization information is sent to the receiving application server if propagation is

enabled at both the sending and receiving servers. When the application server sends both the

authentication and authorization information downstream, the application server removes the need to

access the user registry again and look up the security attributes of the user for authorization purposes.

Additionally, any custom objects that are added at the sending server are present in the Subject at the

downstream server.

The following callback is available in the RMI_OUTBOUND login configuration. You can use the

com.ibm.wsspi.security.csiv2.CSIv2PerformPolicy object that is returned by this callback to query the

security policy for this particular outbound request. This query can help determine if the target realm is

different than the current realm and if the application server must map the realm. For more information,

see ″Configuring outbound mapping to a different target realm″ in the information center.

Callback

callbacks[0] = new WSProtocolPolicyCallback(″Protocol Policy Callback: ″);

402 Securing applications and their environment

Responsibility

 Provides protocol-specific policy information for the login modules on this outbound invocation.

This information is used to determine the level of security, including the target realm, target

security requirements, and coalesced security requirements.

The following method obtains the CSIv2PerformPolicy policy from this specific login module:

csiv2PerformPolicy = (CSIv2PerformPolicy)

((WSProtocolPolicyCallback)callbacks[0]).getProtocolPolicy();

A different protocol other than RMI might have a different type of policy object.

 The following login module is predefined in the RMI_OUTBOUND login configuration. You can add custom

login modules before, between, or after any of these login modules, but you cannot remove these

predefined login modules.

com.ibm.ws.security.lm.wsMapCSIv2OutboundLoginModule

Retrieves the following tokens and objects before creating an opaque byte that is sent to another

server by using the Common Secure Interoperability Version 2 (CSIv2) authorization token layer:

v Forwardable com.ibm.wsspi.security.token.Token implementations from the Subject

v Serializable custom objects from the Subject

v Propagation tokens from the thread

You can use a custom login module prior to this login module to perform credential mapping.

However, it is recommended that the login module change the contents of the Subject that is

passed in during the login phase. If this recommendation is followed, the login modules are

processed after this login module acts on the new Subject contents.

For more information, see ″Configuring outbound mapping to a different target realm″ in the information

center.

wssecurity.IDAssertion:

Version 5.x application

Processes login configuration requests for Web services security using identity assertion.

 This login configuration is for Web Services Security Draft 13 JAX-RPC (Version 5.x) applications. For

more information, see ″Identity assertion authentication method″ in the information center.

wssecurity.IDAssertionUsernameToken:

Version 6 and later applications

Processes login configuration requests for Web services security using identity assertion.

 This login configuration is for Web Services Security V1.0 JAX-RPC applications.

The custom property

com.ibm.wsspi.wssecurity.auth.module.IDAssertionLoginModule.disableUserRegistryCheck can be

configured for the JAAS IDAssertionUsernameToken login module. This property is an option for the Web

services security identity assertion JAAS login module, wssecurity.IDAssertionUsernameToken. The

property indicates that the login module should not perform a user registry check when processing an

inbound identity token.

wssecurity.PKCS7:

Chapter 5. Authenticating users 403

Verifies an X.509 certificate with a certificate revocation list in a Public Key Cryptography Standards #7

(PKCS7) object.

 This login configuration is for Version 6.0.x systems.

wssecurity.PkiPath:

Verifies an X.509 certificate with a public key infrastructure (PKI) path.

 This login configuration is for Version 6.0.x systems.

wssecurity.signature:

Processes login configuration requests for Web services security using digital signature validation.

 This login configuration is for Version 5.x systems.

wssecurity.UsernameToken:

Verifies basic authentication (user name and password).

 When using the JAX-RPC runtime, the following custom properties can be configured for the JAAS

UsernameToken login module:

The custom property

com.ibm.wsspi.wssecurity.auth.module.UsernameLoginModule.disableUserRegistryCheck can be

configured for the JAAS UsernameToken login module. This property is an option for the Web services

security UsernameToken JAAS login module,

com.ibm.wsspi.wssecurity.auth.module.UsernameLoginModule. The property indicates that the login

module should not perform a user registry check when processing an inbound username token.

wssecurity.X509BST:

Verifies an X.509 binary security token (BST) by checking the validity of the certificate and the certificate

path.

 This login configuration is for Version 6.0.x systems.

LTPA_WEB:

Processes login requests to components in the Web container such as servlets and JavaServer pages

(JSP) files.

 The com.ibm.ws.security.web.AuthenLoginModule login module is predefined in the LTPA login

configuration. You can add custom login modules before or after this module in the LTPA_WEB login

configuration.

The LTPA_WEB login configuration can process the HttpServletRequest object, the HttpServletResponse

object, and the Web application name that are passed in using a callback handler. For more information,

see ″Example: Customizing a server-side Java Authentication and Authorization Service authentication and

logon configuration″ in the information center.

LTPA:

Processes login requests that are not handled by the LTPA_WEB login configuration.

404 Securing applications and their environment

This login configuration is used by WebSphere Application Server Version 5.1 and previous versions.

The com.ibm.ws.security.server.lm.ltpaLoginModule login module is predefined in the LTPA login

configuration. You can add custom login modules before or after this module in the LTPA login

configuration. For more information, see ″Example: Customizing a server-side Java Authentication and

Authorization Service authentication and logon configuration″ in the information center.

Login module settings for Java Authentication and Authorization Service:

Use this page to define the login module for a Java Authentication and Authorization Service (JAAS) login

configuration.

 You can define the JAAS login modules for application and system logins. To define these login modules in

the administrative console, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Java Authentication and Authorization Service > Application logins or

System logins > alias_name.

3. Under JAAS login modules, select a login module name to define.

Module class name:

Specifies the class name of the given login module.

 Data type: String

Use login module proxy:

Specifies that the Java Authentication and Authorization Service (JAAS) loads the login module proxy

class. JAAS then delegates calls to the login module classes that are defined in the Module class name

field.

 Use this option when you use both Version 5.x and Version 6 Application Servers in the same

environment. If you migrate a Version 5.x Application Server to Version 6, WebSphere Application Server

Version 6 automatically enables this option. If you have Version 6 only cells in your environment, you

might choose to deselect this option.

 Default: Enabled

Proxy class name:

Specifies the name of the proxy login module class.

 The default login modules that are defined by the application server use the

com.ibm.ws.security.common.auth.module.WSLoginModuleProxy proxy LoginModule class. This proxy

class loads the application server login module with the thread context class loader and delegates all the

operations to the real login module implementation. The real login module implementation is specified as

the delegate option in the option configuration. The proxy class is needed because the Developer Kit

application class loaders do not have visibility of the application server product class loaders.

 Data type: String

Authentication strategy:

Specifies the authentication behavior as authentication proceeds down the list of login modules.

Chapter 5. Authenticating users 405

A Java Authentication and Authorization Service (JAAS) authentication provider supplies the authentication

strategy. In JAAS, an authentication strategy is implemented through the LoginModule interface.

 Data type: String

Default: Required

Range: Required, Requisite®, Sufficient and Optional

Required

The LoginModule module is required to succeed. Whether authentication succeeds or fails, the

process still continues down the LoginModule list for each realm.

Requisite

The LoginModule module is required to succeed. If authentication is successful, the process

continues down the LoginModule list in the realm entry. If authentication fails, control immediately

returns to the application. Authentication does not proceed down the LoginModule list.

Sufficient

The LoginModule module is not required to succeed. If authentication succeeds, control

immediately returns to the application. Authentication does not proceed down the LoginModule list.

If authentication fails, the process continues down the list.

Optional

The LoginModule module is not required to succeed. Whether authentication succeeds or fails, the

process still continues down the LoginModule list.

Specify additional options by clicking Custom Properties under Additional Properties. These name and

value pairs are passed to the login modules during initialization. This process is one of the mechanisms

that is used to passed information to login modules.

Module order:

Specifies the order in which the Java Authentication and Authorization Service (JAAS) login modules are

processed.

 Click Set Order to change the processing order of the login modules.

Login module order settings for Java Authentication and Authorization Service:

Use this page to specify the order in which the application server processes the login configuration

modules.

 You can specify the order of the login modules for application and system logins. To define these login

modules in the administrative console, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Java Authentication and Authorization Service > Application logins or

System logins > alias. You can create a new configuration by clicking New.

3. Under JAAS login modules, click Set Order.

When you select one of the JAAS login module class names, you can move that class name up and down

the list. After you click OK and save the changes, the new order is reflected on either the Application login

configuration or the System login configuration panel.

Login configuration settings for Java Authentication and Authorization Service:

Use this page to configure application login configurations.

 To view this administrative console page, complete the following steps:

406 Securing applications and their environment

1. Click Security > Global security.

2. Under Authentication, click Java Authentication and Authorization Service > Application logins or

System logins > alias_name.

Click Apply to save changes and to add the extra node name that precedes the original alias name.

Clicking OK does not save the new changes in the security.xml file.

Alias:

Specifies the alias name of the application login.

 Do not use the forward slash character (/) in the alias name when defining JAAS login configuration

entries. The JAAS login configuration parser cannot process the forward slash character.

 Data type: String

Managing Java 2 Connector Architecture authentication data entries:

This task creates and deletes Java 2 Connector (J2C) authentication data entries.

 Before you begin

Java Platform, Enterprise Edition (Java EE) Connector authentication data entries are used by resource

adapters and Java DataBase Connectivity (JDBC) data sources. A Java EE Connector authentication data

entry contains authentication data, which includes the following information:

Alias An identifier that identifies the authentication data entry. When configuring resource adapters or

data sources, the administrator can specify which authentication data to choose using the

corresponding alias.

User ID

A user identity of the intended security domain. For example, if a particular authentication data

entry is used to open a new connection to DB2, this entry contains a DB2 user identity.

Password

The password of the user identity is encoded in the configuration repository.

Description

A short text description.

1. Delete a J2C authentication data entry.

a. Click Security > Global security.

b. Under Java Authentication and Authorization Service, click J2C authentication data. The J2C

Authentication Data Entries panel is displayed.

c. Select the check boxes for the entries to delete and click Delete. Before deleting or removing an

authentication data entry, make sure that it is not used or referenced by any resource adapter or

data source. If the deleted authentication data entry is used or referenced by a resource, the

application that uses the resource adapter or the data source fails to connect to the resources.

2. Create a new J2C authentication data entry.

a. Click Security > Global security.

b. Under Java Authentication and Authorization Service, click J2C authentication data. The J2C

Authentication Data Entries panel is displayed.

c. Click New.

d. Enter a unique alias, a valid user ID, a valid password, and a short description (optional).

Chapter 5. Authenticating users 407

Note: When creating a new authentication data entry and specifying an alias, be aware that the

node name is automatically appended as a prefix to the alias name you specify. For

example, if you specify the alias, tek_test_Con3, and the node is MyNode, then the final alias

name is: MyNode/tek_test_Con3.

Remember that this full alias name is the one used in your deployment descriptor.

e. Click OK or Apply. No validation for the user ID and password is required.

f. Click Save.

Results

A new J2C authentication data entry is created or an old entry is removed. The newly created entry is

visible without restarting the application server process to use in the data source definition. But the entry is

only in effect after the server is restarted. Specifically, the authentication data is loaded by an application

server when starting an application and is shared among applications in the same application server.

What to do next

This step defines authentication data that you can share among resource adapters and data sources. Use

the authentication data entry that is defined in the resource adapters or the data sources.

Java 2 Connector authentication data entry settings:

Use this page as a central place for administrators to define authentication data, which includes user

identities and passwords. These values can reference authentication data entries by resource adapters,

data sources, and other configurations that require authentication data using an alias.

 You can display this page directly from the Java Authentication and Authorization Service (JAAS)

configuration page or from other pages for resources that use J2EE Connector (J2C) authentication data

entries. To view this administrative page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click Java Authentication and Authorization Service > J2C authentication

data.

Deleting authentication data entries: Be careful when deleting authentication data entries. If the deleted

authentication data is used by other configurations, the initializing resources process fails.

Define a new authentication data entry by clicking New.

Alias:

Specifies the name of the authentication data entry.

 Data type: String

Units: String

Default: None

User ID:

Specifies the user identity.

 Data type: String

Password:

408 Securing applications and their environment

Specifies the password that is associated with the user identity.

 This field is not available on the collections panel. However, the panel is available when you create a new

J2C authentication data entry.

 Data type: String

Description:

Specifies an optional description of the authentication data entry. For example, this authentication data

entry is used to connect to DB2.

 Data type: String

J2C principal mapping modules:

You can develop your own J2EE Connector (J2C) mapping module if your application requires more

sophisticated mapping functions. The mapping login module that you might have developed on

WebSphere Application Server Version 5.x is still supported in WebSphere Application Server Version 6.0.x

and later.

 You can use the Version 5.x login modules in the connection factory mapping configuration. These login

modules can also be used in the reference mapping configuration for the resource manager connection

factory. A version 5.x mapping login module is not able to use the custom mapping properties.

If you want to develop a new mapping login module in Version 6.0.x and later, use the programming

interface that is described in the following sections.

Note: Migrate your Version 5.x mapping login module to use the new programming model and the new

custom properties as well as the mapping configuration isolation at application scope. Note that

mapping login modules that are developed using WebSphere Application Server Version 6.0.x

cannot be used in the deprecated mapping configuration for the resource connection factory.

Invoking the login module for the resource reference mapping

A com.ibm.wsspi.security.auth.callback.WSMappingCallbackHandler class, which implements the

javax.security.auth.callback.CallbackHandler interface, is a new WebSphere Application Service Provider

Programming Interface (SPI) in WebSphere Application Server Version 6.0.x.

Application code uses the com.ibm.wsspi.security.auth.callback.WSMappingCallbackHandlerFactory helper

class to retrieve a CallbackHandler object:

package com.ibm.wsspi.security.auth.callback;

public class WSMappingCallbackHandlerFactory {

 private WSMappingCallbackHandlerFactory;

 public static CallbackHandler getMappingCallbackHandler(

ManagedConnectionFactory mcf,

HashMap mappingProperties);

}

The WSMappingCallbackHandler class implements the CallbackHandler interface:

package com.ibm.wsspi.security.auth.callback;

public class WSMappingCallbackHandler implements CallbackHandler {

 public WSMappingCallbackHandler(ManagedConnectionFactory mcf,

Chapter 5. Authenticating users 409

HashMap mappingProperties);

 public void handle(Callback[] callbacks) throws IOException,

 UnsupportedCallbackException;

}

The WSMappingCallbackHandler handler can manage two new callback types that are defined in Version

6.0.x:

com.ibm.wsspi.security.auth.callback.WSManagedConnectionFactoryCallback

com.ibm.wsspi.security.auth.callback.WSMappingPropertiesCallback

The new login modules use the two callback types that are used at the reference mapping configuration

for the resource manager connection factory. The WSManagedConnectionFactoryCallback callback

provides a ManagedConnectionFactory instance that you set in the PasswordCredential credential. With

this setting, the ManagedConnectionFactory instance can determine whether a PasswordCredential

instance is used for signon to the target Enterprise Information Systems (EIS) instance. The

WSMappingPropertiesCallback callback provides a hash map that contains custom mapping properties.

The com.ibm.mapping.authDataAlias property name is reserved for setting the authentication data alias.

The WebSphere Application Server WSMappingCallbackHandle handle continues to support the two

WebSphere Application Server Version 5.x callback types that older mapping login modules can use. The

two callbacks defined can be used only by login modules that the login configuration uses at the

connection factory. For backward compatibility, WebSphere Application Server Version 6.0.x and later

passes the authentication data alias, if defined in the list of custom properties under the

com.ibm.mapping.authDataAlias property name using the WSAuthDataAliasCallback callback to Version

5.x login modules:

com.ibm.ws.security.auth.j2c.WSManagedConnectionFactoryCallback

com.ibm.ws.security.auth.j2c.WSAuthDataAliasCallback

Invoking the login module for the connection factory mapping

The WSPrincipalMappingCallbackHandler class handles two callback types:

com.ibm.wsspi.security.auth.callback.WSManagedConnectionFactoryCallback

com.ibm.wsspi.security.auth.callback.WSMappingPropertiesCallback

The WSPrincipalMappingCallbackHandler handler and the two callbacks are deprecated in WebSphere

Application Server Version 6.

Passing the mapping properties for the resource reference to the mapping login module

You can pass arbitrary custom properties to your mapping login module. The following example shows

how the WebSphere Application Server default mapping login module looks for the authentication data

alias property.

 try {

 wspm_callbackHandler.handle(callbacks);

 String userID = null;

 String password = null;

 String alias = null;

 wspm_properties = ((WSMappingPropertiesCallback)callbacks[1]).getProperties();

 if (wspm_properties != null) {

 alias = (String) wspm_properties.get(com.ibm.wsspi.security.auth.callback.

 Constants.MAPPING_ALIAS);

 if (alias != null) {

 alias = alias.trim();

 }

 }

 } catch (UnsupportedCallbackException unsupportedcallbackexception) {

 . . . // error handling

410 Securing applications and their environment

The default mapping login module for WebSphere Application Server Version 6.0.x requires one mapping

property to define the authentication data alias. The mapping property, which is called MAPPING_ALIAS,

is defined in the Constants.class file in the com.ibm.wsspi.security.auth.callback package.

MAPPING_ALIAS = ″com.ibm.mapping.authDataAlias″

When you click Use default method > Select authentication data entry authentication on the Map

resource references to resources panel, the administrative console automatically creates a

MAPPING_ALIAS entry with the selected authentication data alias value in the mapping properties. If you

create your own custom login configuration and then use the default mapping login module, you must set

this property manually on the mapping properties for the resource factory reference.

In a custom login module, you can use the WSSubject.getRunAsSubject method to retrieve the subject

that represents the identity of the current running thread. The identity of the current running thread is

known as the RunAs identity. The RunAs subject typically contains a WSPrincipal principal in the principal

set and a WSCredential credential in the public credential set. The subject instance that is created by your

mapping module contains a Principal instance in the principals set and a PasswordCredential credential or

an org.ietf.jgss.GSSCredential instance in the set of private credentials.

The GenericCredential interface that is defined in Java Cryptography Architecture (JCA) Specification

Version 1.0 is removed in the JCA Version 1.5 specification. The GenericCredential interface is supported

by WebSphere Application Server Version 6.0.x to support older resource adapters that might be

programmed to the GenericCredential interface.

Customizing an application login to perform an identity assertion

Using the Java Authentication and Authorization Service (JAAS) login framework, you can create a JAAS

login configuration that can be used to perform login to an identity assertion.

Before you begin

You can allow an application or system provider to perform an identity assertion with trust validation. To do

this, you use the JAAS login framework, where trust validation is accomplished in one login module and

credential creation is accomplished in another module. The two custom login modules allow you to create

a JAAS login configuration that can be used to perform a login to an identity assertion.

Two custom login modules are required:

User implemented trust association login module (trust validation)

The user implemented trust association login module performs whatever trust verification the user

requires. When trust is verified, the trust verification status and the login identity should be put into

a map in the share state of the login module so that the credential creation login module can use

the information. This map should be stored in the property:

 com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state

 (which consists of)

 com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted

 (which is set to true if trusted and false if not trusted)

 com.ibm.wsspi.security.common.auth.module.IdenityAssertionLoginModule.principal

 (which contains the principal of the identity)

 com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates

 (which contains the certificate of the identity)

Identity assertion login module (credential creation)

The com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule performs the

Chapter 5. Authenticating users 411

credential creation. This module relies on the trust state information being in the login context’s

shared state. This login module is protected by the Java 2 security runtime permissions for:

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.initialize

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.login

The identity assertion login module looks for the trust information in the shared state property,

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state, which contains

the trust status and the identity to login and should include:

 com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted

 (which when true indicates trusted and false when not trusted)

 com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.principal

 (which contains the principal of the identity to login, if using a principal)

 com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates

 (which contains a array of a certificate chain that contains the identity to login,

 if using a certificate)

A WSLoginFailedException is returned if the state, trust, or identity information is missing. The

login module then performs a login of the identity, and the subject will contain the new identity

1. Delegate trust validation to a user implemented plug point. Trust validation must be accomplished in a

custom login module. This custom login module should perform any trust validation required, then set

the trust and identity information in the shared state to be passed on to the identity assertion login

module. A map is required in the shared state key,

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state. If the state is missing

then a WSLoginFailedException is thrown by the IdentityAssertionLoginModule. This map must include:

v A trust key called com.ibm.wsspi.secuirty.common.auth.module.IdentityAssertionLoginModule.trust. If

the key is set to true, then trust is established. If the key is set to false, then no trust is established.

If the trust key is not set to true, then the IdentityAssertionLoginModule will throw a

WSLoginFailedException.

v v An identity key is set: A java.security.Principal can be set in the

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.principal key.

v Or a java.security.cert.X509Certificate[] can be set in the

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certficates key

If both a principal and certificate are supplied, then the principal is used and a warning is issued.

2. Create a new JAAS configuration for application logins The JAAS configuration will contain the user

implemented trust validation custom login module and the IdentityAssertionLoginModule. Then to

configure an application login configuration, perform the following on the administration console:

a. Expand Security > Global security.

b. Expand Java authentication and authorization services > Application logins

c. Select New.

d. Give the JAAS configuration an alias.

e. Click Apply.

f. Select JAAS Login Modules

g. Select New.

h. Enter the Module class name of the user implemented trust validation custom login module.

i. Click Apply.

j. Enter the Module class name of

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule

412 Securing applications and their environment

k. Make sure the Module class name classes are in the correct order. The user implemented trust

validation login module should be first and the IdentityAssertionLoginModule should be the second

class in the list.

l. Click Save.

This JAAS configuration is then used by the application to perform an Identity Assertion.

3. Perform the programmable identity assertion. A program can now use the JAAS login configuration to

perform a programmatic identity assertion. The application program can create a login context for the

JAAS configuration created in step 2, then login to that login context with the identity they would assert

to. If the login is successful then that identity can be set in the current running process. Here is a

example of how such code would operate:

MyCallbackHandler handler = new MyCallbackHandler(new MyPrincipal(“Joe”));

LoginContext lc = new LoginContext(“MyAppLoginConfig”, handler);

lc.login(); //assume successful

Subject s = lc.getSubject();

WSSubject.setRunAsSubject(s);

// From here on , the runas identity is “Joe”

Results

Using the JAAS login framework and two user implemented login modules, you can create a JAAS login

configuration that can be used to perform login to an identity assertion.

Customizing a server-side Java Authentication and Authorization Service

authentication and login configuration

WebSphere Application Server supports plugging in a custom Java Authentication and Authorization

Service (JAAS) login module before or after the WebSphere Application Server system login module.

However, WebSphere Application Server does not support the replacement of the WebSphere Application

Server system login modules, which are used to create the WSCredential credential and WSPrincipal

principal in the Subject. By using a custom login module, you can either make additional authentication

decisions or add information to the Subject to make additional, potentially finer-grained, authorization

decisions inside a Java Platform, Enterprise Edition (Java EE) application.

About this task

WebSphere Application Server enables you to propagate information downstream that is added to the

Subject by a custom login module. For more information, see “Security attribute propagation” on page 436.

To determine which login configuration to use for plugging in your custom login modules, see the

descriptions of the login configurations that are located in the “System login configuration entry settings for

Java Authentication and Authorization Service” on page 397.

WebSphere Application Server supports the modification of the system login configuration through the

administrative console and by using the wsadmin scripting utility. To configure the system login

configuration using the administrative console, click Security > Global security. Under Java

Authentication and Authorization Service, click System logins.

v Configure a system login configuration.

Refer to the following code sample to configure a system login configuration using the wsadmin tool.

The following sample Jacl script adds a custom login module into the Lightweight Third-party

Authentication (LTPA) Web system login configuration.

Note: Lines 32, 33, and 34 in the following code sample are split into two lines.

1. ###

2. #

3. # Open security.xml

4. #

5. ###

6.

Chapter 5. Authenticating users 413

7.

8. set sec [$AdminConfig getid /Cell:hillside/Security:/]

9.

10.

11. ###

12. #

13. # Locate systemLoginConfig

14. #

15. ###

16.

17.

18. set slc [$AdminConfig showAttribute $sec systemLoginConfig]

19.

20. set entries [lindex [$AdminConfig showAttribute $slc entries] 0]

21.

22.

23. ###

24. #

25. # Append a new LoginModule to LTPA_WEB

26. #

27. ###

28.

29. foreach entry $entries {

30. set alias [$AdminConfig showAttribute $entry alias]

31. if {$alias == "LTPA_WEB"} {

32. set newJAASLoginModuleId [$AdminConfig create JAASLoginModule

$entry {{moduleClassName

"com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"}}]

33. set newPropertyId [$AdminConfig create Property $newJAASLoginModuleId

{{name delegate}{value "com.ABC.security.auth.CustomLoginModule"}}]

34. $AdminConfig modify $newJAASLoginModuleId

{{authenticationStrategy REQUIRED}}

35. break

36. }

37. }

38.

39.

40. ###

41. #

42. # save the change

43. #

44. ###

45.

46. $AdminConfig save 47.

Note: The wsadmin scripting utility inserts a new object to the end of the list. To insert the custom login

module before the AuthenLoginModule login module, delete the AuthenLoginModule login module

and recreate it after inserting the custom login module. Save the sample script into a

sample.jacl file, and run the sample script using the following command:

wsadmin -f sample.jacl

v Remove the current LTPA_WEB login configuration and all of the login modules.

You can use the following sample Jacl script to remove the current LTPA_WEB login configuration and

all the login modules:

48. ###

49. #

50. # Open security.xml

51. #

52. ###

53.

54.

55. set sec [$AdminConfig getid /Cell:hillside/Security:/]

56.

414 Securing applications and their environment

57.

58. ###

59. #

60. # Locate systemLoginConfig

61. #

62. ###

63.

64.

65. set slc [$AdminConfig showAttribute $sec systemLoginConfig]

66.

67. set entries [lindex [$AdminConfig showAttribute $slc entries] 0]

68.

69.

70. ###

71. #

72. # Remove the LTPA_WEB login configuration

73. #

74. ###

75.

76. foreach entry $entries {

77. set alias [$AdminConfig showAttribute $entry alias]

78. if {$alias == "LTPA_WEB"} {

79. $AdminConfig remove $entry

80. break 81. }

82. }

83.

84.

85. ###

86. #

87. # save the change

88. #

89. ###

90.

91. $AdminConfig save

v Recover the original LTPA_WEB configuration.

You can use the following sample Jacl script to recover the original LTPA_WEB configuration:

Note: Lines 122, 124, and 126 in the following code sample are split into two or more lines for

illustrative purposes only.

92. ###

93. #

94. # Open security.xml

95. #

96. ###

97.

98.

99. set sec [$AdminConfig getid /Cell:hillside/Security:/]

100.

101.

102. ###

103. #

104. # Locate systemLoginConfig

105. #

106. ###

107.

108.

109. set slc [$AdminConfig showAttribute $sec systemLoginConfig]

110.

111. set entries [lindex [$AdminConfig showAttribute $slc entries] 0]

112.

113.

114.

115. ###

Chapter 5. Authenticating users 415

116. #

117. # Recreate the LTPA_WEB login configuration

118. #

119. ###

120.

121.

122. set newJAASConfigurationEntryId [$AdminConfig create

JAASConfigurationEntry $slc {{alias LTPA_WEB}}]

123.

124. set newJAASLoginModuleId [$AdminConfig create

JAASLoginModule $newJAASConfigurationEntryId

{{moduleClassName

"com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"}}]

125.

126. set newPropertyId [$AdminConfig create Property

$newJAASLoginModuleId {{name delegate}{value "com.ibm.ws.security.web.AuthenLoginModule"}}]

127.

128. $AdminConfig modify $newJAASLoginModuleId

{{authenticationStrategy REQUIRED}}

129.

130.

131. ###

132. #

133. # save the change

134. #

135. ###

136.

137. $AdminConfig save

v Have the ltpaLoginModule initialize the callback array in the login method.

The WebSphere Application Server Version ltpaLoginModule and AuthenLoginModule login modules use

the shared state to save state information so that custom login modules can modify the information. The

ltpaLoginModule login module initializes the callback array in the login method using the following code.

The callback array is created by the ltpaLoginModule login module only if an array is not defined in the

shared state area. In the following code sample, the error handling code is removed to make the

sample concise. If you insert a custom login module before the ltpaLoginModule login module, the

custom login module might follow the same style to save the callback into the shared state.

Note: In the following code sample, several lines of code are split into two lines for illustrative purposes

only.

138. Callback callbacks[] = null;

139. if (!sharedState.containsKey(

com.ibm.wsspi.security.auth.callback.Constants. CALLBACK_KEY)) {

140. callbacks = new Callback[3];

141. callbacks[0] = new NameCallback("Username: ");

142. callbacks[1] = new PasswordCallback("Password: ", false);

143. callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl("Credential Token: ");

144. try {

145. callbackHandler.handle(callbacks);

146. } catch (java.io.IOException e) {

147. . . .

148. } catch (UnsupportedCallbackException uce) {

149. . . .

150. }

151. sharedState.put(com.ibm.wsspi.security.auth.callback.

Constants.CALLBACK_KEY, callbacks);

152. } else {

153. callbacks = (Callback []) sharedState.get

(com.ibm.wsspi.security.auth.callback.Constants.CALLBACK_KEY);

154. }

v Have the AuthenLoginModule initialize the callback array.

416 Securing applications and their environment

The ltpaLoginModule and AuthenLoginModule login modules generate both a WSPrincipal object and a

WSCredential object to represent the authenticated user identity and security credentials. The

WSPrincipal and WSCredential objects also are saved in the shared state. A JAAS login uses a

two-phase commit protocol.

First, the login methods in login modules, which are configured in the login configuration, are called.

Then, their commit methods are called. A custom login module, which is inserted after the

ltpaLoginModule and the AuthenLoginModule login modules, can modify the WSPrincipal and

WSCredential objects before these objects are committed. The WSCredential and WSPrincipal objects

must exist in the Subject after the login is completed. Without these objects in the Subject, WebSphere

Application Server run-time code rejects the Subject to make security decisions.

AuthenLoginModule uses the following code to initialize the callback array:

Note: In the following code sample, several lines of code are split into two lines for illustrative purposes

only.

155. Callback callbacks[] = null;

156. if (!sharedState.containsKey(com.ibm.wsspi.security.auth.

callback.Constants.CALLBACK_KEY)) {

157. callbacks = new Callback[6];

158. callbacks[0] = new NameCallback("Username: ");

159. callbacks[1] = new PasswordCallback("Password: ", false);

160. callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl("Credential Token: ");

161. callbacks[3] = new com.ibm.wsspi.security.auth.callback.

WSServletRequestCallback("HttpServletRequest: ");

162. callbacks[4] = new com.ibm.wsspi.security.auth.callback.

WSServletResponseCallback("HttpServletResponse: ");

163. callbacks[5] = new com.ibm.wsspi.security.auth.callback.

WSAppContextCallback("ApplicationContextCallback: ");

164. try {

165. callbackHandler.handle(callbacks);

166. } catch (java.io.IOException e) {

167. . . .

168. } catch (UnsupportedCallbackException uce {

169. . . .

170. }

171. sharedState.put(com.ibm.wsspi.security.auth.callback.

Constants.CALLBACK_KEY, callbacks);

172. } else {

173. callbacks = (Callback []) sharedState.get(com.ibm.wsspi.security.

auth.callback.Constants.CALLBACK_KEY);

174. }

v Obtain the application context. Three more objects, which contain callback information for the login, are

passed from the Web container to the AuthenLoginModule login module: a java.util.Map, an

HttpServletRequest, and an HttpServletResponse object. These objects represent the Web application

context. The WebSphere Application Server Version 5.1 application context, java.util.Map object,

contains the application name and the error page web address.

You can obtain the application context, java.util.Map object, by calling the getContext method on the

WSAppContextCallback object. The java.util.Map object is created with the following deployment

descriptor information.

Note: In the following code sample, several lines of code are split into two lines for illustrative purposes

only.

175. HashMap appContext = new HashMap(2);

176. appContext.put(com.ibm.wsspi.security.auth.callback.

Constants.WEB_APP_NAME,web_application_name);

177. appContext.put(com.ibm.wsspi.security.auth.callback.Constants.

REDIRECT_URL,errorPage);

Chapter 5. Authenticating users 417

What to do next

The application name and the HttpServletRequest object might be read by the custom login module to

perform mapping functions. The error page of the form-based login might be modified by a custom login

module. In addition to the JAAS framework, WebSphere Application Server supports the trust association

interface (TAI).

Other credential types and information can be added to the caller Subject during the authentication

process using a custom login module. The third-party credentials in the caller Subject are managed by

WebSphere Application Server as part of the security context. The caller Subject is bound to the running

thread during the request processing. When a Web or an Enterprise JavaBeans (EJB) module is

configured to use the caller identity, the user identity is propagated to the downstream service in an EJB

request. The WSCredential credential and any third-party credentials in the caller Subject are not

propagated downstream. Instead, some of the information can be regenerated at the target server based

on the propagated identity. Add third-party credentials to the caller Subject at the authentication stage. The

caller Subject, which is returned from the WSSubject.getCallerSubject method, is read-only and cannot be

modified. For more information on the WSSubject subject, see “Getting the caller subject from the thread.”

Getting the caller subject from the thread:

The Caller subject (or ″received subject″) contains the user authentication information that is used in the

call for this request. This subject is returned after issuing the WSSubject.getCallerSubject application

programming interface (API) to prevent replacing existing objects. The subject is marked read-only. This

API can be used to get access to the WSCredential credential so that you can put or set data in the

hashmap within the credential.

 Before you begin

You need the following Java 2 security permissions to runthis API: permission

javax.security.auth.AuthPermission ″wssecurity.getCallerSubject;″.

If you use the Kerberos authentication mechanism, the KDC policy enables Kerberos delegation and the

client has a forwardable Kerberos ticket, the subject has the client Kerberos tickets and the GSS delegate

credential. You can use APIs to access the Kerberos tickets and the GSS delegate credential.

About this task

Most data within the subject is not propagated downstream to another server. Only the credential token

within the WSCredential credential is propagated downstream and a new caller subject is generated.

1. Get the caller subject.

caller_subject = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

2. Access the WSCredential credential.

caller_cred = caller_subject.getPublicCredentials(com.ibm.websphere

.security.cred.WSCredential.class).iterator().next();

3. Put or set data in the hashmap within the credential.

String CALLERDATA = (String) caller_cred.get ("MYKEY");

System.out.println("My data from the Caller credential is: " + CALLERDATA);

4. Access the Kerberos tickets. For example:

 java.util.Set kerberosTickets = subject.getPrivateCredentials(KerberosTicket.class);

 if (kerberosTickets.size() > 1)

 System.out.println("Multiple Kerberos tickets found");

 Iterator credIter = kerberosTickets.iterator();

5. Access the GSS credential. For example:

 GSSCredential gssCred = subject.getPrivateCredentials(GSSCredential.class).iterator().next();

418 Securing applications and their environment

Example

try { javax.security.auth.Subject caller_subject; com.ibm.websphere.security.cred.WSCredential caller_cred;

caller_subject = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

 if (caller_subject != null) { caller_cred = caller_subject.getPublicCredentials

 (com.ibm.websphere.security.cred.WSCredential.class).iterator().next();

String CALLERDATA = (String) caller_cred.get (″MYKEY″);

System.out.println(″My data from the Caller credential is: ″ + CALLERDATA); } }

catch (WSSecurityException e) { // log error } catch (Exception e) { // log error }

Related tasks

“Customizing application login with Java Authentication and Authorization Service” on page 376
Using Java Authentication and Authorization Service (JAAS), you can customize your application login.

Getting the RunAs subject from the thread:

The RunAs subject or invocation subject contains the user authentication information for the RunAs mode

set in the application deployment descriptor for this method.

 Before you begin

You need the Java 2 security permissions to run this API: permission javax.security.auth.AuthPermission

″wssecurity.getRunAsSubject;″.

About this task

The RunAs subject (or invocation subject) contains the user authentication information for the RunAs

mode set in the application deployment descriptor for this method. This subject is marked read-only when

returned from the WSSubject.getRunAsSubject application programming interface (API) to prevent

replacing existing objects.

Most data within the Subject is not propagated downstream to another server. Only the credential token

within the WSCredential credential is propagated downstream and a new Caller subject is generated.

1. Access the WSCredential credential. The WSCredential credential is documented in the API

documentation.

2. Put or set data in the hashmap within the credential.

Example

try { javax.security.auth.Subject runas_subject; com.ibm.websphere.security.cred.WSCredential runas_cred;

runas_subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

if (runas_subject != null) { runas_cred = runas_subject.getPublicCredentials

com.ibm.websphere.security.cred.WSCredential.class).iterator().next();

String RUNASDATA = (String) runas_cred.get ("MYKEY")

System.out.println("My data from the RunAs credential is: " + RUNASDATA); } }

catch (WSSecurityException e) { // log error } catch (Exception e) { // log error }

Overriding the RunAs subject on the thread:

To extend the function that is provided by the Java Authentication and Authorization Service (JAAS)

application programming interfaces (APIs), you can set the RunAs subject or invocation subject with a

different valid entry that is used for outbound requests on this running thread.

 Before you begin

You need the following Java 2 security permissions to run these APIs:

v permission javax.security.auth.AuthPermission ″wssecurity.getRunAsSubject″

Chapter 5. Authenticating users 419

v permission javax.security.auth.AuthPermission ″wssecurity.getCallerSubject″

v permission javax.security.auth.AuthPermission ″wssecurity.setRunAsSubject″

About this task

This extension gives you the flexibility to associate the Subject with all the remote calls on this thread

whether you use a WSSubject.doAs method to associate the subject with the remote action.

1. Set a new RunAs subject for the thread, overriding the one declaratively set.

com.ibm.websphere.security.auth.WSSubject.setRunAsSubject(caller_subject);

2. Perform some remote calls.

3. Restore the previous RunAs subject.

com.ibm.websphere.security.auth.WSSubject.setRunAsSubject(runas_subject);

Example

try { javax.security.auth.Subject runas_subject, caller_subject; runas_subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject(); caller_subj

Revoking users from a cache:

In WebSphere Application Server, Version 5.0.2 and later, revocation of a user from the security cache

using an MBean interface is supported.

 About this task

When a user is removed from authentication cache, the user can still login to WebSphere Application

Server at any time. Removing the cache only removes the user from the runtime cache. It does not

remove the user from the registry, nor does it lock out the user.

Use the following procedure in a JACL script.

The following Java Command Language (JACL) revokes a user when given the realm and the user ID,

and cycles through all the security administration MBean instances that are returned when run from the

wsadmin command. The command also purges the user from the cache during each process.

Note: In some of the following lines of code, the lines are split into two or more lines for illustrative

purposes only.

proc revokeUser {realm userid} { global AdminControl AdminConfig

if {[catch {$AdminControl queryNames WebSphere:type=SecurityAdmin,*}

result]} { puts stdout "\$AdminControl queryNames WebSphere:type=SecurityAdmin,*

caught an exception $result\n" return } else { if {$result != {}} {

foreach secBean $result { if {$secBean != {} || $secBean != "null"} {

if {[catch {$AdminControl invoke $secBean purgeUserFromAuthCache "$realm $userid"} result]} {

puts stdout "\$AdminControl invoke $secBean purgeUserFromAuthCache $realm $userid caught an

exception $result\n" return } else {

puts stdout "\nUser $userid has been purged from the cache of process $secBean\n" } } else
$userid not revoked" } } } else { puts stdout "Security Mbean was

not found\n" return } } return true }

420 Securing applications and their environment

Related tasks

“Customizing a server-side Java Authentication and Authorization Service authentication and login

configuration” on page 413
WebSphere Application Server supports plugging in a custom Java Authentication and Authorization

Service (JAAS) login module before or after the WebSphere Application Server system login module.

However, WebSphere Application Server does not support the replacement of the WebSphere Application

Server system login modules, which are used to create the WSCredential credential and WSPrincipal

principal in the Subject. By using a custom login module, you can either make additional authentication

decisions or add information to the Subject to make additional, potentially finer-grained, authorization

decisions inside a Java Platform, Enterprise Edition (Java EE) application.

“Customizing application login with Java Authentication and Authorization Service” on page 376
Using Java Authentication and Authorization Service (JAAS), you can customize your application login.

Enabling identity assertion with trust validation

By enabling identity assertion with trust validation, an application can use the JAAS login configuration to

perform a programmatic identity assertion.

About this task

To enable an identity assertion with trust validation, follow these steps:

1. Create a custom login module to perform a trust validation. The login module must set trust and

identity information in the shared state, which is then passed on to the IdentityAssertionLoginModule.

The trust and identity information is stored in a map in the shared state under the key,

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state. If this key is missing

from the shared state, a WSLoginFailedException error is thrown by the IdentityAssertionLoginModule

module. The custom login module should include the following:

v A trust key named com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trust.

If the trust key is set to true, trust is established. If the trust key is set to false, the

IdentityAssertionLoginModule module creates a WSLoginFailedException error.

v The identity of the java.security.Principal type set in the

com.ibm.wsspi.security.common.auth.module.IdenityAssertionLoginModule.principal key.

v The identity in the form of a java,security.cert.X509Certificate[] certificate set in the

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates key.

Note: If both a principal and a certificate are supplied, the principal is used, and a warning is issued.

2. Create a new Java Authentication and Authorization Service (JAAS) configuration for application logins.

It contains the user-implemented trust validation custom login module and the

IdentityAssertionLoginModule module. To configure an application login configuration from the

administrative console, complete the following steps:

a. Click Security > Global security.

b. Under Java Authentication and Authorization Service, click Application logins > New.

c. Supply the JAAS configuration with an alias, and then click Apply.

d. Under Additional properties, click JAAS Login Modules > New.

e. Enter the module class name of the user-implemented trust validation custom login module, and

then click Apply.

f. Enter the com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule module class

name.

g. Make sure that the module class name classes are in the correct order. The user-implemented

trust validation login module must be the first class in the list, and the IdentityAssertionLoginModule

module must be the second class.

h. Click Save. The new JAAS configuration is used by the application to perform an identity assertion.

Chapter 5. Authenticating users 421

What to do next

An application can now use the JAAS login configuration to perform a programmatic identity assertion. The

application can create a login context for the JAAS configuration created in step 2, then login to that login

context with the identity it asserts to. If the login is successful, that identity can be set in the current

running process, as in the following example:

MyCallbackHandler handler = new MyCallbackHandler(new MyPrincipal(“Joe”));

LoginContext lc = new LoginContext(“MyAppLoginConfig”, handler);

lc.login(); //assume successful

Subject s = lc.getSubject();

WSSubject.setRunAsSubject(s);

// From here on, the runas identity is “Joe”

Performing identity mapping for authorization across servers in

different realms

Identity mapping is a one-to-one mapping of a user identity between two servers so that the proper

authorization decisions are made by downstream servers. Identity mapping is necessary when the

integration of servers is needed, but the user registries are different and not shared between the systems.

About this task

In most cases, requests flow downstream between two servers that are part of the same security domain.

In WebSphere Application Server, two servers that are members of the same cell are also members of the

same security domain. In the same cell, the two servers have the same user registry and the same

Lightweight Third Party Authentication (LTPA) keys for token encryption. These two commonalities ensure

that the LTPA token, among other user attributes, which flows between the two servers, not only can be

decrypted and validated, but also the user identity in the token can be mapped to attributes that are

recognized by the authorization engine.

The most reliable and recommended configuration involves two servers within the same cell. However,

sometimes you need to integrate multiple systems that cannot use the same user registry. When the user

registries are different between two servers, the security domain or realm of the target server does not

match the security domain of the sending server.

WebSphere Application Server enables mapping to occur either before sending the request outbound or

before enabling the existing security credentials to flow to the target server. The credentials are mapped

inbound with the specification that the target realm is trusted.

An alternative to mapping is to send the user identity without the token or the password to a target server

without actually mapping the identity. The use of the user identity is based on trust between the two

servers. Use Common Secure Interoperability Version 2 (CSIv2) identity assertion. When enabled, the

server sends just the X.509 certificate, principal name, or distinguished name (DN) based upon what was

used by the original client to perform the initial authentication. During CSIv2 identity assertion, trust is

established between WebSphere Application Servers.

The user identity must exist in the target user registry for identity assertion to work. This process can also

enable interoperability between other Java 2 Platform, Enterprise Edition (J2EE) Version 1.4 and higher

compliant application servers. If both the sending server and target servers have identity assertion

configured, WebSphere Application Server always uses this method of authentication, even when both

servers are in the same security domain. For more information on CSIv2 identity assertion, see “Identity

assertion to the downstream server” on page 490.

422 Securing applications and their environment

When the user identity is not present in the user registry of the target server, identity mapping must occur

either before the request is sent outbound or when the request comes inbound. This decision depends

upon your environment and requirements. However, it is typically easier to map the user identity before the

request is sent outbound for the following reasons:

v You know the user identity of the existing credential as it comes from the user registry of the sending

server.

v You do not have to worry about sharing Lightweight Third Party Authentication (LTPA) keys with the

other target realm because you are not mapping the identity to LTPA credentials. Typically, you are

mapping the identity to a user ID and password that are present in the user registry of the target realm.

When you do perform outbound mapping, in most cases, it is recommended that you use Secure Sockets

Layer (SSL) to protect the integrity and confidentiality of the security information sent across the network.

If LTPA keys are not shared between servers, an LTPA token cannot be validated at the inbound server. In

this case, outbound mapping is necessary because the user identity cannot be determined at the inbound

server to do inbound mapping. For more information, see “Configuring outbound mapping to a different

target realm” on page 431.

When you need inbound mapping, potentially due to the mapping capabilities of the inbound server, you

must ensure that both servers have the same LTPA keys so that you can get access to the user identity.

Typically, in secure communications between servers, an LTPA token is passed into the

WSCredTokenCallback callback of the inbound JAAS login configuration for the purposes of client

authentication. A method is available that enables you to open the LTPA token, if valid, and get access to

the user unique ID so that mapping can be performed. For more information, see “Configuring inbound

identity mapping.” In other cases, such as identity assertion, you might receive a user name in the

NameCallback callback of the inbound login configuration that enables you to map the identity.

The following topics are covered in this section:

v Configuring inbound identity mapping For inbound identity mapping, you can write a custom login

module and configure WebSphere Application Server to run the login module first within the system

login configurations. Consider the following steps when you write your custom login module:

“Configuring inbound identity mapping.”

v Configuring outbound identity mapping to a different target realm By default, when WebSphere

Application Server makes an outbound request from one server to another server in a different security

realm, the request is rejected. This topic details alternatives for enabling one server to send outbound

requests to a target server in a different realm. For more information, see “Configuring outbound

mapping to a different target realm” on page 431

Configuring inbound identity mapping

For inbound identity mapping, write a custom login module and configure WebSphere Application Server to

run the login module first within the system login configurations. Consider the following steps when you

write your custom login module.

1. Get the inbound user identity from the callbacks and map the identity, if necessary This step occurs in

the login method of the login module. A valid authentication has either or both NameCallback and the

WSCredTokenCallback callbacks present. The following code sample shows you how to determine the

user identity:

javax.security.auth.callback.Callback callbacks[] =

 new javax.security.auth.callback.Callback[3];

 callbacks[0] = new javax.security.auth.callback.NameCallback("");

 callbacks[1] = new javax.security.auth.callback.PasswordCallback

 ("Password: ", false);

 callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl("");

 callbacks[3] = new com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback("");

 try

Chapter 5. Authenticating users 423

{

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exceptions

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 // Shows which callbacks contain information

 boolean identitySwitched = false;

 String uid = ((NameCallback) callbacks[0]).getName();

 char password[] = ((PasswordCallback) callbacks[1]).getPassword();

 byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

 java.util.List authzTokenList = ((WSTokenHolderCallback)

 callbacks[3]).getTokenHolderList();

 if (credToken != null)

 {

 try

 {

 String uniqueID = WSSecurityPropagationHelper.validateLTPAToken(credToken);

 String realm = WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID);

 // Now set the string to the UID so that you can use the result for either

 // mapping or logging in.

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 }

 else if (uid == null)

 {

 // Throws an exception if authentication data is not valid.

 // You must have either UID or CredToken

 throw new WSLoginFailedException("invalid authentication data.");

 }

 else if (uid != null && password != null)

 {

 // This is a typical authentication. You can choose to map this ID to

 // another ID or you can skip it and allow WebSphere Application Server

 // to log in for you. When passwords are presented, be very careful to not

 // validate the password because this is the initial authentication.

 return true;

 }

 // If desired, map this uid to something else and set the identitySwitched

 // boolean. If the identity was changed, clear the propagated attributes

 // below so they are not used incorrectly.

 uid = myCustomMappingRoutine (uid);

 // Clear the propagated attributes because they are no longer applicable

 // to the new identity

 if (identitySwitched)

 {

 ((WSTokenHolderCallback) callbacks[3]).setTokenHolderList(null);

 }

2. Check to see if attribute propagation occurred and if the attributes for the user are already present

when the identity remains the same. Check to see if the user attributes are already present from the

sending server to avoid duplicate calls to the user registry lookup. To check for the user attributes, use

a method on the WSTokenHolderCallback callback that analyzes the information present in the

callback to determine if the information is sufficient for WebSphere Application Server to create a

Subject. The following code sample checks for the user attributes:

424 Securing applications and their environment

boolean requiresLogin =

((com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback)

callbacks[2]).getrequiresLogin();

If sufficient attributes are not present to form the WSCredential and the WSPrincipal objects that are

needed to perform authorization, the previous code sample returns a true result. When the result is

false, you can choose to discontinue processing as the necessary information exists to create the

Subject without performing additional remote user registry calls.

3. Optional: Look up the required attributes from the user registry, put the attributes in a hashtable, and

add the hashtable to the shared state. If the identity is switched in this login module, you must

complete the following steps:

a. Create the hashtable of attributes, as shown in the following example.

b. Add the hashtable to the shared state.

If the identity is not switched, but the value of the requiresLogin code sample shown previously is true,

you can create the hashtable of attributes. However, you are not required to create a hashtable in this

situation as WebSphere Application Server handles the login for you. However, you might consider

creating a hashtable to gather attributes in special cases where you are using your own special user

registry. Creating a UserRegistry implementation, using a hashtable, and letting WebSphere Application

Server gather the user attributes for you might be the easiest solution. The following table shows how

to create a hashtable of user attributes:

if (requiresLogin || identitySwitched)

 {

 // Retrieves the default InitialContext for this server.

 javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 // Retrieves the local UserRegistry implementation.

 com.ibm.websphere.security.UserRegistry reg = (com.ibm.websphere.

 security.UserRegistry)

 ctx.lookup("UserRegistry");

 // Retrieves the user registry uniqueID based on the uid specified

 // in the NameCallback.

 String uniqueid = reg.getUniqueUserId(uid);

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueid);

 // Retrieves the display name from the user registry based on the uniqueID.

 String securityName = reg.getUserSecurityName(uid);

 // Retrieves the groups associated with the uniqueID.

 java.util.List groupList = reg.getUniqueGroupIds(uid);

 // Creates the java.util.Hashtable with the information that you gathered

 // from the UserRegistry implementation.

 java.util.Hashtable hashtable = new java.util.Hashtable();

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID, uniqueid);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME, securityName);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS, groupList);

 // Adds a cache key that is used as part of the lookup mechanism for

 // the created Subject. The cache key can be an object, but should have

 // an implemented toString method. Make sure that the cacheKey contains

 // enough information to scope it to the user and any additional attributes

 // that you are using. If you do not specify this property the Subject is

 // scoped to the returned WSCREDENTIAL_UNIQUEID, by default.

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_CACHE_KEY, "myCustomAttribute" + uniqueid);

Chapter 5. Authenticating users 425

// Adds the hashtable to the sharedState of the Subject.

 _sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_PROPERTIES_KEY, hashtable);

 }

The following rules define in more detail how a hashtable login is performed. You must use a

java.util.Hashtable object in either the Subject (public or private credential set) or the shared-state

HashMap. The com.ibm.wsspi.security.token.AttributeNameConstants class defines the keys that

contain the user information. If the Hashtable object is put into the shared state of the login context

using a custom login module that is listed prior to the Lightweight Third Party Authentication (LTPA)

login module, the value of the java.util.Hashtable object is searched using the following key within the

shared-state hashMap:

Property

com.ibm.wsspi.security.cred.propertiesObject

Reference to the property

AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY

Explanation

This key searches for the Hashtable object that contains the required properties in the shared

state of the login context.

Expected result

A java.util.Hashtable object.

If a java.util.Hashtable object is found either inside the Subject or within the shared state area, verify

that the following properties are present in the hashtable:

Property

com.ibm.wsspi.security.cred.uniqueId

Reference to the property

AttributeNameConstants.WSCREDENTIAL_UNIQUEID

Returns

java.util.String

Explanation

The value of the property must be a unique representation of the user. For the WebSphere

Application Server default implementation, this property represents the information that is

stored in the application authorization table. The information is located in the application

deployment descriptor after it is deployed and user-to-role mapping is performed. See the

expected format examples if the user to role mapping is performed using a lookup to a

WebSphere Application Server user registry implementation.

 If a third-party authorization provider overrides the user-to-role mapping, then the third-party

authorization provider defines the format. To ensure compatibility with the WebSphere

Application Server default implementation for the unique ID value, call the WebSphere

Application Server public String getUniqueUserId(String userSecurityName) UserRegistry

method.

Expected format examples

 Realm Format (uniqueUserId)

Lightweight Directory Access

Protocol (LDAP)

ldaphost.austin.ibm.com:389/cn=user,o=ibm,c=us

Windows MYWINHOST/S-1-5-21-963918322-163748893-4247568029-500

UNIX MYUNIXHOST/32

The com.ibm.wsspi.security.cred.uniqueId property is required.

426 Securing applications and their environment

Property

com.ibm.wsspi.security.cred.securityName

Reference to the property

AttributeNameConstants. WSCREDENTIAL_ SECURITYNAME

Returns

java.util.String

Explanation

This property searches for the securityName of the authentication user. This name is

commonly called the display name or short name. WebSphere Application Server uses the

securityName attribute for the getRemoteUser, getUserPrincipal and getCallerPrincipal

application programming interfaces (APIs). To ensure compatibility with the WebSphere

Application Server default implementation for the securityName value, call the WebSphere

Application Server public String getUserSecurityName(String uniqueUserId) UserRegistry

method.

Expected format examples

 Realm Format (uniqueUserId)

LDAP user (LDAP UID)

Windows user (Windows username)

UNIX user (UNIX username)

The com.ibm.wsspi.security.cred.securityName property is required.

Property

com.ibm.wsspi.security.cred.groups

Reference to the property

AttributeNameConstants. WSCREDENTIAL_GROUPS

Returns

java.util.ArrayList

Explanation

This key searches for the array list of groups to which the user belongs. The groups are

specified in the realm_name/user_name format. The format of these groups is important as the

groups are used by the WebSphere Application Server authorization engine for group-to-role

mappings in the deployment descriptor. The format that is provided must match the format

expected by the WebSphere Application Server default implementation. When you use a

third-party authorization provider, you must use the format that is expected by the third-party

provider. To ensure compatibility with the WebSphere Application Server default

implementation for the unique group IDs value, call the WebSphere Application Server public

List getUniqueGroupIds(String uniqueUserId) UserRegistry method.

Expected format examples for each group in the array list

 Realm Format

LDAP ldap1.austin.ibm.com:389/cn=group1,o=ibm,c=us

Windows MYWINREALM/S-1-5-32-544

UNIX MY/S-1-5-32-544

The com.ibm.wsspi.security.cred.groups property is not required. A user is not required to have

associated groups.

Property

com.ibm.wsspi.security.cred.cacheKey

Chapter 5. Authenticating users 427

Reference to the property

AttributeNameConstants. WSCREDENTIAL_CACHE_KEY

Returns

java.lang.Object

Explanation

This key property can specify an object that represents the unique properties of the login,

including the user-specific information and the user dynamic attributes that might affect

uniqueness. For example, when the user logs in from location A, which might affect their

access control, the cache key needs to include location A so that the Subject that is received is

the correct Subject for the current location.

This com.ibm.wsspi.security.cred.cacheKey property is not required. When this property is not

specified, the cache lookup is the value that is specified for WSCREDENTIAL_UNIQUEID. When this

information is found in the java.util.Hashtable object, WebSphere Application Server creates a Subject

similar to the Subject that goes through the normal login process at least for LTPA. The new Subject

contains a WSCredential object and a WSPrincipal object that is fully populated with the information

found in the Hashtable object.

4. Add your custom login module into the RMI_INBOUND, WEB_INBOUND, and DEFAULT Java

Authentication and Authorization Service (JAAS) system login configurations. Configure the

RMI_INBOUND login configuration so that WebSphere Application Server loads your new custom login

module first.

a. Click Security > Global security > Java Authentication and Authorization Service > System

logins > RMI_INBOUND

b. Under Additional Properties, click JAAS login modules > New to add your login module to the

RMI_INBOUND configuration.

c. Return to the JAAS login modules panel for RMI_INBOUND.

d. Click Set order to change the order that the login modules are loaded so that WebSphere

Application Server loads your custom login module first. Use the Move Up or Move Down buttons

to arrange the order of the login modules.

e. Repeat the previous three steps for the WEB_INBOUND and DEFAULT login configurations.

Results

This process configures identity mapping for an inbound request.

Example

The “Example: Custom login module for inbound mapping” topic shows a custom login module that creates

a java.util.Hashtable hashtable that is based on the specified NameCallback callback. The

java.util.Hashtable hashtable is added to the sharedState java.util.Map map so that the WebSphere

Application Server login modules can locate the information in the hashtable.

Example: Custom login module for inbound mapping

This sample shows a custom login module that creates a java.util.Hashtable hashtable that is based on

the specified NameCallback callback. The java.util.Hashtable hashtable is added to the sharedState

java.util.Map map so that the WebSphere Application Server login modules can locate the information in

the Hashtable.

public customLoginModule()

{

public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

{

 // (For more information on initialization, see

 // “Developing custom login modules for a system login configuration” on page 363.)

428 Securing applications and their environment

_sharedState = sharedState;

}

public boolean login() throws LoginException

{

 // (For more information on what to do during login, see

 // “Developing custom login modules for a system login configuration” on page 363.)

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 javax.security.auth.callback.Callback callbacks[] =

 new javax.security.auth.callback.Callback[3];

 callbacks[0] = new javax.security.auth.callback.NameCallback("");

 callbacks[1] = new javax.security.auth.callback.PasswordCallback(

 "Password: ", false);

 callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl("");

 callbacks[3] = new com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback("");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 // Determines which callbacks contain information

 boolean identitySwitched = false;

 String uid = ((NameCallback) callbacks[0]).getName();

 char password[] = ((PasswordCallback) callbacks[1]).getPassword();

 byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

 java.util.List authzTokenList = ((WSTokenHolderCallback) callbacks[3]).

 getTokenHolderList();

 if (credToken != null)

 {

 try

 {

 String uniqueID = WSSecurityPropagationHelper.validateLTPAToken(credToken);

 String realm = WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID);

 // Set the string to the UID so you can use the information to either

 // map or login.

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueid);

 }

 catch (Exception e)

 {

 // handle exception

 }

 }

 else if (uid == null)

 {

 // The authentication data is not valid. You must have either UID

 // or CredToken

 throw new WSLoginFailedException("invalid authentication data.");

 }

 else if (uid != null && password != null)

 {

 // This is a typical authentication. You can choose to map this ID to

 // another ID or you can skip it and allow WebSphere Application Server

 // to log in for you. When passwords are presented, be very careful not

 // to validate the password because this is the initial authentication.

 return true;

 }

Chapter 5. Authenticating users 429

// You can map this uid to something else and set the identitySwitched

 // boolean. If the identity is changed, clear the following propagated

 // attributes so they are not used incorrectly.

 uid = myCustomMappingRoutine (uid);

 // Clear the propagated attributes because they no longer apply to the new identity

 if (identitySwitched)

 {

 ((WSTokenHolderCallback) callbacks[3]).setTokenHolderList(null);

 }

 boolean requiresLogin = ((com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback) callbacks[2]).getRequiresLogin();

 if (requiresLogin || identitySwitched)

 {

 // Retrieves the default InitialContext for this server.

 javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 // Retrieves the local UserRegistry object.

 com.ibm.websphere.security.UserRegistry reg =

 (com.ibm.websphere.security.UserRegistry) ctx.lookup("UserRegistry");

 // Retrieves the registry uniqueID based on the uid that is specified

 // in the NameCallback.

 String uniqueid = reg.getUniqueUserId(uid);

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueid);

 // Retrieves the display name from the user registry based on the uniqueID.

 String securityName = reg.getUserSecurityName(uid);

 // Retrieves the groups associated with this uniqueID.

 java.util.List groupList = reg.getUniqueGroupIds(uid);

 // Creates the java.util.Hashtable with the information that you gathered

 // from the UserRegistry.

 java.util.Hashtable hashtable = new java.util.Hashtable();

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID, uniqueid);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME, securityName);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS, groupList);

 // Adds a cache key that is used as part of the lookup mechanism for

 // the created Subject. The cache key can be an object, but has

 // an implemented toString method. Make sure the cacheKey contains enough

 // information to scope it to the user and any additional attributes you are

 // using. If you do not specify this property, the Subject is scoped to the

 // WSCREDENTIAL_UNIQUEID returned, by default.

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_CACHE_KEY, "myCustomAttribute" + uniqueid);

 // Adds the hashtable to the shared state of the Subject.

 _sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_PROPERTIES_KEY, hashtable);

 }

 else if (requiresLogin == false)

 {

 // For more information on this section, see

 // “Security attribute propagation” on page 436.

 // If you added a custom Token implementation, you can search through the

 // token holder list for it to deserialize.

 // Note: Any Java objects are automatically deserialized by

 // wsMapDefaultInboundLoginModule

 for (int i=0; i<authzTokenList.size(); i++)

 {

430 Securing applications and their environment

TokenHolder tokenHolder = (TokenHolder) authzTokenList.get(i);

 if (tokenHolder.getName().equals("com.acme.MyCustomTokenImpl"))

 {

 byte[] myTokenBytes = tokenHolder.getBytes();

 // Passes these bytes into the constructor of your implementation

 // class for deserialization.

 com.acme.MyCustomTokenImpl myTokenImpl = new com.acme.MyCustomTokenImpl(myTokenBytes);

 }

 }

 }

}

public boolean commit() throws LoginException

{

 // (For more information on what to do during a commit, see

 // “Developing custom login modules for a system login configuration” on page 363.)

}

// Defines your login module variables

com.ibm.wsspi.security.token.AuthorizationToken customAuthzToken = null;

com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

java.util.Map _sharedState = null;

}

Configuring outbound mapping to a different target realm

By default, when WebSphere Application Server makes an outbound request from one server to another

server in a different security realm, the request is rejected. This topic details alternatives for enabling one

server to send outbound requests to a target server in a different realm.

About this task

This outbound request is rejected to protect against a rogue server reading potentially sensitive information

if successfully impersonating the home of the object. Select one of the following alternative procedures so

that one server can send outbound requests to a target server in a different realm. When you are finished

with a procedure on the administrative console, click Apply.

v Do not perform mapping. Instead, allow the existing security information to flow to a trusted target

server, even if the target server resides in a different realm. Complete the following steps in the

administrative console:

1. Click Security > Global security.

2. Under RMI/IIOP security, click CSIv2 outbound authentication.

3. Specify the target realms in the Trusted target realms field. You can specify each trusted target

realm that is separated by a pipe (|) character. For example, specify

server_name.domain:port_number for a Lightweight Directory Access Protocol (LDAP) server or the

machine name for local operating system. If you want to propagate security attributes to a different

target realm, you must specify that target realm in the Trusted target realms field.

v Use the Java Authentication and Authorization Service (JAAS) WSLogin application login configuration

to create a basic authentication Subject that contains the credentials of the new target realm. This

configuration enables you to log in with a realm, user ID, and password that are specific to the user

registry of the target realm. You can provide the login information from within the Java Platform,

Enterprise Edition (Java EE) application that is making the outbound request or from within the

RMI_OUTBOUND system login configuration. These two login options are described in the following

information:

1. Use the WSLogin application login configuration from within the Java EE application to log in and

get a Subject that contains the user ID and the password of the target realm. The application can

wrap the remote call with a WSSubject.doAs call. For an example, see “Example: Using the

WSLogin configuration to create a basic authentication subject” on page 433.

Chapter 5. Authenticating users 431

2. Use the code sample in “Example: Using the WSLogin configuration to create a basic authentication

subject” on page 433 from this plug point within the RMI_OUTBOUND login configuration. Every

outbound Remote Method Invocation (RMI) request passes through this login configuration when it

is enabled. Complete the following steps to enable and plug in this login configuration:

a. Click Security > Global security.

b. Under RMI/IIOP security, click CSIv2 outbound authentication.

c. Select the Custom outbound mapping option. If the Security Attribute Propagation option is

selected, then WebSphere Application Server is already using this login configuration and you do

not need to enable custom outbound mapping.

d. Write a custom login module. For more information, see “Developing custom login modules for a

system login configuration” on page 363.

The “Example: Sample login configuration for RMI_OUTBOUND” on page 434 shows a custom

login module that determines whether the realm names match. In this example, the realm names

do not match so the WSLoginmodule is used to create a basic authentication Subject based on

custom mapping rules. The custom mapping rules are specific to the customer environment and

must be implemented using a realm to user ID and password mapping utility.

e. Configure the RMI_OUTBOUND login configuration so that your new custom login module is first

in the list.

1) Click Security > Global security.

2) Under Java Authentication and Authorization Service, click System logins >

RMI_OUTBOUND

3) Under Additional Properties, click JAAS login modules > New to add your login module to

the RMI_OUTBOUND configuration.

4) Return to the JAAS login modules panel for RMI_OUTBOUND.

5) Click Set order to change the order that the login modules are loaded so that your custom

login is loaded first.

v Add the use_realm_callback and use_appcontext_callback options to the outbound mapping module for

WSLogin. To add these options, complete the following steps:

1. Click Security > Global security.

2. Under Java Authentication and Authorization Service, click Application logins > WSLogin.

3. Under Additional properties, click JAAS login modules >

com.ibm.ws.security.common.auth.module.WSLoginModuleImpl.

4. Under Additional properties, click Custom Properties > New.

5. On the Custom properties panel, enter use_realm_callback in the Name field and true in the Value

field.

6. Click OK.

7. Click New to enter the second custom property.

8. On the Custom properties panel, enter use_appcontext_callback in the Name field and true in the

Value field.

The following changes are made to the security.xml file:

<entries xmi:id="JAASConfigurationEntry_2" alias="WSLogin">

 <loginModules xmi:id="JAASLoginModule_2"

 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"

 authenticationStrategy="REQUIRED">

 <options xmi:id="Property_2" name="delegate"

 value="com.ibm.ws.security.common.auth.module.WSLoginModuleImpl"/>

 <options xmi:id="Property_3" name="use_realm_callback" value="true"/>

 <options xmi:id="Property_4" name="use_appcontext_callback" value="true"/>

 </loginModules>

</entries>

432 Securing applications and their environment

Example: Using the WSLogin configuration to create a basic authentication

subject

This example shows how to use the WSLogin application login configuration from within a Java 2 Platform,

Enterprise Edition (J2EE) application to log in and get a Subject that contains the user ID and the

password of the target realm.

javax.security.auth.Subject subject = null;

try

{

 // Create a login context using the WSLogin login configuration and specify a

 // user ID, target realm, and password. Note: If the target_realm_name is the

 // same as the current realm, an authenticated Subject is created. However, if

 // the target_realm_name is different from the current realm, a basic

 // authentication Subject is created that is not validated. This unvalidated

 // Subject is created so that you can send a request to the different target

 // realm with valid security credentials for that realm.

 javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl("userid", "target_realm_name", "password"));

 // Note: The following code is an alternative that validates the user ID and

 // password specified against the target realm. The code performs a remote call

 // to the target server and will return true if the user ID and password are

 // valid and false if the user ID and password are not valid. If false is

 // returned, a WSLoginFailedException exception is created. You can catch

 // that exception and perform a retry or stop the request from flowing by

 // allowing that exception to surface out of this login.

 // ALTERNATIVE LOGIN CONTEXT THAT VALIDATES THE USER ID AND PASSWORD TO THE

 // TARGET REALM

 /**** currently remarked out ****

 java.util.Map appContext = new java.util.HashMap();

 appContext.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

 appContext.put(javax.naming.Context.PROVIDER_URL,

 "corbaloc:iiop:target_host:2809");

 javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl("userid", "target_realm_name", "password", appContext));

 **** currently remarked out ****/

 // Starts the login

 ctx.login();

 // Gets the Subject from the context

 subject = ctx.getSubject();

 }

 catch (javax.security.auth.login.LoginException e)

 {

 throw new com.ibm.websphere.security.auth.WSLoginFailedException (e.getMessage(), e);

 }

 if (subject != null)

 {

 // Defines a privileged action that encapsulates your remote request.

java.security.PrivilegedAction myAction = java.security.PrivilegedAction()

 {

 public Object run()

 {

 // Assumes a proxy is already defined. This example method returns a String

 return proxy.remoteRequest();

 }

 });

 // Starts this action using the basic authentication Subject needed for

Chapter 5. Authenticating users 433

// the target realm security requirements.

 String myResult = (String) com.ibm.websphere.security.auth.WSSubject.doAs

 (subject, myAction);

 }

Example: Sample login configuration for RMI_OUTBOUND

This example shows a sample login configuration for RMI_OUTBOUND that determines whether the realm

names match between two servers.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // “Developing custom login modules for a system login configuration” on page 363.)

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // “Developing custom login modules for a system login configuration” on page 363.)

 // Gets the WSProtocolPolicyCallback object

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new com.ibm.wsspi.security.auth.callback.

 WSProtocolPolicyCallback("Protocol Policy Callback: ");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 // Receives the RMI (CSIv2) policy object for checking the target realm

 // based upon information from the IOR.

 // Note: This object can be used to perform additional security checks.

 // See the application programming interface (API) documentation for

 // more information.

 csiv2PerformPolicy = (CSIv2PerformPolicy) ((WSProtocolPolicyCallback)callbacks[0]).

 getProtocolPolicy();

 // Checks if the realms do not match. If they do not match, then log in to

 // perform a mapping

 if (!csiv2PerformPolicy.getTargetSecurityName().equalsIgnoreCase(csiv2PerformPolicy.

 getCurrentSecurityName()))

 {

 try

 {

 // Do some custom realm -> user ID and password mapping

 MyBasicAuthDataObject myBasicAuthData = MyMappingLogin.lookup

 (csiv2PerformPolicy.getTargetSecurityName());

 // Creates the login context with basic authentication data gathered from

 // custom mapping

 javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl(myBasicAuthData.userid,

 csiv2PerformPolicy.getTargetSecurityName(),

 myBasicAuthData.password));

 // Starts the login

 ctx.login();

 // Gets the Subject from the context. This subject is used to replace

434 Securing applications and their environment

// the passed-in Subject during the commit phase.

 basic_auth_subject = ctx.getSubject();

 }

 catch (javax.security.auth.login.LoginException e)

 {

 throw new com.ibm.websphere.security.auth.

 WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what to do during commit, see

 // “Developing custom login modules for a system login configuration” on page 363.)

 if (basic_auth_subject != null)

 {

 // Removes everything from the current Subject and adds everything from the

 // basic_auth_subject

 try

 {

 public final Subject basic_auth_subject_priv = basic_auth_subject;

 // Do this in a doPrivileged code block so that application code

 // does not need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.

 PrivilegedExceptionAction()

 {

 public Object run() throws WSLoginFailedException

 {

 // Removes everything user-specific from the current outbound

 // Subject. This a temporary Subject for this specific invocation

 // so you are not affecting the Subject set on the thread. You may

 // keep any custom objects that you want to propagate in the Subject.

 // This example removes everything and adds just the new information

 // back in.

 try

 {

 subject.getPublicCredentials().clear();

 subject.getPrivateCredentials().clear();

 subject.getPrincipals().clear();

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 // Adds everything from basic_auth_subject into the login subject.

 // This completes the mapping to the new user.

 try

 {

 subject.getPublicCredentials().addAll(basic_auth_subject.

 getPublicCredentials());

 subject.getPrivateCredentials().addAll(basic_auth_subject.

 getPrivateCredentials());

 subject.getPrincipals().addAll(basic_auth_subject.

 getPrincipals());

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

Chapter 5. Authenticating users 435

catch (PrivilegedActionException e)

 {

 throw new WSLoginFailedException (e.getException().getMessage(),

 e.getException());

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.csiv2.CSIv2PerformPolicy csiv2PerformPolicy = null;

 javax.security.auth.Subject basic_auth_subject = null;

}

Security attribute propagation

With Security attribute propagation, WebSphere Application Server can transport security attributes

(authenticated Subject contents and security context information) from one server to another in your

configuration. WebSphere Application Server might obtain these security attributes from either an

enterprise user registry, which queries static attributes, or a custom login module, which can query static or

dynamic attributes. Dynamic security attributes, which are custom in nature, might include the

authentication strength that is used for the connection, the identity of the original caller, the location of the

original caller, the IP address of the original caller, and so on.

Security attribute propagation provides propagation services using Java serialization for any objects that

are contained in the Subject. However, Java code must be able to serialize and deserialize these objects.

The Java programming language specifies the rules for how Java code can serialize an object. Because

problems can occur when dealing with different platforms and versions of software, WebSphere Application

Server also offers a token framework that enables custom serialization functionality. The token framework

has other benefits that include the ability to identify the uniqueness of the token. This uniqueness

determines how the Subject gets cached and the purpose of the token. The token framework defines four

marker token interfaces that enable the WebSphere Application Server runtime to determine how to

propagate the token.

Note: Any custom tokens that are used in this framework are not used by WebSphere Application Server

for authorization or authentication. The framework serves as a way to notify WebSphere Application

Server that you want these tokens propagated in a particular way. WebSphere Application Server

handles the propagation details, but does not handle serialization or deserialization of custom

tokens. Serialization and deserialization of these custom tokens are carried out by the

implementation and handled by a custom login module.

With WebSphere Application Server Version 6.0 and later, a custom Java Authorization Contract for

Container (JACC) provider can be configured to enforce access control for Java Platform,

Enterprise Edition (Java EE) applications. A custom JACC provider can explore the custom security

attributes in the caller JAAS subject in making access control decisions.

When a request is being authenticated, a determination is made by the login modules whether this request

is an initial login or a propagation login. An initial login is the process of authenticating the user

information, typically a user ID and password, and then calling the application programming interfaces

(APIs) for the remote user registry to look up secure attributes that represent the user access rights. A

propagation login is the process of validating the user information, typically a Lightweight Third Party

Authentication (LTPA) token, and then deserializing a series of tokens that constitute both custom objects

and token framework objects known to WebSphere Application Server.

The following marker tokens are introduced in the framework:

Authorization token

The authorization token contains most of the authorization-related security attributes that are

propagated. The default authorization token is used by the WebSphere Application Server

436 Securing applications and their environment

authorization engine to make Java Platform, Enterprise Edition (Java EE) authorization decisions.

Service providers can use custom authorization token implementations to isolate their data in a

different token, perform custom serialization and de-serialization, and make custom authorization

decisions using the information in their token at the appropriate time. For information on how to

use and implement this token type, see “Using the default propagation token” on page 447 and

“Implementing a custom propagation token” on page 769.

Single sign-on (SSO) token

A custom SingleSignonToken token that is added to the Subject is automatically added to the

response as an HTTP cookie and contains the attributes sent back to Web browsers. The token

interface getName method with the getVersion method defines the cookie name. WebSphere

Application Server defines a default SingleSignonToken token with the LtpaToken name and

Version 2. The cookie name added is LtpaToken2. Do not add sensitive information, confidential

information, or unencrypted data to the response cookie.

 It is also recommended that any time that you use cookies, use the Secure Sockets Layer (SSL)

protocol to protect the request. Using an SSO token, Web users can authenticate once when

accessing Web resources across multiple WebSphere Application Servers. A custom SSO token

extends this functionality by adding custom processing to the single sign-on scenario. For more

information on SSO tokens, see “Implementing single sign-on to minimize Web user

authentications” on page 275. For information on how to use and implement this token type, see

“Using the default single sign-on token with default or custom token factory” on page 452 and

“Implementing a custom single sign-on token” on page 786.

Propagation token

The propagation token is not associated with the authenticated user so it is not stored in the

Subject. Instead, the propagation token is stored on the thread and follows the invocation

wherever it goes. When a request is sent outbound to another server, the propagation tokens on

that thread are sent with the request and the tokens are run by the target server. The attributes

that are stored on the thread are propagated regardless of the Java Platform, Enterprise Edition

(Java EE) RunAs user switches.

 The default propagation token monitors and logs all user switches and host switches. You can add

additional information to the default propagation token using the WSSecurityHelper application

programming interfaces (APIs). To retrieve and set custom implementations of a propagation

token, you can use the WSSecurityPropagationHelper class. For information on how to use and

implement this token type, see “Using the default propagation token” on page 447 and

“Implementing a custom propagation token” on page 769.

Authentication token

The authentication token flows to downstream servers and contains the identity of the user. This

token type serves the same function as the Lightweight Third Party Authentication (LTPA) token in

previous versions. Although this token type is typically reserved for internal WebSphere Application

Server purposes, you can add this token to the Subject and the token is propagated using the

getBytes method of the token interface.

 A custom authentication token is used solely for the purpose of the service provider that adds it to

the Subject. WebSphere Application Server does not use it for authentication purposes because a

default authentication token exists that is used for WebSphere Application Server authentication.

This token type is available for the service provider to identify how the custom data uses the token

to perform custom authentication decisions. For information on how to use and implement this

token type, see “Default authentication token” on page 439 and “Implementing a custom

authentication token” on page 796.

KerberosTicket token

If Kerberos is the active Kerberos authentication mechanism, this class encapsulates a Kerberos

ticket and associated information as viewed from the point of view of the client.

Chapter 5. Authenticating users 437

Horizontal propagation versus downstream propagation

In WebSphere Application Server, both horizontal propagation, which uses single sign-on for Web

requests, and downstream propagation, which uses Remote Method Invocation over the Internet

Inter-ORB Protocol (RMI/IIOP) to access enterprise beans, are available.

Horizontal propagation

In horizontal propagation, security attributes are propagated among front-end servers. The serialized

security attributes, which are the Subject contents and the propagation tokens, can contain both static and

dynamic attributes. The single sign-on (SSO) token stores additional system-specific information that is

needed for horizontal propagation. The information contained in the SSO token tells the receiving server

where the originating server is located and how to communicate with that server. Additionally, the SSO

token also contains the key to look up the serialized attributes. To enable horizontal propagation, you must

configure the single sign-on token and the Web inbound security attribute propagation features. You can

configure both of these features using the administrative console.

Figure 1

Initial HTTP

authentication

Later HTTP request

with single signon

Data Replication Service

(DRS)

attribute replication

Application 1 in server 1

Application 1 in server 2

Application 2 in server 3

Application 3 in server 5

Application 2 in server 4

Data Replication Service

(DRS)

attribute replication

Java Management Extensions (JMX)

request for subject

The subject is kept in the

Common Secure Interoperability Version 2 (CSIv2) session

The Subject is requested from original server

because it is not found in DynaCache

The Subject is replicated

using DynaCache in this cluster.

No return to the original cluster

The Subject and propagation attributes

are sent using RMI/IIOP

1. User authenticates to server 1.

2. Server 1 makes an RMI request to server 5.

3. User accesses another Web application on server 3.

Security

cache

DynaCache

DynaCache

Security

cache

DynaCache

DynaCache

CSIv2 session

cache

Performance implications for horizontal propagation

The performance implications of the JMX remote call depends upon your environment. The JMX remote

call is used for obtaining the original login attributes. Horizontal propagation reduces many of the remote

user registry calls in cases where these calls cause the most performance problems for an application.

However, the deserialization of these objects also might cause performance degradation, but this

degradation might be less than the remote user registry calls. It is recommended that you test your

environment with horizontal propagation enabled and disabled. In cases where you must use horizontal

propagation for preserving original login attributes, test whether JMX provides better performance in your

environment.

438 Securing applications and their environment

Downstream propagation

In downstream propagation, a Subject is generated at the Web front-end server, either by a propagation

login or a user registry login. WebSphere Application Server propagates the security information

downstream for enterprise bean invocations when both Remote Method Invocation (RMI) outbound and

inbound propagation are enabled.

Benefits of propagating security attributes

The security attribute propagation feature of WebSphere Application Server has the following benefits:

v Enables WebSphere Application Server to use the security attribute information for authentication and

authorization purposes. The propagation of security attributes can eliminate the need for user registry

calls at each remote hop along an invocation. Previous versions of WebSphere Application Server

propagated only the user name of the authenticated user, but ignored other security attribute information

that needed to be regenerated downstream using remote user registry calls. To accentuate the benefits

of this new functionality, consider the following example:

In previous releases, you might use a reverse proxy server (RPSS), such as WebSEAL, to authenticate

the user, gather group information, and gather other security attributes. As stated previously,

WebSphere Application Server accepted the identity of the authenticated user, but disregarded the

additional security attribute information. To create a Java Authentication and Authorization Service

(JAAS) Subject containing the needed WSCredential and WSPrincipal objects, WebSphere Application

Server made 5 to 6 calls to the user registry. The WSCredential object contains various security

information that is required to authorize a Java EE resource. The WSPrincipal object contains the realm

name and the user that represents the principal for the Subject.

In the current release of the Application Server, information that is obtained from the reverse proxy

server can be used by WebSphere Application Server and propagated downstream to other server

resources without additional calls to the user registry. The retaining of the security attribute information

enables you to protect server resources properly by making appropriate authorization and trust-based

decisions User switches that occur because of Java EE RunAs configurations do not cause the

application server to lose the original caller information. This information is stored in the

PropagationToken located on the running thread.

v Enables third-party providers to plug in custom tokens. The token interface contains a getBytes method

that enables the token implementation to define custom serialization, encryption methods, or both.

v Provides the ability to have multiple tokens of the same type within a Subject created by different

providers. WebSphere Application Server can handle multiple tokens for the same purpose. For

example, you might have multiple authorization tokens in the Subject and each token might have

distinct authorization attributes that are generated by different providers.

v Provides the ability to have a unique ID for each token type that is used to formulate a more unique

subject identifier than just the user name in cases where dynamic attributes might change the context of

a user login. The token type has a getUniqueId() method that is used for returning a unique string for

caching purposes. For example, you might need to propagate a location ID, which indicates the location

from which the user logs into the system. This location ID can be generated during the original login

using either an reverse proxy server or the WEB_INBOUND login configuration and added to the

Subject prior to serialization. Other attributes might be added to the Subject as well and use a unique

ID. All of the unique IDs must be considered for the uniqueness of the entire Subject. WebSphere

Application Server has the ability to specify what is unique about the information in the Subject, which

might affect how the user accesses the Subject later.

Default authentication token

Do not use the default authentication token in service provider code. This default token is used by the

WebSphere Application Server run-time code only and is authentication mechanism specific.

Chapter 5. Authenticating users 439

Any modifications to this token by service provider code can potentially cause interoperability problems. If

you need to create an authentication token for custom usage, see “Implementing a custom authentication

token” on page 796 for more information.

Changing the token factory that is associated with the default authentication token

When WebSphere Application Server generates a default authentication token, the application server

utilizes the TokenFactory class that is specified using the

com.ibm.wsspi.security.token.authenticationTokenFactory property. To modify this property using the

administrative console, complete the following steps:

1. Click Security > Global security.

2. Under Additional properties, click Custom properties.

The com.ibm.ws.security.ltpa.LTPATokenFactory token factory is the default for this property. The

LTPATokenFactory token factory uses the DESede/ECB/PKCS5Padding cipher. This token factory creates

an interoperable Lightweight Third Party Authentication (LTPA) token. If you change this token factory, you

lose the interoperability with any servers running a version of WebSphere Application Server prior to

Version 5.1.1 and any other servers that do not support the new token factory implementation. However, if

all of your application servers use WebSphere Application Server Version 5.1.1 or later and all of your

servers use your new token factory, this interoperability is not a problem.

If you associate the com.ibm.ws.security.ltpa.LTPAToken2Factory token factory with the

com.ibm.wsspi.security.token.authenticationTokenFactory property, the token is Advanced Encryption

Standard (AES) encrypted. However, you need to weigh the performance against your security needs. You

might add additional attributes to the authentication token in the Subject during a login that are available

downstream.

If you need to perform your own signing and encryption of the default authentication token, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates (createToken) and validates (validateTokenBytes) your

token implementation. You can use the LTPA keys that are passed into the initialize method of the token

factory or you can use your own keys. If you use your own keys, they must be the same everywhere to

validate the tokens that are generated using those keys. See the API documentation, available through a

link on the front page of the information center, for more information on implementing your own custom

token factory. To associate your token factory with the default authentication token using the administrative

console, complete the following steps:

1. Click Security > Global security.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.authenticationTokenFactory property and verify that the value

of this property matches your custom token factory implementation.

4. Verify that your implementation classes are put into the install_dir/classes directory so that the

WebSphere Application Server class loader can load the classes.

5. Verify that the QEJBSVR user profile has read, write, and execute (*RWX) authority to the classes

directory. You can use the Work with Authority (WRKAUT) command to view the authority permissions

for that directory.

Propagating security attributes among application servers

Use the security attribute propagation feature of WebSphere Application Server to send security attribute

information regarding the original login to other servers using a token. This topic will help to configure

WebSphere Application Server to propagate security attributes to other servers.

440 Securing applications and their environment

About this task

To fully enable security attribute propagation, you must configure the single sign-on (SSO), Common

Secure Interoperability Version 2 (CSIv2) inbound, and CSIv2 outbound panels in the WebSphere

Application Server administrative console. You can enable just the portions of security attribute propagation

relevant to your configuration. For example, you can enable Web propagation, which is propagation

amongst front-end application servers, using either the push technique (DynaCache) or the pull technique

(remote method to originating server).

You also can choose whether to enable Remote Method Invocation (RMI) outbound and inbound

propagation, which is commonly called downstream propagation. Typically both types of propagation are

enabled for any given cell. In some cases, you might want to choose a different option for a specific

application server using the server security panel within the specific application server settings.

Note: To prevent propagating the same security attributes among application servers multiple times,

WebSphere Application Server verifies that a Lightweight Third Party Authentication (LTPA) token

does not exist. Two cases can occur. Absence of the LTPA token tells the Application Server that

propagation can proceed. Presence of the LTPA token indicates that propagation has occurred if

the LTPA token has been generated within the cluster. However, in the second case, if the LTPA

token is present, but has been generated by a server outside the cluster, such as by Tivoli Access

Manager, Lotus Domino or a different Application Server cluster, security attributes are not

propagated.

To access the server security panel in the administrative console, click Servers > Application Servers >

server_name. Under Security, click Server security.

Complete the following steps to configure WebSphere Application Server for security attribute propagation:

 1. Access the WebSphere Application Server administrative console by typing http://
server_name:port_number/ibm/console. The administrative console address might differ if you have

previously changed the port number.

 2. Click Security > Global security.

 3. Under Web security, click Single sign-on (SSO).

 4. Optional: Select the Interoperability Mode option if you need to interoperate with servers that do not

support security attribute propagation. Servers that do not support security attribute propagation

receive the Lightweight Third Party Authentication (LTPA) token and the Propagation token, but ignore

the security attribute information that they do not understand.

 5. Select the Web inbound security attribute propagation option. The Web inbound security attribute

propagation option enables horizontal propagation, which allows the receiving SSO token to retrieve

the login information from the original login server. If you do not enable this option, downstream

propagation can occur if you enable the Security Attribute Propagation option on both the CSIv2

Inbound authentication and CSIv2 outbound authentication panels.

Typically, you enable the Web inbound security attribute propagation option if you need to gather

dynamic security attributes set at the original login server that cannot be regenerated at the new

front-end server. These attributes include any custom attributes that might be set in the

PropagationToken token using the com.ibm.websphere.security.WSSecurityHelper application

programming interfaces (APIs). You must determine whether enabling this option improves or

degrades the performance of your system. While the option prevents some remote user registry calls,

the deserialization and decryption of some tokens might impact performance. In some cases

propagation is faster, especially if your user registry is the bottleneck of your topology. It is

recommended that you measure the performance of your environment both using and not using this

option. When you test the performance, it is recommended that you test in the operating environment

of the typical production environment with the typical number of unique users accessing the system

simultaneously.

Chapter 5. Authenticating users 441

6. Click Security > Global security. Under RMI/IIOP security, click CSIv2 inbound authentication.

The Login configuration field specifies RMI_INBOUND as the system login configuration that is used for

inbound requests. To add custom Java Authentication and Authorization Service (JAAS) login

modules, complete the following steps:

a. Click Security > Global security. Under Java Authentication and Authorization Service, click

System logins. A list of the system login configurations is displayed. WebSphere Application

Server provides the following pre-configured system login configurations: DEFAULT, LTPA,

LTPA_WEB, RMI_INBOUND, RMI_OUTBOUND, SWAM, WEB_INBOUND,

wssecurity.IDAssertion, and wssecurity.Signature. Do not delete these predefined configurations.

Note: SWAM is deprecated in WebSphere Application Server Version 7.0 and will be removed in

a future release.

b. Click the name of the login configuration that you want to modify.

c. Under Additional Properties, click JAAS Login Modules. The JAAS Login Modules panel is

displayed, which lists all of the login modules that are processed in the login configuration. Do not

delete the required JAAS login modules. Instead, you can add custom login modules before or

after the required login modules. If you add custom login modules, do not begin their names with

com.ibm.ws.security.server.

You can specify the order in which the login modules are processed by clicking Set Order.

 7. Select the Security attribute propagation option on the CSIv2 inbound authentication panel. When

you select Security Attribute Propagation, the server advertises to other application servers that it

can receive propagated security attributes from another server in the same realm over the Common

Secure Interoperability version 2 (CSIv2) protocol.

 8. Click Security > Global security. Under RMI/IIOP security, click CSIv2 Outbound authentication.

The CSIv2 outbound authentication panel is displayed. The Login configuration field specifies

RMI_OUTBOUND as the JAAS login configuration that is used for outbound configuration. You cannot

change this login configuration. Instead, you can customize this login configuration by completing the

substeps that are listed previously for CSIv2 Inbound authentication.

 9. Optional: Verify that the Security Attribute Propagation option is selected if you want to enable

outbound Subject and security context token propagation for the Remote Method Invocation (RMI)

protocol. When you select this option, WebSphere Application Server serializes the Subject contents

and the PropagationToken contents. After the contents are serialized, the server uses the CSIv2

protocol to send the Subject and PropagationToken token to the target servers that support security

attribute propagation. If the receiving server does not support security attribute tokens, WebSphere

Application Server sends the Lightweight Third Party Authentication (LTPA) token only.

Note: WebSphere Application Server propagates only the objects within the Subject that it can

serialize. The server propagates custom objects on a best-effort basis.

When Security Attribute Propagation is enabled, WebSphere Application Server adds marker

tokens to the Subject to enable the target server to add additional attributes during the inbound login.

During the commit phase of the login, the marker tokens and the Subject are marked as read-only

and cannot be modified thereafter.

10. Optional: Select the Custom Outbound Mapping option if you clear the Security Attribute

Propagation option and you want to use the RMI_OUTBOUND login configuration. If neither the

Custom Outbound Mapping option nor the Security Attribute Propagation option is selected,

WebSphere Application Server does not call the RMI_OUTBOUND login configuration. If you need to

plug in a credential mapping login module, you must select the Custom Outbound Mapping option.

11. Optional: Specify trusted target realm names in the Trusted Target Realms field. By specifying these

realm names, information can be sent to servers that reside outside the realm of the sending server

to support inbound mapping that is at these downstream servers. To perform outbound mapping to a

realm different from the current realm, you must specify the realm in this field so that you can get to

this point without having the request rejected because of a realm mismatch. If you need WebSphere

Application Server to propagate security attributes to another realm when a request is sent, you must

442 Securing applications and their environment

specify the realm name in the Trusted Target Realms field. Otherwise, the security attributes are not

propagated to the unspecified realm. You can add multiple target realms by adding a pipe (|) delimiter

between each entry.

12. Optional: Enable propagation for a pure client. For a pure client to propagate attributes added to the

invocation Subject, you must add the following property to the sas.client.props file:

com.ibm.CSI.rmiOutboundPropagationEnabled=true

Note: The sas.client.props file is located at <WAS-HOME>/profiles/<ProfileName>/properties>.

Results

After completing these steps, you have configured WebSphere Application Server to propagate security

attributes to other servers.

What to do next

If you need to disable security attribute propagation, determine whether you need to disable it for either

the server level or the cell level.

Note: Changes to the server-level settings override the cell settings.

To disable security attribute propagation on the server level, complete the following steps:

1. Click Server > Application Servers > server_name.

2. Under Security, click Server security.

3. Select the RMI/IIOP security for this server overrides cell settings option.

4. Disable security attribute propagation for inbound requests by clicking CSI inbound authentication

under Additional Properties and clearing the Security attribute propagation option.

5. Disable security attribute propagation for outbound requests by clicking CSI outbound authentication

under Additional Properties and clearing the Security attribute propagation option.

To disable security attribute propagation on the cell level, undo each of the steps that you completed to

enable security attribute propagation in this task.

Using the default authorization token

This topic explains how WebSphere Application Server uses the default authorization token. Consider

using the default authorization token when you are looking for a place to add string attributes that get

propagated downstream.

About this task

However, make sure that the attributes you add to the authorization token are specific to the user that is

associated with the authenticated Subject. If they are not specific to a user, the attributes probably belong

in the propagation token, which is also propagated with the request. For more information on the

propagation token, see “Using the default propagation token” on page 447. To add attributes into the

authorization token, you must plug in a custom login module into the various system login modules that

are configured. Any login module configuration that has the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule implementation configured can receive

propagated information and can generate propagation information that can be sent outbound to another

server.

If propagated attributes are not presented to the login configuration during an initial login, a default

authorization token is created in the wsMapDefaultInboundLoginModule login module after the login occurs

in the ltpaLoginModule login module. You can obtain a reference to the default authorization token from

Chapter 5. Authenticating users 443

the login method using the sharedState hashmap. You must plug in the custom login module after the

wsMapDefaultInboundLoginModule implementation for WebSphere Application Server to see the default

authorization token.

For more information on the Java Authentication and Authorization Service (JAAS) programming model,

see Security: Resources for learning.

v Obtain a reference to the default authorization token from the login method.

v Add attributes to the token.

v Read existing attributes used for authorization.

v Add your custom login module to the profile_root/classes directory. For more information, see

“Creating a classes subdirectory in your profile for custom classes” on page 712.

v Modify the authorization token factory to use a token factory other than the default token factory.

When WebSphere Application Server generates a default authorization token, the application server

utilizes the TokenFactory class that is specified using the

com.ibm.wsspi.security.token.authorizationTokenFactory property.

The com.ibm.ws.security.ltpa.AuthzPropTokenFactory token factory is the default. This token factory

encodes the data, but does not encrypt the data in the authorization token. Because the authorization

token typically flows over Common Secure Interoperability Version 2 (CSIv2) using Secure Sockets

Layer (SSL), encrypting the token is not necessary. However, if you need additional security for the

authorization token, you can associate a different token factory implementation with this property to get

encryption. For example, if you associate the com.ibm.ws.security.ltpa.LTPAToken2Factory token factory

with this property, the token uses Advanced Encryption Standard (AES) encryption. However, you need

to weigh the performance impacts against your security needs. Adding sensitive information to the

authorization token is one reason to change the token factory implementation to something that

encrypts rather than just encodes.

1. Open the administrative console.

2. Click Security > Global security.

3. Under Additional properties, click Custom properties.

v Perform your own signing and encryption of the default authorization token.

If you want to perform your own signing and encryption of the default authorization token, you must

implement the following classes:

– com.ibm.wsspi.security.ltpa.Token

– com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates and validates your token implementation. You can use

the Lightweight Third Party Authentication (LTPA) keys that are passed into the initialize method of the

token factory or you can use your own keys. If you use your own keys, they must be the same

everywhere to validate the tokens that are generated using those keys. See the API documentation, that

is available through a link on the front page of the information center, for more information on

implementing your own custom token factory.

v Associate your token factory with the default authorization token.

To associate your token factory with the default authorization token, using the administrative console,

complete the following steps:

1. Click Security > Global security.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.authorizationTokenFactory property and verify that the value

of this property matches your custom token factory implementation.

4. Verify that your implementation classes are put into the app_server_root/classes directory so that

the WebSphere Application Server class loader can load the classes.

444 Securing applications and their environment

5. Verify that the QEJBSVR user profile has read, write, and execute (*RWX) authority to the classes

directory. You can use the Work with Authority (WRKAUT) command to view the authority

permissions for the directory.

Example

The following example shows the complete task of obtaining a reference to the default authorization token

from the login method, adding attributes to the token, and reading from the existing attributes that are used

for authorization.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on initialization, see

 // “Developing custom login modules for a system login configuration” on page 363.)

 // Get a reference to the sharedState map that is passed in during initialization.

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // “Developing custom login modules for a system login configuration” on page 363.)

 // Look for the default AuthorizationToken in the shared state

 defaultAuthzToken = (com.ibm.wsspi.security.token.AuthorizationToken)

 sharedState.get

 (com.ibm.wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY);

 // Might not always have one of these generated. It depends on the login

 // configuration setup.

 if (defaultAuthzToken != null)

 {

 try

 {

 // Add a custom attribute

 defaultAuthzToken.addAttribute("key1", "value1");

 // Determine all of the attributes and values that exist in the token.

 java.util.Enumeration listOfAttributes = defaultAuthorizationToken.

 getAttributeNames();

 while (listOfAttributes.hasMoreElements())

 {

 String key = (String) listOfAttributes.nextElement();

 String[] values = (String[]) defaultAuthorizationToken.getAttributes (key);

 for (int i=0; i<values.length; i++)

 {

 System.out.println ("Key: " + key + ", Value[" + i + "]: "

 + values[i]);

 }

 }

 // Read the existing uniqueID attribute.

 String[] uniqueID = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID);

 // Getthe uniqueID from the String[]

 String unique_id = (uniqueID != null &&

 uniqueID[0] != null) ? uniqueID[0] : "";

Chapter 5. Authenticating users 445

// Read the existing expiration attribute.

 String[] expiration = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_EXPIRATION);

 // An example of getting a long expiration value from the string array.

 long expire_time = 0;

 if (expiration != null && expiration[0] != null)

 expire_time = Long.parseLong(expiration[0]);

 // Read the existing display name attribute.

 String[] securityName = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME);

 // Get the display name from the String[]

 String display_name = (securityName != null &&

 securityName[0] != null) ? securityName[0] : "";

 // Read the existing long securityName attribute.

 String[] longSecurityName = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_LONGSECURITYNAME);

 // Get the long security name from the String[]

 String long_security_name = (longSecurityName != null &&

 longSecurityName[0] != null) ? longSecurityName[0] : "";

 // Read the existing group attribute.

 String[] groupList = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS);

 // Get the groups from the String[]

 ArrayList groups = new ArrayList();

 if (groupList != null)

 {

 for (int i=0; i<groupList.length; i++)

 {

 System.out.println ("group[" + i + "] = " + groupList[i]);

 groups.add(groupList[i]);

 }

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what to do during commit, see

 // “Developing custom login modules for a system login configuration” on page 363.)

 }

 private java.util.Map _sharedState = null;

 private com.ibm.wsspi.security.token.AuthorizationToken defaultAuthzToken = null;

}

.

446 Securing applications and their environment

Using the default propagation token

A default propagation token is located on the running thread for applications and the security infrastructure

to use. The product propagates this default propagation token downstream and the token stays on the

thread where the invocation lands at each hop.

About this task

The data is available from within the container of any resource where the propagation token lands.

Remember that you must enable the propagation feature at each server where a request is sent for

propagation to work. Make sure that you enable security attribute propagation for all of the cells in your

environment where you want propagation

There is a WSSecurityHelper class that has application programming interfaces (APIs) for accessing the

PropagationToken attributes. This topic documents the usage scenarios and includes examples. A close

relationship exists between the propagation token and the work area feature. The main difference between

these features is that after you add attributes to the propagation token, you cannot change the attributes.

You cannot change these attributes so that the security runtime can add auditable information and have

that information remain there for the life of the invocation. Any time that you add an attribute to a specific

key, an ArrayList object is stored to hold that attribute. Any new attribute that is added with the same key

is added to the ArrayList object. When you call getAttributes, the ArrayList object is converted to a String

array and the order is preserved. The first element in the String array is the first attribute added for that

specific key.

In the default propagation token, a change flag is kept that logs any data changes to the token. These

changes are tracked to enable WebSphere Application Server to know when to send the authentication

information downstream again so that the downstream server has those changes. Normally, Common

Secure Interoperability Version 2 (CSIv2) maintains a session between servers for an authenticated client.

If the propagation token changes, a new session is generated and subsequently a new authentication

occurs. Frequent changes to the propagation token during a method cause frequent downstream calls. If

you change the token prior to making many downstream calls or you change the token between each

downstream call, you might impact security performance.

v Obtain the server list from the default propagation token.

Every time the propagation token is propagated and used to create the authenticated Subject, either

horizontally or downstream, the name of the receiving application server is logged into the propagation

token. The format of the host is ″Cell:Node:Server″, which provides you access to the cell name, node

name, and server name of each application server that receives the invocation.

The following code provides you with this list of names and can be called from a Java 2 Platform,

Enterprise Edition (J2EE) application.

The format of each server in the list is: cell:node_name:server_name. The output, for example, is:

myManager:node1:server1

 String[] server_list = null;

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the server_list string array

 server_list = com.ibm.websphere.security.WSSecurityHelper.getServerList();

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

Chapter 5. Authenticating users 447

}

 if (server_list != null)

 {

 // print out each server in the list, server_list[0] is the first server

 for (int i=0; i<server_list.length; i++)

 {

 System.out.println(″Server[″ + i + ″] = ″ + server_list[i]);

 }

 }

 }

v Obtain the list of callers, using the getCallerList API.

A default propagation token is generated any time an authenticated user is set on the running thread or

anyone tries to add attributes to the propagation token. Whenever an authenticated user is set on the

thread, the user is logged in the default propagation token. At times, the same user might be logged in

multiple times if the RunAs user is different from the caller. The following list provides the rules that are

used to determine if a user that is added to the thread gets logged into the propagation token:

– The current Subject must be authenticated. For example, an unauthenticated Subject is not logged.

– The current authenticated Subject is logged if a Subject is not previously logged.

– The current authenticated Subject is logged if the last authenticated Subject that is logged does not

contain the same user.

– The current authenticated Subject is logged on each unique application server that is involved in the

propagation process.

The following code sample shows how to use the getCallerList API.

The format of each caller in the list is: cell:node_name:server_name:realm:port_number/securityName.

The output, for example, is: myManager:node1:server1:ldap.austin.ibm.com:389/jsmith.

 String[] caller_list = null;

 // If security is disabled on this application server, do not check the caller list

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the caller_list string array

 caller_list = com.ibm.websphere.security.WSSecurityHelper.getCallerList();

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 if (caller_list != null)

 {

 // Prints out each caller in the list, caller_list[0] is the first caller

 for (int i=0; i<caller_list.length;i++)

 {

 System.out.println(″Caller[″ + i + ″] = ″ + caller_list[i]);

 }

 }

 }

v Obtain the security name of the first authenticated user, using the getFirst Caller API.

448 Securing applications and their environment

Whenever you want to know which authenticated caller started the request, you can call the

getFirstCaller method and the caller list is parsed. However, this method returns the security name of

the caller only. If you need to know more than the security name, call the getCallerList method and

retrieve the first entry in the String array. This entry provides all the caller information.

The following code sample retrieves the security name of the first authenticated caller using the

getFirstCaller API.

The output, for example, is: jsmith.

 String first_caller = null;

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the first caller

 first_caller = com.ibm.websphere.security.WSSecurityHelper.getFirstCaller();

 // Prints out the caller name

 System.out.println(″First caller: ″ + first_caller);

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

v Obtain the name of the first application server for a request, using the getFirstServer method.

Whenever you want to know what the first application server is for this request, call the getFirstServer

method directly.

The following code sample retrieves the name of the first application server using the getFirstServer

API.

The output, for example, is: myManager:node1:server1.

 String first_server = null;

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the first server

 first_server = com.ibm.websphere.security.WSSecurityHelper.getFirstServer();

 // Prints out the server name

 System.out.println(″First server: ″ + first_server);

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

v Add custom attributes to the default propagation token, using the addPropagationAttribute API.

Chapter 5. Authenticating users 449

You can add custom attributes to the default propagation token for application usage. This token follows

the request downstream so that the attributes are available when needed. When you use the default

propagation token to add attributes, you must understand the following issues:

– Adding information to the propagation token affects CSIv2 session caching. Add information sparingly

between remote requests.

– After you add information with a specific key, the information cannot be removed.

– You can add as many values to a specific key as you need. However, all of the values must be

available from a returned String array in the order that they were added.

– The propagation token is available only on servers where propagation and security are enabled.

– The Java 2 Security javax.security.auth.AuthPermission wssecurity.addPropagationAttribute attribute

is needed to add attributes to the default propagation token.

– An application cannot use keys that begin with either com.ibm.websphere.security or

com.ibm.wsspi.security. These prefixes are reserved for system usage.

The following code sample shows how to use the addPropagationAttribute API. See “Using the default

propagation token” on page 447 to retrieve attributes using the getPropagationAttributes application

programming interface (API).

 // If security is disabled on this application server,

 // do not check the status of server security

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Specifies the key and values

 String key = ″mykey″;

 String value1 = ″value1″;

 String value2 = ″value2″;

 // Sets key, value1

 com.ibm.websphere.security.WSSecurityHelper.

 addPropagationAttribute (key, value1);

 // Sets key, value2

 String[] previous_values = com.ibm.websphere.security.WSSecurityHelper.

 addPropagationAttribute (key, value2);

 // Note: previous_values should contain value1

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

v Obtain your custom attributes with the get PropagationAttributes API.

Custom attributes are added to the default propagation token using the addPropagationAttribute API.

Retrieve these attributes using the getPropagationAttributes API. This token follows the request

downstream so the attributes are available when needed. When you use the default propagation token

to retrieve attributes, you must understand the following issues:

– The propagation token is available only on servers where propagation and security are enabled.

– The Java 2 Security javax.security.auth.AuthPermission ″wssecurity.getPropagationAttributes″

permission is needed to retrieve attributes from the default propagation token.

See Adding custom attributes to the default PropagationToken to add attributes using the

addPropagationAttributes API.

450 Securing applications and their environment

The following code sample shows how to use the getPropagationAttributes API.

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 String key = ″mykey″;

 String[] values = null;

 // Sets key, value1

 values = com.ibm.websphere.security.WSSecurityHelper.

 getPropagationAttributes (key);

 // Prints the values

 for (int i=0; i<values.length; i++)

 {

 System.out.println(″Value[″ + i + ″] = ″ + values[i]);

 }

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

The output, for example, is:

Value[0] = value1

Value[1] = value2

v Modify the propagation token factory configuration to use a token factory other than the default token

factory.

When WebSphere Application Server generates a default propagation token, the Application Server

utilizes the TokenFactory class that is specified using the

com.ibm.wsspi.security.token.propagationTokenFactory property.

The default token factory that is specified for this property is called

com.ibm.ws.security.ltpa.AuthzPropTokenFactory. This token factory encodes the data in the propagation

token and does not encrypt the data. Because the propagation token typically flows over CSIv2 using

Secure Sockets Layer (SSL), encrypting the token is not required. However, if you need additional

security for the propagation token, you can associate a different token factory implementation with this

property to get encryption. For example, if you choose to associate the

com.ibm.ws.security.ltpa.LTPAToken2Factory token factory with this property, the token is AES

encrypted. However, you need to weigh the performance impacts against your security needs. Adding

sensitive information to the propagation token is a good reason to change the token factory

implementation to something that encrypts rather than just encodes.

1. Open the administrative console.

2. Click Security > Global security.

3. Click Custom properties.

v Perform your own signing and encryption of the default propagation token.

If you want to perform your own signing and encryption of the default propagation token, you must

implement the following classes:

– com.ibm.wsspi.security.ltpa.Token

– com.ibm.wsspi.security.ltpa.TokenFactory

Chapter 5. Authenticating users 451

Your token factory implementation instantiates and validates your token implementation. You can

choose to use the Lightweight Third Party Authentication (LTPA) keys and have them pass into the

initialize method of the token factory, or you can use your own keys. If you use your own keys, they

must be the same everywhere to validate the tokens that are generated using those keys. See the API

documentation, available through a link on the front page of the information center, for more information

on implementing your own custom token factory.

v Associate your token factory with the default propagation token.

1. Open the administrative console.

2. Click Security > Global security.

3. Click Custom properties.

4. Locate the com.ibm.wsspi.security.token.propagationTokenFactory property and verify that the value

of this property matches your custom token factory implementation.

5. Verify that your implementation classes are put into the app_server_root/classes directory so that

the WebSphere Application Server class loader can load the classes.

6. Verify that the QEJBSVR user profile has read, write, and execute (*RWX) authority to the classes

directory. You can use the Work with Authority (WRKAUT) command to view the authority

permissions for the directory.

Example

Related tasks

Chapter 5, “Authenticating users,” on page 93
The process of authenticating users involves a user registry and an authentication mechanism. Optionally,

you can define trust between WebSphere Application Server and a proxy server, configure single sign-on

capability, and specify how to propagate security attributes between application servers.

Using the default single sign-on token with default or custom token

factory

Do not use the default single sign-on token in service provider code. This default token is used by the

WebSphere Application Server run-time code only.

Before you begin

Size limitations exist for this token when it is added as an HTTP cookie. If you need to create an HTTP

cookie using this token framework, you can implement a custom single sign-on token. To implement a

custom single sign-on token see “Implementing a custom single sign-on token” on page 786 for more

information.

v Modify the single sign-on token factory configuration to use a token factory other than the default token

factory.

When the default single sign-on token is generated, the application server utilizes the TokenFactory

class that is specified using the com.ibm.wsspi.security.token.singleSignonTokenFactory property. Use

the administrative console to modify the property.

The com.ibm.ws.security.ltpa.LTPAToken2Factory token factory is the default that is specified for this

property. This token factory creates a single sign-on (SSO) token called LtpaToken2, which WebSphere

Application Server uses for propagation. This token factory uses the AES/CBC/PKCS5Padding cipher.

If you change this token factory, you lose the interoperability with any servers running a version of

WebSphere Application Server prior to version 5.1.1 that use the default token factory. Only servers

running WebSphere Application Server Version 5.1.1 or later with propagation enabled are aware of the

LtpaToken2 cookie. If all of your application servers use WebSphere Application Server Version 5.1.1 or

later and all of your servers use your new token factory this awareness is not a problem.

1. Open the administrative console.

2. Click Security > Global security.

452 Securing applications and their environment

3. Under Authentication, click Custom properties.

v Perform your own signing and encryption of the default single sign-on token.

If you need to perform your own signing and encryption of the default single sign-on token, you must

implement the following classes:

– com.ibm.wsspi.security.ltpa.Token

– com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates (createToken) and validates (validateTokenBytes) your

token implementation. You can use the Lightweight Third-Party Authentication (LTPA) keys passed into

the initialize method of the token factory or you can use your own keys. If you use your own keys, they

must be the same everywhere to validate the tokens that are generated using those keys. See the API

reference information for more information on implementing your own custom token factory.

v Associate your own token factory with the default single sign-on token.

1. Open the administrative console.

2. Click Security > Global security.

3. Under Authentication, click Custom properties.

4. Locate the com.ibm.wsspi.security.token.singleSignonTokenFactory property and verify that the value

of this property matches your custom TokenFactory implementation.

5. Verify that your implementation classes are put into the app_server_root/classes directory so that

the WebSphere Application Server class loader can load the classes.

6. Verify that the QEJBSVR user profile has read, write, and execute (*RWX) authority to the classes

directory. You can use the Work with Authority (WRKAUT) command to view the authority

permissions for the directory.

Related tasks

“Implementing a custom single sign-on token” on page 786
You can create your own single sign-on token implementation. The single sign-on token implementation is

set in the login Subject and added to the HTTP response as an HTTP cookie.

Configuring the authentication cache

The security authentication cache affects the frequency of rehashing and the distribution of the hash

algorithms.

About this task

To configure the authentication cache properties, complete the following steps:

1. Click Servers > Application Servers > server_name .

2. Under Server infrastructure, click Java and Process Management > Process definition.

3. Under Additional properties, click Java Virtual Machine > Custom Properties.

4. Click New to specify a new custom property.

What to do next

For information on the supported authentication cache properties, see “Authentication cache settings” on

page 89.

Chapter 5. Authenticating users 453

Configuring Common Secure Interoperability Version 2 (CSIV2)

inbound and outbound communication settings

WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for

both inbound and outbound authentication requests. For inbound requests, you can specify the type of

accepted authentication, such as basic authentication. For outbound requests, you can specify properties

such as type of authentication, identity assertion or login configurations that are used for requests to

downstream servers.

About this task

Complete the following steps to configure Common Secure Interoperability Version 2 (CSIV2) and Security

Authentication Service (SAS).

Note: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

1. Determine how to configure security inbound and outbound at each point in your infrastructure.

For example, you might have a Java client communicating with an Enterprise JavaBeans (EJB)

application server, which in turn communicates to a downstream EJB application server.

The Java client utilizes the sas.client.props file to configure outbound security. Pure clients must

configure outbound security only.

The upstream EJB application server configures inbound security to handle the correct type of

authentication from the Java client. The upstream EJB application server utilizes the outbound security

configuration when going to the downstream EJB application server.

This type of authentication might be different than what you expect from the Java client into the

upstream EJB application server. Security might be tighter between the pure client and the first EJB

server, depending on your infrastructure. The downstream EJB server utilizes the inbound security

configuration to accept requests from the upstream EJB server. These two servers require similar

configuration options as well. If the downstream EJB application server communicates to other

downstream servers, the outbound security might require a special configuration.

2. Specify the type of authentication.

By default, authentication by a user ID and password is performed.

Both Java client certificate authentication and identity assertion are disabled by default. If you want this

type of authentication performed at every tier, use the CSIv2 authentication protocol configuration as is.

However, if you have any special requirements where some servers authenticate differently from other

servers, consider how to configure CSIv2 to its best advantage.

3. Configure clients and servers.

Configuring a pure Java client is done through the sas.client.props file, where properties are

modified.

Configuring servers is always done from the administrative console or scripting, either from the security

navigation for cell-level configurations or from the server security of the application server for

server-level configurations. If you want some servers to authenticate differently from others, modify

some of the server-level configurations. When you modify the server-level configurations, you are

overriding the cell-level configurations.

What to do next

Use CSIV2 inbound communications settings for configuring the type of authentication information that is

contained in an incoming request or transport.

Use CSIV2 outbound communications settings to specify the features that a server supports when acting

as a client to another downstream server.

454 Securing applications and their environment

Configuring Common Secure Interoperability Version 2 inbound

communications

Inbound communications refers to the configuration that determines the type of accepted authentication for

inbound requests. This authentication is advertised in the interoperable object reference (IOR) that the

client retrieves from the name server.

1. Start the administrative console.

2. Click Security > Global security.

3. Under RMI/IIOP security, click CSIv2 inbound communications.

4. Consider the following layers of security:

v Identity assertion (attribute layer).

When selected, this server accepts identity tokens from upstream servers. If the server receives an

identity token, the identity is taken from an originating client. For example, the identity is in the same

form that the originating client presented to the first server. An upstream server sends the identity of

the originating client. The format of the identity can be either a principal name, a distinguished

name, or a certificate chain. In some cases, the identity is anonymous. It is important to trust the

upstream server that sends the identity token because the identity authenticates on this server. Trust

of the upstream server is established either using Secure Sockets Layer (SSL) client certificate

authentication or basic authentication. You must select one of the two layers of authentication in

both inbound and outbound authentication when you choose identity assertion.

The server ID is sent in the client authentication token with the identity token. The server ID is

checked against the trusted server ID list. If the server ID is on the trusted server list, the server ID

is authenticated. If the server ID is valid, the identity token is put into a credential and used for

authorization of the request.

For more information, refer to Identity assertion.

v User ID and password (message layer).

This type of authentication is the most typical. The user ID and password or authenticated token is

sent from a pure client or from an upstream server. However, the upstream server cannot be a z/OS

server because z/OS does not support a user ID or password from a server acting as a client. When

a user ID and password are received at the server, they are authenticated with the user registry.

Usually, a token is sent from an upstream server and a user ID and password are sent from a client,

including a servlet. When a token is received at the server level, the token is validated to determine

whether tampering has occurred or whether it is expired.

For more information, refer to User ID and password.

v Secure Sockets Layer client certificate authentication (transport layer).

The SSL client certificate is used to authenticate instead of using user ID and Password. If a server

delegates an identity to a downstream server, the identity comes from either the message layer (a

client authentication token) or the attribute layer (an identity token), and not from the transport layer

through the client certificate authentication.

A client has an SSL client certificate that is stored in the keystore file of the client configuration.

When SSL client authentication is enabled on this server, the server requests that the client send

the SSL client certificate when the connection is established. The certificate chain is available on the

socket whenever a request is sent to the server. The server request interceptor gets the certificate

chain from the socket and maps this certificate chain to a user in the user registry. This type of

authentication is optimal for communicating directly from a client to a server. However, when you

have to go downstream, the identity typically flows over the message layer or through identity

assertion.

5. Consider the following points when deciding what type of authentication to accept:

v A server can receive multiple layers simultaneously, so an order of precedence rule decides which

identity to use. The identity assertion layer has the highest priority, the message layer follows, and

the transport layer has the lowest priority. The SSL client certificate authentication is used when it is

Chapter 5. Authenticating users 455

the only layer provided. If the message layer and the transport layer are provided, the message

layer is used to establish the identity for authorization. The identity assertion layer is used to

establish precedence when provided.

v Does this server usually receive requests from a client, from a server, or both? If the server always

receives requests from a client, identity assertion is not needed. You can choose either the message

layer, the transport layer, or both. You also can decide when authentication is required or just

supported. To select a layer as required, the sending client must supply this layer, or the request is

rejected. However, if the layer is only supported, the layer might not be supplied.

v What kind of client identity is supplied? If the client identity is client certificates authentication and

you want the certificate chain to flow downstream so that it maps to the downstream server user

registries, identity assertion is the appropriate choice. Identity assertion preserves the format of the

originating client. If the originating client authenticated with a user ID and password, a principal

identity is sent. If authentication is done with a certificate, the certificate chain is sent.

In some cases, if the client authenticated with a token and a Lightweight Directory Access Protocol

(LDAP) server is the user registry, then a distinguished name (DN) is sent.

6. Configure a trusted server list. When identity assertion is selected for inbound requests, insert a

pipe-separated (|) list of server administrator IDs to which this server can support identity token

submission. For backwards compatibility, you can still use a comma-delimited list. However, if the

server ID is a distinguished name (DN), then you must use a pipe-delimited (|) list because a comma

delimiter does not work. If you choose to support any server sending an identity token, you can enter

an asterisk (*) in this field. This action is called presumed trust. In this case, use SSL client certificate

authentication between servers to establish the trust.

7. Configure session management. You can choose either stateful or stateless security. Performance is

optimum when choosing stateful sessions. The first method request between a client and server is

authenticated. All subsequent requests (or until the credential token expires) reuse the session

information, including the credential. A client sends a context ID for subsequent requests. The context

ID is scoped to the connection for uniqueness.

Results

When you finish configuring this panel, you have configured most of the information that a client gathers

when determining what to send to this server. A client or server outbound configuration with this server

inbound configuration, determines the security that is applied. When you know what clients send, the

configuration is simple. However, if you have a diverse set of clients with differing security requirements,

your server considers various layers of authentication.

For a J2EE application server, the authentication choice is usually either identity assertion or message

layer because you want the identity of the originating client delegated downstream. You cannot easily

delegate a client certificate using an SSL connection. It is acceptable to enable the transport layer

because additional server security, as the additional client certificate portion of the SSL handshake, adds

some overhead to the overall SSL connection establishment.

What to do next

After you determine which type of authentication data this server might receive, you can determine what to

select for outbound security. For more information, see Configuring Common Secure Interoperability

Version 2 outbound authentication.

Common Secure Interoperability Version 2 inbound communications settings

Use this page to specify the features that a server supports for a client accessing its resources.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. From Authentication, click RMI/IIOP security > CSIv2 inbound communications.

456 Securing applications and their environment

Use common secure interoperability (CSI) inbound communications settings for configuring the type of

authentication information that is contained in an incoming request or transport.

Authentication features include three layers of authentication that you can use simultaneously:

v CSIv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the

message layer, and then the transport layer. If a client sends all three, only the identity layer is used.

The only way to use the SSL client certificate as the identity is if it is the only information that is

presented during the request. The client picks up the interoperable object reference (IOR) from the

namespace and reads the values from the tagged component to determine what the server needs for

security.

v CSIv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets

Layer (SSL) client certificate as the identity.

v CSIv2 message layer. The message layer might contain a user ID and password or an authenticated

token with an expiration.

Propagate security attributes:

Specifies support for security attribute propagation during login requests. When you select this option, the

application server retains additional information about the login request, such as the authentication

strength used, and retains the identity and location of the request originator.

 If you do not select this option, the application server does not accept any additional login information to

propagate to downstream servers.

 Default: Enabled

Use identity assertion:

Specifies that identity assertion is a way to assert identities from one server to another during a

downstream Enterprise JavaBeans (EJB) invocation.

 This server does not authenticate the asserted identity again because it trusts the upstream server. Identity

assertion takes precedence over all other types of authentication.

Identity assertion is performed in the attribute layer and is only applicable on servers. The principal

determined at the server is based on precedence rules. If identity assertion is used, the identity is always

derived from the attribute layer. If basic authentication is used without identity assertion, the identity is

always derived from the message layer. Finally, if SSL client certificate authentication is performed without

either basic authentication, or identity assertion, then the identity is derived from the transport layer.

The identity asserted is the invocation credential that is determined by the RunAs mode for the enterprise

bean. If the RunAs mode is Client, the identity is the client identity. If the RunAs mode is System, the

identity is the server identity. If the RunAs mode is Specified, the identity is the one specified. The

receiving server receives the identity in an identity token and also receives the sending server identity in a

client authentication token. The receiving server validates the sending server identity as a trusted identity

through the Trusted Server IDs entry box. Enter a list of pipe-separated (|) principal names, for example,

serverid1|serverid2|serverid3.

All identity token types map to the user ID field of the active user registry. For an ITTPrincipal identity

token, this token maps one-to-one with the user ID fields. For an ITTDistinguishedName identity token, the

value from the first equal sign is mapped to the user ID field. For an ITTCertChain identity token, the value

from the first equal sign of the distinguished name is mapped to the user ID field.

When authenticating to an LDAP user registry, the LDAP filters determine how an identity of type

ITTCertChain and ITTDistinguishedName get mapped to the registry. If the token type is ITTPrincipal, then

Chapter 5. Authenticating users 457

the principal gets mapped to the UID field in the LDAP registry.

 Default: Disabled

Trusted identities:

Specifies the trusted identity that is sent from the sending server to the receiving server.

 Specifies a pipe-separated (|) list of trusted server administrator user IDs, which are trusted to perform

identity assertion to this server. For example, serverid1|serverid2|serverid3. The application server

supports the comma (,) character as the list delimiter for backwards compatibility. The application server

checks the comma character when the pipe character (|) fails to find a valid trusted server ID.

Use this list to decide whether a server is trusted. Even if the server is on the list, the sending server must

still authenticate with the receiving server to accept the identity token of the sending server.

 Data type: String

Client certificate authentication:

Specifies that authentication occurs when the initial connection is made between the client and the server

during a method request.

 In the transport layer, Secure Sockets Layer (SSL) client certificate authentication occurs. In the message

layer, basic authentication (user ID and password) is used. Client certificate authentication typically

performs better than message layer authentication, but requires some additional setup. These additional

steps involve verifying that the server trusts the signer certificate of each client to which it is connected. If

the client uses a certificate authority (CA) to create its personal certificate, you only need the CA root

certificate in the server signer section of the SSL trust file.

When the certificate is authenticated to a Lightweight Directory Access Protocol (LDAP) user registry, the

distinguished name (DN) is mapped based on the filter that is specified when configuring LDAP. When the

certificate is authenticated to a local OS user registry, the first attribute of the distinguished name (DN) in

the certificate, which is typically the common name, is mapped to the user ID in the registry.

The identity from client certificates is used only if no other layer of authentication is presented to the

server.

Never Specifies that clients cannot attempt Secure Sockets Layer (SSL) client certificate authentication

with this server.

Supported

Specifies that clients connecting to this server can authenticate using SSL client certificates.

However, the server can invoke a method without this type of authentication. For example,

anonymous or basic authentication can be used instead.

Required

Specifies that clients connecting to this server must authenticate using SSL client certificates

before invoking the method.

Transport:

Specifies whether client processes connect to the server using one of its connected transports.

 You can choose either Secure Sockets Layer (SSL), TCP/IP or both as the inbound transport that a server

supports. If you specify TCP/IP, the server only supports TCP/IP and cannot accept SSL connections. If

458 Securing applications and their environment

you specify SSL-supported, this server can support either TCP/IP or SSL connections. If you specify

SSL-required, then any server communicating with this one must use SSL.

Note: This option is not available on the z/OS platform unless both Version 6.0.x and earlier nodes exist

in the cell.

TCP/IP

If you select TCP/IP, then the server opens a TCP/IP listener port only and all inbound requests

do not have SSL protection.

SSL-required

If you select SSL-required, then the server opens an SSL listener port only and all inbound

requests are received using SSL.

SSL-supported

If you select SSL-supported, then the server opens both a TCP/IP and an SSL listener port and

most inbound requests are received using SSL.

Provide a fixed port number for the following ports. A zero port number indicates that a dynamic

assignment is made at run time.

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS

 Default: SSL-Supported

Range: TCP/IP, SSL Required, SSL-Supported

SSL settings:

Specifies a list of predefined SSL settings to choose from for inbound connection.

 Data type: String

Default: DefaultSSLSettings

DefaultIIOPSSL

Range: Any SSL settings configured in the SSL Configuration

Repertoire

Message layer authentication:

 The following options are available for message layer authentication:

Never Specifies that this server cannot accept user ID and password authentication.

Supported

Specifies that a client communicating with this server can specify a user ID and password.

However, a method might be invoked without this type of authentication. For example, an

anonymous or client certificate might be used instead.

Required

Specifies that clients communicating with this server must specify a user ID and password for any

method request.

Allow client to server authentication with::

Specifies client-to-server authentication using Kerberos, LTPA or Basic authentication.

 The following options are available for client to server authentication:

Chapter 5. Authenticating users 459

Kerberos (KRB5)

Select to specify Kerberos as the authentication mechanism. You must first configure the Kerberos

authentication mechanism. Read about “Configuring Kerberos as the authentication mechanism

using the administrative console” on page 244 for more information.

LTPA Select to specify the LTPA token authentication

Basic authentication

Basic authentication is Generic Security Services Username Password (GSSUP). This type of

authentication typically involves sending a user ID and a password from the client to the server for

authentication.

If you select Basic Authentication and LTPA, and the active authentication mechanism is LTPA, a user

name, password, and LTPA tokens are accepted.

If you select Basic Authentication and KRB5 and the active authentication mechanism is KRB5, a user

name, password, Kerberos token and LTPA tokens are accepted.

If you do not select Basic Authentication, a user name and password are not accepted by the server.

Login configuration:

Specifies the type of system login configuration to use for inbound authentication.

 You can add custom login modules by clicking Security > Global security. From Authentication, click

Java Authentication and Authorization Service > System logins.

Stateful sessions:

Select this option to enable stateful sessions, which are used mostly for performance improvements.

 The first contact between a client and server must fully authenticate. However, all subsequent contacts

with valid sessions reuse the security information. The client passes a context ID to the server, and the ID

is used to look up the session. The context ID is scoped to the connection, which guarantees uniqueness.

Whenever the security session is not valid and the authentication retry is enabled, which is the default, the

client-side security interceptor invalidates the client-side session and submits the request again without

user awareness. This situation might occur if the session does not exist on the server; for example, the

server failed and resumed operation. When this value is disabled, each method invocation must

authenticate again.

 Default: Enabled

Configuring Common Secure Interoperability Version 2 outbound

communications

The following choices are available when configuring the Common Secure Interoperability Version 2

(CSIv2) outbound communications panel.

Before you begin

Outbound communications refers to the configuration that determines the type of authentication that is

performed for outbound requests to downstream servers. Several layers or methods of authentication can

occur. The downstream server inbound authentication configuration must support at least one choice made

in this server outbound authentication configuration. If nothing is supported, the request might go outbound

as unauthenticated. This situation does not create a security problem because the authorization runtime is

responsible for preventing access to protected resources. However, if you choose to prevent an

unauthenticated credential from going outbound, you might want to designate one of the authentication

460 Securing applications and their environment

layers as required, rather than supported. If a downstream server does not support authentication, then

when authentication is required, the method request fails to go outbound.

About this task

The following choices are available in the Common Secure Interoperability Version 2 (CSIv2) outbound

communications panel. Remember that you are not required to complete these steps in the displayed

order. Rather, these steps are provided to help you understand your choices for configuring outbound

communications.

v Select Identity Assertion (attribute layer). When selected, this server sends an identity token to a

downstream server if the downstream server supports identity assertion. When an originating client

authenticates to this server, the authentication information supplied is preserved in the outbound identity

token. If the client authenticating to this server uses client certificate authentication, then the identity

token format is a certificate chain, containing the exact client certificate chain from the inbound socket.

The same scenario is true for other mechanisms of authentication. Read theIdentity Assertion topic for

more information.

v Select User ID and Password (message layer). This type of authentication is the most typical. The user

ID and password (if BasicAuth credential) or authenticated token (if authenticated credential) are sent

outbound to the downstream server if the downstream server supports message layer authentication in

the inbound authentication panel. Refer to the Message Layer Authentication article for more

information.

v Select SSL Client certificate authentication (transport layer). The main reason to enable outbound

Secure Sockets Layer (SSL) client authentication from one server to a downstream server is to create a

trusted environment between those servers. For delegating client credentials, use one of the two layers

mentioned previously. However, you might want to create SSL personal certificates for all the servers in

your domain, and only trust those servers in your SSL truststore file. No other servers or clients can

connect to the servers in your domain, except at the tiers where you want them. This process can

protect your enterprise bean servers from access by anything other than your servlet servers.

Configuring session management

About this task

You can choose either stateful or stateless security. Performance is optimum when choosing stateful

sessions. The first method request between this server and the downstream server is authenticated. All

subsequent requests reuse the session information, including the credential. A unique session entry is

defined as the combination of a unique client authentication token and an identity token, scoped to the

connection.

Results

When you finish configuring this panel, you configured the information that this server uses to make

decisions about the type of authentication to perform with downstream servers. If the downstream server is

configured not to support the outbound configuration of the server, the following exception likely occurs:

Exception received: org.omg.CORBA.INITIALIZE:

CWWSA1477W: SECURITY CLIENT/SERVER CONFIG MISMATCH: The client security

configuration (sas.client.props or outbound settings in GUI) does not

support the server security configuration for the following reasons:

ERROR 1: CWWSA0607E: The client requires SSL Confidentiality but the server

does not support it.

ERROR 2: CWWSA0610E: The server requires SSL Integrity but the client does

not support it.

ERROR 3: CWWSA0612E: The client requires client (e.g., userid/password or token),

but the server does not support it.

minor code: 0 completed: No

 at com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor.

getConnectionKey(SecurityConnectionInterceptor.java:1770)

Chapter 5. Authenticating users 461

at com.ibm.ws.orbimpl.transport.WSTransport.getConnection(Unknown Source)

 at com.ibm.rmi.iiop.TransportManager.get(TransportManager.java:79)

 at com.ibm.rmi.iiop.GIOPImpl.locate(GIOPImpl.java:167)

 at com.ibm.CORBA.iiop.ClientDelegate._createRequest(ClientDelegate.java:2088)

 at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1264)

 at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1177)

 at com.ibm.CORBA.iiop.ClientDelegate.request(ClientDelegate.java:1726)

 at org.omg.CORBA.portable.ObjectImpl._request(ObjectImpl.java:245)

 at com.ibm.WsnOptimizedNaming._NamingContextStub.get_compatibility_level

(Unknown Source)

 at com.ibm.websphere.naming.DumpNameSpace.getIdlLevel(DumpNameSpace.java:300)

 at com.ibm.websphere.naming.DumpNameSpace.getStartingContext

(DumpNameSpace.java:329)

 at com.ibm.websphere.naming.DumpNameSpace.main(DumpNameSpace.java:268)

 at java.lang.reflect.Method.invoke(Native Method)

 at com.ibm.ws.bootstrap.WSLauncher.main(WSLauncher.java:163)

The reasons for the mismatch are explained in the exception. You can make the corrections when you

configure the outbound configuration for this server, or when you configure the inbound configuration of the

downstream server. If multiple reasons exist for a failure, the reasons are explained as message text in the

exception.

Example

Typically, the outbound authentication configuration is for an upstream server to communicate with a

downstream server. Most likely, the upstream server is a servlet server and the downstream server is an

Enterprise JavaBeans (EJB) server. On a servlet server, the client authentication that is performed to

access the servlet can be one of many different types of authentication, including client certificate and

basic authentication. When receiving basic authentication data, whether through a prompt login or a

form-based login, the basic authentication information is typically authenticated to from a credential of the

mechanism type that is supported by the server, such as the Lightweight Third Party Authentication

(LTPA). When LTPA is the mechanism, a forwardable token exists in the credential. Choose the message

layer (BasicAuth) authentication to propagate the client credentials. If the credential is created using a

certificate login and you want to preserve sending the certificate downstream, you might decide to go

outbound with identity assertion.

What to do next

Save the configuration and restart the server for the changes to take effect.

Common Secure Interoperability Version 2 outbound communications settings

Use this page to specify the features that a server supports when acting as a client to another downstream

server.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. From Authentication, click RMI/IIOP security > CSIv2 outbound communications.

Authentication features include three layers of authentication that you can use simultaneously:

v CSIv2 attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the

message layer, and then the transport layer. If a client sends all three, only the identity layer is used.

The only way to use the SSL client certificate as the identity is if it is the only information that is

presented during the request. The client picks up the interoperable object reference (IOR) from the

namespace and reads the values from the tagged component to determine what the server needs for

security.

462 Securing applications and their environment

v CSIv2 transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets

Layer (SSL) client certificate as the identity.

v CSIv2 message layer. The message layer might contain a user ID and password or an authenticated

token with an expiration.

Propagate security attributes:

Specifies to support security attribute propagation during login requests. When you select this option, the

application server retains additional information about the login request, such as the authentication

strength used, and retains the identity and location of the request originator.

 If you do not select this option, the application server does not accept any additional login information to

propagate to downstream servers.

 Default: Enabled

Use server-trusted identity:

Specifies the server identity that the application server uses to establish trust with the target server. The

server identity can be sent using one of the following methods:

v A server ID and password when the server password is specified in the registry configuration.

v A server ID in a Lightweight Third Party Authentication (LTPA) token when the internal server ID is used.

For interoperability with application servers other than WebSphere Application Server, use one of the

following methods:

v Configure the server ID and password in the registry.

v Select the Server-trusted identity option and specify the trusted identity and password so that an

interoperable Generic Security Services Username Password (GSSUP) token is sent instead of an

LTPA token.

 Default: Disabled

Specify an alternative trusted identity:

Specifies an alternative user as the trusted identity that is sent to the target servers instead of sending the

server identity.

 This option is recommended for identity assertion. The identity is automatically trusted when it is sent

within the same cell and does not need to be in the trusted identities list within the same cell. However,

this identity must be in the registry of the target servers in an external cell, and the user ID must be on the

trusted identities list or the identity is rejected during trust evaluation.

 Default: Disabled

Trusted identity:

Specifies the trusted identity that is sent from the sending server to the receiving server.

 If you specify an identity in this field, it can be selected on the panel for your configured user account

repository. If you do not specify an identity, a Lightweight Third Party Authentication (LTPA) token is sent

between the servers.

Specifies a pipe-separated (|) list of trusted server administrator user IDs, which are trusted to perform

identity assertion to this server. For example, serverid1|serverid2|serverid3. The application server

Chapter 5. Authenticating users 463

supports the comma (,) character as the list delimiter for backwards compatibility. The application server

checks the comma character when the pipe character (|) fails to find a valid trusted server ID.

Use this list to decide whether a server is trusted. Even if the server is on the list, the sending server must

still authenticate with the receiving server to accept the identity token of the sending server.

Password:

Specifies the password that is associated with the trusted identity.

 Data type: Text

Confirm password:

Confirms the password that is associated with the trusted identity.

 Data type: Text

Message layer authentication:

 The following options are available for message layer authentication:

Never Specifies that this server cannot accept user ID and password authentication.

Supported

Specifies that a client communicating with this server can specify a user ID and password.

However, a method might be invoked without this type of authentication. For example, an

anonymous or client certificate might be used instead.

Required

Specifies that clients communicating with this server must specify a user ID and password for any

method request.

Allow client to server authentication with::

Specifies client-to-server authentication using Kerberos, LTPA or Basic authentication.

 The following options are available for client to server authentication:

Kerberos (KRB5)

Select to specify Kerberos as the authentication mechanism. You must first configure the Kerberos

authentication mechanism. Read about “Configuring Kerberos as the authentication mechanism

using the administrative console” on page 244 for more information.

LTPA Select to configure and enable Lightweight Third-Party Authentication (LTPA) token authentication.

Basic authentication

Basic authentication is Generic Security Services Username Password (GSSUP). This type of

authentication typically involves sending a user ID and a password from the client to the server for

authentication.

If you select Basic Authentication and LTPA, and the active authentication mechanism is LTPA, the

server goes with a downstream server with a user name, password or LTPA token.

If you select Basic Authentication and KRB5, and the active authentication mechanism is KRB5, the

server goes with a downstream server with a user name, password, Kerberos token or LTPA token.

464 Securing applications and their environment

If you do not select Basic Authentication, the server does not go with a downstream server with a user

name and password.

Transport:

Specifies whether client processes connect to the server using one of its connected transports.

 You can choose to use either Secure Sockets Layer (SSL), TCP/IP or both as the inbound transport that a

server supports. If you specify TCP/IP, the server only supports TCP/IP and cannot accept SSL

connections. If you specify SSL-supported, this server can support either TCP/IP or SSL connections. If

you specify SSL-required, then any server communicating with this one must use SSL.

Note: This option is not available on the z/OS operating system unless both Version 6.0.x and earlier

nodes exist in the cell.

TCP/IP

If you select TCP/IP, then the server opens a TCP/IP listener port only and all inbound requests

do not have SSL protection.

SSL-required

If you select SSL-required, then the server opens an SSL listener port only and all inbound

requests are received using SSL.

SSL-supported

If you select SSL-supported, then the server opens both a TCP/IP and an SSL listener port and

most inbound requests are received using SSL.

Provide a fixed port number for the following ports. A zero port number indicates that a dynamic

assignment is made at run time.

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS

 Default: SSL-Supported

Range: TCP/IP, SSL Required, SSL-Supported

SSL settings:

Specifies a list of predefined SSL settings to choose from for inbound connection.

 Data type: String

Default: DefaultSSLSettings

DefaultIIOPSSL

Range: Any SSL settings configured in the SSL Configuration

Repertoire

Client certificate authentication:

Specifies whether a client certificate from the configured keystore is used to authenticate to the server

when the SSL connection is made between this server and a downstream server, provided that the

downstream server supports client certificate authentication.

 Typically, client certificate authentication has a higher performance than message layer authentication, but

requires some additional setup. These additional steps include verifying that this server has a personal

certificate and that the downstream server has the signer certificate of this server.

Chapter 5. Authenticating users 465

If you select client certificate authentication, the following options are available:

Never Specifies that this server does not attempt Secure Sockets Layer (SSL) client certificate

authentication with downstream servers.

Supported

Specifies that this server can use SSL client certificates to authenticate to downstream servers.

However, a method can be invoked without this type of authentication. For example, the server

can use anonymous or basic authentication instead.

Required

Specifies that this server must use SSL client certificates to authenticate to downstream servers.

 Default: Enabled

Login configuration:

Specifies the type of system login configuration to use for inbound authentication.

 You can add custom login modules by clicking Security > Global security. From Authentication, click

Java Authentication and Authorization Service > System logins.

Stateful sessions:

Select this option to enable stateful sessions, which are used mostly for performance improvements.

 The first contact between a client and server must fully authenticate. However, all subsequent contacts

with valid sessions reuse the security information. The client passes a context ID to the server, and the ID

is used to look up the session. The context ID is scoped to the connection, which guarantees uniqueness.

Whenever the security session is not valid and the authentication retry is enabled, which is the default, the

client-side security interceptor invalidates the client-side session and submits the request again without

user awareness. This situation might occur if the session does not exist on the server, for example, the

server failed and resumed operation. When this value is disabled, every method invocation must

authenticate again.

Custom outbound mapping:

Enables the use of custom Remote Method Invocation (RMI) outbound login modules.

 The custom login module maps or completes other functions before the predefined RMI outbound call.

To declare a custom outbound mapping, complete the following steps:

1. Click Security > Global security.

2. From Authentication, click Java Authentication and Authorization Service > System logins > New.

Trusted authentication realms - outbound:

If the RMI/IIOP communication is across different realms, use this link to add outbound trusted realms.

 The credential tokens are only sent to the realms that are trusted. In addition, the receiving server should

trust this realm using the inbound trusted realms configuration to validate the LTPA token.

Configuring inbound transports

By using this configuration, you can configure a different transport for inbound security versus outbound

security.

466 Securing applications and their environment

Before you begin

Inbound transports refer to the types of listener ports and their attributes that are opened to receive

requests for this server. Both Common Secure Interoperability Specification, Version 2 (CSIv2) and Secure

Authentication Service (SAS) have the ability to configure the transport.

Note: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

However, the following differences between the two protocols exist:

v CSIv2 is much more flexible than SAS, which requires Secure Sockets Layer (SSL); CSIv2 does not

require SSL.

v SAS does not support SSL client certificate authentication, while CSIv2 does.

v CSIv2 can require SSL connections, while SAS only supports SSL connections.

v SAS always has two listener ports open: TCP/IP and SSL.

v CSIv2 can have as few as one listener port and as many as three listener ports. You can open one port

for just TCP/IP or when SSL is required. You can open two ports when SSL is supported, and open

three ports when SSL and SSL client certificate authentication is supported.

About this task

Complete the following steps to configure the Inbound transport panels in the administrative console:

1. Click Security > Global security.

2. Under RMI/IIOP security, click CSIv2 inbound communications.

3. Under Transport, select You can choose to use either Secure Sockets Layer (SSL), TCP/IP or both as

the inbound transport that a server supports. If you specify TCP/IP, the server only supports TCP/IP

and cannot accept SSL connections. If you specify SSL-supported, this server can support either

TCP/IP or SSL connections. If you specify SSL-required, then any server communicating with this one

must use SSL.

Note: This option is not available on the z/OS platform unless there are both Version 6.0.x and earlier

nodes in the cell.

4. Click Apply.

5. Consider fixing the listener ports that you configured.

You complete this action in a different panel, but think about this action now. Most endpoints are

managed at a single location, which is why they do not display in the Inbound transport panels.

Managing end points at a single location helps you decrease the number of conflicts in your

configuration when you assign the endpoints. The location for SSL end points is at each server. The

following port names are defined in the End points panel and are used for Object Request Broker

(ORB) security:

v CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS - CSIv2 Client Authentication SSL Port

v CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS - CSIv2 SSL Port

v SAS_SSL_SERVERAUTH_LISTENER_ADDRESS - SAS SSL Port

v ORB_LISTENER_PORT - TCP/IP Port

For an application server, click Servers > Application servers > server_name. Under

Communications, click Ports. The Ports panel is displayed for the specified server.

The Object Request Broker (ORB) on WebSphere Application Server uses a listener port for Remote

Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) communications, and is statically

specified using configuration dialogs or during migration. If you are working with a firewall, you must

specify a static port for the ORB listener and open that port on the firewall so that communication can

pass through the specified port. The endPoint property for setting the ORB listener port is:

ORB_LISTENER_ADDRESS.

Complete the following steps using the administrative console to specify the

ORB_LISTENER_ADDRESS port or ports.

Chapter 5. Authenticating users 467

a. Click Servers > Application Servers > server_name. Under Communications, click Ports > New.

b. Select ORB_LISTENER_ADDRESS from the Port name field in the Configuration panel.

c. Enter the IP address, the fully qualified Domain Name System (DNS) host name, or the DNS host

name by itself in the Host field. For example, if the host name is myhost, the fully qualified DNS

name can be myhost.myco.com and the IP address can be 155.123.88.201.

d. Enter the port number in the Port field. The port number specifies the port for which the service is

configured to accept client requests. The port value is used with the host name. Using the previous

example, the port number might be 9000.

6. Click Security > Global security. Under RMI/IIOP security, click CSIv2 inbound communications.

Select the SSL settings that are used for inbound requests from CSIv2 clients, and then click Apply.

Remember that the CSIv2 protocol is used to inter-operate with previous releases. When configuring

the keystore and truststore files in the SSL configuration, these files need the right information for

inter-operating with previous releases of WebSphere Application Server.

Results

The inbound transport configuration is complete. With this configuration, you can configure a different

transport for inbound security versus outbound security. For example, if the application server is the first

server that is used by users, the security configuration might be more secure. When requests go to

back-end enterprise bean servers, you might lessen the security for performance reasons when you go

outbound. With this flexibility you can design the right transport infrastructure to meet your needs.

What to do next

When you finish configuring security, perform the following steps to save, synchronize, and restart the

servers:

1. Click Save in the administrative console to save any modifications to the configuration.

2. Stop and restart all servers, when synchronized.

Common Secure Interoperability Version 2 transport inbound settings

Use this page to specify which listener ports to open and which Secure Sockets Layer (SSL) settings to

use. These specifications determine which transport a client or upstream server uses to communicate with

this server for incoming requests.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click RMI/IIOP security > CSIv2 inbound transport.

Transport:

Specifies whether client processes connect to the server using one of its connected transports.

 You can choose to use either Secure Sockets Layer (SSL), TCP/IP or both as the inbound transport that a

server supports. If you specify TCP/IP, the server only supports TCP/IP and cannot accept SSL

connections. If you specify SSL-supported, this server can support either TCP/IP or SSL connections. If

you specify SSL-required, then any server communicating with this one must use SSL.

If you specify SSL-supported or SSL-required, decide which set of SSL configuration settings you want to

use for the inbound configuration. This decision determines which key file and trust file are used for

inbound connections to this server.

TCP/IP

If you select TCP/IP, then the server opens a TCP/IP listener port only and all inbound requests

do not have SSL protection.

468 Securing applications and their environment

SSL-required

If you select SSL-required, then the server opens an SSL listener port only and all inbound

requests are received using SSL.

Note: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

SSL-supported

If you select SSL-supported, then the server opens both a TCP/IP and an SSL listener port and

most inbound requests are received using SSL.

Provide a fixed port number for the following ports. A zero port number indicates that a dynamic

assignment is made at runtime.

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS

 Default: SSL-Supported

Range: TCP/IP, SSL Required, SSL-Supported

SSL settings:

Specifies a list of predefined SSL settings to choose from for inbound connections.

 These settings are configured at the SSL Repertoire panel. To access the SSL Repertoire panel, complete

the following steps:

1. Clicking Security > SSL certificate and key management.

2. Under configuration settings, click Manage endpoint security configurations and trust zones.

3. Expand Inbound and click inbound_configuration.

4. Under Related items, click SSL configurations.

 Data type: String

Default: DefaultSSLSettings

DefaultIIOPSSL

Range: Any SSL settings configured in the SSL Configuration

Repertoire

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java

Naming and Directory Interface (JNDI) platform.

 Centrally managed configurations support one location to maintain SSL configurations rather than

spreading them across the configuration documents.

 Default: Enabled

Use specific SSL alias:

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

 This option overrides the centrally managed configuration for the JNDI platform.

Chapter 5. Authenticating users 469

z/OS SSL settings:

Specifies a list of predefined Secure Sockets Layer (SSL) settings for inbound connections. Configure

these settings on the SSL panel by clicking Secure communications on the administrative console.

Secure Authentication Service inbound transport settings

Use this page to specify transport settings for connections that are accepted by this server using the

Secure Authentication Service (SAS) authentication protocol. The SAS protocol is used to communicate

securely to enterprise beans with previous releases of the application server.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand RMI/IIOP security and click SAS inbound transport.

Note: The panel associated with this article displays only when you have a Version 6.0.x server in your

environment. SAS is supported only between Version 6.0.x and previous version servers that have

been federated in a Version 6.1 cell.

SSL Settings:

Specifies a list of predefined SSL settings to choose from for inbound connections.

 These settings are configured on the Secure Sockets Layer (SSL) configuration panel. To access the SSL

configuration panel, complete the following steps:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

and trust zones.

2. Expand Inbound > configuration_name.

3. Under Related Items, click SSL configurations.

 Data type: String

Default: DefaultSSLSettings

Configuring outbound transports

By using this configuration, you can configure a different transport for inbound security versus outbound

security.

Before you begin

Outbound transports refers to the transport that is used to connect to a downstream server. When you

configure the outbound transport, consider the transports that the downstream servers support. If you are

considering Secure Sockets Layer (SSL), also consider including the signers of the downstream servers in

this server truststore file for the handshake to succeed.

When you select an SSL configuration, that configuration points to keystore and truststore files that contain

the necessary signers.

If you configured client certificate authentication for this server by completing the following steps, then the

downstream servers contain the signer certificate belonging to the server personal certificate:

1. Click Security > Global security.

2. Under RMI/IIOP security, click CSIv2 outbound communications.

470 Securing applications and their environment

About this task

Complete the following steps to configure the outbound transport panels.

1. Select the type of transport and the SSL settings by clicking Security > Global security. Under

RMI/IIOP security, click CSIv2 outbound communications. By selecting the type of transport, you

choose the transport to use when connecting to downstream servers. The downstream servers support

the transport that you choose. If you choose SSL-Supported, the transport that is used is negotiated

during the connection. If both the client and server support SSL, always select the SSL-Supported

option unless the request is considered a special request that does not require SSL, such as if an

object request broker (ORB) is a request.

2. Select the SSL required option if you want to use Secure Sockets Layer communications with the

outbound transport.

If you select the SSL required option, you can select either the Centrally managed or Use specific

SSL alias option.

Centrally managed

Enables you to specify an SSL configuration for particular scope such as the cell, node, server,

or cluster in one location. To use the Centrally managed option, you must specify the SSL

configuration for the particular set of endpoints. The Manage endpoint security configurations

and trust zones panel displays all of the inbound and outbound endpoints that use the SSL

protocol. If you expand the Inbound or Outbound section of the panel and click the name of a

node, you can specify an SSL configuration that is used for every endpoint on that node. For

an outbound transport, you can override the inherited SSL configuration by specifying an SSL

configuration for a particular endpoint. To specify an SSL configuration for an outbound

transport, click Security > SSL certificate and key management > Manage endpoint

security configurations and trust zones and expand Outbound.

Use specific SSL alias

Select the Use specific SSL alias option if you intend to select one of the SSL configurations

in the menu below the option.

 This configuration is used only when SSL is enabled for LDAP. The default is

DefaultSSLSettings. To modify or create a new SSL configuration, complete the steps

described in “Creating a Secure Sockets Layer configuration” on page 614.

3. Click Apply.

Results

The outbound transport configuration is complete. With this configuration, you can configure a different

transport for inbound security versus outbound security. For example, if the application server is the first

server used by end users, the security configuration might be more secure. When requests go to back-end

enterprise beans servers, you might consider less security for performance reasons when you go

outbound. With this flexibility you can design a transport infrastructure that meets your needs.

What to do next

When you finish configuring security, perform the following steps to save, synchronize, and restart the

servers.

v Click Save in the administrative console to save any modifications to the configuration.

v Stop and restart all servers, after synchronization.

Common Secure Interoperability Version 2 outbound transport settings

Use this page to specify which transports and Secure Sockets Layer (SSL) settings this server uses when

communicating with downstream servers for outbound requests.

To view this administrative console page, complete the following steps:

Chapter 5. Authenticating users 471

1. Click Security > Global security.

2. Under Authentication, click RMI/IIOP security > CSIv2 outbound transport.

You also can view this administrative console by completing the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Server security.

3. Under Additional properties, click CSIv2 outbound transport.

Transport:

Specifies whether the client processes connect to the server using one of the server-connected transports.

 You can choose to use either SSL, TCP/IP, or Both as the outbound transport that a server supports. If

you specify TCP/IP, the server supports only TCP/IP and cannot initiate SSL connections with downstream

servers. If you specify SSL-supported, this server can initiate either TCP/IP or SSL connections. If you

specify SSL-required, this server must use SSL to initiate connections to downstream servers. When you

do specify SSL, decide which set of SSL configuration settings you want to use for the outbound

configuration.

This decision determines which keyfile and trustfile to use for outbound connections to downstream

servers.

Consider the following options:

TCP/IP

If you select this option, the server opens TCP/IP connections with downstream servers only.

SSL-required

If you select this option, the server opens SSL connections with downstream servers.

SSL-supported

If you select this option, the server opens SSL connections with any downstream server that

supports them and opens TCP/IP connections with any downstream servers that do not support

SSL.

 Default: SSL-supported

Range: TCP/IP, SSL-required, SSL-supported

SSL settings:

Specifies a list of predefined SSL settings for outbound connections. These settings are configured at the

SSL Configuration Repertoires panel.

 To access the panel, complete the following steps:

1. Click Security > SSL certificate and key management.

2. Under Configuration settings, click Manage endpoint security configurations and trust zones.

3. Expand Outbound > outbound_configuration_name.

4. Under Related items, click SSL configurations.

 Data type: String

Range: Any SSL settings that are configured in the SSL

Configuration Repertoires panel

Note: This field is available only if a Version 6.0.x server exists in your environment.

SSL enabled:

472 Securing applications and their environment

Specifies whether secure socket communication is enabled to the server.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java

Naming and Directory Interface (JNDI) platform.

 Centrally managed configurations support one location to maintain SSL configurations rather than

spreading them across the configuration documents.

 Default: Enabled

Use specific SSL alias:

Specifies the SSL configuration alias that you want to use for outbound SSL communications.

 This option overrides the centrally managed configuration for the JNDI (LDAP) protocol.

Secure Authentication Service outbound transport settings

Use this page to specify transport settings for connections that are accepted by this server using the

Secure Authentication Service (SAS) authentication protocol.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand RMI/IIOP security and click SAS outbound transport.

Note: The panel associated with this article displays only when you have a Version 6.0.x server in your

environment.

SSL settings:

Specifies a list of predefined Secure Sockets Layer (SSL) settings to choose from for outbound

connections.

 These settings are configured on the SSL configuration panel. To access the SSL configuration panel,

complete the following steps:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

and trust zones.

2. Expand Outbound > configuration_name.

3. Under Related Items, click SSL configurations.

 Data type: String

Default: DefaultSSLSettings

Configuring inbound messages

You can use the administrative console to configure inbound messages for CSIv2.

1. In the administrative console, click Security > Global security.

2. Under Authentication, expand RMI/HOP security.

3. Click CSIv2 inbound communication.

4. Optional: Click Propagate security attributes or Use identity assertion. The Propagate security

attributes option enables support for security attribute propagation during login requests. When you

Chapter 5. Authenticating users 473

select this option, the application server retains additional information about the login request, such as

the authentication strength used, and retains the identity and location of the request originator.

The Use identity assertion option specifies that identity assertion is a way to assert identities from

one server to another during a downstream Enterprise JavaBeans (EJB) invocation.

5. Under CSIv2 Message layer authentication, select Supported, Never or Required.

Never Specifies that this server cannot accept an authentication mechanism that you select under

Allow client to server authentication with:.

Supported

Specifies that clients communicating with this server can specify an authentication mechanism

that you select under Allow client to server authentication with:. However, a method might

be invoked without this type of authentication. For example, an anonymous or client certificate

might be used instead.

Required

Specifies that clients communicating with this server must specify an authentication

mechanism that you select under Allow client to server authentication with:.

6. Under Allow client to server authentication with:, select Kerberos, LTPA and or Basic

authentication. You can optionally select:

Kerberos

Select to enable authentication using the Kerberos token.

LTPA Select to enable authentication using the Lightweight Third-Party Authentication (LTPA) token.

Basic authentication

This type of authentication typically involves sending a user ID and a password from the client

to the server for authentication. This is also know as Generic Security Services Username

Password (GSSUP).

 This authentication also involves delegating a credential token from an already authenticated

credential, provided the credential type is forwardable; for example, LTPA.

If you select supported under CSIv2 Message layer authentication, and check KRB5 and

LTPA under Allow client to server authentication with:, then the server does not accept the

user name and password.

7. Click OK.

Results

You have now configured messages for CSIv2 inbound.

Configuring outbound messages

You can use the administrative console to configure outbound messages for CSIv2.

1. In the administrative console, click Security > Global security.

2. Under Authentication, expand RMI/HOP security.

3. Click CSIv2 outbound communication.

4. Optional: Click Propagate security attributes or Use identity assertion. The Propagate security

attributes option enables support for security attribute propagation during login requests. When you

select this option, the application server retains additional information about the login request, such as

the authentication strength used, and retains the identity and location of the request originator.

The Use identity assertion option specifies that identity assertion is a way to assert identities from

one server to another during a downstream Enterprise JavaBeans (EJB) invocation.

The Use server trusted identity option specifies the server identity that the application server uses to

establish trust with the target server.

474 Securing applications and their environment

The Specify an alternative trusted identity option enables you to specify an alternative user as the

trusted identity that is sent to the target servers instead of sending the server identity. If you select this

option you must provide the name of the trusted identity and the password that is associated with the

trusted identity.

5. Under CSIv2 Message layer authentication, select Supported, Never or Required.

Never Specifies that this server cannot accept an authentication mechanism that you select under

Allow client to server authentication with:.

Supported

Specifies that clients communicating with this server can specify an authentication mechanism

that you select under Allow client to server authentication with:. However, a method might

be invoked without this type of authentication. For example, an anonymous or client certificate

might be used instead.

Required

Specifies that clients communicating with this server must specify an authentication

mechanism that you select under Allow client to server authentication with:.

6. Under Allow client to server authentication with:, select Kerberos, LTPA and or Basic

authentication. You can optionally select:.

Kerberos

Select to enable authentication using the Kerberos token.

LTPA Select to enable authentication using the Lightweight Third-Party Authentication (LTPA) token.

Basic authentication

This type of authentication typically involves sending a user ID and a password from the client

to the server for authentication. This is also know as Generic Security Services Username

Password (GSSUP).

 This authentication also involves delegating a credential token from an already authenticated

credential, provided the credential type is forwardable; for example, LTPA.

If you select supported under CSIv2 Message layer authentication, and check KRB5 and

LTPA under Allow client to server authentication with:, then the server does not accept the

user name and password.

7. Optional: Select Custom outbound mapping. This option enables the use of custom Remote Method

Invocation (RMI) outbound login modules.

Results

You have now configured messages for CSIv2 outbound.

Common Secure Interoperability Version 2 and Security Authentication

Service (SAS) client configuration

A secure Java client requires configuration properties to determine how to perform security with a server.

These configuration properties are typically put into a properties file somewhere on the client system and

referenced by specifying the following system property on the command line of the Java client. For

example, this property accepts any valid Web address.

 -Dcom.ibm.CORBA.ConfigURL=file:profile_root/properties/sas.client.props

When you use thin or thick clients, com.ibm.CORBA.ConfigURL is automatically set to the following file:

profile_root/properties/sas.client.props

Chapter 5. Authenticating users 475

When this file is processed by the Object Request Broker (ORB), security can be enabled between the

Java client and the target server.

If any syntax problems exist with the ConfigURL property and the sas.client.props file is not found, the

Java client proceeds to connect insecurely. Errors display indicating the failure to read the ConfigURL

property. Typically the problem is related to having two slashes after file, which is not valid.

Use the following properties to configure the Secure Authentication Service (SAS) and CSIv2

authentication protocols:

v

v “” on page 480

Note: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Authentication protocol settings for a client configuration

You can use settings in the sas.client.props file to configure Security Authentication Service (SAS) and

Common Secure Interoperability Version 2 (CSIv2) clients.

Use the following settings in the sas.client.props file to configure SAS and CSIv2 clients. By default, the

sas.client.props file is located in the profile_root/properties directory of your WebSphere Application Server

- Express installation.

Note: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Note: The sas.client.props file for WebSphere Application Server Version 7.0 now contains some new

properties that support BasicAuth and Kerberos, such as:

com.ibm.IPC.authenticationTarget=BasicAuth

com.ibm.IPC.loginUserid=

com.ibm.IPC.loginPassword=

com.ibm.IPC.loginSource=prompt

com.ibm.IPC.krb5Service=WAS

com.ibm.IPC.krb5CcacheFile=

com.ibm.IPC.krb5ConfigFile=

Related tasks

“Configuring Common Secure Interoperability Version 2 (CSIV2) inbound and outbound communication

settings” on page 454
WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for

both inbound and outbound authentication requests. For inbound requests, you can specify the type of

accepted authentication, such as basic authentication. For outbound requests, you can specify properties

such as type of authentication, identity assertion or login configurations that are used for requests to

downstream servers.

Related reference

“Common Secure Interoperability Version 2 and Security Authentication Service (SAS) client configuration”

on page 475
A secure Java client requires configuration properties to determine how to perform security with a server.

com.ibm.CORBA.securityEnabled:

Use to determine if security is enabled for the client process.

 Setting Value

Data Type Boolean

476 Securing applications and their environment

Setting Value

Default True

Valid values True or false

com.ibm.CSI.protocol:

Use to determine which authentication protocols are active.

 The client can configure protocols of ibm, csiv2 or both as active. The only possible values for an

authentication protocol are ibm, csiv2 and both. Do not use sas for the value of an authentication protocol.

This restriction applies to both client and server configurations. The following list provides information

about using each of these protocol options:

ibm Use this authentication protocol option when you are communicating with WebSphere Application

Server Version 4.x or earlier servers.

csiv2 Use this authentication protocol option when you are communicating with WebSphere Application

Server Version 5 or later servers because the SAS interceptors are not loaded and running for

each method request.

both Use this authentication protocol option for interoperability between WebSphere Application Server

Version 4.x or earlier servers and WebSphere Application Server Version 5 or later servers.

Typically, specifying both provides greater interoperability with other servers.

 Setting Value

Data type String

Default Both

Valid values ibm, csiv2, both

com.ibm.CORBA.authenticationTarget:

Use to determine the type of authentication mechanism for sending security information from the client to

the server.

 If basic authentication is specified, the user ID and password are sent to the server. Using the Secure

Sockets Layer (SSL) transport with this type of authentication is recommended; otherwise, the password is

not encrypted. The target server must support the specified authentication target.

If you specify Lightweight Third Party Authentication (LTPA), then LTPA must be the mechanism configured

at the server for a method request to proceed securely.

 Setting Value

Data type String

Default BasicAuth

Valid values BasicAuth, LTPA

com.ibm.CORBA.validateBasicAuth:

Use to determine if the user ID and password get validated immediately after the login data is entered

when the authenticationTarget property is set to BasicAuth.

 In previous releases, BasicAuth logins validated only with the initial method request. During the first

request, the user ID and password are sent to the server. This request is the first time that the client can

Chapter 5. Authenticating users 477

notice an error, if the user ID or password is incorrect. The validateBasicAuth method is specified and the

validation of the user ID and password occurs immediately to the security server.

For performance reasons, you might want to disable this property if you do not want to verify the user ID

and password immediately. If the client program can wait, it is better to have the initial method request

flow to the user ID and password. However, program logic might not be this simple because of error

handling considerations.

 Setting Value

Data type Boolean

Default True

Valid values True, False

com.ibm.CORBA.authenticationRetryEnabled:

Use to specify that a failed login attempt is retried. This property determines if a retry occurs for other

errors, such as stateful sessions that are not found on a server or validation failures at the server because

of an expiring credential.

 The minor code in the exception that is returned to a client determines which errors are retried. The

number of retry attempts is dependent upon the com.ibm.CORBA.authenticationRetryCount property.

 Setting Value

Data type Boolean

Default True

Valid values True, False

com.ibm.CORBA.authenticationRetryCount:

Use to specify the number of retries that occur until either a successful authentication occurs or the

maximum retry value is reached.

 When the maximum retry value is reached, the authentication exception is returned to the client.

 Setting Value

Data type Integer

Default 3

Range 1-10

com.ibm.CORBA.loginSource:

Use to specify how the request interceptor attempts to log in if it does not find an invocation credential

already set.

 This property is valid only if message layer authentication occurs. If only transport layer authentication

occurs, this property is ignored. When specifying properties, the following two additional properties must

be defined:

v com.ibm.CORBA.loginUserid

v com.ibm.CORBA.loginPassword

478 Securing applications and their environment

When performing a programmatic login, it is not necessary to specify none as the login source. The

request fails if a credential is set as the invocation credential during a method request.

 Setting Value

Data type String

Default Prompt

Valid values Prompt, key file, stdin, none, properties

com.ibm.CORBA.loginUserid:

Use to specify the user ID when a properties login is configured and message layer authentication occurs.

 This property is valid only when com.ibm.CORBA.loginSource=properties. Also set the

com.ibm.CORBA.loginPassword property.

 Setting Value

Data type String

Range Any string that is appropriate for a user ID in the

configured user registry of the server.

com.ibm.CORBA.loginPassword:

Use to specify the password when a properties login is configured and message layer authentication

occurs.

 This property is valid only when com.ibm.CORBA.loginSource=properties. Also set the

com.ibm.CORBA.loginUserid property.

 Setting Value

Data type String

Range Any string that is appropriate for a password in the

configured user registry of the server.

com.ibm.CORBA.keyFileName:

Use to specify the key file that is used to log in.

 A key file is a file that contains a list of realm, user ID, and password combinations that a client uses to log

into multiple realms. The realm that is used is the one found in the interoperable object reference (IOR) for

the current method request. The value of this property is used when the com.ibm.CORBA.loginSource=key

file is used.

 Setting Value

Data type String

Default C;/WebSphere/AppServer/properties/wsserver.key

Range Any fully qualified path and file name of a WebSphere

Application Server key file.

com.ibm.CORBA.loginTimeout:

Use to specify the length of time that the login prompt stays available before it is considered a failed login.

Chapter 5. Authenticating users 479

Setting Value

Data type Integer

Units Seconds

Default 300 (5 minute intervals)

Range 0 - 600 (10 minute intervals)

com.ibm.CORBA.securityEnabled:

Use to determine if security is enabled for the client process.

 Setting Value

Data type Boolean

Default True

Range True, False

Security Authentication Service authentication protocol client settings:

In addition to those properties which are valid for both Security Authentication Service (SAS) and Common

Secure Interoperability Version 2 (CSIv2), this article documents properties which are valid only for the

SAS authentication protocol.

 Note: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

com.ibm.CORBA.standardPerformQOPModels:

Specifies the strength of the ciphers when making a Secure Sockets Layer (SSL) connection.

 Data type: String

Default: High

Range Low, Medium, High

Example 1: Configuring basic authentication and identity assertion

This example presents a pure Java client, C, that accesses a secure enterprise bean on server, S1,

through user bob. The following steps take you through the configuration of C, S1, and S2.

480 Securing applications and their environment

About this task

The enterprise bean code on S1 accesses another enterprise bean on server, S2. This configuration uses

identity assertion to propagate the identity of bob to the downstream server, S2. S2 trusts that bob already

is authenticated by S1 because it trusts S1. To gain this trust, the identity of S1 also flows to S2

simultaneously and S2 validates the identity by checking the trustedPrincipalList list to verify that it is a

valid server principal. S2 also authenticates S1.

1. Configure the client C for message layer authentication with a Secure Sockets Layer (SSL) transport.

a. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/profile_root /properties/sas.client.props property.

The profile_root variable is the specific profile that you are working with. All further configuration

involves setting properties within this file.

b. Enable SSL.

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

c. Enable client authentication at the message layer.

In this case, client authentication is supported but not required:

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=true

d. Use all of the remaining defaults in the sas.client.props file.

2. Configure the server, S1.

In the administrative console, server S1 is configured for incoming requests to support message-layer

client authentication and incoming connections to support SSL without client certificate authentication.

Server S1 is configured for outgoing requests to support identity assertion.

a. Configure S1 for incoming connections.

1) Disable identity assertion.

2) Enable user ID and password authentication.

3) Enable SSL.

4) Disable SSL client certificate authentication.

b. Configure S1 for outgoing connections.

1) Enable identity assertion.

2) Disable user ID and password authentication.

3) Enable SSL.

server1/passwordbob/password

Java client Enterprise beans

Invocation credentials: bob

Message layerMessage layer

Transport layer Transport layer

Identity assertion layer

SSLSSL

bob

C S1 S2

Received credentials: bob

Enterprise beans

Chapter 5. Authenticating users 481

4) Disable SSL client certificate authentication.

3. Configure the server, S2.

In the administrative console, server S2 is configured for incoming requests to support identity

assertion and to accept SSL connections. Complete the following steps to configure incoming

connections. Configuration for outgoing requests and connections are not relevant for this example.

a. Enable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client authentication.

Example 2: Configuring basic authentication, identity assertion, and

client certificates

This example is the same as example 1, except for the interaction from client C2 to server S2. Therefore,

the configuration of example 1 still is valid, but you have to modify server S2 slightly and add a

configuration for client C2. The configuration is not modified for C1 or S1.

About this task

1. Configure client C2 for transport layer authentication (Secure Sockets Layer (SSL) client certificates).

a. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/profile_root /properties/sas.client.props property.

The profile_root variable is the specific profile that you are working with. All further configuration

involves setting properties within this file.

b. Enable SSL.

server1/passwordbob/password

Java client Enterprise beans

Invocation credentials: bob

Message layerMessage layer

Transport layer Transport layer

Identity assertion layer

SSLSSL

bob

C S1 S2

Received credentials: bob

Enterprise beans

Transport layer

SSL: cn=bob, o=ibm, c=us

C S1

482 Securing applications and their environment

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

c. Disable client authentication at the message layer.

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=false

d. Enable client authentication at the transport layer where it is supported, but not required.

com.ibm.CSI.performTLClientAuthenticationRequired=false,

com.ibm.CSI.performTLClientAuthenticationSupported=true

2. Configure the server, S2.

In the administrative console, server S2 is configured for incoming requests to SSL client

authentication and identity assertion. Configuration for outgoing requests is not relevant for this

example.

You can mix and match these configuration options. However, a precedence exists as to which

authentication features become the identity in the received credential:

a. Identity assertion

b. Message-layer client authentication (basic authentication or token)

c. Transport-layer client authentication (SSL certificates)

a. Enable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Enable SSL client authentication.

Example 3: Configuring client certificate authentication and RunAs

system

This example presents a pure Java client, C, accessing a secure enterprise bean on S1.

About this task

C authenticates to S1 using Secure Sockets Layer (SSL) client certificates. S1 maps the common name of

the distinguished name (DN) in the certificate to a user in the local registry. The user in this case is bob.

The enterprise bean code on S1 accesses another enterprise bean on S2. Because the RunAs mode is

server1/password

Java client Enterprise beans

Invocation credentials: bob

RunAs system

Message layer

Transport layer Transport layer

SSLSSL: cn=bob, o=ibm, c=us

C S1 S2

Received credentials: server1

Enterprise beans

Chapter 5. Authenticating users 483

system, the invocation credential is set as server1 for any outbound requests.

1. Configure client C for transport layer authentication (SSL client certificates).

a. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/profile_root /properties/sas.client.props property.

The profile_root variable is the specific profile that you are working with. All further configuration

involves setting properties within this file.

b. Enable SSL.

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

c. Disable client authentication at the message layer.

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=false

d. Enable client authentication at the transport layer. It is supported, but not required.

com.ibm.CSI.performTLClientAuthenticationRequired=false,

com.ibm.CSI.performTLClientAuthenticationSupported=true

2. Configure the S1 server. In the administrative console, S1 is configured for incoming connections to

support SSL with client certificate authentication. The S1 server is configured for outgoing requests to

support message layer client authentication.

a. Configure S1 for incoming connections.

1) Disable identity assertion.

2) Disable user ID and password authentication.

3) Enable SSL.

4) Enable SSL client certificate authentication.

b. Configure S1 for outgoing connections.

1) Disable identity assertion.

2) Disable user ID and password authentication.

3) Enable SSL.

4) Enable SSL client certificate authentication.

3. Configure the S2 server.

In the administrative console, the S2 server is configured for incoming requests to support message

layer authentication over SSL. Configuration for outgoing requests is not relevant for this scenario.

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client authentication.

Example 4: Configuring TCP/IP transport using a virtual private

network

This scenario illustrates the ability to choose TCP/IP as the transport when it is appropriate. In some

cases, when two servers are on the same virtual private network (VPN), it can be appropriate to select

TCP/IP as the transport for performance reasons because the VPN already encrypts the message.

484 Securing applications and their environment

About this task

1. Configure client C for message layer authentication with an Secure Sockets Layer (SSL) transport.

a. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/profile_root/properties/sas.client.props property. The

profile_root variable is to the specific profile you are working with. All further configuration involves

setting properties within this file.

b. Enable SSL.

In this case, SSL is supported but not

required.com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

c. Enable client authentication at the message layer. In this case, client authentication is supported

but not required. com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=true

d. Use the remaining defaults in the sas.client.props file.

2. Configure the S1 server. In the administrative console, the S1 server is configured for incoming

requests to support message-layer client authentication and incoming connections to support SSL

without client certificate authentication. The S1 server is configured for outgoing requests to support

identity assertion.

It is possible to enable SSL for inbound connections and disable SSL for outbound connections. The

same is true in reverse.

a. Configure S1 for incoming connections.

tom/password
token

Java client Enterprise

beans

Virtual Private Network

Invocation

credentials: tom

Received

credentials: tom

Message layer
Message layer

Transport layer

TCP/IP

C S1 S2

Transport layer

SSL

Enterprise

beans

Chapter 5. Authenticating users 485

1) Disable identity assertion.

2) Enable user ID and password authentication.

3) Enable SSL.

4) Disable SSL client certificate authentication.

b. Configure S1 for outgoing connections.

1) Disable identity assertion.

2) Enable user ID and password authentication.

3) Disable SSL.

3. Configure the S2 server.

In the administrative console, the S2 server is configured for incoming requests to support identity

assertion and to accept SSL connections. Configuration for outgoing requests and connections are not

relevant for this scenario.

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Disable SSL.

Authentication protocol for EJB security

WebSphere Application Server Version 7.0 servers support the CSIv2 authentication protocol only. SAS is

only supported between Version 6.0.x and earlier version servers that have been federated in a Version

7.0 cell. The option to select between SAS, CSIv2, or both is only available in the administration console

when a Version 6.0.x or earlier release has been federated in a Version 7.0 cell.

SAS is the authentication protocol used by all previous releases of WebSphere Application Server and is

maintained for backwards compatibility. The Object Management Group (OMG) has defined the

authentication protocol called CSIv2 so that vendors can interoperate securely. CSIv2 is implemented in

WebSphere Application Server with more features than SAS and is considered the strategic protocol.

Note: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Invoking Enterprise Java Beans (EJB) methods in a secure WebSphere Application Server environment

requires an authentication protocol to determine the level of security and the type of authentication that

occur between any given client and server for each request. It is the job of the authentication protocol

during a method invocation to merge the server authentication requirements that are determined by the

object Interoperable Object Reference (IOR) with the client authentication requirements that are

determined by the client configuration and come up with an authentication policy specific to that client and

server pair.

The authentication policy makes the following decisions, among others, which are all based on the client

and server configurations:

v What kind of connection can you make to this server--Secure Sockets Layer (SSL) or TCP/IP?

v If SSL is chosen, how strong is the encryption of the data?

v If SSL is chosen, do you authenticate the client using client certificates?

v Do you authenticate the client with a user ID and password? Does an existing credential exist?

v Do you assert the client identity to downstream servers?

v Given the configuration of the client and server, can a secure request proceed?

You can configure both protocols (SAS and CSIv2) to work simultaneously. If a server supports both

protocols, it exports an IOR containing tagged components describing the configuration for SAS and

CSIv2. If a client supports both protocols, it reads tagged components for both CSIv2 and SAS. If the

client supports both and the server supports both, CSIv2 is used. However, if the server supports SAS (for

486 Securing applications and their environment

example, it is a previous WebSphere Application Server release) and the client supports both, the client

chooses SAS for this request because the SAS protocol is what both have in common.

Choose a protocol by specifying the com.ibm.CSI.protocol property on the client side and configuring

through the administrative console on the server side. More details are included in the SAS and CSIv2

properties articles.

Common Secure Interoperability Specification, Version 2

The Common Secure Interoperability Specification, Version 2 (CSIv2) defines the Security Attribute Service

(SAS) that enables interoperable authentication, delegation, and privileges. The CSIv2 SAS and SAS

protocols are entirely different. The CSIv2 SAS is a subcomponent of CSIv2 that supports SSL and

interoperability with the EJB Specification, Version 2.1.

Security Attribute Service

The Common Secure Interoperability Specification, Version 2 Security Attribute Service (CSIv2 SAS)

protocol is designed to exchange its protocol elements in the service context of a General Inter-ORB

Protocol (GIOP) request and reply messages that are communicated over a connection-based transport.

The protocol is intended for use in environments where transport layer security, such as that available

through Secure Sockets Layer (SSL) and Transport Layer Security (TLS), is used to provide message

protection (that is, integrity and or confidentiality) and server-to-client authentication. The protocol provides

client authentication, delegation, and privilege functionality that might be applied to overcome

corresponding deficiencies in an underlying transport. The CSIv2 SAS protocol facilitates interoperability by

serving as the higher-level protocol under which secure transports can be unified.

Connection and request interceptors

The authentication protocols that are used by WebSphere Application Server are add-on Interoperable

Inter-ORB Protocol (IIOP) services. IIOP is a request-and-reply communications protocol that is used to

send messages between two Object Request Brokers (ORBs). For each request made by a client ORB to

a server ORB, an associated reply is made by the server ORB back to the client ORB. Prior to any

request flowing, a connection between the client ORB and the server ORB must be established over the

TCP/IP transport (SSL is a secure version of TCP/IP). The client ORB invokes the authentication protocol

client connection interceptor, which is used to read the tagged components in the IOR of the object that is

located on the server. As mentioned previously, the authentication policy is established here for the

request. Given the authentication policy (a coalescing of the server configuration with the client

configuration), the strength of the connection is returned to the ORB. The ORB makes the appropriate

connection, usually over SSL.

After the connection is established, the client ORB invokes the authentication protocol client request

interceptor, which is used to send security information other than what is established by the transport. The

security information includes the user ID and password token that are authenticated by the server, an

authentication mechanism-specific token that is validated by the server, or an identity assertion token.

Identity assertion is a way for one server to trust another server without the need to re-authenticate or

re-validate the originating client. However, some work is required for the server to trust the upstream

server. This additional security information is sent with the message in a service context. A service context

has a registered identifier so that the server ORB can identify which protocol is sending the information.

The fact that a service context contains a unique identity is another way for WebSphere Application Server

to support both SAS and CSIv2 simultaneously because both protocols have different service context IDs.

After the client request interceptor finishes adding the service context to the message, the message is sent

to the server ORB.

Chapter 5. Authenticating users 487

When the message is received by the server ORB, the ORB invokes the authentication protocol server

request interceptor. This interceptor looks for the service context ID known by the protocol. When both

SAS and CSIv2 are supported by a server, two different server request interceptors are invoked and both

interceptors look for different service context IDs.

However, only one finds a service context for any given request. When the server request interceptor finds

a service context, it reads the information in the service context. A method is invoked to the security server

to authenticate or validate client identity. The security server either rejects the information or returns a

credential. A credential contains additional information about the client that is retrieved from the user

registry so that authorization can make the appropriate decision. Authorization is the process of

determining if the user can invoke the request based on the roles that are applied to the method and the

roles given to the user.

If a service context is not found by the CSIv2 server request interceptor, the interceptor process looks at

the transport connection to see if a client certificate chain is sent. This process is done when SSL client

authentication is configured between the client and server.

If a client certificate chain is found, the distinguished name (DN) is extracted from the certificate and is

used to map to an identity in the user registry. If the user registry is Lightweight Directory Access Protocol

(LDAP), the search filters defined in the LDAP registry configuration determine how the certificate maps to

an entry in the registry. If the user registry is local OS, the first attribute of the distinguished name (DN)

maps to the user ID of the registry. This attribute is typically the common name.

If the certificate does not map, no credential is created and the request is rejected. When valid security

information is not presented, the method request is rejected and a NO_PERMISSION exception is sent

back with the reply. However, when no security information is presented, an unauthenticated credential is

created for the request and the authorization engine determines if the method gets invoked. For an

unauthenticated credential to invoke an Enterprise JavaBean (EJB) method, either no security roles are

defined for the method or a special Everyone role is defined for the method.

When the method invocation is completed in the EJB container, the server request interceptor is invoked

again to complete server authentication and a new reply service context is created to inform the client

request interceptor of the outcome. This process is typically for making the request stateful. When a

stateful request is made, only the first request between a client and server requires that security

information is sent. All subsequent method requests need to send a unique context ID only so that the

server can look up the credential that is stored in a session table. The context ID is unique within the

connection between a client and server.

Finally, the method request cycle is completed by the client request interceptor receiving a reply from the

server with a reply service context providing information so that the client-side stateful context ID can be

confirmed and reused.

Specifying a stateful client is done through the property com.ibm.CSI.performStateful (true/false).

Specifying a stateful server is done through the administrative console configuration.

488 Securing applications and their environment

Authentication policy for each request

The authentication policy of a given request determines the security protection between a client and a

server. A client or server authentication protocol configuration can describe required features, supported

features, and non-supported features. When a client requires a feature, it can talk only to servers that

either require or support that feature. When a server requires a feature, it can talk only to clients that

either require or support that feature. When a client supports a feature, it can talk to a server that supports

or requires that feature, but can also talk to servers that do not support the feature. When a server

supports a feature, it can talk to a client that supports or requires the feature, but can also talk to clients

that do not support the feature or chose not to support the feature.

For example, for a client to support client certificate authentication, some setup is required to either

generate a self-signed certificate or to get one from a certificate authority (CA). Some clients might not

need to complete these actions, therefore, you can configure this feature as not supported. By making this

decision, the client cannot communicate with a secure server that requires client certificate authentication.

Instead, this client can choose to use the user ID and password as the method of authenticating itself to

the server.

Typically, supporting a feature is the most common way of configuring features. It is also the most

successful during runtime because it is more forgiving than requiring a feature. Knowing how secure

servers are configured in your domain, you can choose the right combination for the client to ensure

successful method invocations and still get the most security. If you know that all of your servers support

both client certificate and user ID and password authentication for the client, you might want to require one

and not support the other. If both the user ID and password and the client certificate are supported on the

client and server, both are performed, but user ID and password take precedence at the server. This

action is based on the CSIv2 specification requirements.

Authentication protocol support

Use this page to reference information regarding supported authentication protocols.

Authentication protocol flow

Step 1:

Client ORB calls the connection

interceptor to create the connection.

Step 5:

Client ORB calls the request interceptor

so that the client can clean up and set

the session status as good or bad.

Client request

interceptor -

receive_reply()

Client connection

interceptor

Client request

interceptor -

send_request()

Server request

interceptor -

receive_request()

Server request

interceptor -

send_reply()

Step 3:

Server ORB calls the request interceptor

to receive the security information,

authenticate, and set the received credential.

Step 4:

Server ORB calls the request interceptor

so that security can send information

back to the client with the reply.

Step 2:

Client ORB calls the request

interceptor to get client security

information.

Client ORB Server ORB

Invocation

credential:

user: peter

pass: beans

1

2

Request

Service context

Service context

3

Received

credential:

security

token

45
Reply

User: peter,

Password: beans

foo.getCoffee()

Coffee

Stateful request

valid

Transport connectionfoo.getCoffee() Server enterprise
beans Foo

. Authentication protocol flow

Chapter 5. Authenticating users 489

Authentication protocol support

Beginning with WebSphere Application Server Version 7.0, the WebSphere Application Server Version 7.0

servers only support the Common Secure Interoperability Version 2 (CSIv2) authentication protocol.

Secure Authentication Service (SAS) is only supported between Version 6.0.x and previous version servers

that have been federated in a Version 7.0 cell. The option to select between SAS, CSIv2, or both will only

be made available in the administration console when a Version 6.0.x or previous release has been

federated in a Version 7.0 cell.

In future releases, IBM will no longer ship or support the Secure Authentication Service (SAS) IIOP

security protocol. It is recommended that you use the Common Secure Interoperability version 2 (CSIv2)

protocol.

You can configure both protocols to work simultaneously between Version 6.0.x and previous version

servers that have been federated in a Version 7.0 cell. If a server supports both protocols, it exports an

interoperable object reference (IOR) that contains tagged components describing the configuration for SAS

and CSIv2. If a client supports both protocols, it reads tagged components for both CSIv2 and SAS. If the

client and server support both protocols, CSIv2 is used. However, if the server supports SAS (for example,

the server is a previous WebSphere Application Server release) and the client supports both protocols, the

client chooses SAS for this request.

Choose a protocol using the com.ibm.CSI.protocol property on the client side and configure this protocol

through the administrative console on the server side.

You can configure both protocols to work simultaneously. If a server supports both protocols, it exports an

interoperable object reference (IOR) that contains tagged components describing the configuration for SAS

and CSIv2. If a client supports both protocols, it reads tagged components for both CSIv2 and SAS. If the

client and the server support both protocols, CSIv2 is used. However, if the server supports SAS (for

example, it is a previous WebSphere Application Server release) and the client supports both protocols,

the client chooses SAS for this request.

Common Secure Interoperability Version 2 features

The following Common Secure Interoperability Version 2 (CSIv2) features are available in IBM WebSphere

Application Server: message layer authentication, identity assertion, and security attribute propagation.

v Identity Assertion

Supports a downstream server in accepting the client identity that is established on an upstream server,

without having to authenticate again. The downstream server trusts the upstream server.

v Message Layer Authentication

Authenticates credential information and sends that information across the network so that a receiving

server can interpret it.

v Security attribute propagation

Supports the use of the authorization token to propagate serialized Subject contents and

PropagationToken contents with the request. You can propagate these objects using a pure client or a

server login that adds custom objects to the Subject. Propagating security attributes prevents

downstream logins from having to make user registry calls to look up these attributes.

Propagating security attributes is also useful when the security attributes contain information that is only

available at the time of authentication. This information cannot be located using the user registry on

downstream servers.

Identity assertion to the downstream server

When a client authenticates to a server, the received credential is set. When the authorization engine

checks the credential to determine whether access is permitted, it also sets the invocation credential .

Identity assertion is the invocation credential that is asserted to the downstream server.

490 Securing applications and their environment

When a client authenticates to a server, the received credential is set. When the authorization engine

checks the credential to determine whether access is permitted, it also sets the invocation credential so

that if the Enterprise JavaBeans (EJB) method calls another EJB method that is located on other servers,

the invocation credential can be the identity used to invoke the downstream method. Depending on the

RunAs mode for the enterprise beans, the invocation credential is set as the originating client identity, the

server identity, or a specified different identity. Regardless of the identity that is set, when identity assertion

is enabled, it is the invocation credential that is asserted to the downstream server.

The invocation credential identity is sent to the downstream server in an identity token. In addition, the

sending server identity, including the password or token, is sent in the client authentication token when

basic authentication is enabled. The sending server identity is sent through a Secure Sockets Layer (SSL)

client certification authentication when client certificate authentication is enabled. Basic authentication

takes precedence over client certificate authentication.

Both identity tokens are needed by the receiving server to accept the asserted identity. The receiving

server completes the following actions to accept the asserted identity:

v The server determines whether the sending server identity, sent with a basic authentication token or

with an SSL client certificate, is on the trusted principal list of the receiving server. The server

determines whether the sending server can send an identity token to the receiving server.

v After it is determined that the sending server is on the trusted list, the server authenticates the sending

server to verify its identity.

v The server is authenticated by comparing the user ID and password from the sending server to the

receiving server. If the credentials of the sending server are authenticated and on the trusted principal

list, then the server proceeds to evaluate the identity token.

v The downstream server checks its defined user registry for the presence of the asserted user ID to

gather additional credential information for authorization purposes (for example, group memberships).

Thus, the downstream user registry must contain all of the asserted user IDs. Otherwise, identity

assertion is not possible. In a stateful server, this action occurs once for the sending server and the

receiving server pair where the identity tokens are the same. Subsequent requests are made through a

session ID.

Note: When the downstream server does not have a user registry with access to the asserted user IDs

in its repository, do not use identity assertion because authorization checks will fail. By disabling

identity assertion, the authorization checks on the downstream server are not needed.

Evaluation of the identity token consists of the following four identity formats that exist in an identity token:

v Principal name

v Distinguished name

v Certificate chain

v Anonymous identity

The product servers that receive authentication information typically support all four identity types. The

sending server decides which one is chosen, based on how the original client authenticated. The existing

type depends on how the client originally authenticates to the sending server. For example, if the client

uses Secure Sockets Layer (SSL) client authentication to authenticate to the sending server, then the

identity token sent to the downstream server contains the certificate chain. With this information, the

receiving server can perform its own certificate chain mapping and interoperability is increased with other

vendors and platforms.

After the identity format is understood and parsed, the identity maps to a credential. For an ITTPrincipal

identity token, this identity maps one-to-one with the user ID fields.

For an ITTDistinguishedName identity token, the mapping depends on the user registry. For Lightweight

Directory Access Protocol (LDAP), the configured search filter determines how the mapping occurs. For

LocalOS, the first attribute of the distinguished name (DN), which is typically the same as the common

name, maps to the user ID of the registry.

Chapter 5. Authenticating users 491

Identity assertion is only available using the Common Secure Interoperability Version 2 (CSIv2) protocol.

Related tasks

Chapter 5, “Authenticating users,” on page 93
The process of authenticating users involves a user registry and an authentication mechanism. Optionally,

you can define trust between WebSphere Application Server and a proxy server, configure single sign-on

capability, and specify how to propagate security attributes between application servers.

Identity assertions with trust validation

If you want an application or system provider to perform an identity assertion with trust validation, it can be

accomplished by use of the Java Authentication and Authorization Service (JAAS) login framework, where

trust validation is performed in one login module and credential creation in another. These two custom

login modules are used to create a JAAS login configuration that performs a login to an identity assertion.

Two custom login module are required:

v A user-implemented trust association login module. This login module performs whatever trust

verification the user requires. When trust is verified, the trust verification status and the login identity

must be placed in a map in the share state of the login module to enable the credential creation login

module to use that information. The map must be stored in the

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state property. State maps

contain the following information:

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted – set to true, if

trusted, and false, if not trusted.

– com.ibm.wsspi.security.common.auth.module.IdenityAssertionLoginModule.principal – contains the

principal of the identity.

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates – contains the

certificate of the identity

v The com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule module performs the

credential creation. It requires that the trust state information be in the login context’s shared state. This

login module is protected by the Java 2 security runtime permissions for the following:

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.initialize

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.login

IdentityAssertionLoginModule searches for the trust information in the shared state property,

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state. This is a map that

contains the trust status and the identity used to login. The map includes the following:

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted – if set to true it is

trusted, false if not trusted.

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.principal – if a principal is

used, it contains the principal of the identity necessary to login.

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates – if a certificate is

used, it contains an array of a certificate chain that includes the identity necessary to login.

A WSLoginFailedException is returned if the state, trust, or identity information is missing. The login

module then performs a login of the identity. The subject now contains the new identity.

Message layer authentication

Defines the credential information and sends that information across the network so that a receiving server

can interpret it.

When you send authentication information across the network using a token the transmission is

considered message layer authentication because the data is sent with the message inside a service

context.

492 Securing applications and their environment

A pure Java client uses Kerberos (KRB5) or basic authentication, or Generic Security Services Username

Password (GSSUP), as the authentication mechanism to establish client identity.

However, a servlet can use either basic authentication (GSSUP) or the authentication mechanism of the

server, Kerberos (KRB5) or Lightweight Third Party Authentication (LTPA), to send security information in

the message layer. Use KRB5 or LTPA by authenticating or by mapping the basic authentication

credentials to the security mechanism of the server.

The security token that is contained in a token-based credential is authentication mechanism-specific. The

way that the token is interpreted is only known by the authentication mechanism. Therefore, each

authentication mechanism has an object ID (OID) representing it. The OID and the client token are sent to

the server, so that the server knows which mechanism to use when reading and validating the token. The

following list contains the OIDs for each mechanism:

BasicAuth (GSSUP): oid:2.23.130.1.1.1

KRB5: OID: 1.2.840.113554.1.2.2

LTPA: oid:1.3.18.0.2.30.2

SWAM: No OID because it is not forwardable

Note: SWAM is deprecated in WebSphere Application Server Version 7.0 and will be removed in a future

release.

On the server, the authentication mechanisms can interpret the token and create a credential, or they can

authenticate basic authentication data from the client, and create a credential. Either way, the created

credential is the received credential that the authorization check uses to determine if the user has access

to invoke the method. You can specify the authentication mechanism by using the following property on

the client side:

v com.ibm.CORBA.authenticationTarget

Basic authentication (BasicAuth) and KRB5 are currently the only valid values. You can configure the

server through the administrative console.

Note: When perform basic authentication is enabled, if the client is not similarly configured (and does

not pass a credential such as a user ID and password), the server object request broker (ORB)

does not.

Configuring authentication retries

Situations occur where you want a prompt to display again if you entered your user ID and password

incorrectly or you want a method to retry when a particular error occurs back at the client. If you can

correct the error by information at the client side, the system automatically performs a retry without the

client seeing the failure, if the system is configured appropriately.

Some of these errors include:

v Entering a user ID and password that are not valid

v Having an expired credential on the server

v Failing to find the stateful session on the server

By default, authentication retries are enabled and perform three retries before returning the error to the

client. Use the com.ibm.CORBA.authenticationRetryEnabled property (True or False) to enable or disable

authentication retries. Use the com.ibm.CORBA.authenticationRetryCount property to specify the number

of retry attempts.

Chapter 5. Authenticating users 493

494 Securing applications and their environment

Chapter 6. Authorizing access to resources

WebSphere Application Server provides many different methods for authorizing accessing resources. For

example, you can assign roles to users and configure a built-in or external authorization provider.

About this task

You can create an application, an Enterprise JavaBeans (EJB) module, or a Web module and secure them

using assembly tools.

To authorize user or group access to resources, read the following articles:

1. Secure you application during assembly and deployment. For more information on how to create a

secure application using an assembly tool, such as the IBM Rational Application Developer, see

Securing applications during assembly and deployment.

For general information about the tools that WebSphere Application Server supports, see Assembly

tools and Assembling applications.

2. Authorize access to Java Platform, Enterprise Edition (Java EE) resources. WebSphere Application

Server supports authorization that is based on the Java Authorization Contract for Containers (JACC)

specification in addition to the default authorization. When security is enabled in WebSphere

Application Server, the default authorization is used unless a JACC provider is specified. For more

information, see “Authorization providers” on page 508.

3. Authorize access to administrative resources. You can assign users and groups to predefined

administrative roles such as the monitor, configurator, operator, administrator, auditor and iscadmins

roles. These roles determine which tasks a user can perform in the administrative console. For more

information, see “Authorizing access to administrative roles” on page 546.

What to do next

After authorizing access to resources, configure the Application Server for secure communication. For

more information, see Chapter 7, “Securing communications,” on page 573.

Authorization technology

Authorization information determines whether a user or group has the necessary privileges to access

resources.

WebSphere Application Server supports many authorization technologies including the following:

v Authorization involving the Web container and Java Platform, Enterprise Edition (Java EE) technology

v Authorization involving an enterprise bean application and Java EE technology

v Authorization involving Web services and Java EE technology

v Java Message Service (JMS)

v Java Authorization Contract for Containers (JACC)

WebSphere Application Server supports both a default authorization provider and an authorization

provider that is based on the Java Authorization Contract for Containers (JACC) specification. The

JACC-based authorization provider enables third-party security providers to handle the Java EE

authorization. For more information, see “JACC support in WebSphere Application Server” on page 509.

v Java Authentication and Authorization Service (JAAS)

For more information, see “Java Authentication and Authorization Service” on page 358.

v Java 2 security

For more information, see “Java 2 security” on page 32.

v Naming and administrative authorization

© IBM Corporation 2005, 2006 495

v Pluggable authorization

WebSphere Application Server supports an authorization infrastructure that enables you to plug in an

external authorization provider. For more information, see “Enabling an external JACC provider” on page

528.

Administrative roles and naming service authorization

WebSphere Application Server extends the Java Platform, Enterprise Edition (Java EE) security role-based

access control to protect the product administrative and naming subsystems.

Administrative roles

A number of administrative roles are defined to provide the degrees of authority that are needed to

perform certain WebSphere Application Server administrative functions from either the administrative

console or the system management scripting interface called wsadmin. The authorization policy is only

enforced when administrative security is enabled. The following table describes the administrative roles:

 Table 17. Administrative roles that are available through the administrative console and wsadmin

Role Description

Monitor An individual or group that uses the monitor role has the least amount of privileges. A

monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

Configurator An individual or group that uses the configurator role has the monitor privilege plus the

ability to change the WebSphere Application Server configuration. The configurator can

perform all the day-to-day configuration tasks. For example, a configurator can complete

the following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Secure

Authentication Service (SAS), and Secure Sockets Layer (SSL) configurations.

Note: SAS is supported only between Version 6.0.x and previous version servers that

have been federated in a Version 6.1 cell.

Operator An individual or group that uses the operator role has monitor privileges plus ability to

change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

496 Securing applications and their environment

Table 17. Administrative roles that are available through the administrative console and wsadmin (continued)

Role Description

Administrator An individual or group that uses the administrator role has the operator and configurator

privileges plus additional privileges that are granted solely to the administrator role. For

example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.

Note: In previous releases of WebSphere Application Server, the Enable

administrative security option is known as the Enable global security option.

v Enforce Java 2 security using the Use Java 2 security to restrict application access

to local resources option.

v Change the Lightweight Third Party Authentication (LTPA) password and generate

keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Note: An administrator cannot map users and groups to the administrator roles.

Adminsecuritymanager Only users who are granted this role can map users to administrative roles. Also, when

fine-grained administrative security is used, only users who are granted this role can

manage authorization groups. See “Administrative roles” on page 504 for more

information.

Deployer Users who are granted this role can perform both configuration actions and runtime

operations on applications.

Auditor Users granted this role can view and modify the configuration settings for the security

auditing subsystem. For example, a user with the auditor role can complete the following

tasks:

v Enable and disable the security auditing subsystem.

v Select the event factory implementation to be used with the event factory plug-in point.

v Select and configure the service provide, or emitter. or both to be used with the service

provider plug-in point.

v Set the audit policy that describes the behavior of the application server in the event of

an error with the security auditing subsystem.

v Define which security events are to be audited.

The auditor role includes the monitor role. This allows the auditor to view but not change

the rest of the security configuration.

 Table 18. Additional administrative role that is available through the administrative console

Role Description

iscadmins This role is only available for administrative console users and not for wsadmin users.

Users who are granted this role have administrator privileges for managing users and

groups in the federated respositories. For example, a user of the iscadmins role can

complete the following tasks:

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

 Table 19. Additional administrative role that is available through wsadmin

Role Description

Deployer This role is only available for wsadmin users and not for administrative console users.

Users who are granted this role can perform both configuration actions and run-time

operations on applications.

Chapter 6. Authorizing access to resources 497

When administrative security is enabled, the administrative subsystem role-based access control is

enforced. The administrative subsystem includes the security server, the administrative console, the

wsadmin scripting tool, and all the Java Management Extensions (JMX) MBeans. When administrative

security is enabled, both the administrative console and the administrative scripting tool require users to

provide the required authentication data. Moreover, the administrative console is designed so the control

functions that display on the pages are adjusted, according to the security roles that a user has. For

example, a user who has only the monitor role can see only the non-sensitive configuration data. A user

with the operator role can change the system state.

When you are changing registries (for example, from a federated repository to LDAP), make sure you

remove the information that pertains to the previously configured registry for console users and console

groups.

When administrative security is enabled, WebSphere Application Servers run under the server identity that

is defined under the active user registry configuration. Although it is not shown on the administrative

console and in other tools, a special Server subject is mapped to the administrator role. The WebSphere

Application Server runtime code, which runs under the server identity, requires authorization to runtime

operations. If no other user is assigned administrative roles, you can log into the administrative console or

to the wsadmin scripting tool using the server identity to perform administrative operations and to assign

other users or groups to administrative roles. Because the server identity is assigned to the administrative

role by default, the administrative security policy requires the administrative role to perform the following

operations:

v Change server ID and server password

v Enable or disable WebSphere Application Serveradministrative security

v Enforce Java 2 security using the Use Java 2 security to restrict application access to local

resources option.

v Change the LTPA password or generate keys

v Assign users and groups to administrative roles

Primary administrative user name

The Version 6.1 release of WebSphere Application Server and subsequent releases require an

administrative user, distinguished from the server user identity, to improve auditability of administrative

actions. The user name specifies a user with administrative privileges that is defined in the local operating

system.

Server user identity

The Version 6.1 release of WebSphere Application Server and subsequent releases distinguish the server

identity from the administrative user identity to improve auditability. The server user identity is used for

authenticating server-to-server communications.

Internal server ID

The internal server ID enables the automatic generation of the user identity for server-to-server

authentication. Automatic generation of the server identity supports improved auditability for cells only for

Version 6.1 or later nodes. In the Version 6.1 release of WebSphere Application Server, you can save the

internally-generated server ID because the Security WebSphere Common Configuration Model (WCCM)

model contains a new tag, internalServerId. You do not need to specify a server user ID and a password

during security configuration except in a mixed-cell environment. An internally-generated server ID adds a

further level of protection to the server environment because the server password is not exposed as it is in

releases prior to Version 6.1. However, to maintain backwards compatibility, you must specify the server

user ID if you use earlier versions of WebSphere Application Server.

498 Securing applications and their environment

When enabling security, you can assign one or more users and groups to naming roles. For more

information, see Assigning users to naming roles. However, before assigning users to naming roles,

configure the active user registry. User and group validation depends on the active user registry. For more

information, see Configuring user registries.

Special subject

In addition to mapping users or groups, you can map a special-subject to the administrative roles. A

special-subject is a generalization of a particular class of users. The AllAuthenticated or the

AllAuhenticatedInTrustedRealms (when cross realm is involved) special subjects mean that the access

check of the administrative role ensures that the user making the request is at least authenticated. The

Everyone special subject means that anyone, authenticated or not, can perform the action as if security is

not enabled.

Naming service authorization

CosNaming security offers increased granularity of security control over CosNaming functions. CosNaming

functions are available on CosNaming servers such as the WebSphere Application Server. These functions

affect the content of the WebSphere Application Server name space. Generally, you have two ways in

which client programs result in CosNaming calls. The first is through the Java Naming and Directory

Interface (JNDI) call. The second is with common object request broker architecture (CORBA) clients

invoking CosNaming methods directly.

Four security roles are introduced :

v CosNamingRead

v CosNamingWrite

v CosNamingCreate

v CosNamingDelete

The roles have authority levels from low to high:

CosNamingRead

You can query the WebSphere Application Server name space, using, for example, the JNDI

lookup method. The special-subject, Everyone, is the default policy for this role.

CosNamingWrite

You can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead

operations. As a default policy, Subjects are not assigned this role.

CosNamingCreate

You can create new objects in the name space through such operations as JNDI createSubcontext

and CosNamingWrite operations. As a default policy, Subjects are not assigned this role.

CosNamingDelete

You can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations. As a default policy, Subjects are not assigned this role.

A Server special-subject is assigned to all of the four CosNaming roles by default. The Server

special-subject provides a WebSphere Application Server process, which runs under the server identity, to

access all the CosNaming operations. The Server special-subject does not display and cannot be modified

through the administrative console or other administrative tools.

Special configuration is not required to enable the server identity as specified when enabling administrative

security for administrative use because the server identity is automatically mapped to the administrator

role.

Users, groups, or the special subjects AllAuthenticated and Everyone can be added or removed to or from

the naming roles from the WebSphere Application Server administrative console at any time. However, a

server restart is required for the changes to take effect.

Chapter 6. Authorizing access to resources 499

A best practice is to map groups or one of the special-subjects, rather than specific users, to naming roles

because it is more flexible and easier to administer in the long run. By mapping a group to a naming role,

adding or removing users to or from the group occurs outside of WebSphere Application Server and does

not require a server restart for the change to take effect.

The CosNaming authorization policy is only enforced when administrative security is enabled. When

administrative security is enabled, attempts to do CosNaming operations without the proper role

assignment result in an org.omg.CORBA.NO_PERMISSION exception from the CosNaming server.

Each CosNaming function is assigned to only one role. Therefore, users who are assigned the

CosNamingCreate role cannot query the name space unless they have also been assigned

CosNamingRead. And in most cases a creator needs to be assigned three roles: CosNamingRead,

CosNamingWrite, and CosNamingCreate. The CosNamingRead and CosNamingWrite roles assignment for

the creator example are included in the CosNamingCreate role. In most of the cases, WebSphere

Application Server administrators do not have to change the roles assignment for every user or group

when they move to this release from a previous one.

Although the ability exists to greatly restrict access to the name space by changing the default policy,

unexpected org.omg.CORBA.NO_PERMISSION exceptions can occur at runtime. Typically, Java EE

applications access the name space and the identity they use is that of the user that authenticated to

WebSphere Application Server when accessing the Java EE application. Unless the Java EE application

provider clearly communicates the expected naming roles, use caution when changing the default naming

authorization policy.

Administrative roles for business level applications

The Java 2 Platform, Enterprise Edition (J2EE) role-based authorization concept is extended to protect the

WebSphere Application Server administrative subsystem. This protection applies to those administrative

roles associated with business level applications.

Deploying business level applications on a server configured to hold business level applications requires a

number of administrative roles that are defined to provide degrees of authority when performing certain

administrative functions from either the Web-based administrative console or the system management

scripting interface. The authorization policy is only enforced when administrative security is enabled. The

following table describes the system management scripting command used for business level applications

and the corresponding administrative role that is required in using the command:

 Business level application - administrative roles

Command Role Required

startBLA Cell deployer, Cell operator, BLA deployer, BLA operator, Target deployer,

Target operator

stopBLA Cell deployer, Cell operator, BLA deployer, BLA operator, Target deployer,

Target operator

createEmptyBLA Cell configurator, Cell deployer

editBLA Cell deployer, BLA deployer

viewBLA Cell monitor, BLA monitor

listBLAs Cell monitor, BLA monitor

deleteBLA Cell configurator, Cell deployer, BLA developer

importAsset Cell configurator, Cell deployer

editAsset Cell configurator, Cell deployer, Asset deployer

viewAsset Cell monitor, Asset monitor

listAsset Cell monitor, Asset monitor

exportAsset Cell monitor, Asset monitor

500 Securing applications and their environment

Business level application - administrative roles

deleteAsset Cell configurator, Cell deployer, Asset deployer

updateAsset Cell configurator, Cell deployer, Asset deployer

addCompUnit Cell configurator Cell deployer, BLA deployer (for the BLA to add the

composition unit)

Asset-deployer (for the asset to create the composition unit from)

Target-deployer (for each target the composition unit is deployed to)

Relationship-deployer (for each relationship the composition unit depends

on that will result in creating a composition unit from the dependency asset)

editCompUnit Cell configurator, Cell deployer, BLA deployer (for the BLA this composition

unit belongs to)

Target deployer (for each target that this composition unit is deployed to)

viewCompUnit Cell monitor, BLA monitor

listCompUnit Cell monitor, BLA monitor

deleteCompUnit Cell configurator, Cell deployer, BLA deployer (for the BLA this composition

unit belongs to)

Target deployer (for each target that this composition unit is deployed to)

setCompUnitTargetAutoStart Cell configurator, Cell deployer

listControlOps Cell monitor, BLA monitor

getBLAStatus Cell monitor, BLA monitor

Where:

v BLA deployer specifies the deployer role for the BLA that is being

managed.

v BLA monitor specifies the monitor role for the BLA that is being

managed.

v BLA operator specifies the operator role for the BLA that is being

managed.

v Asset deployer specifies the deployer role for the asset that is being

managed.

v Asset monitor specifies the monitor role for the asset that is being

managed.

v Target deployer specifies the deployer for the target that the composition

unit is being deployed to.

v Target operator specifies the operator role for the target that the

composition unit is being deployed to.

Chapter 6. Authorizing access to resources 501

Related tasks

Deploying and administering business-level applications
Deploying a business-level application consists of creating the business-level application on a Version 7.0

or later server.

Related reference

BLAManagement command group for the AdminTask object
You can use the Jython scripting language to configure and administer business-level applications with the

wsadmin tool. Use the commands and parameters in the BLAManagement group to create, edit, export,

delete, and query business-level applications in your configuration.

“Administrative roles” on page 504
The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

Role-based authorization

Use authorization information to determine whether a caller has the necessary privileges to request a

service.

The following figure illustrates the process that is used during authorization.

 Web resource access from a Web client is handled by a Web collaborator. The Enterprise JavaBeans

(EJB) resource access from a Java client, whether an enterprise bean or a servlet, is handled by an EJB

collaborator. The EJB collaborator and the Web collaborator extract the client credentials from the object

request broker (ORB) current object. The client credentials are set during the authentication process as

received credentials in the ORB current object. The resource and the received credentials are presented to

the WSAccessManager access manager to check whether access is permitted to the client for accessing

the requested resource.

The access manager module contains two main modules:

v The resource permission module helps determine the required roles for a given resource. This module

uses a resource-to-roles mapping table that is built by the security runtime during application startup. To

Access manager

module

WebSphere Application Server

(1)

(1)

(2)

(2)

CSIv2/SAS, TCP/IP,

SSL

EJB

resource access

HTTP or HTTPS

Web resource access

Authorization

table

Resource

permission

Access

manager

Enterprise beans

collaborator

Web

collaborator

ORB

current object

Java client

Web client

(2)

(4)

(5)

Authorization

data

Received

credentials

(2)

Received

credentials

(3)

(3)

Resource and

credentials

Resource and

credentials

Resource

True/False

Roles

Roles, credentials

Authorization

data

Authentication

Role
Users/
Groups

Resource Roles

502 Securing applications and their environment

build the resource-to-role mapping table, the security runtime reads the deployment descriptor of the

enterprise beans or the Web module (ejb-jar.xml file or web.xml file)

v The authorization table module consults a role-to-user or group table to determine whether a client is

granted one of the required roles. The role-to-user or group mapping table, also known as the

authorization table, is created by the security runtime during application startup.

To build the authorization table, the security run time reads the application binding file, the

ibm-application-bnd.xmi file, or the ibm-application-bnd.xml file, as appropriate.

Use authorization information to determine whether a caller has the necessary privilege to request a

service. You can store authorization information many ways. For example, with each resource, you can

store an access-control list, which contains a list of users and user privileges. Another way to store the

information is to associate a list of resources and the corresponding privileges with each user. This list is

called a capability list.

WebSphere Application Server uses the Java 2 Platform, Enterprise Edition (J2EE) authorization model. In

this model, authorization information is organized as follows:

During the assembly of an application, permission to invoke methods is granted to one or more roles. A

role is a set of permissions; for example, in a banking application, roles can include teller, supervisor,

clerk, and other industry-related positions. The teller role is associated with permissions to run methods

that are related to managing the money in an account, such as the withdraw and deposit methods. The

teller role is not granted permission to close accounts; this permission is given to the supervisor role. The

application assembler defines a list of method permissions for each role. This list is stored in the

deployment descriptor for the application.

Three special subjects are not defined by the J2EE model: AllAuthenticatedUsers,

AllAuthenticatedInTrustedRealms and Everyone. A special subject is a product-defined entity that is

independent of the user registry. This entity is used to generically represent a class of users or groups in

the registry.

v The AllAuthenticatedUsers subject permits all authenticated users to access protected methods. As long

as the user can authenticate successfully, the user is permitted access to the protected resource. All of

this is done independent of the user registry.

v The AllAuthenticatedInTrustedRealms subject permits all authenticated foreign users (those that are

bound to other realms) to access protected methods. As long as the user can authenticate successfully,

the user is permitted access to the protected resource. All of this is done independent of the user

registry.

v Everyone is a special subject that permits unrestricted access to a protected resource. Users do not

have to authenticate to get access; this special subject provides access to protected methods as if the

resources are unprotected. All of this is done independent of the user registry.

During the deployment of an application, real users or groups of users are assigned to the roles. When a

user is assigned to a role, the user gets all the method permissions that are granted to that role.

The application deployer does not need to understand the individual methods. By assigning roles to

methods, the application assembler simplifies the job of the application deployer. Instead of working with a

set of methods, the deployer works with the roles, which represent semantic groupings of the methods.

Users can be assigned to more than one role; the permissions that are granted to the user are the union

of the permissions granted to each role. Additionally, if the authentication mechanism supports the

grouping of users, these groups can be assigned to roles. Assigning a group to a role has the same effect

as assigning each individual user to the role.

A best practice during deployment is to assign groups instead of individual users to roles for the following

reasons:

v Improves performance during the authorization check. Typically far fewer groups exist than users.

v Provides greater flexibility, by using group membership to control resource access.

Chapter 6. Authorizing access to resources 503

v Supports the addition and deletion of users from groups outside of the product environment. This action

is preferred to adding and removing them to WebSphere Application Server roles. Stop and restart the

enterprise application for these changes to take effect. This action can be very disruptive in a production

environment.

At runtime, WebSphere Application Server authorizes incoming requests based on the user’s identification

information and the mapping of the user to roles. If the user belongs to any role that has permission to run

a method, the request is authorized. If the user does not belong to any role that has permission, the

request is denied.

The J2EE approach represents a declarative approach to authorization, but it also recognizes that you

cannot deal with all situations declaratively. For these situations, methods are provided for determining

user and role information programmatically. For enterprise beans, the following two methods are supported

by WebSphere Application Server:

v getCallerPrincipal: This method retrieves the user identification information.

v isCallerInRole: This method checks the user identification information against a specific role.

For servlets, the following methods are supported by WebSphere Application Server:

v getRemoteUser

v isUserInRole

v getUserPrincipal

These methods correspond in purpose to the enterprise bean methods.

For more information on the J2EE security authorization model, see the following Web site:

http://java.sun.com

Administrative roles

The Java Platform, Enterprise Edition (Java EE) role-based authorization concept is extended to protect

the WebSphere Application Server administrative subsystem.

A number of administrative roles are defined to provide degrees of authority that are needed to perform

certain administrative functions from either the Web-based administrative console or the system

management scripting interface. The authorization policy is only enforced when administrative security is

enabled. The following table describes the administrative roles:

 Administrative roles

Role Description

Monitor An individual or group that uses the monitor role has the least amount of privileges. A

monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

504 Securing applications and their environment

http://java.sun.com

Administrative roles

Configurator An individual or group that uses the configurator role has the monitor privilege plus the

ability to change the WebSphere Application Server configuration. The configurator can

perform all the daily configuration tasks. For example, a configurator can complete the

following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Security

Authentication Service (SAS), and Secure Sockets Layer (SSL) configurations.

Note: SAS is supported only between Version 6.0.x and previous version servers

that have been federated in a Version 6.1 cell.

Operator An individual or group that uses the operator role has monitor privileges plus ability to

change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

Administrator An individual or group that uses the administrator role has the operator and

configurator privileges, plus additional privileges that are granted solely to the

administrator role. For example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.

v Enable or disable Java 2 security.

v Change the Lightweight Third Party Authentication (LTPA) password and generate

keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Note: An administrator cannot map users and groups to the administrator roles

without also having the adminsecuritymanager role.

iscadmins This role is only available for administrative console users, not for wsadmin users.

Users who are granted this role have administrator privileges for managing users and

groups in the federated repositories. For example, a user of the iscadmins role can

complete the following tasks:

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Deployer Users granted this role can complete both configuration actions and runtime operations

on applications. See the “Deployer role” on page 506 section for more details.

Admin Security Manager You can assign users and groups to the Admin Security Manager role on the cell level

through wsadmin scripts and the administrative console. Using the Admin Security

Manager role, you can assign users and groups to the administrative user roles and

administrative group roles. However, an administrator cannot assign users and groups

to the administrative user roles and administrative group roles including the Admin

Security Manager role. See the “Admin Security Manager role” on page 507 section for

more details.

Chapter 6. Authorizing access to resources 505

Administrative roles

Auditor Users granted this role can view and modify the configuration settings for the security

auditing subsystem. For example, a user with the auditor role can complete the

following tasks:

v Enable and disable the security auditing subsystem.

v Select the event factory implementation to be used with the event factory plug-in

point.

v Select and configure the service provide, or emitter. or both to be used with the

service provider plug-in point.

v Set the audit policy that describes the behavior of the application server in the event

of an error with the security auditing subsystem.

v Define which security events are to be audited.

The auditor role includes the monitor role. This allows the auditor to view but not

change the rest of the security configuration. See the “Auditor role” on page 507

section for more details.

The server ID that is specified and the administrative ID, if specified, when enabling administrative security

is automatically mapped to the administrator role.

Users and groups can be added or removed from administrative roles using the WebSphere Application

Server administrative console by a user given the appropriate authority. The Primary administrative user

name must be used to log on to the administrative console to change the administrative user and group

roles other than the auditor role. Only a user with the auditor role can change the auditor user and group

roles. When security auditing is initially enabled, the Primary administrative user is also given the auditor

role, and can manage all of the administrative user and group roles including the those in the auditor role.

A best practice is to map a group or groups, rather than specific users, to administrative roles because it is

more flexible and easier to administer.

In addition to mapping user or groups, a special-subject can also be mapped to the administrative roles. A

special-subject subject is a generalization of a particular class of users. The AllAuthenticated special

subject means that the access check of the administrative role ensures that the user making the request is

at least authenticated. The Everyone special subject means that anyone, authenticated or not, can perform

the action, as if security was not enabled.

Deployer role

A user that is granted a deployer role can complete all of the configuration and runtime operations on an

application. A deployer role can be subsets of both configurator and operator roles. However, a user

granted a deployer role cannot configure or operate any other resources, such as a server, node.

When fine-grained administrative security is used, only a user granted a deployer role to an application

can configure and operate that application.

Cell-level configurators can configure applications. Cell-level operators can also operate (start and stop)

applications. However, a user granted a deployer role at cell level can also complete configuration and

operation on all applications.

The following table lists the capabilities of the deployer role when fine-grained administrative security is

used:

 Operation Required Roles (Any one)

Install application Cell-configurator, application-deployer, target-deployer

Uninstall application Cell-configurator, application-deployer, target-deployer

506 Securing applications and their environment

Operation Required Roles (Any one)

List application Cell-monitor, application-monitor

Edit, update and redeploy application Cell-configurator, application-deployer

Export application Cell-monitor, application-monitor

Start or stop application Cell-operator, application-deployer

Where:

Cell-configurator

Specifies the configurator role at cell level.

Application-deployer

Specifies the deployer role for the application that is being managed.

Target-deployer

Specifies the deployer role for all servers or clusters for which an application is targeted. If you

have a target-deployer role, you can install a new application on the target. However, to edit or

update the installed application, you must be included in the authorization group of the installed

application-deployer.

 The target-deployer cannot explicitly start or stop a new application. However, when a

target-deployer starts a server on a target, all of the applications that have their auto-start attribute

set to yes are started when the server starts.

It is recommended that the application-deployer set this attribute to true if the application-deployer

does not want the application to be started by the target-deployer.

Admin Security Manager role

The Admin Security Manager role separates administrative security administration from other application

administration.

By default, serverId and adminID, if specified, are assigned to this role in the cell level authorization table.

This role implies a monitor role. However, an administrator role does not imply the Admin Security

Manager role.

When fine-grained admin security is used, only a user granted this role at cell level can manage

administrative authorization groups. However, a user granted this role for each administrative authorization

group can map users to administrative roles for those groups. The following list summarizes the

capabilities of the Admin Security Manager role at different levels, such as the cell and administrative

authorization group levels.

 Action Role

Map users to administrative roles for cell level Only the Admin Security Manager of the cell

Map users to administrative roles for an authorization

group

Only the Admin Security Manager of that authorization

group or the Admin Security Manager of the cell

Manage authorization groups, create, delete, add

resource to an authorization group, or remove resource

from an authorization group or list

Only the Admin Security Manager of the cell

Auditor role

The auditor role separates security auditing administration from administrative security and other

application administration.

Chapter 6. Authorizing access to resources 507

The auditor role was added to allow distinct separation of the authority of an auditor from the authority of

the administrator. The auditor role can be granted to administrators to combine their authority. When

security is first enabled, the auditor role is assigned to the primary administrator. If in your situation the

separation of authority is required, administrators can remove the auditor role from themselves and assign

the auditor role to other users.

A fine grained security for the auditor role is not implemented, which results in the auditor role requiring

the monitor role. This process allows the auditor to read but not modify the panels managed by the

administrator. The auditor has full authority to read and modify the panels associated with the security

auditing subsystem. The administrator will have the monitor role for those panels, however, the

administrator cannot modify those panels.

Related tasks

“Assigning users to naming roles” on page 550
Use this task to assign users to naming roles by using the administrative console.

Authorization providers

WebSphere Application Server supports authorization that is based on the Java Authorization Contract for

Containers (JACC) specification in addition to the default authorization.

JACC is a specification introduced in Java Platform, Enterprise Edition (Jave EE)1.4. It enables third-party

security providers to manage authorization in the application server.

Note: In WebSphere Application Server version 7.0, Java Authorization Contract for Containers (JACC)

specification 1.4 is being applied. In JACC specification 1.4, we support Java EE5 that includes

Servlet 2.5 and EJB 3. The biggest functional change with the introduction of JACC specification

1.4 is the inclusion of annotations for propagating security policy information.

When security is enabled in WebSphere Application Server, the default authorization is used unless a

JACC provider is specified. The default authorization does not require special setup, and the default

authorization engine makes all of the authorization decisions. However, if a JACC provider is configured

and set up for WebSphere Application Server to use, all of the enterprise beans and Web authorization

decisions are delegated to the JACC provider.

WebSphere Application Server supports security for Java EE applications and also for its administrative

components. Java EE applications, such as Web and Enterprise JavaBeans (EJB) components are

protected and authorized per the Java EE specification. The administrative components are internal to

WebSphere Application Server and are protected by the role-based authorizer. The administrative

components include the administrative console, MBeans, and other components such as naming and

security. For more information on administrative security, see “Role-based authorization” on page 502.

When a JACC provider is used for authorization in WebSphere Application Server, all of the Java EE

application-based authorization decisions are delegated to the provider per the JACC specification.

However, all administrative security authorization decisions are made by the WebSphere Application

Server default authorization engine. The JACC provider is not called to make the authorization decisions

for administrative security.

When a protected Java EE resource is accessed, the authorization decision to give access to the principal

is the same whether using the default authorization engine or a JACC provider. Both of the authorization

models satisfy the J2EE specification, and function the same. Choose a JACC provider only when you

want to work with an external security provider such as Tivoli Access Manager. In this instance, the

security provider must support the JACC specification and be set up to work with WebSphere Application

Server. Setting up and configuring a JACC provider requires additional configuration steps, depending on

the provider. Unless you have an external security provider that you can use with WebSphere Application

Server, use the default authorization.

508 Securing applications and their environment

JACC support in WebSphere Application Server

WebSphere Application Server supports the Java Authorization Contract for Containers (JACC)

specification, which enables third-party security providers to handle the Java Platform, Enterprise Edition

(Java EE) authorization.

The JACC specification requires that both the containers in the application server and the provider satisfy

some requirements. Specifically, the containers are required to propagate the security policy information to

the provider during the application deployment and to call the provider for all authorization decisions. The

providers are required to store the policy information in their repository during application deployment. The

providers then use this information to make authorization decisions when called by the container.

JACC access decisions

When security is enabled and an enterprise bean or Web resource is accessed, the Enterprise JavaBeans

(EJB) container or Web container calls the security runtime to make an authorization decision on whether

to permit access. When using an external provider, the access decision is delegated to that provider.

According to the Java Authorization Contract for Containers (JACC) specification, the appropriate

permission object is created, the appropriate policy context handlers are registered, and the appropriate

policy context identifier (contextID) is set. A call is made to the java.security.Policy object method that is

implemented by the provider to make the access decision.

The following sections describe how the provider is called for both the enterprise bean and the Web

resources.

Access decisions for enterprise beans

When security is enabled, and an EJB method is accessed, the EJB container delegates the authorization

check to the security runtime. If JACC is enabled, the security runtime uses the following process to

perform the authorization check:

1. Creates the EJBMethodPermission object using the bean name, method name, interface name, and

the method signature.

2. Creates the context ID and sets it on the thread by using the PolicyContext.setContextID(contextID)

method.

3. Registers the required policy context handlers, including the Subject policy context handler.

4. Creates the ProtectionDomain object with principal in the Subject. If no principal exists, null is passed

for the principal name.

5. The access decision is delegated to the JACC provider by calling the implies method of the Policy

object, which is implemented by the provider. The EJBMethodPermission and the ProtectionDomain

objects are passed to this method.

6. The isCallerInRole access check also follows the same process, except that an EJBRoleRefPermission

object is created instead of an EJBMethodPermission object.

Access decisions for Web resources

When security is enabled and configured to use a JACC provider, and when a Web resource such as a

servlet or a JavaServer Pages (JSP) file is accessed, the security runtime delegates the authorization

decision to the JACC provider by using the following process:

1. A WebResourcePermission object is created to see if the URI is cleared. If the provider honors the

Everyone subject it is also selected here.

a. The WebResourcePermission object is constructed with the urlPattern and the HTTP method

accessed.

b. A ProtectionDomain object with a null principal name is created.

Chapter 6. Authorizing access to resources 509

c. The JACC provider Policy.implies method is called with the permission and the protection domain.

If the URI access is cleared or given access to the Everyone subject, the provider permits access

(return true) in the implies method. Access is then granted without further checks.

2. If access is not granted in the previous step, a WebUserDataPermission object is created and used to

see if the Uniform Resource Identifier (URI) is precluded, excluded or must be redirected using the

HTTPS protocol.

a. The WebUserDataPermission object is constructed with the urlPattern accessed, the HTTP method

invoked, and the transport type of the request. If the request is over HTTPS, the transport type is

set to CONFIDENTIAL; otherwise, null is passed.

b. A ProtectionDomain object with a null principal name is created.

c. The JACC provider Policy.implies method is called with the permission and the protection domain.

If the request is using the HTTPS protocol and the implies method returns false, the HTTP 403

error is returned to imply excluded and precluded permission. In this case no further checks are

performed. If the request is not using the HTTPS protocol, and the implies returns false, the

request is redirected over HTTPS.

3. The security runtime attempts to authenticate the user. If the authentication information already exists

(for example, LTPA token), it is used. Otherwise, the user’s credentials must be entered.

4. After the user credentials are validated, a final authorization check is performed to see if the user is

granted access privileges to the URI.

a. As in Step 1, the WebResourcePermission object is created. The ProtectionDomain object now

contains the Principal that is attempting to access the URI. The Subject policy context handler also

contains the user’s information, which can be used for the access check.

b. The provider implies method is called using the Permission object and the ProtectionDomain object

created previously. If the user is granted permission to access the resource, the implies method

returns true. If the user is not granted access, the implies method returns false.

Even if the order listed previously is changed later (for example, to improve performance) the end result is

the same. For example, if the resource is precluded or excluded, the end result is that the resource cannot

be accessed.

Using information from the Subject for access decision

If the provider relies on the WebSphere Application Server generated Subject for access decision, the

provider can query the public credentials in the Subject to obtain the WSCredential credential. The

WSCredential API is used to obtain information about the user, including the name and the groups that the

user belongs to. This information is used to make the access decision.

If the provider adds the required information to the Subject, WebSphere Application Server can use the

information to make the access decision. The provider might add the information by using the Trust

Association Interface feature or by plugging login modules into the Application Server.

The security attribute propagation section contains additional documentation on how to add the

WebSphere Application Server required information to the Subject. For more information, see “Propagating

security attributes among application servers” on page 440.

Dynamic module updates in JACC

WebSphere Application Server supports dynamic updates to Web modules under certain conditions. If a

Web module is updated, deleted or added to an application, only that module is stopped and started as

appropriate. The other existing modules in the application are not impacted, and the application itself is not

stopped and then restarted.

When using the default authorization engine, any security policies are modified in the Web modules and

the application is stopped and then restarted. When using the Java Authorization Contract for Containers

510 Securing applications and their environment

(JACC) based authorization, the behavior depends on the functionality that a provider supports. If a

provider can handle dynamic changes to the Web modules, then only the Web modules are impacted.

Otherwise, the entire application is stopped and restarted for the new changes in the Web modules to take

effect.

A provider can indicate if it supports the dynamic updates by configuring the Supports dynamic module

updates option in the JACC configuration model (see “Authorizing access to J2EE resources using Tivoli

Access Manager” on page 523 for more information). This option can be enabled or disabled using the

administrative console or by scripting. It is expected that most providers store the policy information in their

external repository, which makes it possible for them to support these dynamic updates. This option should

be enabled by default for most providers.

When the Supports dynamic module updates option is enabled, if a Web module that contains security

roles is dynamically added, modified, or deleted, only the specific Web modules are impacted and

restarted. If the option is disabled, the entire application is restarted. When dynamic updates are

performed, the security policy information of the modules impacted are propagated to the provider. For

more information about security policy propagation, see “JACC policy propagation” on page 513.

Initialization of the JACC provider

If a Java Authorization Contract for Containers (JACC) provider requires initialization during server startup,

for example, to enable the client code to communicate to the server code, the provider can implement the

com.ibm.wsspi.security.authorization.InitializeJACCProvider interface. See “Interfaces that support JACC”

on page 540 for more information.

When this interface is implemented, it is called during server startup. Any custom properties in the JACC

configuration model are propagated to the initialize method of this implementation. The custom properties

can be entered using either the administrative console or by scripting.

During server shutdown, the cleanup method is called for any clean-up work that a provider requires.

Implementation of this interface is strictly optional, and is used only if the provider requires initialization

during server startup.

Mixed node environment and JACC

Authorization using Java Authorization Contract for Containers (JACC) is a new feature in WebSphere

Application Server Version 6.0.x. Also, the JACC configuration is set up at the cell level and is applicable

for all the nodes and servers in that cell.

If you are planning to use the JACC-based authorization, the cell must contain Version 6.0.x and later

nodes only. This restriction implies that a mixed node environment containing a set of Version 5.x nodes in

a Version 6.0.x or later cell is not supported.

JACC providers

The Java Authorization Contract for Containers (JACC) is a specification that was first introduced in Java

Platform, Enterprise Edition (Java EE) Version 1.4 through the Java Specifications Request (JSR) 115

process. JACC specification 1.4 is included for WebSphere Application Server version 7.0 for Java EE 5

support.. This specification defines a contract between Java EE 5 containers and authorization providers.

The contract enables third-party authorization providers to plug into Java EE 5 application servers, such as

WebSphere Application Server, to make the authorization decisions when a Java EE 5 resource is

accessed. The access decisions are made through the standard java.security.Policy object.

To plug in to WebSphere Application Server, the third-party JACC provider must implement the policy

class, policy configuration factory class, and policy configuration interface, which are all required by the

JACC specification.

Chapter 6. Authorizing access to resources 511

The JACC specification does not specify how to handle the authorization table information between the

container and the provider. It is the responsibility of the provider to provide some management facilities to

handle this information. The container is not required to provide the authorization table information in the

binding file to the provider.

WebSphere Application Server provides the RoleConfigurationFactory and the RoleConfiguration role

configuration interfaces to help the provider obtain information from the binding file, as well as an

initialization interface (InitializeJACCProvider). The implementation of these interfaces is optional. See

“Interfaces that support JACC” on page 540 for more information about these interfaces.

Tivoli Access Manager as the default JACC provider for WebSphere Application Server

The JACC provider in WebSphere Application Server is implemented by both the client and the server

pieces of the Tivoli Access Manager. The client piece of Tivoli Access Manager is embedded in

WebSphere Application Server. The server piece is located on a separate installable CD that is shipped as

part of the WebSphere Application Server Network Deployment (ND) package.

The JACC provider is not the default authorization. You must configure WebSphere Application Server to

use the JACC provider.

JACC policy context handlers

WebSphere Application Server supports all of the policy context handlers that are required by the Java

Authorization Contract for Containers (JACC) specification. However, due to performance impacts, the

Enterprise JavaBeans (EJB) arguments policy context handler is not activated unless it is specifically

required by the provider. Performance impacts result if objects must be created for each argument of each

EJB method.

If the provider supports and requires this context handler, select the Requires the EJB arguments policy

context handler for access decisions check box in the External JACC provider link under the

Authorization providers panel or by using scripting. Any changes to this option are effective after the

servers are restarted. By default this option is disabled. Disable this option when using Tivoli Access

Manager as the JACC provider, because the argument values are not required for access decisions.

JACC policy context identifiers (ContextID) format

A policy context identifier is defined as a unique string that represents a policy context. A policy context

contains all of the security policy statements as defined by the Java Contract for Containers (JACC)

specification that affect access to the resources in a Web or Enterprise JavaBeans (EJB) module.

During policy propagation to the JACC provider, a PolicyConfiguration object is created for each policy

context. The object is populated with the policy statements, represented by the JACC permission objects

that correspond to the context. The object is propagated to the JACC provider using the JACC

specification APIs.

Note: The following information is include for planning purposes and is only applicable if you intend to

federate in the future.

WebSphere Application Server makes the contextID unique by using the href:cellName/appName/
moduleName string as the contextID format for the modules. The href part of the string indicates that a

hierarchical name is passed as the context ID. The cellName represents the name of the deployment

manager cell or the base cell where the application is installed.

The appName part of the string in the context ID represents the application name containing the module.

The moduleName refers to the name of the module.

As an example, the context ID for the module Increment.jar file in an application named

DefaultApplication that is installed in cell1 is the href:cell1/DefaultApplication/Increment.jar file.

512 Securing applications and their environment

JACC policy propagation

When an application is installed or deployed in WebSphere Application Server, the security policy

information in the application is propagated to the provider when the configuration is saved. The context ID

for the application is saved in its application.xml file, that is used for propagating the policy to the Java

Authorization Contract for Containers (JACC) provider, and also for access decisions for Java Platform,

Enterprise Edition (Java EE) resources.

When an application is uninstalled, the security policy information in the application is removed from the

provider when the configuration is saved.

If the provider implemented the RoleConfiguration interface, the security policy information that is

propagated to the policy provider also contains the authorization table information. See “Interfaces that

support JACC” on page 540 for more information about this interface.

If an application does not contain security policy information, the PolicyConfiguration (and the

RoleConfiguration, if implemented) objects do not contain any information. The existence of empty

PolicyConfiguration and RoleConfiguration objects indicates that security policy information for the module

does not exist.

After an application is installed, it can be updated without being uninstalled and reinstalled. For example, a

new module can be added to an existing application, or an existing module can be modified. In this

instance, the information in the impacted modules is propagated to the provider by default. A module is

impacted when the deployment descriptor of the module or annotations within the module are changed as

part of the update. If the provider supports the RoleConfiguration interfaces, the entire authorization table

for that application is propagated to the provider.

If the security information is not propagated to the provider during application updates, you can set the

com.ibm.websphere.security.jacc.propagateonappupdate Java virtual machine (JVM) property to false in

the deployment manager, in a Network Deployment environment, or the unmanaged base application

server. If this property is set to false, any updates to an existing application in the server are not

propagated to the provider. You also can set this property on a per-application basis using the custom

properties of an application. The wsadmin tool can be used to set the custom property of an application. If

this property is set at the application level, any updates to that application are not propagated to the

provider. If the update to an application is a full update, for example, a new application enterprise archive

(EAR) file is used to replace the existing one, and the provider is refreshed with the entire application

security policy information.

As mentioned earlier, the security policy information is propagated to the JACC provider during the save

operation. The SystemOut.log file indicates the success or failure of the propagation to the provider. Check

the log file after the installation to ensure that the propagation had no problems. If the propagation had any

problems, access to the application fails when Tivoli Access Manager is used as the JACC provider.

If the security policy information for the application is successfully propagated to the provider, the audit

statements with the message key SECJ0415I appear. However, if there was a problem propagating the

security policy information to the provider (for example: network problems, JACC provider is not available),

the SystemOut.log files contain the error message with the message keys SECJ0396E during install or

SECJ0398E during modification. The installation of the application is not stopped due to a failure to

propagate the security policy to the JACC provider. Also, in the case of failure, no exception or error

messages appear during the save operation. When the problem causing this failure is fixed, run the

propagatePolicyToJaccProvider tool to propagate the security policy information to the provider without

reinstalling the application. For more information, see “Propagating security policy of installed applications

to a JACC provider using wsadmin scripting” on page 1026.

Chapter 6. Authorizing access to resources 513

JACC registration of the provider implementation classes

The JACC specification states that providers can plug in their provider using the

javax.security.jacc.policy.provider and the javax.security.jacc.PolicyConfigurationFactory.provider system

properties.

The javax.security.jacc.policy.provider property is used to set the policy object of the provider, while the

javax.security.jacc.PolicyConfigurationFactory.provider property is used to set the provider

PolicyConfigurationFactory implementation.

Although both system properties are supported in WebSphere Application Server, it is highly recommended

that you use the configuration model that is provided. You can set these values using either the JACC

configuration panel (see “Authorizing access to J2EE resources using Tivoli Access Manager” on page 523

for more information) or by using wsadmin scripting. One of the advantages of using the configuration

model instead of the system properties is that the information is entered in one place at the cell level, and

is propagated to all nodes during synchronization. Also, as part of the configuration model, additional

properties can be entered, as described in the JACC configuration panel.

Role-based security with embedded Tivoli Access Manager

The Java Platform, Enterprise Edition (Java EE) role-based authorization model uses the concepts of roles

and resources. An example is provided here.

 Methods

Roles getBalance deposit closeAccount

Teller granted granted

Cashier granted

Supervisor granted

In the example of the banking application that is conceptualized in the previous table, three roles are

defined: teller, cashier, and supervisor. Permission to perform the getBalance, deposit, and closeAccount

application methods are mapped to these roles. From the example, you can see that users assigned the

role, Supervisor, can run the closeAccount method, whereas the other two roles are unable to run this

method.

The term, principal, within WebSphere Application Sever security refers to a person or a process that

performs activities. Groups are logical collections of principals that are configured in WebSphere

Application Server to promote the ease of applying security. Roles can be mapped to principals, groups, or

both. The entry that is invoked in the following table indicates that the principal or group can invoke any

methods that are granted to that role.

 Roles

Principal/Group Teller Cashier Supervisor

TellerGroup Invoke

CashierGroup Invoke

SupervisorGroup

Frank: A principal who is

not a member of any of the

previous groups

Invoke Invoke

In the previous example, the principal Frank, can invoke the getBalance and the closeAccount methods,

but cannot invoke the deposit method because this method is not granted either the Cashier or the

Supervisor role.

514 Securing applications and their environment

At the time of application deployment, the Java Authorization Contract for Container (JACC) provider of

Tivoli Access Manager populates the Tivoli Access Manager-protected object space with any security

policy information that is contained in the application deployment descriptor and or annotations. This

security information is used to determine access whenever the WebSphere Application Server resource is

requested.

By default, the Tivoli Access Manager access check is performed using the role name, the cell name, the

application name, and the module name.

Tivoli Access Manager access control lists (ACLs) determine which application roles are assigned to a

principal. ACLs are attached to the applications in the Tivoli Access Manager-protected object space at the

time of application deployment.

Principal-to-role mappings are managed from the WebSphere Application Server administrative console

and are never modified using Tivoli Access Manager. Direct updates to ACLs are performed for

administrative security users only.

The following sequence of events occur:

1. During application deployment, policy information is sent to the JACC provider of Tivoli Access

Manager . This policy information contains permission-to-role mappings and role-to-principal and

role-to-group mapping information.

2. The JACC provider of Tivoli Access Manager converts the information into the required format, and

passes this information to the Tivoli Access Manager policy server.

3. The policy server adds entries to the Tivoli Access Manager-protected object space to represent the

roles that are defined for the application and the permission-to-role mappings. A permission is

represented as a Tivoli Access Manager-protected object and the role that is granted to this object is

attached as an extended attribute.

Tivoli Access Manager integration as the JACC provider

Tivoli Access Manager uses the Java Authorization Contract for Container (JACC) model in WebSphere

Application Server to perform access checks.

Tivoli Access Manager consists of the following components:

v Run time

v Client configuration

v Authorization table support

v Access check

v Authentication using the PDLoginModule module

Tivoli Access Manager run-time changes that are used to support JACC

For the run-time changes, Tivoli Access Manager implements the PolicyConfigurationFactory and the

PolicyConfiguration interfaces, as required by JACC. During the application installation, the security policy

information in the deployment descriptor and the authorization table information in the binding files are

propagated to the Tivoli provider using these interfaces. The Tivoli provider stores the policy and the

authorization table information in the Tivoli Access Manager policy server by calling the respective Tivoli

Access Manager application programming interfaces (API).

Tivoli Access Manager also implements the RoleConfigurationFactory and the RoleConfiguration

interfaces. These interfaces are used to ensure that the authorization table information is passed to the

provider with the policy information. See “Interfaces that support JACC” on page 540 for more information

about these interfaces.

Tivoli Access Manager client configuration

Chapter 6. Authorizing access to resources 515

To configure the Tivoli Access Manager client, you can use either the administrative console or wsadmin

scripting. You can access the administrative console panels for the Tivoli Access Manager client

configuration by clicking Security > Global security > External authorization providers. Under Related

Items, click External JACC provider. The Tivoli client must be set up to use the Tivoli Access Manager

JACC Provider.

For more information about how to configure the Tivoli Access Manager client, see “Tivoli Access Manager

JACC provider configuration” on page 530.

Authorization table support

Tivoli Access Manager uses the RoleConfiguration interface to ensure that the authorization table

information is passed to the Tivoli Access Manager provider when the application is installed or deployed.

When an application is deployed or edited, the set of users and groups for the user or group-to-role

mapping are obtained from the Tivoli Access Manager server, which shares the same Lightweight Directory

Access Protocol (LDAP) server as WebSphere Application Server. This sharing is accomplished by

plugging into the application management users or groups-to-role administrative console panels. The

management APIs are called to obtain users and groups rather than relying on the WebSphere Application

Server-configured LDAP registry.

Access check

When WebSphere Application Server is configured to use the JACC provider for Tivoli Access Manager , it

passes the information to Tivoli Access Manager to make the access decision. The Tivoli Access Manager

policy implementation queries the local replica of the access control list (ACL) database for the access

decision.

Authentication using the PDLoginModule module

The custom login module in WebSphere Application Server can do the authentication. This login module is

plugged in before the WebSphere Application Server-provided login modules. The custom login modules

can provide information that can be stored in the Subject. If the required information is stored, no

additional registry calls are made to obtain that information.

As part of the JACC integration, the Tivoli Access Manager-provided PDLoginModule module is also used

to plug into WebSphere Application Server for Lightweight Third Party Authentication (LTPA), Kerberos

(KRB5) and Simple WebSphere Authentication Mechanism (SWAM) authentication. The PDLoginModule

module is modified to authenticate with the user ID or password. The module is also used to fill in the

required attributes in the Subject so that no registry calls are made by the login modules in WebSphere

Application Server. The information that is placed in the Subject is available for the Tivoli Access Manager

policy object to use for access checking.

Note: SWAM is deprecated in WebSphere Application Server Version 7.0 and will be removed in a future

release.

Note: When using Kerberos authentication mechanism and Tivoli Access Manager, TAM loginModule

creates the PDPrincipal without first going through the Tivoli Access Manager authentication

process. Also when using Kerberos authentication mechanism and Tivoli Access Manager, the Tivoli

Access Manager policy is not enforced in WebSphere Application Server Version 7.0.

Tivoli Access Manager security for WebSphere Application Server

WebSphere Application Server provides embedded IBM Tivoli Access Manager client technology to secure

your WebSphere Application Server-managed resources.

The benefits of using Tivoli Access Manager that are described here are only applicable when Tivoli

Access Manager client code is used with the Tivoli Access Manager server:

516 Securing applications and their environment

v Robust container-based authorization

v Centralized policy management

v Management of common identities, user profiles, and authorization mechanisms

v Single-point security management for Java Platform, Enterprise Edition (Java EE) compliant and

non-compliant Java EE resources using the administrative console for Tivoli Access Manager Web

Portal Manager

v No requirements for coding or deployment changes to applications

v Easy management of users, groups, and roles using the WebSphere Application Server administrative

console

WebSphere Application Server supports the Java Authorization Contract for Containers (JACC)

specification. JACC details the contract requirements for Java EE containers and authorization providers.

With this contract, authorization providers can perform the access decisions for resources in Java EE

application servers such as WebSphere Application Server. The Tivoli Access Manager security utility that

is embedded within WebSphere Application Server is JACC-compliant and is used to:

v Add security policy information when applications are deployed

v Authorize access to WebSphere Application Server-secured resources.

When applications are deployed, the embedded Tivoli Access Manager client takes any policy and or user

and role information that is stored within the application deployment descriptor or using annotations and

stores it within the Tivoli Access Manager Policy Server.

The Tivoli Access Manager JACC provider is also called when a user requests access to a resource that is

managed by WebSphere Application Server.

Embedded Tivoli Access Manager client architecture

The previous figure illustrates the following sequence of events:

1. Users that access protected resources are authenticated using the Tivoli Access Manager login module

that is configured for use when the embedded Tivoli Access Manager client is enabled.

2. The WebSphere Application Server container uses information from the Java EE application

deployment descriptor and annotations to determine the required role membership.

Tivoli Access
Manager

login module

Tivoli Access Manager
JACC provider

Tivoli Access Manager
authorization server

Tivoli Access Manager
policy server

WebSphere Application Server

Policy
database
replication

LDAP
server

Policy
database

Policy
database

Protected object
space

/

SD

Client

Request

Response

Chapter 6. Authorizing access to resources 517

3. WebSphere Application Server uses the embedded Tivoli Access Manager client to request an

authorization decision from the Tivoli Access Manager authorization server. Additional context

information, when present, is also passed to the authorization server. This context information is

comprised of the cell name, Java EE application name, and Java EE module name. If the Tivoli Access

Manager policy database has policies that are specified for any of the context information, the

authorization server uses this information to make the authorization decision.

4. The authorization server consults the permissions that are defined for the specified user within the

Tivoli Access Manager-protected object space. The protected object space is part of the policy

database.

5. The Tivoli Access Manager authorization server returns the access decision to the embedded Tivoli

Access Manager client.

6. WebSphere Application Server either grants or denies access to the protected method or resource,

based on the decision that is returned from the Tivoli Access Manager authorization server.

At its core, Tivoli Access Manager provides an authentication and authorization framework. You can learn

more about Tivoli Access Manager, including the information that is necessary to make deployment

decisions, by reviewing the product documentation. The following guides are available at the IBM Tivoli

Access Manager for e-business information center:

v IBM Tivoli Access Manager Base Installation Guide

This guide describes how to plan, install, and configure a Tivoli Access Manager secure domain. Using

a series of easy installation scripts, you can quickly deploy a fully functional secure domain. These

scripts are very useful when prototyping the deployment of a secure domain.

To access this guide in the IBM Tivoli Access Manager for e-business information center, click Access

Manager for e-business > Base Information > Base Installation Guide.

v IBM Tivoli Access Manager Base Administration Guide

This document presents an overview of the Tivoli Access Manager security model for managing

protected resources. This guide describes how to configure the Tivoli Access Manager servers that

make access control decisions. In addition, detailed instructions describe how to perform important

tasks, such as declaring security policies, defining protected object spaces, and administering user and

group profiles.

To access this guide in the IBM Tivoli Access Manager for e-business information center, click Access

Manager for e-business > Base Information > Base Administration Guide.

Tivoli Access Manager provides centralized administration of multiple servers.

518 Securing applications and their environment

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp

The previous figure is an example architecture showing WebSphere Application Servers secured by Tivoli

Access Manager.

The participating WebSphere Application Servers use a local replica of the Tivoli Access Manager policy

database to make authorization decisions for incoming requests. The local policy databases are replicas of

the master policy database. The master policy database is installed as part of the Tivoli Access Manager

installation. Having policy database replicas on each participating WebSphere Application Server node

optimizes performance when making authorization decisions and provides failover capability.

Although the authorization server can also be installed on the same system as WebSphere Application

Server, this configuration is not illustrated in the diagram.

All instances of Tivoli Access Manager and WebSphere Application Server in the example architecture

share the Lightweight Directory Access Protocol (LDAP) user registry on Machine E.

The LDAP registries that are supported by WebSphere Application Server are also supported by Tivoli

Access Manager.

It is possible to have separate WebSphere Application Server profiles on the same host that is configured

for different Tivoli Access Manager servers. Such an architecture requires that the profiles are configured

for separate Java SE Runtime Environments (JRE 6) and therefore you need multiple JREs installed on

the same host.

Machine C

Tivoli
Access Manager
policy database

machine A - Cell manager

Machine D - Node 1

Policy database
replication

Machine B

WebSphere Application Server

Tivoli Access
Manager JACC

provider

Tivoli Access Manager
local policy

database replica

Policy database
replication

WebSphere Application Server

Tivoli Access
Manager JACC

provider

Tivoli Access Manager
local policy

database replica

Authorization
decisions

User registry
shared by all
applications

WebSphere Application Server Cell

Authorization
decisions

Master Policy
database

Machine E

Tivoli
Access Manager

Authorization
Server

Tivoli Access Manager
local policy

database replica

Credential
acquisition

Credential
acquisition

Chapter 6. Authorizing access to resources 519

Note: Even though all WebSphere Application Server profiles on the same host share a single JRE 6, you

can configure separate WebSphere Application Server profiles on the same host for different Tivoli

Access Manager servers.

Security Annotations

Annotations are a powerful programming resulting from the JSR-175 recommendation. An annotation is a

standard way to include supported security behaviors while allowing, the source code and configuration

files to be generated automatically.

In Java Platform, Enterprise Edition (Java EE) 5, The security roles and policies can be defined using

annotations as well as within the deployment descriptor. During the installation of the application, the

security policies and roles defined using annotations are merged with the security policies and roles

defined within the deployment descriptor. This merge is performed by the Annotations Metadata Manager

(AMM) facility. When the metadata is merged, the following inheritance rules are followed.

 Table 20. Metadata merger inheritance rules

Scenario Rules

Security metadata in deployment descriptor only No merge is needed, the security metadata from the deployment

descriptor is propagated.

Security metadata in annotations only No merge is needed, the security metadata defined with annotations is

propagated.

Security metadata in deployment descriptor and annotations The metadata from the deployment descriptor and annotations is merged.

The metadata in annotations is overridden by the same type of data from

the deployment descriptor.

Five security annotations are currently supported. For each annotation, a MergeAction implementation is

defined.

v @DeclareRoles (Servlet 2.5 and EJB 3)

The MergeAction implementation finds all the classes annotated with the DeclareRoles annotation.

Within each annotated class for each role name specified, if the security roles listed in the deployment

descriptor does not contain a SecurityRole with the annotated role name, a new SecurityRole is created

and added to this list of security roles.

v @RunAs (Servlet 2.5 and EJB 3)

The MergeAction implementation finds all the classes with the RunAs annotation. For each annotated

class, it finds the Servlet or the Enterprise Java Bean (EJB) associated with the given class. It then

determines if a run-as element is defined in the deployment descriptor for the servlet or EJB. If one is

not found, a new run-as element is created and added to the deployment descriptor. If a run-as element

is found, this run-as element will be used instead of creating a new one. The role name used in the

RunAs annotation must be defined in the deployment descriptor.

v @DenyAll (EJB 3 only)

The MergeAction implementation finds all the methods annotated with the DenyAll annotation. For each

annotated method, if the method is not included in the deployment descriptor list of excluded methods,

and a MethodPermission does not exist in the deployment descriptor, a new MethodElement is created

and added to this list of excluded methods in the deployment descriptor.

v @PermitAll (EJB 3 only)

The MergeAction implementation finds all the classes and the methods with the PermitAll annotation.

For each annotated class, it finds the Enterprise Java Bean (EJB) associated with the given class. It

then searches the subset of the MethodElements in the list of all the MethodPermissions defined in the

deployment descriptor for this EJB. If a MethodElement with a wildcard method name (“*”) is not found

and a wildcard method does not exist in the list of excluded methods or in the list of MethodElements

with security roles, a new MethodPermission and a new MethodElement are created. The new

MethodPermission is marked unchecked and is added to the MethodPermission list in the deployment

descriptor. The new MethodElement is added to the MethodElement list of the newly created unchecked

MethodPermission. Similar action is done for all annotated methods. Instead of a wildcard

MethodElement, the method signature must match exactly the signature of the annotated method.

520 Securing applications and their environment

v @RolesAllowed (EJB 3 only)

The MergeAction implementation finds all the classes and methods with the RolesAllowed annotation.

For each annotated class, it finds the EJB associated with the given class. It then finds the subset of

the MethodElements in the list of all the MethodPermissions defined in the deployment descriptor for

this EJB. If a MethodElement with a wildcard method name (“*”) is not found, and a wildcard method

does not exist in the list of excluded methods or in the list of unchecked MethodElements, a new

MethodPermission and MethodElement are created. If a MethodPermission for this EJB exists with

exactly the same roles as those found in the annotation, this MethodPermission will be used instead of

creating a new one. For each role name specified in the annotation, a new SecurityRole is created and

added to the SecurityRole list in the MethodPermission, If the MethodPermission was newly created, it

is added to the MethodPermission list in the deployment descriptor. The new MethodElement created is

added to the MethodElement list of the MethodPermission. Similar processing is done for all annotated

methods. Instead of a wildcard MethodElement, the method signature must exactly match the signature

of the annotated method. Additionally, for each role name specified in the annotation, if the deployment

descriptor list of security roles does not contain a SecurityRole with the annotated role name, a new

SecurityRole is also created and added to this list of security roles.

Delegations

Delegation is a process security identity propagation from a caller to a called object. As per the Java

Platform, Enterprise Edition (Java EE) specification, a servlet and enterprise beans can propagate either

the client or remote user identity when invoking enterprise beans, or they can use another specified

identity as indicated in the corresponding deployment descriptor.

The extension supports enterprise bean propagation to the server ID when invoking other entity beans.

Three types of delegations are possible:

v Delegate (RunAs) client identity

v Delegate (RunAs) specified identity

v Delegate (RunAs) system identity

ID=user1

Enterprise beans

or Web client

RunAs client ID

Enterprise beans

or servlet

Other

enterprise beans

ID=user1

Delegate (RunAs) client identity

Chapter 6. Authorizing access to resources 521

Note: The RunAs system identity delegation only works when server ID and password are used. When

the internalServerId feature is used, it does not work because runAs with system identity is not

supported. You must specify RunAs roles. When internalServerID is used, use the RunAsSpecified

with a user ID and password that is mapped to the administrator role. See “Administrative roles and

naming service authorization” on page 496 for more information about internalServerId.

The EJB specification only supports delegation (RunAs) at the Enterprise JavaBeans (EJB) level. But an

extension allows EJB method-level RunAs specification. With an EJB method level, the RunAs

specification can specify a different RunAs role for different methods within the same enterprise beans.

The RunAs specification is detailed in the deployment descriptor, which is the ejb-jar.xml file in the EJB

module and the web.xml file in the Web module. The extension to the RunAs specification is included in

the ibm-ejb-jar-ext.xmi file.

An IBM-specific binding file is available for each application that contains a mapping from the RunAs role

to the user. This file is specified in the ibm-application-bnd.xmi file.

These specifications are read by the runtime during application startup. The following figure illustrates the

delegation mechanism, as implemented in the WebSphere Application Server security model.

ID=user1

Delegate (RunAs) specified identity

Other

enterprise beans

Run As specified role

mapped to user2

Enterprise beans

or Web client

Enterprise beans

or servlet

ID=user2

ID=user1

RunAs system ID

ID=user1

Delegate (RunAs) system identity

Enterprise beans

or Web servlet
Enterprise beans

Other

enterprise beans

server1

522 Securing applications and their environment

Delegation Process

Two tables help in the delegation process:

v Resource to RunAs role mapping table

v RunAs role to user ID and password mapping table

Use the Resource to RunAs role mapping table to get the role that is used by a servlet or by enterprise

beans to propagate to the next enterprise beans call.

Use the RunAsRole to user ID and password mapping table to get the user ID that belongs to the RunAs

role and its password.

Delegation is performed after successful authentication and authorization. During this process, the

delegation module consults the Resource to RunAs role mapping table to get the RunAs role (3). The

delegation module consults the RunAs role to user ID and password mapping table to get the user that

belongs to the RunAs role (4). The user ID and password is used to create a new credential using the

authentication module, which is not shown in the figure.

The resulting credential is stored in the Object Request Broker (ORB) Current as an invocation credential

(5). Servlet and enterprise beans when invoking other enterprise beans pick up the invocation credential

from the ORB Current (6) and call the next enterprise beans (7).

Authorizing access to J2EE resources using Tivoli Access Manager

The Java Authorization Contract for Containers (JACC) defines a contract between Java Platform,

Enterprise Edition (Java EE) containers and authorization providers. You can use the default authorization

or an external JACC authorization provider. When security is enabled in WebSphere Application Server,

the default authorization is used unless a JACC provider is specified.

Before you begin

JACC enables any third-party authorization providers to plug into a Java EE application server (such as

WebSphere Application Server) to make the authorization decisions when a Java EE resource is

accessed. By default, WebSphere Application Server implements the JACC provider by using Tivoli Access

Manager as the external authorization provider.

Java client

Delegation process

WebSphere Application Server

(1)

(1)

CSIv2/SAS, TCP/IP,

SSL

EJB

resource access

HTTP or HTTPS

Web resource access

Enterprise beans

collaborator

Web

authenticator
Web client

(2)

Resource

(2)

Resource

Delegation

RunAs role to

credentials

Resource

to RunAs role

(3)

(4)

(5)

(6)

(7)

(7)

(6)

Resource

Credentials

RunAs roles

RunAs roles

RunAs
role

Users and
passwords

Resource
RunAs
roles

Delegate

module

Invoke credentials ORB

current

Enterprise

beans

Servlet

Chapter 6. Authorizing access to resources 523

Read the following articles for more detailed information about JACC before you attempt to configure

WebSphere Application Server to use a JACC provider:

v “JACC support in WebSphere Application Server” on page 509

v “JACC providers” on page 511

v “Tivoli Access Manager integration as the JACC provider” on page 515

Using the built-in authorization provider

You can extend the capabilities of WebSphere Application Server by plugging in your own authorization

provider. You can use the built-in authorization or an external JACC authorization provider.

About this task

For an explanation of the administrative console panels that support these capabilities, see:

v Use the built-in authorization provider. It is recommended that you do not modify any settings on the

authorization provider panels if you use the Built-in authorization option. For more information, see

“External authorization provider settings.”

v Use an external authorization provider. If you use the External authorization using a JACC provider

option, the external providers must be based on the Java Authorization Contract for Containers (JACC)

specification to handle the Java Platform, Enterprise Edition (Java EE) authorization. By default,

WebSphere Application Server enables you to configure the Tivoli Access Manager Java Authorization

Contract for Containers (JACC) provider as the default external JACC provider. For more information,

see “External Java Authorization Contract for Containers provider settings” on page 525 and “Tivoli

Access Manager JACC provider settings” on page 531.

External authorization provider settings

Use this page to enable a Java Authorization Contract for Containers (JACC) provider for authorization

decisions.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Click External authorization providers.

The application server provides a default authorization engine that performs all of the authorization

decisions. In addition, the application server also supports an external authorization provider using the

JACC specification to replace the default authorization engine for Java Platform, Enterprise Edition (Java

EE) applications.

JACC is part of the Java EE specification, which enables third-party security providers such as Tivoli

Access Manager to plug into the application server and make authorization decisions.

Note: Unless you have an external JACC provider or want to use a JACC provider for Tivoli Access

Manager that can handle Java EE authorizations based on JACC, and it is configured and set up to

use with the application server, do not enable External authorization using a JACC provider.

Built-in authorization:

Use this option all the time unless you want an external security provider such as the Tivoli Access

Manager to perform the authorization decision for Java EE applications that are based on the JACC

specification.

External JACC provider: Use this link to configure the application server to use an external JACC

provider. For example, to configure an external JACC provider, the policy class name and the policy

configuration factory class name are required by the JACC specification.

524 Securing applications and their environment

The default settings that are contained in this link are used by Tivoli Access Manager for authorization

decisions. If you intend to use another provider, modify the settings as appropriate.

External Java Authorization Contract for Containers provider settings

Use this page to configure the application server to use an external Java Authorization Contract for

Containers (JACC) provider. For example, the policy class name and the policy configuration factory class

name are required by the JACC specification.

Use these settings when you have set up an external security provider that supports the JACC

specification to work with the application server. The configuration process involves installing and

configuring the provider server and configuring the client of the provider in the application server to

communicate with the server. If the JACC provider is not enabled, these settings will be ignored.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Click External authorization providers.

3. Under Authorization provider, click External JACC provider.

Use the default settings when you use Tivoli Access Manager as the JACC provider. Install and configure

the Tivoli Access Manager server prior to using it with the application server. Use the Tivoli Access

Manager properties link under Additional properties, and configure the Tivoli Access Manager client in the

application server to use the Tivoli Access Manager server. If you intend to use another provider, modify

the settings as appropriate.

Name:

Specifies the name that is used to identify the external JACC provider.

 This field is required.

 Data type: String

Description:

Provides an optional description for the provider.

 Data type: String

Policy class name:

Specifies a fully qualified class name that represents the javax.security.jacc.policy.provider property as per

the JACC specification. The class represents the provider-specific implementation of the

java.security.Policy abstract methods.

 The class file must reside in the class path of each application server process. These processes include

the application server, node agents and the deployment manager.

Do not add the Java archive (JAR) file, which contains the class file, to the <WAS_HOME>/lib directory in

a product environment as service releases overwrite files in this directory.

This class is used during authorization decisions. The default class name is for Tivoli Access Manager

implementation of the policy file.

Chapter 6. Authorizing access to resources 525

This field is required. For information on enabling the JACC provider using this field, see the ″Enabling the

JACC provider for Tivoli Access Manager″ article in the information center.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMPolicy

Policy configuration factory class name:

Specifies a fully qualified class name that represents the

javax.security.jacc.PolicyConfigurationFactory.provider property as per the JACC specification. The class

represents the provider-specific implementation of the javax.security.jacc.PolicyConfigurationFactory

abstract methods.

 The class file must reside in the class path of each application server process. These processes include

the application server, node agents and the deployment manager.

Do not add the Java archive (JAR) file, which contains the class file, to the <WAS_HOME>/lib directory in

a product environment as service releases overwrite files in this directory.

This class represents the provider-specific implementation of the PolicyConfigurationFactory abstract class.

This class is used to propagate the security policy information to the JACC provider during the installation

of the J2EE application. The default class name is for the Tivoli Access Manager implementation of the

policy configuration factory class name.

This field is required.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory

Role configuration factory class name:

Specifies a fully qualified class name that implements the

com.ibm.wsspi.security.authorization.RoleConfigurationFactory interface.

 The class file must reside in the class path of each application server process. These processes include

the application server, node agents and the deployment manager.

Do not add the Java archive (JAR) file, which contains the class file, to the <WAS_HOME>/lib directory in

a product environment as service releases overwrite files in this directory.

When you implement this class, the authorization table information in the binding file is propagated to the

provider during the installation of the J2EE application. The default class name is for the Tivoli Access

Manager implementation of the role configuration factory class name.

This field is optional. For information on enabling the JACC provider using this field, see the ″Enabling the

JACC provider for Tivoli Access Manager″ article in the information center.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory

Provider initialization class name:

Specifies a fully qualified class name that implements the

com.ibm.wsspi.security.authorization.InitializeJACCProvider interface.

526 Securing applications and their environment

The class file must reside in the class path of each application server process. These processes include

the application server, node agents and the deployment manager.

Do not add the Java archive (JAR) file, which contains the class file, to the <WAS_HOME>/lib directory in

a product environment as service releases overwrite files in this directory.

When implemented, this class is called at the start and the stop of all the application server processes.

You can use this class for any required initialization that is needed by the provider client code to

communicate with the provider server. The properties that are entered in the custom properties link are

passed to the provider when the process starts up. The default class name is for the Tivoli Access

Manager implementation of the provider initialization class name.

This field is optional. For information on enabling the JACC provider using this field, see the ″Enabling the

JACC provider for Tivoli Access Manager″ article in the information center.

 Data type: String

Default: com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize

Requires the EJB arguments policy context handler for access decisions:

Specifies whether the JACC provider requires the EJBArgumentsPolicyContextHandler handler to make

access decisions.

 Because this option has an impact on performance, do not set it unless it is required by the provider.

Normally, this handler is required only when the provider supports instance-based authorization. Tivoli

Access Manager does not support this option for J2EE applications.

 Default: Disabled

Supports dynamic module updates:

Specifies whether you can apply changes made to security policies of Web modules in a running

application, dynamically without affecting the rest of the application.

 If this option is enabled, the security policies of the added or modified Web modules are propagated to the

JACC provider and only the affected Web modules are started.

If this option is disabled, then the security policies of the entire application are propagated to the JACC

provider for any module-level changes. The entire application is restarted for the changes to take effect.

Typically, this option is enabled for an external JACC provider.

 Default: Enabled

Custom properties:

Specifies the properties that are required by the provider.

 These properties are propagated to the provider during the startup process when the provider initialization

class name is initialized. If the provider does not implement the provider initialization class name as

described previously, the properties are not used.

The Tivoli Access Manager implementation does not require that you enter any properties in this link.

Tivoli Access Manager properties:

Chapter 6. Authorizing access to resources 527

Specifies properties that are required by the Tivoli Access Manager implementation.

 These properties are used to set up the communication between the application server and the Tivoli

Access Manager server. You must install and configure the Tivoli Access Manager server before entering

these properties.

Enabling an external JACC provider

Use this topic to enable an external JACC provider using the administrative console.

Before you begin

The Java Authorization Contract for Containers (JACC) defines a contract between Java Platform,

Enterprise Edition (Java EE) containers and authorization providers. This contract enables any third-party

authorization providers to plug into a Java EE 5 application server, such as WebSphere Application Server

to make the authorization decisions when a Java EE resource is accessed.

1. From the WebSphere Application Server administrative console, click Security > Global security >

External authorization providers.

2. Under Related items, click External JACC provider.

3. The fields are set for Tivoli Access Manager by default. If you do not plan to use Tivoli Access

Manager as the JACC provider, replace these fields with the details for your own external JACC

provider.

4. If any custom properties are required by the JACC provider, click Custom properties under Additional

properties and enter the properties. When using the Tivoli Access Manager, use the Tivoli Access

Manager properties link instead of the Custom properties link. For more information, see “Configuring

the JACC provider for Tivoli Access Manager using the administrative console.”

5. On the External authorization providers panel, select the External authorization using a JACC

provider option and click OK.

6. Complete the remaining steps to enable security. If you are using Tivoli Access Manager, you must

select LDAP as the user registry and use the same LDAP server. For more information on configuring

LDAP registries, see “Configuring Lightweight Directory Access Protocol user registries” on page 100.

7. Restart all servers to make these changes effective.

Configuring the JACC provider for Tivoli Access Manager using the administrative

console

Use this task to configure Tivoli Access Manager as the Java Authorization Contract for Containers (JACC)

provider using the administrative console.

Before you begin

Prior to completing the following steps, verify that you have previously created a security administrative

user. For more information, see “Creating the security administrative user” on page 530.

About this task

The following configuration is performed on the management server. When you click either Apply or OK,

configuration information is checked for consistency, saved, and applied if successful.

To configure Tivoli Access Manager as the JACC provider using the administrative console, complete the

following steps:

1. Start the WebSphere Application Server administrative console by clicking http://
yourhost.domain:port_number/ibm/console after starting WebSphere Application Server. If security is

currently disabled, log in with any user ID. If security is currently enabled, log in with a predefined

administrative ID and password. This ID is typically the server user ID that is specified when you

configure the user registry.

528 Securing applications and their environment

2. Click Security > Global security > External authorization providers.

3. Under General properties, select External authorization using a JACC provider.

4. Under Related items, click External JACC provider.

5. Under Additional properties, click Tivoli Access Manager Properties. The Tivoli Access Manager

JACC provider configuration screen is displayed.

6. Enter the following information:

Enable embedded Tivoli Access Manager

Select this option to enable Tivoli Access Manager.

Ignore errors during embedded Tivoli Access Manager disablement

Select this option when you want to unconfigure the JACC provider. Do not select this option

during configuration.

Client listening port set

WebSphere Application Server must listen using a TCP/IP port for authorization database

updates from the policy server. More than one process can run on a particular node or

machine. More than one authorization server can be specified by separating the entries with

commas. Specifying more than one authorization server at a time is useful for reasons of

failover and performance. Enter the listening ports used by Tivoli Access Manager clients,

separated by a comma. If a range of ports is specified, separate the lower and higher values

by a colon (:) (for example, 7999, 9990:999).

Policy server

Enter the name of the Tivoli Access Manager policy server and the connection port. Use the

policy_server:port form. The policy communication port is set at the time of the Tivoli Access

Manager configuration, and the default is 7135.

Authorization servers

Enter the name of the Tivoli Access Manager authorization server. Use the

auth_server:port:priority form. The authorization server communication port is set at the

time of the Tivoli Access Manager configuration, and the default is 7136. The priority value is

determined by the order of the authorization server use (for example, auth_server1:7136:1

and auth_server2:7137:2). A priority value of 1 is required when configuring against a single

authorization server.

Administrator user name

Enter the Tivoli Access Manager administrator user name that was created when Tivoli Access

Manager was configured; it is usually sec_master.

Administrator user password

Enter the Tivoli Access Manager administrator password.

User registry distinguished name suffix

Enter the distinguished name suffix for the user registry that is shared between Tivoli Access

Manager and WebSphere Application Server, for example, o=ibm, c=us.

Security domain

You can create more than one security domain in Tivoli Access Manager, each with its own

administrative user. Users, groups and other objects are created within a specific domain, and

are not permitted to access resource in another domain. Enter the name of the Tivoli Access

Manager security domain that is used to store WebSphere Application Server users and

groups.

 If a security domain is not established at the time of the Tivoli Access Manager configuration,

leave the value as Default.

Administrator user distinguished name

Enter the full distinguished name of the WebSphere Application Server security administrator

ID (for example, cn=wasdmin, o=organization, c=country). The ID name must match the

Chapter 6. Authorizing access to resources 529

Server user ID on the Lightweight Directory Access Protocol (LDAP) User Registry panel in the

administrative console. To access the LDAP User Registry panel, click Security > Global

security. Under User account repository, choose Standalone LDAP registry as the

available realm definition. Then click Configure.

7. When all information is entered, click OK to save the configuration properties. The configuration

parameters are checked for validity and the configuration is attempted at the host server or cell

manager.

Results

After you click OK, WebSphere Application Server completes the following actions:

v Validates the configuration parameters.

v Configures the host server or cell manager.

These processes might take some time depending on network traffic or the speed of your machine.

What to do next

If the configuration is successful, the parameters are copied to all subordinate servers, including the node

agents. To complete the embedded Tivoli Access Manager client configuration, you must restart all of the

servers, including the host server, and enable WebSphere Application Server security.

Creating the security administrative user:

Enabling security requires the creation of a WebSphere Application Server administrative user. Use the

Tivoli Access Manager command-line pdadmin utility to create the Tivoli Access Manager administrative

user for WebSphere Application Server. This utility is available on the policy server host machine.

 About this task

Follow these steps to use the pdadmin utility.

1. From a command line, start the pdadmin utility as the Tivoli Access Manager administrative user,

sec_master:

pdadmin -a sec_master -p sec_master_password

2. Create a WebSphere Application Server security user. For example, the following instructions create a

new user, wasadmin. The command is entered as one continuous line:

pdadmin> user create wasadmin cn=wasadmin,o=organization,

c=country wasadmin wasadmin myPassword

Substitute values for organization and country that are valid for your Lightweight Directory Access

Protocol (LDAP) user registry.

3. Enable the account for the WebSphere Application Server security administrative user by issuing the

following command:

pdadmin> user modify wasadmin account-valid yes

What to do next

Configure the Java Authorization Contract for Container (JACC) provider for Tivoli Access Manager. For

more information, see “Tivoli Access Manager JACC provider configuration.”

Tivoli Access Manager JACC provider configuration:

You can configure the Java Authorization Contract for Containers (JACC) provider for Tivoli Access

Manager to deliver authentication and authorization protection for your applications or for authentication

530 Securing applications and their environment

only. Most deployments that use the JACC provider for Tivoli Access Manager to configure Tivoli Access

Manager provide both authentication and authorization functionality.

 If you want Tivoli Access Manager to provide authentication, but leave authorization as part of WebSphere

Application Server’s native security, add the

com.tivoli.pd.as.amwas.DisableAddAuthorizationTableEntry=true property to the

amwas.amjacc.template.properties file. The file is located in the profile_root/config/cells/cell_name

directory.

After this property is set, perform the tasks for setting Tivoli Access Manager Security, as documented.

You can configure the JACC provider for Tivoli Access Manager using either the WebSphere Application

Server administrative console or the wsadmin command-line utility.

v For details on configuring the JACC provider for Tivoli Access Manager using the administrative

console, refer to “Configuring the JACC provider for Tivoli Access Manager using the administrative

console” on page 528.

v For details on configuring the Tivoli Access Manager JACC provider using the wsadmin command line

utility, refer to “Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility” on

page 928.

The JACC configuration files are not common across multiple WebSphere Application profiles. The

following property setting is added to the profile_root/config/cells/cell_name/
amwas.amjacc.template.properties file to specify the location of the JACC configuration for each profile.

com.tivoli.pd.as.jacc.CommonFileLocation=USER_INSTALL_ROOT/etc/pd

The wsadmin command is available to reconfigure the Java Authorization Contract for Containers (JACC)

Tivoli Access Manager interface:

$AdminTask reconfigureTAM -interactive

This command effectively prompts you through the process of unconfiguring the interface and then

reconfiguring it.

Tivoli Access Manager JACC provider settings:

Use this page to configure the Java Authorization Contract for Container (JACC) provider for Tivoli Access

Manager.

Note: When a third-party authorization such as Tivoli Access Manager or SAF for z/OS is used, the

information in the administrative console panel might not represent the data in the provider. Also,

any changes to the panel might not be reflected in the provider automatically. Follow the provider’s

instructions to propagate any changes made to the provider.

To view the JACC provider settings for Tivoli Access Manager, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click External authorization providers.

3. Under Authorization provider, click External JACC provider.

4. Click Configure to configure the properties for Tivoli Access Manager.

Enable embedded Tivoli Access Manager:

Enables or disables the embedded Tivoli Access Manager client configuration.

 Default: Disabled

Chapter 6. Authorizing access to resources 531

Range: Enabled or Disabled

Note: If you want to disable Tivoli Access Manager as the JACC provider, clear this option and also select

Default authorization.

Ignore errors during embedded Tivoli Access Manager disablement:

When selected, errors are ignored during disablement of the embedded Tivoli Access Manager client.

 This option is applicable only when re-configuring an embedded Tivoli Access Manager client or disabling

an embedded Tivoli Access Manager.

 Default: Disabled

Range: Enabled or Disabled

Client listening port set:

Enter the ports that are used as listening ports by Tivoli Access Manager clients.

 The application server needs to listen on a TCP/IP port for authorization database updates from the policy

server. More than one process can run on a particular node and machine, so a list of ports is required for

use by the processes. If you specify a range of ports, separate the lower and higher values by a colon (:).

Single ports and port ranges are specified on separate lines. An example list might look like the following

example:

7999

 8900:8999

Note: Each of the servants might need to open up a listener port.

Policy server:

Enter the name, fully-qualified domain name, or IP address of the Tivoli Access Manager policy server and

the connection port.

 Use the form policy_server:port. The policy server communication port was set at the time of the Tivoli

Access Manager configuration. The default is 7135.

Authorization servers:

Enter the name, fully-qualified domain name, or IP address of the Tivoli Access Manager authorization

server. Use the form, auth_server:port:priority.

 The authorization server communication port is set at the time of Tivoli Access Manager configuration. The

default is 7136. You can specify more than one authorization server by entering each server on a new line.

Configuring more than one authorization server provides for failover. The priority value is the order of

authorization server use. For example:

auth_server1.mycompany.com:7136:1

auth_server2.mycompany.com:7137:2

A priority of 1 is still required when configuring a single authorization server.

Administrator user name:

532 Securing applications and their environment

Enter the Tivoli Access Manager administration user ID, as created at the time of Tivoli Access Manager

configuration. This ID is usually, sec_master.

Administrator user password:

Enter the Tivoli Access Manager administration password for the user ID that is entered in the

Administrator user name field.

User registry distinguished name suffix:

Enter the distinguished name suffix for the user registry to share between Tivoli Access Manager and the

application server. For example: o=organization,c=country

Security domain:

Enter the name of the Tivoli Access Manager security domain that is used to store application server users

and groups.

 Specification of the Tivoli Access Manager domain is required because more than one security domain can

be created in Tivoli Access Manager with its own administrative user. Users, groups, and other objects are

created within a specific domain and are not permitted to access resources in another domain. If a security

domain is not established at the time of Tivoli Access Manager configuration, leave the value as Default.

 Default: Default

Administrator user distinguished name:

Enter the fully distinguished name of the security administrator ID for the application server. For example,

cn=wasadmin,o=organization,c=country

JACC provider configuration properties for Tivoli Access Manager:

The JACC provider configuration properties detailed below may require configuration.

 The Java property files are created in the WebSphere Application Server profile_root directory.

Two properties files might require configuration:

v amwas.node_name_server_name.amjacc.properties contains properties that are used by the JACC

provider of Tivoli Access Manager.

v amwas.node_name_server_name.pdjlog.properties contains logging properties that are created from the

amwas.pdjlog.template.properties file for the specific node and server combination at the time of

configuration.

Use amwas.node_name_server_name.amjacc.properties file to configure static role caching, dynamic role

caching, object caching, and role-based policy framework properties.

Static role caching properties:

The static role cache holds role memberships that do not expire.

 These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root directory is the value of the profilePath parameter at profile creation time.

Chapter 6. Authorizing access to resources 533

Related tasks

“Configuring the JACC provider for Tivoli Access Manager using the administrative console” on page 528
Use this task to configure Tivoli Access Manager as the Java Authorization Contract for Containers (JACC)

provider using the administrative console.

com.tivoli.pd.as.cache.EnableStaticRoleCaching=true:

Enables or disables static role caching. Static role caching is enabled by default.

com.tivoli.pd.as.cache.StaticRoleCache=com.tivoli.pd.as.cache.StaticRoleCacheImpl:

This property holds the implementation class of the static role cache. You do not need to change this

property, although the opportunity exists to implement your own cache, if necessary.

com.tivoli.pd.as.cache.StaticRoleCache.Roles=Administrator,Operator,Monitor,Deployer:

Defines the administration roles for WebSphere Application Server.

Note: Enhance Application performance by adding the static roles: CosNamingRead, CosNamingWrite,

CosNamingCreate, CosNamingDelete. These roles support for improved lookup performance

within the application naming service.

Dynamic role caching properties:

The dynamic role cache holds role memberships that expire.

 These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root directory is the value of the profilePath parameter at profile creation time.

Related tasks

“Configuring the JACC provider for Tivoli Access Manager using the administrative console” on page 528
Use this task to configure Tivoli Access Manager as the Java Authorization Contract for Containers (JACC)

provider using the administrative console.

com.tivoli.pd.as.cache.EnableDynamicRoleCaching=true:

Enables or disables dynamic role caching. Dynamic role caching is enabled by default.

com.tivoli.pd.as.cache.DynamicRoleCache=com.tivoli.pd.as.cache.DynamicRoleCacheImpl:

This property holds the implementation class of the dynamic role cache. You do not need to change this

property, although the opportunity exists to implement your own cache, if necessary.

com.tivoli.pd.as.cache.DynamicRoleCache.MaxUsers=100000:

The maximum number of users that the cache supports before a cache cleanup is performed. The default

number of users is 100000.

com.tivoli.pd.as.cache.DynamicRoleCache.NumBuckets=20:

The number of tables that is used internally by the dynamic role cache. The default is 20. When a large

number of threads use the cache, increase the value to tune and optimize cache performance.

com.tivoli.pd.as.cache.DynamicRoleCache.PrincipalLifeTime=10:

534 Securing applications and their environment

The period of time in minutes that a principal entry is stored in the cache. The default time is 10 minutes.

The term, principal, here refers to the Tivoli Access Manager credential that is returned from a unique

Lightweight Directory Access Protocol user.

com.tivoli.pd.as.cache.DynamicRoleCache.RoleLifetime=20:

The period of time in seconds that a role is stored in the role list for a user before it is discarded. The

default is 20 seconds.

Object caching properties:

The object cache is used to cache all Tivoli Access Manager objects, including their extended attributes.

This bypasses the need to query the Tivoli Access Manager authorization server for each resource

request.

 These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root directory is the value of the profilePath parameter when the profile is created.

These object cache properties cannot be changed after configuration. If any require changing, it should be

done before configuration of the nodes in the cell. Changes need to be made in the template properties

file before any configuration actions are performed. Properties changed after configuration might cause

access decisions to fail.

Related tasks

“Configuring the JACC provider for Tivoli Access Manager using the administrative console” on page 528
Use this task to configure Tivoli Access Manager as the Java Authorization Contract for Containers (JACC)

provider using the administrative console.

com.tivoli.pd.as.cache.EnableObjectCaching=true:

This property enables or disables object caching. The default value is true.

com.tivoli.pd.as.cache.ObjectCache=com.tivoli.pd.as.cache.ObjectCacheImpl:

This property is the class used to perform object caching. You can implement your own object cache if

required. This can be done by implementing the com.tivoli.pd.as.cache.IObjectCache interface. The default

is com.tivoli.pd.as.cache.ObjectCacheImpl.

com.tivoli.pd.as.cache.ObjectCache.NumBuckets=20:

This property specifies the number of buckets used to store object cache entries in the underlying hash

table. The default is 20.

com.tivoli.pd.as.cache.ObjectCache.MaxResources=10000:

This property specifies the total number of entries for all buckets in the cache. This figure, divided by

NumBuckets determines the maximum size of each bucket. The default is 10000.

com.tivoli.pd.as.cache.ObjectCache.ResourceLifeTime=20:

This property specifies the length of time in minutes that objects are kept in the object cache. The default

is 20.

Role-based policy framework properties:

Chapter 6. Authorizing access to resources 535

Although it is very unlikely that you will need to change these properties, use this file to reference

supported properties within the role-based policy framework.

 The role-based policy framework parameters are located in the Java Authorization Contract for Containers

(JACC) configuration file and in the authorization configuration file. They are set at the time of JACC

provider configuration and authorization server configuration. The role-based policy framework settings for

the authorization table and the JACC provider can be modified separately for each WebSphere Application

Server instance. The amwas.node_server.authztable.properties configuration file is generated from the

authorization table. The amwas.node_name_server_name.amjacc.properties configuration file is generated

from the JACC provider. Both files are stored in the profile_root/etc/tam directory. It is very unlikely that

you might need to change these properties. The properties are described here for reference.

The settings cannot be changed after configuration. Make changes in the template properties file before

any configuration actions are performed. Properties that are changed after configuration will cause access

decisions to fail.

Related tasks

“Configuring the JACC provider for Tivoli Access Manager using the administrative console” on page 528
Use this task to configure Tivoli Access Manager as the Java Authorization Contract for Containers (JACC)

provider using the administrative console.

com.tivoli.pd.as.rbpf.AMAction=i:

This property is used to signify that a user is granted access to a role. This value is added to a Tivoli

Access Manager access control list (ACL) and places invoke access on roles for users and groups.

com.tivoli.pd.as.rbpf.AMActionGroup=WebAppServer:

This property sets the Tivoli Access Manager action group that serves as a container for the action that is

specified by the com.tivoli.pd.as.rbpf.AMAction property. The permission set in the

com.tivoli.pd.as.rbpf.AMAction property goes into this action group.

com.tivoli.pd.as.rbpf.PosRoot=WebAppServer:

This property is used to determine where roles are stored in the protected object space.

com.tivoli.pd.as.rbpf.ProductId=deployedResources:

This property specifies the location under the root location that is specified in the posroot property to

separate other products in the protected object space. Embedded Tivoli Access Manager objects are found

in the /WebAppServer/deployedResources directory. The default value is deployedResources.

com.tivoli.pd.as.rbpf.ResourceContainerName=Resources:

This property specifies the Tivoli Access Manager object space container name for the protected

resources. The default location is the /WebAppServer/deployedResources/Resources directory.

com.tivoli.pd.as.rbpf.RoleContainerName=Roles:

This property specifies the Tivoli Access Manager protected object space container name for the security

roles. The default location is the /WebAppServer/deployedResources/Roles directory.

System-dependent configuration properties:

Do not change these system-dependent configuration properties. These properties are included in this

article for reference only.

536 Securing applications and their environment

These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root variable is the value of the profilePath parameter when the profile is created.

Related tasks

“Configuring the JACC provider for Tivoli Access Manager using the administrative console” on page 528
Use this task to configure Tivoli Access Manager as the Java Authorization Contract for Containers (JACC)

provider using the administrative console.

com.tivoli.pd.as.rbpf.AmasSession.CfgURL=file/:$WAS_HOME/profiles/profile_name/etc/tam/
amwas.node_server.pdperm.properties:

This entry is generated by the Java Authorization Contract for Containers (JACC) provider configuration.

This argument specifies the location of the file that contains information about the JACC provider of Tivoli

Access Manager. Do not change this entry or the properties in the amwas.node_server.pdperm.properties

file.

com.tivoli.pd.as.rbpf.AmasSession.CfgURL=file/:user_root/etc/tam/amwas.node_server.pdperm.properties:

This entry is generated by the Java Authorization Contract for Containers (JACC) provider configuration. It

specifies the location of the file that contains information about the Tivoli Access Manager JACC provider.

Do not change this entry or the properties in the amwas.node_server.pdperm.properties file.

com.tivoli.pd.as.rbpf.AmasSession.LoggingURL=file/:$WAS_HOME/profiles/profile_name/etc/tam/
amwas.node_server.pdjlog.properties:

This entry contains the location of the logging configuration file for the JACC provider of Tivoli Access

Manager. The referenced file is generated by the JACC provider of Tivoli Access Manager configuration.

Do not change this entry.

com.tivoli.pd.as.rbpf.AmasSession.LoggingURL=file/:user_root/etc/tam/
amwas.node_server.pdjlog.properties:

This entry contains the location of the logging configuration file for the Tivoli Access Manager JACC

provider. The file referenced is generated by the Tivoli Access Manager JACC provider configuration. Do

not change this entry.

Administering security users and roles with Tivoli Access Manager

Use these steps to manage user-to-role mappings and user-to-group mappings for applications.

About this task

User-to-role mapping and user-to-group mapping for the JACC provider of Tivoli Access Manager are

performed using the WebSphere Application Server administrative console.

1. Click Applications > Enterprise applications > application_name.

2. Under Additional properties, click Security role to user/group mapping. The user and groups

management screen is displayed.

3. Select the role that requires user or group management and use Lookup users or Lookup groups to

manage the users or groups for the selected role. The native role mapping uses the MapRolesToUsers

administrative task. If you are using Tivoli Access Manager, use the TAMMapRolesToUsers

administrative task instead. The syntax and options for the Tivoli version are the same as those used

in the native version. For more information, see csec_role_based_sec.dita and

tsec_use_TAM_groups.dita.

Chapter 6. Authorizing access to resources 537

csec_role_based_sec.dita
tsec_use_TAM_groups.dita

Configuring Tivoli Access Manager groups

Use these steps to configure the WebSphere Application Server administrative console to add objects of

the accessGroup class to the list of object classes that represent user registry groups.

About this task

You can use the WebSphere Application Server administrative console to specify security policies for

applications that run in the WebSphere Application Server environment. You can also use the WebSphere

Application Server administrative console to specify security policies for other Web resources, based on

the entities that are stored in the user registry.

Tivoli Access Manager adds the accessGroup object class to the registry. Tivoli Access Manager

administrators can use the pdadmin utility, which is available only on the policy server host in the PD.RTE

fileset, to create new groups. These new groups are added to the registry as the accessGroup object

class.

The WebSphere Application Server administrative console is not configured by default to recognize objects

of the accessGroup class as user registry groups. You can configure the WebSphere Application Server

administrative console to add this object class to the list of object classes that represent user registry

groups. To do this configuration, complete the following instructions:

1. From the WebSphere Application Server administrative console, access the advanced settings for

configuring security by clicking Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select

Standalone LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

4. Modify the Group Filter field. Add the following entry: (objectclass=accessGroup)

The Group Filter field looks like the following example:

(&(cn=%w)(|(objectclass=groupOfNames)

(objectclass=groupOfUniqueNames)(objectclass=accessGroup)))

5. Modify the Group Member ID Map field. Add the following entry: accessGroup:member. The Group

Member ID Map field looks like the following example:

groupOfNames:member;groupOfUniqueNames:uniqueMember;

accessGroup:member

6. Stop and restart WebSphere Application Server.

Configuring additional authorization servers

Tivoli Access Manager secure domains can contain more than one authorization server. Having multiple

authorization servers is useful for providing a failover capability as well as improving performance when

the volume of access requests is large.

1. Refer to the Tivoli Access Manager Base Administration Guide for details on installing and configuring

authorization servers. This document is available in the IBM Tivoli Access Manager for e-business

information center.

2. Re-configure the Java Authorization Contract for Containers (JACC) provider using the $AdminTask

reconfigureTAM interactive wsadmin command. Enter all new and existing options.

Logging Tivoli Access Manager security

Use this topic to enable the trace specification to indicate tracing at the required level.

538 Securing applications and their environment

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp

About this task

The Java Authorization Contract for Containers (JACC) for Tivoli Access Manager provider messages are

logged to the configured trace output location, and messages are written to standard out SystemOut.log

file. When trace is enabled, all logging, both trace and messaging, is sent to the trace.log file.

1. The amwas.node_server.pdjlog.properties file must be updated and the isLogging attribute set to

true for the required component. For example, to enable tracing for the JACC provider for Tivoli Access

Manager, set the following line to true:

amwas.node_server.pdjlog.properties:baseGroup.AMWASWebTraceLogger.isLogging=true

2. Enable tracing for the JACC provider of Tivoli Access Manager components in the WebSphere

Application Server administrative console by completing the following steps:

a. Click Troubleshooting > Logs and Trace > server_name.

b. Under Logs and Trace tasks, click Diagnostic trace.

c. Select the Enable Log option.

d. Click Apply.

e. Click Troubleshooting > Logs and Trace > server_name.

f. Click Change Log Detail Levels.

g. Click Components. Tracing for all components can be enabled using the com.tivoli.pd.as.*

command. Tracing for separate components can be enabled using the following commands:

v com.tivoli.pd.as.rbpf.* for role-based policy framework tracing

v com.tivoli.pd.as.jacc.* for JACC provider tracing

v com.tivoli.pd.as.pdwas.* for the authorization table

v com.tivoli.pd.as.cfg.* for configuration

v com.tivoli.pd.as.cache.* for caching

For more information, see utrb_loglevel.dita.

h. Click Apply.

What to do next

The trace specification now indicates that tracing is enabled at the required level. Save the configuration

and restart the server for the changes to take effect.

Related reference

Diagnostic trace service settings

Tivoli Access Manager loggers:

The Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager uses the JLog

logging framework as does the Java runtime environment for Tivoli Access Manager. You can enable

tracing and messaging selectively for specific JACC providers for Tivoli Access Manager components.

 The JACC for Tivoli Access Manager provider messages are logged to the configured trace output

location, and messages are written to standard out SystemOut.log file. When trace is enabled, all logging,

both trace and messaging, is sent to the trace.log file.

Tracing and message logging for the JACC provider for Tivoli Access Manager are configured in the

amwas.node_server.pdjlog.properties properties file, which is located in the profile_root/etc/tam

directory. This file contains logging properties from the amwas.pdjlog.template.properties template file for

the specific node and server combination at the time of JACC provider for Tivoli Access Manager

configuration.

The contents of this file let the user control:

Chapter 6. Authorizing access to resources 539

utrb_loglevel.dita

v Whether tracing is enabled or disabled for the JACC provider of Tivoli Access Manager components.

v Whether message logging is enabled or disabled for the JACC provider of Tivoli Access Manager

components.

The amwas.node_server.pdjlog.properties file defines several loggers, each of which is associated with

one JACC provider of Tivoli Access Manager component. These loggers include:

 Logger Name Description

AmasRBPFTraceLogger

AmasRBPFMessageLogger

Logs messages and trace for the role-based policy framework. This

underlying framework is used by embedded Tivoli Access Manager to

make access decisions.

AmasCacheTraceLogger

AmasCacheMessageLogger

Logs messages and trace for the policy caches that are used by the

role-based policy framework.

AMWASWebTraceLogger

AMWASWebMessageLogger

Logs messages and trace for the WebSphere Application Server

authorization plug-in.

AMWASConfigTraceLogger

AMWASConfigMessageLogger

Logs messages and trace for the configuration actions of the JACC

provider for Tivoli Access Manager .

JACCTraceLogger JACCMessageLogger Logs messages and trace for the JACC provider activity of Tivoli

Access Manager .

Note: Tracing can have a significant impact on system performance. Enable tracing only when diagnosing

the cause of a problem.

The implementation of these loggers routes messages to the WebSphere Application Server logging

sub-system. All messages are written to the WebSphere Application Server trace.log file.

For each logger, the amwas.node_server.pdjlog.properties file defines an isLogging attribute which, when

set to true, enables logging for the specific component. A value of false disables logging for that

component.

The amwas.node_server.pdjlog.properties file defines the parent loggers MessageLogger and

TraceLogger that also have an isLogging attribute. If the child loggers do not specify this isLogging

attribute, they inherit the value of their respective parent. When the JACC provider for Tivoli Access

Manager is enabled, the isLogging attribute is set to true for the MessageLogger and set to false for the

TraceLogger logger. Message logging is enabled for all components and tracing is disabled for all

components, by default.

To turn on tracing for a JACC provider component, see Logging Tivoli Access Manager security.

Interfaces that support JACC

WebSphere Application Server provides the RoleConfigurationFactory and the RoleConfiguration

interfaces, which are similar to PolicyConfigurationFactory and PolicyConfiguration interfaces so the

information that is stored in the bindings file can be propagated to the provider during installation. The

implementation of these interfaces is optional.

RoleConfiguration interface

Use the RoleConfiguration interface to propagate the authorization information to the provider. This

interface is similar to the PolicyConfiguration interface that is found in Java Authorization Contact for

Containers (JACC).

RoleConfiguration

 - com.ibm.wsspi.security.authorization.RoleConfiguration

/**

 * This interface is used to propagate the authorization table information

540 Securing applications and their environment

* in the binding file during application installation. Implementation of this interface is

 * optional. When a JACC provider implements this interface during an application, both

 * the policy and the authorization table information are propagated to the provider.

* If this is not implemented, only the policy information is propagated as per

 * the JACC specification.

 * @ibm-spi

 * @ibm-support-class-A1

 */

public interface RoleConfiguration

/**

 * Add the users to the role in RoleConfiguration.

 * The role is created, if it does not exist in RoleConfiguration.

 * @param role the role name.

 * @param users the list of the user names.

 * @exception RoleConfigurationException if the users cannot be added.

 */

 public void addUsersToRole(String role, List users)

 throws RoleConfigurationException

/**

 * Remove the users to the role in RoleConfiguration.

 * @param role the role name.

 * @param users the list of the user names.

 * @exception RoleConfigurationException if the users cannot be removed.

 */

 public void removeUsersFromRole(String role, List users)

 throws RoleConfigurationException

/**

 * Add the groups to the role in RoleConfiguration.

 * The role is created if it does not exist in RoleConfiguration.

 * @param role the role name.

 * @param groups the list of the group names.

 * @exception RoleConfigurationException if the groups cannot be added.

 */

 public void addGroupsToRole(String role, List groups)

 throws RoleConfigurationException

/**

 * Remove the groups to the role in RoleConfiguration.

 * @param role the role name.

 * @param groups the list of the group names.

 * @exception RoleConfigurationException if the groups cannot be removed.

 */

 public void removeGroupsFromRole(String role, List groups)

 throws RoleConfigurationException

/**

 * Add the everyone to the role in RoleConfiguration.

 * The role is created if it does not exist in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the everyone cannot be added.

 */

 public void addEveryoneToRole(String role)

 throws RoleConfigurationException

/**

 * Remove the everyone to the role in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the everyone cannot be removed.

 */

 public void removeEveryoneFromRole(String role)

 throws RoleConfigurationException

/**

 * Add the all authenticated users to the role in RoleConfiguration.

 * The role is created if it does not exist in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the authentication users cannot

Chapter 6. Authorizing access to resources 541

* be added.

 */

 public void addAuthenticatedUsersToRole(String role)

 throws RoleConfigurationException

/**

 * Remove the all authenticated users to the role in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the authentication users cannot

 * be removed.

 */

 public void removeAuthenticatedUsersFromRole(String role)

 throws RoleConfigurationException

/**

 * This commits the changes in Roleconfiguration.

 * @exception RoleConfigurationException if the changes cannot be

 * committed.

 */

 public void commit()

 throws RoleConfigurationException

/**

 * This deletes the RoleConfiguration from the RoleConfiguration Factory.

 * @exception RoleConfigurationException if the RoleConfiguration cannot

 * be deleted.

 */

 public void delete()

 throws RoleConfigurationException

/**

 * This returns the contextID of the RoleConfiguration.

 * @exception RoleConfigurationException if the contextID cannot be

 * obtained.

 */

 public String getContextID()

 throws RoleConfigurationException

RoleConfigurationFactory interface

The RoleConfigurationFactory interface is similar to the PolicyConfigurationFactory interface that is

introduced by JACC, and is used to obtain RoleConfiguration objects based on the contextID IDs.

RoleConfigurationFactory

 - com.ibm.wsspi.security.authorization.RoleConfigurationFactory

/**

 * This interface is used to instantiate the com.ibm.wsspi.security.authorization.RoleConfiguration

 * objects based on the context identifier similar to the policy context identifier.

 * Implementation of this interface is required only if the RoleConfiguration interface is implemented.

 *

 * @ibm-spi

 * @ibm-support-class-A1

 */

public interface RoleConfigurationFactory

/**

 * This gets a RoleConfiguration with contextID from the

 * RoleConfigurationfactory. If the RoleConfiguration does not exist

 * for the contextID in the RoleConfigurationFactory, a new

 * RoleConfiguration with contextID is created in the

 * RoleConfigurationFactory. The contextID is similar to

 * PolicyContextID, but it does not contain the module name.

 * If remove is true, the old RoleConfiguration is removed and a new

 * RoleConfiguration is created, and returns with the contextID.

 * @return the RoleConfiguration object for this contextID

 * @param contextID the context ID of RoleConfiguration

 * @param remove true or false

 * @exception RoleConfigurationException if RoleConfiguration

542 Securing applications and their environment

* cannot be obtained.

 **/

public abstract com.ibm.ws.security.policy.RoleConfiguration

 getRoleConfiguration(String contextID, boolean remove)

 throws RoleConfigurationException

InitializeJACCProvider provider

When implemented by the provider, this interface is called by every process where the JACC provider can

be used for authorization. All additional properties that are entered during the authorization check are

passed to the provider. For example, the provider can use this information to initialize client code to

communicate with their server or repository. The cleanup method is called during server shutdown to clean

up the configuration.

Declaration

public interface InitializeJACCProvider

Description

This interface has two methods. The JACC provider can implement the interface, and WebSphere

Application Server calls it to initialize the JACC provider. The name of the implementation class is obtained

from the value of the initializeJACCProviderClassName system property.

This class must reside in a Java archive (JAR) file on the class path of each server that uses this provider.

InitializeJACCProvider

 - com.ibm.wsspi.security.authorization.InitializeJACCProvider

 /**

 * Initializes the JACC provider

 * @return 0 for success.

 * @param props the custom properties that are included for this provider will

 * pass to the implementation class.

 * @exception Exception for any problems encountered.

 **/

 public int initialize(java.util.Properties props)

 throws Exception

 /**

 * This method is for the JACC provider cleanup and will be called during a process stop.

 **/

 public void cleanup()

Enabling the JACC provider for Tivoli Access Manager

The Java Authorization Contract for Container (JACC) provider for Tivoli Access Manager is configured by

default. Use this topic to enable the JACC provider for Tivoli Access Manager.

About this task

Note: Do not perform this task if you are configuring the JACC provider for Tivoli Access Manager to

supply authentication services only. Only perform this task for installations that require both Tivoli

Access Manager authentication and authorization protection.

The JACC provider for Tivoli Access Manager is configured by default. The following list shows the JACC

provider configuration settings for Tivoli Access Manager:

 Field Value

Name Tivoli Access Manager

Chapter 6. Authorizing access to resources 543

Field Value

Description This field is optional and used as a reference.

J2EE policy class name com.tivoli.pd.as.jacc.TAMPolicy

Policy configuration factory class name com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory

Role configuration factory class name com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory

JACC provider initialization class name com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize

Requires the EJB arguments policy

context handler for access decisions

false

Supports dynamic module updates true

To enable the JACC provider for Tivoli Access Manager, use the previous settings and complete the

following steps:

 1. Click Security > Global security > External authorization providers.

 2. Select the External authorization using a JACC provider option, then click Apply.

 3. Under Related Items, click External JACC provider. The JACC provider settings for Tivoli Access

Manager are displayed.

 4. Verify that the correct settings are present to work with your Tivoli Access Manager configuration. For

more information, see “External Java Authorization Contract for Containers provider settings” on page

525.

 5. Under Additional properties, click Tivoli Access Manager properties.

 6. Click the Enable embedded Tivoli Access Manager option and verify that the correct Tivoli Access

Manager server and WebSphere Application Server settings exist. For more information, see “Tivoli

Access Manager JACC provider settings” on page 531.

 7. Click OK.

 8. Save the settings by clicking Save at the top of the page.

 9. Log out of the WebSphere Application Server administrative console.

10. Restart WebSphere Application Server. The security configuration is now replicated to managed

servers and node agents. These other servers within a cell also require restarting before the security

changes take effect.

Enabling embedded Tivoli Access Manager

Embedded Tivoli Access Manager is not enabled by default, and you need to configure it for use.

About this task

Enabling Tivoli Access Manager security within WebSphere Application Server requires:

v A supported Lightweight Directory Access Protocol (LDAP) installed somewhere on your network. This

user registry contains the user and group information for both Tivoli Access Manager and WebSphere

Application Server.

v Tivoli Access Manager server exists and is configured to use the user registry. For details on the

installation and configuration of Tivoli Access Manager, refer to the IBM Tivoli Access Manager for

e-business information center.

Note: WebSphere Application Server contains an embedded client for Tivoli Access Manager. To use

Tivoli Access Manager, you must also configure the Tivoli Access Manager server.

However, the server version must be the same version or later as the client version. For

information on the supported version of Tivoli Access Manager, see WebSphere Application

Server - Supported Prerequisites.

544 Securing applications and their environment

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://www-306.ibm.com/software/webservers/appserv/doc/v60/prereqs/was_v602.htm
http://www-306.ibm.com/software/webservers/appserv/doc/v60/prereqs/was_v602.htm

v WebSphere Application Server is installed either in a single server model or as WebSphere Application

Server Network Deployment.

v When administrative security is configured with a Federal Information Processing Standard (FIPS)

provider, the Tivoli Access Manager server must be configured for FIPS as well

Complete the following steps to enable embedded Tivoli Access Manager security:

1. Create the security administrative user.

For more information, see the Securing applications and their environment PDF.

2. Configure the Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager .

For more information, see the Securing applications and their environment PDF.

3. Enable WebSphere Application Server security. When you are using Tivoli Access Manager you must

configure LDAP as the user registry.

For more information, see the Securing applications and their environment PDF.

4. Enable the JACC provider for Tivoli Access Manager.

For more information, see the Securing applications and their environment PDF.

Disabling embedded Tivoli Access Manager client using the administrative

console

To unconfigure the JACC provider for Tivoli Access Manager, you can use the WebSphere Application

Server administrative console.

1. Click Security > Global security > External authorization providers.

2. Make sure that the default option, Default authorization, is checked, then click OK.

3. On the Global security panel, click External authorization > External JACC provider.

4. Under Additional properties, click Tivoli Access Manager Properties. The configuration screen for the

JACC provider for Tivoli Access Manager is displayed.

5. Clear the Enable embedded Tivoli Access Manager option. If you want to ignore errors when

unconfiguring, select the Ignore errors during embedded Tivoli Access Manager disablement

option. Select this option only when the Tivoli Access Manager domain is in an irreparable state.

6. Click OK.

7. Optional: If you want security enabled without Tivoli Access Manager re-enable administrative security.

8. Restart all WebSphere Application Server instances for the changes to take effect.

Forcing the unconfiguration of the Tivoli Access Manager JACC provider

If you find you cannot restart WebSphere Application Server after configuring the JACC provider for Tivoli

Access Manager a utility is available to clear the security configuration and return WebSphere Application

Server to an operable state.

About this task

The utility removes all of the PDLoginModuleWrapper entries as well as the Tivoli Access Manager

authorization table from security.xml and wsjaas.conf files. This utility effectively removes the JACC

provider for Tivoli Access Manager.

1. Back up the security.xml and wsjaas.conf files.

2. Enter the following command as one continuous line.

java -Djava.version=1.6 -classpath

"app_server_root/$WAS_HOME/plug-in/com.ibm.ws.runtime_1.0.0.jar"

com.tivoli.pd.as.jacc.cfg.CleanSecXML fully_qualified_path/security.xml

 fully_qualified_path/wsjaas.conf

Note: The previous command uses the classic Java virtual machine (JVM) If you are using IBM

Technology for Java, the java.version property is not supported. Instead, ensure that the

machine is setup properly to use the appropriate Java 6 JVM.

Chapter 6. Authorizing access to resources 545

Propagating security policies and roles for previously deployed applications

Use this task to propagate security policies and roles to the external Java Authorization Contract for

Containers (JACC) provider.

Before you begin

The external JACC provider must be configured before following these steps.

About this task

After switching to use the external JACC provider you can follow these steps to avoid having to redeploy

your existing applications. Updating using these steps retrieves the security policy and roles from the

deployed applications and propagates it to the external JACC provider removing the need for the

applications to be redeployed.

1. From the WebSphere Application Server administrative console, click Security → Global security →

External authorization providers.

2. Select the appropriate security policy and role updating option.

v Select Don’t update provider to not propagate any security policies or roles

v Select Update with all applications to propagate security policies and roles for all applications

v Select Update with application names listed to propagate security policies and roles for the

selected applications. If multiple applications should be updated, separate the application names

with commas.

3. Click Apply.

Results

After completing this task your security policies and roles have been successfully propagated to the

external JACC provider.

Authorizing access to administrative roles

You can assign users and groups to administrative roles to identify users who can perform WebSphere

Application Server administrative functions.

Before you begin

Administrative roles enable you to control access to WebSphere Application Server administrative

functions. Refer to the descriptions of these roles in rsec_adminroles.dita.

v Before you assign users to administrative roles, you must set up your user registry. For information on

the supported registry types, see “Selecting a registry or repository” on page 93.

v The following steps are needed to assign users to administrative roles.

About this task

You use the administrative console to assign users and groups to administrative roles and to identify users

who can perform WebSphere Application Server administrative functions. In the administrative console,

1. Click Users and Groups. Click either Administrative User Roles or Administrative Group Roles.

2. To add a user or a group, click Add on the Console users or Console groups panel.

3. To add a new administrator user, follow the instructions on the page to specify a user, and select the

Administrator role. Once the user is added to the Mapped to role list, click OK. The specified user is

mapped to the security role.

546 Securing applications and their environment

rsec_adminroles.dita

4. To add a new administrative group, follow the instructions on the page to specify either a group name

or a Special subject, highlight the Administrator role, and click OK. The specified group or special

subject is mapped to the security role.

5. To remove a user or group assignment, click Remove on the Console Users or the Console Groups

panel. On the Console Users or the Console Groups panel, select the check box of the user or group

to remove and click OK.

6. To manage the set of users or groups to display, click Show filter function on the User Roles or

Group Roles panel. In the Search term(s) box, type a value, then click Go. For example, user*

displays only users with the user prefix.

7. After the modifications are complete, click Save to save the mappings.

8. Restart the application server for changes to take effect.

Administrative user roles settings and CORBA naming service user

settings

Use the Administrative User Roles page to give users specific authority to administer application servers

through tools such as the administrative console or wsadmin scripting. The authority requirements are only

effective when global security is enabled. Use the Common Object Request Broker Architecture (CORBA)

naming service users settings page to manage CORBA naming service users settings.

To view the Console Users administrative console page, complete either of the following steps:

v Click Security > Global security > Administrative User Roles.

v Click Users and Groups > Administrative User Roles.

To view the CORBA naming service groups administrative console page, click Environment > Naming >

CORBA Naming Service Groups.

User (Administrative user roles)

Specifies users.

The users that are entered must exist in the configured active user registry.

 Data type: String

User (CORBA naming service users)

Specifies CORBA naming service users.

The users that are entered must exist in the configured active user registry.

 Data type: String

Role (Administrative user roles)

Specifies user roles.

The following administrative roles provide different degrees of authority that are needed to perform certain

application server administrative functions:

Administrator

The administrator role has operator permissions, configurator permissions, and the permission that

is required to access sensitive data including server password, Lightweight Third Party

Authentication (LTPA) password and keys, and so on.

Operator

The operator role has monitor permissions and can change the run-time state. For example, the

operator can start or stop services.

Chapter 6. Authorizing access to resources 547

Configurator

The configurator role has monitor permissions and can change the WebSphere Application Server

configuration.

Deployer

The deployer role can complete both configuration actions and run-time operations on applications.

Monitor

The monitor role has the least permissions. This role primarily confines the user to viewing the

application server configuration and current state.

adminsecuritymanager

The adminsecuritymanager role has privileges for managing users and groups from within the

administrative console and determines who has access to modify users and groups using

administrative role mapping. Only the adminsecuritymanager role can map users and groups to

administrative roles, and by default, AdminId is granted to the adminsecuritymanager.

iscadmins

The iscadmins role has administrator privileges for managing users and groups from within the

administrative console only.

Note: To manage users and groups, click Users and Groups in the console navigation tree. Click

either Manage Users or Manage Groups.

 Data type: String

Range: Administrator, Operator, Configurator, Deployer, Monitor,

and iscadmins

Note: Other arbitrary administrative roles might also be visible in the administrative console collection

table. Other contributors to the console might create these additional roles, which can be used for

applications that are deployed to the console.

Role (CORBA naming service users)

Specifies naming service user roles.

A number of naming roles are defined to provide degrees of authority that are needed to perform certain

application server naming service functions. The authorization policy is only enforced when global security

is enabled. The following roles are valid: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete.

The roles now have authority levels from low to high:

CosNamingRead

You can query the application server name space by using, for example, the Java Naming and

Directory Interface (JNDI) lookup method. The EVERYONE special-subject is the default policy for

this role.

CosNamingWrite

You can perform write operations such as JNDI bind, rebind, or unbind, plus CosNamingRead

operations.

CosNamingCreate

You can create new objects in the name space through operations such as JNDI createSubcontext

and CosNamingWrite operations.

CosNamingDelete

You can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations.

 Data type: String

Range: CosNamingRead, CosNamingWrite, CosNamingCreate

and CosNamingDelete

548 Securing applications and their environment

Login status (Administrative user roles)

Specifies whether the user is active or inactive.

Administrative group roles and CORBA naming service groups

Use the Administrative Group Roles page to give groups specific authority to administer application servers

through tools such as the administrative console or wsadmin scripting. The authority requirements are only

effective when administrative security is enabled. Use the Common Object Request Broker Architecture

(CORBA) naming service groups page to manage CORBA Naming Service groups settings.

To view the Console Groups administrative console page, complete either of the following steps:

v Click Security > Global security > Administrative Group Roles.

v Click Users and Groups > Administrative Group Roles.

To view the CORBA naming service groups administrative console page, click Environment > Naming >

CORBA Naming Service Groups.

Group (CORBA naming service groups)

Identifies CORBA naming service groups.

In previous releases of WebSphere Application Server, there were two default groups: ALL

AUTHENTICATED and EVERYONE. However, EVERYONE is now the only default group, and it provides

CosNamingRead privileges only.

 Data type: String

Range: EVERYONE

Role (CORBA naming service groups)

Identifies naming service group roles.

A number of naming roles are defined to provide the degrees of authority that are needed to perform

certain application server naming service functions. The authorization policy is only enforced when global

security is enabled.

Four name space security roles are available: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete. The roles have authority levels from low to high:

Cos Naming Read

You can query the application server name space using, for example, the Java Naming and

Directory Interface (JNDI) lookup method. The EVERYONE special-subject is the default policy for

this role.

Cos Naming Write

You can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead

operations. The ALL_AUTHENTICATED special-subject is the default policy for this role.

Cos Naming Create

You can create new objects in the name space through operations such as JNDI createSubcontext

and CosNamingWrite operations. The ALL_AUTHENTICATED special-subject is the default policy

for this role.

Cos Naming Delete

You can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations. The ALL_AUTHENTICATED special-subject is the

default policy for this role.

Chapter 6. Authorizing access to resources 549

Data type: String

Range: CosNamingRead, CosNamingWrite, CosNamingCreate,

and CosNamingDelete

Group (Administrative group roles)

Specifies groups.

The ALL_AUTHENTICATED and the EVERYONE groups can have the following role privileges:

Administrator, Configurator, Operator, and Monitor.

 Data type: String

Range: ALL_AUTHENTICATED, EVERYONE

Role (Administrative group roles)

Specifies user roles.

The following administrative roles provide different degrees of authority needed to perform certain

application server administrative functions:

Administrator

The administrator role has operator permissions, configurator permissions, and the permission that

is required to access sensitive data, including server password, Lightweight Third Party

Authentication (LTPA) password and keys, and so on.

Operator

The operator role has monitor permissions and can change the run-time state. For example, the

operator can start or stop services.

Configurator

The configurator role has monitor permissions and can change the application server

configuration.

Deployer

The deployer role can perform both configuration actions and runtime operations on applications.

Monitor

The monitor role has the least permissions. This role primarily confines the user to viewing the

application server configuration and current state.

iscadmins

The iscadmins role has administrator privileges for managing users and groups from within the

administrative console only.

Note: To manage users and groups, click Users and Groups in the console navigation tree. Click

either Manage Users or Manage Groups.
Auditor

The auditor can view and modify the configuration settings for the security auditing subsystem.

The auditor role includes the monitor role.

 Data type: String

Range: Administrator, Operator, Configurator, Monitor, Deployer

and iscadmins

Note: Other arbitrary administrative roles might also be visible in the administrative console collection

table. Other contributors to the console might create these additional roles, which can be used for

applications that are deployed to the console.

Assigning users to naming roles

Use this task to assign users to naming roles by using the administrative console.

550 Securing applications and their environment

About this task

The following steps are needed to assign users to naming roles. In the administrative console, click

Environment > Naming, and click CORBA Naming Service Users or CORBA Naming Service Groups.

1. Click Add on the CORBA Naming Service Users or the CORBA Naming Service Groups panel.

2. To add a new naming service user, follow the instructions on the page to specify a user, and select

one or more roles. Once the user is added to the ″Mapped to role″ list, click OK. The specified user is

mapped to one or more security roles.

3. To add a new naming service group, follow the instructions on the page to specify either a group name

or a Special subject, highlight one or more roles, and click OK. The specified group or special subject

are mapped to one or more the security roles

4. To remove a user or group assignment, go to the CORBA Naming Service Users or CORBA Naming

Service Groups panel. Select the check box next to the user or group that you want to remove and

click Remove.

5. To manage the set of users or groups to display, expand the Filter folder on the right panel, and

modify the filter text box. For example, setting the filter to user* displays only users with the user

prefix.

6. After modifications are complete, click Save to save the mappings. Restart the server for the changes

to take effect.

Example

The default naming security policy is to grant all users read access to the CosNaming space and to grant

any valid user the privilege to modify the contents of the CosNaming space. You can perform the

previously mentioned steps to restrict user access to the CosNaming space. However, use caution when

changing the naming security policy. Unless a Java Platform, Enterprise Edition (Java EE) application has

clearly specified its naming space access requirements, changing the default policy can result in

unexpected org.omg.CORBA.NO_PERMISSION exceptions at runtime.

Propagating administrative role changes to Tivoli Access Manager

These steps provide an example of how to migrate the admin-authz.xml file.

About this task

Additions and changes to console users and groups are not automatically added to the Tivoli Access

Manager object space after the Java Authorization Contract for Containers (JACC) provider for Tivoli

Access Manager is configured. Changes to console users and groups are saved in the admin-authz.xml

file and this file must be migrated before any changes take effect. The JACC provider for Tivoli Access

Manager includes the migrateEAR migration utility for incorporating console user and group changes into

the Tivoli Access Manager object space.

Note: The migrateEAR utility is used to migrate the changes made to console users and groups after the

JACC provider for Tivoli Access Manager is configured. The utility does not need to run for changes

and additions to console users and groups made prior to the configuration of the JACC provider for

Tivoli Access Manager because the changes made to the admin-authz.xml and naming-authz.xml

files are automatically migrated at configuration time. Furthermore, the migration tool does not need

to run before deploying standard Java Platform, Enterprise Edition (Java EE) applications; Java EE

application policy deployment is also performed automatically.

For example, if you wanted to migrate the admin-authz.xml file, perform the following steps:

1. Change to the app_server_root/bin directory where the migrateEAR utility is located.

2. Run the migrateEAR utility to migrate the data contained in the admin-authz.xml file. Use the

parameter descriptions that are listed in “migrateEAR utility for Tivoli Access Manager” on page 552.

Chapter 6. Authorizing access to resources 551

For example:

migrateEAR -profileName default

-j profile_root/config/cells/cell_name/xml_filename

-a sec_master

-p password

-w wsadmin

-d o=ibm,c=us

-c file:profile_root/etc/pd/PdPerm.properties

-z Roles

where xml_filename might be admin-authz.xml or naming-authz.xml.

v The -j parameter defaults to the file: profile_root/config/cells/cell_name/admin-authz.html

v The -c parameter defaults to the file: profile_root/etc/pd/PdPerm.properties. The output of the

utility is logged in the pdwas_migrate.log file. The pdwas_migrate.log file is created in the

profile_root/logs directory.

v The -profile_name parameter is optional and defaults to the default profile name.

v The -z Roles parameter is optional and when specified adds a subdirectory under the current

directory structure in which to store the role mapping. For example,

/WebAppServer/deployedResouces/Roles

If -z Roles is not specified, the role mapping is stored in the current directory structure. For

example,

/WebAppServer/deployedResouces

A status message is displayed when the migration completes. Output of the utility is logged to the

pdwas_migrate.log file, which is created in the directory where the utility is run. Check the log file after

each migration. If the log file displays errors, check the last recorded transaction, correct the source of

the error, and rerun the migration utility. If the migration is unsuccessful, verify that you supplied the

correct values for the -c and -j options.

3. WebSphere Application Server does not require a restart for the changes to take effect.

migrateEAR utility for Tivoli Access Manager

The migrateEAR utility migrates changes made to console users and groups in the admin-authz.xml and

naming-authz.xml files into the Tivoli Access Manager object space.

Syntax

migrateEAR -profile_name default

-j fully_qualified_filename

-a Tivoli_Access_Manager_administrator_ID

-p Tivoli_Access_Manager_administrator_password

-w WebSphere_Application_Server_administrator_user_name

-d user_registry_domain_suffix

-c PdPerm.properties_file_location

[-z role_mapping_location]

Note:

v The -j parameter defaults to the file: profile_root/config/cells/cell_name/admin-authz.html

v The -c parameter defaults to: file:profile_root/etc/pd/PdPerm.properties. The output of the

utility is logged in the pdwas_migrate.log file. The pdwas_migrate.log file is created in the

profile_root/logs directory.

v The -profile_name parameter is optional and defaults to the default profile name.

552 Securing applications and their environment

Parameters

-aTivoli_Access_Manager_administrator_ID

The administrative user identifier. The administrative user must have the privileges required to create

users, objects, and access control lists (ACLs). For example, -a sec_master.

 This parameter is optional. When the parameter is not specified, you are prompted to supply it at run

time.

-c PdPerm.properties_file_location

The Uniform Resource Indicator (URI) location of the PdPerm.properties file that is configured by the

pdwascfg utility. When WebSphere Application Server is installed in the default location, the URI is:

 file:profile_root/etc/pd/PdPerm.properties

-d user_registry_domain_suffix

The domain suffix for the user registry to use. For example, for Lightweight Directory Access Protocol

(LDAP) user registries, this value is the domain suffix, such as: ″o=ibm,c=us″

 You can use the pdadmin user show command to display the distinguished name (DN) for a user.

-j fully_qualified_pathname

The fully qualified path and file name of the Java 2 Platform, Enterprise Edition application archive file

,admin-authz.xml or the roles definitions file naming-authz.xml that is used for a naming operation

authorization. Optionally, this path can also be a directory of an expanded enterprise application. For

example, when WebSphere Application Server is installed in the default location, the path to the data

files to migrate includes:

 profile_root/config/cells/cell_name

-p Tivoli_Access_Manager_administrator_password

The password for the Tivoli Access Manager administrative user. The administrative user must have

the privileges that are required to create users, objects, and access control lists (ACLs). For example,

you can specify the password for the -a sec_master administrative user as -p myPassword.

 When this parameter is not specified, the user is prompted to supply the password for the

administrative user name.

-w WebSphere_Application_Server_administrator_user_name

The user name that is configured in the WebSphere Application Server security user registry field as

the administrator. This value matches the account that you created or imported in “Creating the

security administrative user” on page 530. Access permission for this user is needed to create or

update the Tivoli Access Manager protected object space.

 When the WebSphere Application Server administrative user does not already exist in the protected

object space, it is created or imported. In this case, a random password is generated for the user and

the account is set to not valid. Change this password to a known value and set the account to valid.

A protected object and access control list (ACL) are created. The administrative user is added to the

pdwas-admin group with the following ACL attributes:

T Traverse permission

i Invoke permission

WebAppServer

You can overwrite the action group name. The default name is WebAppServer. This action

group name and the matching root object space can be overwritten when the migration utility

is run with the -r option.

-z role_mapping_location

The location where the role mapping is to be stored when migrating administration applications. The

default location is to place the role mapping in the current directory structure, such as:

 /WebAppServer/deployedResouces

Chapter 6. Authorizing access to resources 553

Specifying the -z option adds another directory level in which to store the role mapping. For example,

if you specify -z Roles in the migrateEAR utility, the role mapping is stored in the directory structure

as follows:

/WebAppServer/deployedResouces/Roles

Comments

This utility migrates security policy information from deployment descriptors or enterprise archive files to

Tivoli Access Manager for WebSphere Application Server. The script calls com.tivoli.pdwas.migrate.Migrate

the Java class.

Before you invoke the script, you must run the setupCmdLine script from the Qshell command line. You

can find this file in the profile_root/bin directory, where profile_root is your installation path. In a default

installation, profile_root is app_server_rootBase.

The script is dependent on finding the correct environment variables for the location of prerequisite

software.

To enable a new user access to the administrative group in WebSphere Application Server, it is

recommended that the user be added to the pdwas-admin group after JACC has been enabled. You can

enter the administrative primary ID (adminID) in the group. This is required when the serverID is not the

same as the adminID.

The following is an example of this command:

pdadmin> group modify pdwas-admin add adminID

Return codes

The utility can return the following exit status codes:

0 The command completed successfully.

1 The command failed.

Assigning users from a foreign realm to the admin-authz.xml

Operating with the administrative agent and job manager topology allows more situations where you might

need to add an administrative user from a different registry into your administrative authorization table

(admin-authz.xml). Each administrative user that needs to be added requires the ″accessID″ format of the

user from the remote registry. When that user finally is active in the local cell, the authorization table will

already have that accessID that is required. This task demonstrates how this assignment of users is

performed.

1. You need to determine the accessId for a user on the remote registry. To do this, you call the following

wsadmin task and query based on a user filter. The following example illustrates a query from the

registry realm ″BIRKT60″ with a userFilter of ″localuser*″. This query returns any user from this realm

that begins with ″localuser″. The resulting accessId is the one you need to specify in the target

administrative authorization table in the following step. Connect to the sending administrative process:

wsadmin> $AdminTask listRegistryUsers {-securityRealmName BIRKT60 -displayAccessIds true -userFilter localuser*}

{name BIRKT60\localuser@BIRKT60}

{accessId user:BIRKT60/S-1-5-21-3033296400-14683092-2821094880-1007}

2. Add ″localuser″ to the target admin-authz.xml using the following wsadmin task. Connected to the

receiving administrative process:

wsadmin> $AdminTask mapUsersToAdminRole {-roleName administrator -userids {localuser } -accessids {user:BIRKT60/S-1-5-21-3033296400-14683092-2821094880-1007 }}

3. Save the changes.

554 Securing applications and their environment

Results

This task updates the admin-authz.xml in the receiving administrative process to allow a ″cross-realm

authorization″ to succeed. The example illustrated here was for a LocalOS registry user. Performing the

same task for an LDAP accessId produces results thatl look more like a realm and distinguished name

(DN).

Fine-grained administrative security

In releases prior to WebSphere Application Server version 6.1, users granted administrative roles could

administer all of the resource instances under the cell. WebSphere Application Server is now more

fine-grained, meaning that access can be granted to each user per resource instance.

For example, users can be granted configurator access to a specific instance of a resource only (an

application, an application server or a node). Users cannot access any other resources outside of the

resources assigned to them. The administrative roles are now per resource instance rather than to the

entire cell. However, there is a cell-wide authorization group for backward compatibility. Users assigned to

administrative roles in the cell-wide authorization group can still access all of the resources within the cell.

Note: Nodes prior to WebSphere Application Server Version 6.1 in a mixed cell environment are filtered

out of resource mapping.

To achieve this instance-based security or fine-grained security, resources that require the same privileges

are placed in a group called the administrative authorization group or authorization group. Users can be

granted access to the authorization group by assigning to them the required administrative role.

Fine-grained administrative security can also be used in single-server environments. Various applications

in the single server can be grouped and placed in different authorization groups. Therefore, there are

different authorization constraints for different applications. Note that the server itself cannot be part of any

authorization group in a single-server environment.

You can assign users and groups to the adminsecuritymanager role on the cell level through wsadmin

scripts and the administrative console. Using the adminsecuritymanager role, you can assign users and

groups to the administrative user roles and administrative group roles.

When fine grained administrative security is used, users granted the adminsecuritymanager role can

manage authorization groups. See “Administrative roles and naming service authorization” on page 496 for

detailed explanations of all administrative roles.

An administrator cannot assign users and groups to the administrative user roles and administrative group

roles, including the adminsecuritymanager role. See “Administrative roles” on page 504 for more details.

There are several administrative security commands that can be used to create authorization groups, map

resources to authorization groups, and to assign users to administrative roles within the authorization

groups. Following are some examples using wsadmin:

v Create a new authorization group:

$AdminTask createAuthorizationGroup {-authorizationGroupName authGroup1}

v Deleting an authorization group:

$AdminTask deleteAuthorizationGroup {-authorizationGroupName groupName}

v Add resources to an authorization group:

$AdminTask addResourceToAuthorizationGroup

{-authorizationGroupName groupName -resourceName Application=app1}

v Remove resources from an authorization group:

$AdminTask removeResourceFromAuthorizationGroup

{-authorizationGroupName groupName -resourceName Application=app1}

Chapter 6. Authorizing access to resources 555

v Add user IDs to roles in an authorization group:

$AdminTask mapUsersToAdminRole {-authorizationGroupName groupName

-roleName administrator -userids user1}

v Add group IDs to roles in an authorization group:

$AdminTask mapGroupsToAdminRole {-authorizationGroupName groupName

-roleName administrator -groupids group1}

v Remove user IDs from roles in an authorization group:

AdminTask removeUsersFromAdminRole {-authorizationGroupName

groupName -roleName administrator -userids user1}

v Remove group IDs from roles in an authorization group:

$AdminTask removeGroupsFromAdminRole {-authorizationGroupName

groupName -roleName administrator -groupids group1}

Resources that can be added to an authorization group

You can add only resource instances of the following types to an authorization group:

v Cell

v Node

v ServerCluster

v Server

v Application

v NodeGroup

If a resource instance is not one of the types listed above, its parent resource will be used.

A resource instance can only belong to one authorization group. However, there is a containment

relationship among resource instances. If a parent resource belongs to a different authorization group than

that of its child resource instance, the child resource instance implicitly will belong to multiple authorization

groups. You cannot add the same resource instance to more than one authorization group.

The following diagram shows the containment relationship among resource instances:

Cell

NodeGroup

Node ServerCluster Application AuthorizationGroup

Server

Contains

Contains Contains Contains

Contains

Contains Contains

The privileges required for actions on resource instances depend on two factors:

v The authorization group of the administrative resource instance. If a user is granted access to an

authorization group, all of the resource instances in that group will be included.

v The containment relationship of the resource instance. If a user is granted access to a parent resource

instance, all of the children resource instances will be included.

The privileges required to access various administrative resource instances are shown in the following

table:

556 Securing applications and their environment

Resource Action Required roles

Server Start, stop, runtime operations Server-operator, node-operator,

cell-operator

Server New, delete Node-configurator, cell-configurator

Server Edit configuration Server-configurator, node-configurator,

cell-configurator

Server View configuration, runtime status Server-monitor, node-monitor, cell-monitor

Node Restart, stop, sync Node-operator, Cell-operator

Node Add, delete Cell-configurator

Node Edit configuration Node-configurator, cell-configurator

Node View configuration, runtime status Node-monitor, cell-monitor

Cluster Start, stop, runtime operations Cluster-operator, cell-operator

Cluster New, delete Cell-configurator

Cluster Edit configuration Cluster-configurator, cell-configurator

Cluster View configuration, runtime status Cluster-monitor, cell-monitor

Cluster member Start, stop, runtime operations Server-operator, cluster-operator,

node-operator, cell-operator

Cluster member New, delete Node-configurator, cell-configurator

Cluster member Edit configuration Server-configurator, cluster-configurator,

node-configurator, cell-configurator

Cluster member View configuration, runtime status Server-monitor, cluster-monitor,

node-monitor, cell-monitor

Application All operations Refer to the section ″Deployer roles″ in

“Administrative roles” on page 504.

Node, cluster Add, delete Cell-configurator

The server-operator role is the operator role of the authorization group to which the server instance is part

of. Similarly, the node-operator role is in the operator role of the authorization group to which the node

instance is part of.

To use fine-grained administrative security in the administrative console, a user should be granted a

monitor role at the cell level at minimum. However, to login using wsadmin, a user should be granted a

monitor role for any authorization group.

If you log in to the administrative console as a cell-level administrator, adminsecuritymanager, operator,

monitor or configurator, you can perform all of the operations that the role allows you to do. However, if

you want to give users access only to specific authorization groups or permissions to non-cell

authorizations groups, you must use wsadmin.

New Administrative Authorization Group

Use this page to create a new administrative authorization group and to specify the associated

administrative resources.

To view this administrative console page, click Security → Administrative Authorization Groups → New.

You must be logged into the administrative console with cell-level AdminSecurityManager authority, or

the primary administrative ID can make these changes as well.

Chapter 6. Authorizing access to resources 557

Related concepts

“Role-based authorization” on page 502
Use authorization information to determine whether a caller has the necessary privileges to request a

service.

“Administrative roles and naming service authorization” on page 496
WebSphere Application Server extends the Java Platform, Enterprise Edition (Java EE) security role-based

access control to protect the product administrative and naming subsystems.

Related reference

“Example: Using fine-grained security” on page 565
The following scenarios describe the use of fine-grained administrative security, particularly the new

deployment role.

Name

Use to identify the new administrative authorization group. The name should be descriptive of the group’s

role, or purpose, and should be unique in the cell structure. Using a non-unique name results in an error

and a failure to create the new administrative authorization group. This is a required field.

Resources

Select the resources from the Resource section to which you want the new administrative authorization

group to control access.

Resources that are displayed in black text are available for selection.

Resources that are displayed in grey are already members of a different administrative authorization

group. Therefore, these resources are not available for inclusion in the new administrative authorization

group. When a resource is a member of a different authorization group, the name of the group displays

next to the resource name. For example: server_1 (group_1)

Your filtering options include the following:

Nodes

All of the resources associated with the node.

Clusters

All of the resources associated with the cluster.

Applications

All of the resources associated with the application.

Web Servers

All of the resources associated with the Web servers.

Servers

All of the resources associated with the servers.

Node Groups

All of the resources associated with the Node Groups.

All resources

The default view that displays the authorization group tree.

Assigned resources

Displays all of the resources explicitly assigned to the current authorization group.

Administrative Authorization Group collection

Use this page to create, delete or to edit an existing administrative authorization group.

To view this administrative console page, click Security → Administrative Authorization Groups.

558 Securing applications and their environment

You must be logged into the administrative console with cell-level AdminSecurityManager authority, or

the primary administrative ID can make these changes as well.

Related concepts

“Role-based authorization” on page 502
Use authorization information to determine whether a caller has the necessary privileges to request a

service.

“Administrative roles and naming service authorization” on page 496
WebSphere Application Server extends the Java Platform, Enterprise Edition (Java EE) security role-based

access control to protect the product administrative and naming subsystems.

Related reference

“Example: Using fine-grained security” on page 565
The following scenarios describe the use of fine-grained administrative security, particularly the new

deployment role.

Name

The name field specifies the current name of the administrative authorization group. You can edit the name

of the administrative authorization group during the creation process only. After the authorization group is

created, you cannot modify the name. The specified name must be unique within the cell structure.

Otherwise, a non-unique name results in an error.

New

Select to create a new administrative authorization group.

Delete

Select to remove an existing administrative authorization group.

Note: You must select an administrative authorization group before selecting Delete.

Creating a fine-grained administrative authorization group using the

administrative console

You can create a fine-grained administrative authorization group by selecting administrative resources to

be part of the authorization group. You can assign users or groups to this new administrative authorization

group and also give them access to the administrative resources contained within.

Before you begin

You must be logged into the administrative console with cell-level Admin Security Manager authority, or

the primary administrative ID can make these changes as well.

1. Navigate to Security → Administrative Authorization Groups → New.

2. Type a name for the administrative authorization group into the Name field. This is a required field.

The name must be unique within the cell structure. If the name is not unique then the new

administrative authorization group is not created at the end of this procedure.

3. Select the resources from the Resource section to which you want the new administrative authorization

group to control access.

Resources that are displayed in black text are available for selection.

Resources that are displayed in grey are already members of a different administrative authorization

group. Therefore, these resources are not available for inclusion in the new administrative authorization

group. When a resource is a member of a different authorization group, the name of the group displays

next to the resource name. For example: server_1 (group_1)

Your filtering options include the following:

v Nodes. (All of the resources associated with the nodes.)

Chapter 6. Authorizing access to resources 559

v Servers. (All of the resources associated with the servers.)

v Web servers. (All of the resources associated with the Web servers.)

v Clusters. (All of the resources associated with the clusters.)

v Applications. (All of the resources associated with the applications.)

v Node groups. (All of the resources associated with the Node Groups.)

v All scopes. (The default view that displays the authorization group tree.)

v Assigned scopes. (Displays all of the scopes explicitly assigned to the current authorization group.)

4. Click OK or Apply.

5. If you want to associate a user role to this new administrative authorization group, do the following:

a. Click Administrative user roles located under the Additional Properties section. The available

user roles are the following:

Administrator

An individual or group that uses the administrator role has the operator and configurator

privileges plus additional privileges that are granted solely to the administrator role. For

example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.

v Enable or disable Java 2 security.

v Change the Lightweight Third Party Authentication (LTPA) password and generate keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Note: An administrator cannot map users and groups to the administrator roles.
.

Configurator

An individual or group that uses the configurator role has the monitor privilege plus the

ability to change the WebSphere Application Server configuration. The configurator can

perform all the day-to-day configuration tasks. For example, a configurator can complete

the following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Secure Authentication

Service (SAS), and Secure Sockets Layer (SSL) configurations.

Note: SAS is supported only between Version 6.0.x and previous version servers that

have been federated in a Version 6.1 cell.

Deployer

Users granted this role can perform both configuration actions and runtime operations on

applications..

Operator

An individual or group that uses the operator role has monitor privileges plus ability to

change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

560 Securing applications and their environment

v Monitor the server status in the administrative console.

Monitor

An individual or group that uses the monitor role has the least amount of privileges. A

monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

Admin Security Manager

Using the Admin Security Manager role, you can assign users and groups to the

administrative user roles and administrative group roles. However, an administrator cannot

assign users and groups to the administrative user roles and administrative group roles

including the Admin Security Manager roles.

b. Click Add.... The New User page is displayed.

c. Select the appropriate role(s) from the Role(s) list box.

d. Select a user or users by entering text in the Search string field, and then click Search.. Click the

arrow to add the available user or users to the Mapped to role field. You can select multiple users

and roles by clicking Select All.

e. Click OK. You are returned to the Administrative User Roles page. The new users are displayed in

the Administrative User Roles table along with their appropriate roles.

f. Repeat steps B through E for each new user to whom you want to map a role.

6. If you want to associate a group to this new user role, do the following:

a. Click Administrative group roles located under the Additional Properties section.

b. Click Add.... The New Group page is displayed.

c. Select the appropriate role or roles from the Role(s) list box.

d. Select a user or users by entering text in the Search string field, and then click Search.. Click the

arrow to add the available user or users to the Mapped to role field. You can select multiple users

and roles by clicking Select All.

e. Select either the Select from special subjects or Map Groups As Specified Below option.

If you select the Select from special subjects option, you can select the EVERYONE, ALL

AUTHENTICATED, or ALL AUTHENTICATED IN TRUSTED REALMS values.

A list of user groups and roles are displayed in the Available and Mapped to role fields. Select

the user groups from the Available field and then select the roles from the Mapped to role field to

which you want the group or groups associated. You can select multiple groups and roles.

f. Click OK. You are returned to the Administrative Group Roles page. The new group is displayed in

the Administrative Group Roles table along with the role of the new group.

g. Repeat steps B through E for each new group to whom you want to map a role.

7. If you want to create another administrative authorization group, click Apply. The current administrative

authorization group is created. Repeat steps 2 through 6 to create another administrative authorization

group.

8. If you do not want to create another administrative authorization group, click OK.

Chapter 6. Authorizing access to resources 561

Related concepts

“Role-based authorization” on page 502
Use authorization information to determine whether a caller has the necessary privileges to request a

service.

“Administrative roles and naming service authorization” on page 496
WebSphere Application Server extends the Java Platform, Enterprise Edition (Java EE) security role-based

access control to protect the product administrative and naming subsystems.

Related tasks

“Editing a fine-grained administrative authorization group using the administrative console”
You can add or remove administrative resources to an administrative authorization group or edit an

existing one.

Editing a fine-grained administrative authorization group using the

administrative console

You can add or remove administrative resources to an administrative authorization group or edit an

existing one.

Before you begin

You must be logged into the administrative console with the cell-level AdminSecurityManager authority or

as the primary administrative user.

1. Navigate to Security → Administrative Authorization Groups. The Administrative Authorization

Groups page displays a table that lists all of the current administrative authorization groups available in

the cell.

2. Click on the administrative authorization group in the table that you want to edit.

3. To add or remove resources from the administrative authorization group, select or clear them in the

Resource section of the edit page. Resources displayed in black text are available for selection or

clearing. Resources displayed in grey text are members of a different administrative authorization

group and therefore cannot be edited for the current administrative authorization group.

Your filtering options include the following:

v Nodes. (All of the resources associated with the nodes.)

v Servers. (All of the resources associated with the servers.)

v Web servers. (All of the resources associated with the Web servers.)

v Clusters. (All of the resources associated with the clusters.)

v Applications. (All of the resources associated with the applications.)

v Node groups. (All of the resources associated with the Node Groups.)

v All scopes. (The default view that displays the authorization group tree.)

v Assigned scopes. (Displays all of the scopes explicitly assigned to the current authorization group).

Note: Nodes prior to WebSphere Application Server Version 6.1 in a mixed cell environment are

filtered out of resource mapping.

4. To remove a user or a group, do the following:

a. To delete users, click Administrative user roles under the Additional Properties section. To delete

groups, click Administrative group roles under the Additional Properties section. The appropriate

edit page displays a table that lists all of the current users or groups and their associated roles,

along with the user’s login status.

b. Click the check box beside the name of the current user or group and then click Remove. The

current user or group is no longer associated with the role and the role is no longer listed in the

table. It is now ready to have a new user or group assigned to it.

562 Securing applications and their environment

5. If you want to add or to reassign a user or group role to this administrative authorization group, do the

following:

a. To add a user, click Administrative user roles under the Additional Properties section. To add a

group, click Administrative group roles located under the Additional Properties section. The

appropriate edit page displays a table that lists all of the current users or groups and their

associated roles. The available roles are:

Administrator

An individual or group that uses the administrator role has the operator and configurator

privileges plus additional privileges that are granted solely to the administrator role. For

example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.

v Enable or disable Java 2 security.

v Change the Lightweight Third Party Authentication (LTPA) password and generate keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Note: An administrator cannot map users and groups to the administrator roles.

Configurator

An individual or group that uses the configurator role has the monitor privilege plus the

ability to change the WebSphere Application Server configuration. The configurator can

perform all the day-to-day configuration tasks. For example, a configurator can complete

the following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Security

Authentication Service (SAS), and Secure Sockets Layer (SSL) configurations.

Note: SAS is supported only between Version 6.0.x and previous version servers that

have been federated in a Version 6.1 cell.

Deployer

Users granted this role can perform both configuration actions and runtime operations on

applications.

Operator

An individual or group that uses the operator role has monitor privileges plus ability to

change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

.

Monitor

An individual or group that uses the monitor role has the least amount of privileges. A

monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

Chapter 6. Authorizing access to resources 563

v View the current state of the Application Server.

Admin Security Manager

Using the Admin Security Manager role, you can assign users and groups to the

administrative user roles and administrative group roles. However, an administrator cannot

assign users and groups to the administrative user roles and administrative group roles

including the Admin Security Manager role.

b. Click Add....

c. To add a new user or group, follow the instructions on the page to specify either a user name,

group name, or Special subject. Highlight the desired role(s), and click OK. The specified users,

groups, or Special subject are mapped to the security roles.

Related concepts

“Role-based authorization” on page 502
Use authorization information to determine whether a caller has the necessary privileges to request a

service.

“Administrative roles and naming service authorization” on page 496
WebSphere Application Server extends the Java Platform, Enterprise Edition (Java EE) security role-based

access control to protect the product administrative and naming subsystems.

Related tasks

“Creating a fine-grained administrative authorization group using the administrative console” on page 559
You can create a fine-grained administrative authorization group by selecting administrative resources to

be part of the authorization group. You can assign users or groups to this new administrative authorization

group and also give them access to the administrative resources contained within.

Fine-grained administrative security in heterogeneous and

single-server environments

Fine-grained administrative security can be used in heterogeneous or single-server environments with

some restrictions.

Fine-grained administrative security in a heterogeneous environment

Fine-grained administrative security in a heterogeneous environment has the following restrictions:

v Only nodes that are running WebSphere Application Server Version 7.0 can be part of an administrative

authorization group.

v Only servers that are running in a WebSphere Application Server Version 7.0 node can be part of an

administrative authorization group.

v Only applications that are targeted on servers running on WebSphere Application Server Version 7.0

can be part of an administrative authorization group.

v If a cluster spans nodes of multiple releases, it cannot be part of an administrative authorization group.

v If a cluster spans nodes of multiple releases, none of its members can be part of an administrative

authorization group.

v If an application is targeted on a cluster that spans multiple releases, that application cannot be part of

an administrative authorization group.

Fine-grained administrative security in a single-server environment

You can also use fine-grained administrative security in a single-server environment. Various applications

in the single server can be grouped and placed in different authorization groups. Therefore, different

authorization constraints might exist for different applications.

564 Securing applications and their environment

Life cycle of fine-grained administrative resource

An administrative resource that was once part of an authorization group continues to be part of that

authorization group until one of the following events occurs:

v The administrative resource is removed from the authorization group. In this instance, the administrative

resource belongs to the cell-level authorization group.

v The administrative resource is removed from the configuration. In this instance, the administrative

resource does not exist in the configuration, but still exists in the authorization group. Remove this

administrative resource from the authorization group.

After the administrative resource is removed from the authorization group, the administrative authorizer

runtime must be notified by using the AuthorizationManager refreshAll MBean method.

The refreshAll command must be invoked after AdminConfig.save() and sync nodes. For example:

JACL:

// get AuthorizationGroup Mbean

wsadmin> set agBean [$AdminControl queryNames

Type=AuthorizationGroupManager,process=dmgr,*]

JYTHON:

// get AuthorizationGroup Mbean

wsadmin> set agBean [$AdminControl queryNames

Type=AuthorizationGroupManager,process=dmgr,*]

Example: Using fine-grained security

The following scenarios describe the use of fine-grained administrative security, particularly the new

deployment role.

Deployment role scenario 1

In the following scenario, there are four applications configured on server S1, as shown in the following

table. Each application must be isolated so that the administrator of one application cannot modify another

application. Assume that only user1 can manage application A1, user2 can manage applications A2 and

A3, and only user3 can manage application A4.

Note: It is not recommended to have an application in one group and its target server in another group.

However, that is not always possible. It is common to have many applications on one server. It is

still sometimes necessary to isolate the administration of applications running on the same server.

One example is an Application Service Provider (ASP), where a single application server can have

multiple vendor applications. In this instance the server administrator is responsible for installing all

of the vendor applications. Once applications are installed, each vendor can manage their own

application without interfering with other vendor’s applications.

 Application Server Node

A1 S1 N1

A2 S1 N1

A3 S1 N1

A4 S1 N1

We can configure authorization groups as shown in the diagram below:

Chapter 6. Authorizing access to resources 565

G3
G1

A1

A4

G2
A3

A2

N1

s1 Cell

Deployer=user1

Deployer=user2

Deployer=user3

Administrator=root

Authorization Table

In the diagram, application A1 is in authorization group G1, applications A2 and A3 are in authorization

group G2, and application A4 is in authorization group G3.

A deployer role is assigned from authorization group G1 to user1, from authorization group G2 to user2,

and from authorization group G3 to user3.

Consequently, user1 can perform all of the operations on application A1, user2 on applications A2 and A3,

and user3 on application A4. Since all applications share the same server, we cannot put the same server

on all authorization groups. Only a cell-level administrator can install an application. After the installation of

an application is complete, the deployer of each application can modify their own. To start and stop the

server, cell-level administrative authority is required. This type of scenario is useful in an ASP environment.

Deployment role scenario 2

In the following scenario, a group of applications require the same administrative roles to one server. In

this example, applications A1 and A2 are related applications, and can be administrated by one set of

administrators. They are running on the same server (S1). Applications A3 and A4 require a different set of

administrators, and are running on servers S2 and S3 respectively.

 Application Server Node

A1 S1 N1

A2 S1 N1

A3 S2 N2

A4 S3 N3

566 Securing applications and their environment

G3
G1

A1

A4

G2
A3

N1

s1

Cell

Deployer=user1

Deployer=user2

Deployer=user3

Administrator=root

Authorization Table

A2

s2

s3

N2

N3

Scenarios that can be applied directly in customer environments

Each developer must be able to modify the configuration for their server, and they must be able to install

their application onto that server. They also must be able to start and stop the server as well as the

application on the server.

Developers also must be able to configure the server so that they can debug any problems they run into.

They must have the ability to update or modify the application being developed. The administrative

authorization group for this developer includes at least one server and any applications that the developer

installs on that server.

G3
G1

A1

A3

G2
A2

N1

s1

Cell

Deployer=group1
Administrator=group1

Deployer=group2
Administrator=group2

Deployer=group3
Administrator=group3

Administrator=root

Authorization Table

s2

s3

N2

N3

In the following example, developers of authorization group G1 have a new application (A11). They can

install and target that new application only on servers within authorization group G1. Also, they can place

that new application in their authorization group (G1).

Chapter 6. Authorizing access to resources 567

G3
G1

A1

A3

G2
A2

N1

s1

Cell

Deployer=group1
Administrator=group1

Deployer=group2
Administrator=group2

Deployer=group3
Administrator=group3

Administrator=root

Authorization Table

s2

s3

N2

N3

A11

ASP environment scenario

In this scenario, the customer is an ASP. They have their own customers to whom they provide application

serving function. They want to enable their customers to administer and monitor their applications, but not

to see or administer applications for different customers. In this example, however, the ASP has internal

staff administrators whose job it is to maintain the servers.

This internal ASP staff administrator might need to move an application from one server to another to

ensure that an application remains available. The internal ASP staff administrator should be able to stop

and start the servers and to change their configuration.

In contrast, the ASP customer administrator should not be able to stop or start servers. However, the ASP

customer administrator should be able to update their applications running on those servers. The

administrative authorization group for the internal ASP administrator can be the whole cell or can include a

subset of servers, nodes, clusters and applications. The administrative authorization group for the

customer administrator only includes those applications that the customer has paid to have served by this

ASP.

When updating the configuration repository, run the admin scripts from the deployment manager so that

the fine grain admin security rules will be in effect when admin scripts are run from the deployment

manager side.

The following diagram contains a scenario where two different customers have two different types of

applications, and can manage their own applications. However, the servers and nodes on which the

applications are running are isolated from their customers. The servers and nodes can only be maintained

by the internal administrators. In addition, the customers cannot target their applications on a different

server. This can only be performed by the internal administrator or internal deployers.

568 Securing applications and their environment

G

G1
A1

G2
A2

Cell

Administrator=internalAdministrator

Administrator=customer2
Deployer=internalDeployer, customer2

Administrator=root

Authorization Table

s1

N2N1

s2

targetted ontargetted on

Administrator=customer1
Deployer=internalDeployer, customer1

Regional organization scenario

In this scenario, the customer is a large global company. The company’s nodes and servers are organized

so as to provide application serving for different regions (or alternatively, different lines of business). They

want representatives from the different regional areas to be able to monitor and administer the nodes and

servers associated with that region. However, they do not want the regional administer to be able to effect

any node and server associated with a different region.

The administrative authorization group for each regional representative includes the nodes, servers,

clusters and applications associated with that region.

For example, consider a company that provides multiple services, such as a financial institution that

provides services like credit card accounts, brokerage accounts, banking accounts, or travel accounts.

Each of these services can be separate applications, and the administrator for each of these applications

must also be different. The following figure shows one way to configure such a system:

Chapter 6. Authorizing access to resources 569

Server1

trade app

Server2

card app

Server3

travel app
node1

Server1

trade app

Server2

card app

Server3

travel app
node2

Server1

trade app

Server2

card app

Server3

travel app
node3

The following figure shows how the resources in such a system can be grouped to isolate administrators

from each other:

Cell

Deployer=tradeDeployer
Administrator=tradeAdministrator

Administrator=root

Authorization Table

N1

s2N2
N3

trade
application

G1

card
application

G2

travel
application

G3

s1

s3

Deployer= Deployer
Administrator= Administrator

card
card

Deployer= Deployer
Administrator= Administrator

travel
travel

Note that the nodes are not part of any authorization group. Therefore, a trade application administrator

cannot stop a server on any of the nodes, and is prevented from stopping a travel application.

The same system can be configured in another way as shown below:

570 Securing applications and their environment

Server1

travel app
card app
trade app

node1
Server2

travel app
card app
trade app

Server3

travel app
card app
trade app

Server1

travel app
card app
trade app

node2
Server2

travel app
card app
trade app

Server3

travel app
card app
trade app

Server1

travel app
card app
trade app

node3
Server2

travel app
card app
trade app

Server3

travel app
card app
trade app

The following figure shows how the resources in such a system can be grouped to isolate administrators

from each other:

Cell

Deployer=tradeDeployer
Administrator=tradeAdministrator

Administrator=root

Authorization Table

N1

s2N2
N3

trade
application

G1

card
application

G2

travel
application

G3

s1

s3

Deployer= Deployer
Administrator= Administrator

card
card

Deployer= Deployer
Administrator= Administrator

travel
travel

Chapter 6. Authorizing access to resources 571

572 Securing applications and their environment

Chapter 7. Securing communications

WebSphere Application Server provides several methods to secure communication between a server and

a client.

About this task

Note: WebSphere Application Server provides several methods for securing communication between a

server and a client. New in this release are functions that ensure secure communication between a

server and a client. These functions focus on certificate management, authentication, and ensuring

trust among the application server, administrative agent, and job manager. The new functions

include:

v Creating and using a certificate authority (CA) clients to enable a CA to request, query, and

revoke certificates.

v Creating and using chained personal certificates to allow a certificate to be signed with a longer

life span.

v Creating and revoking certificate authority (CA) certificates to ensure secure communication

between the CA client and the CA server.

The following topics are covered in this section:

v Secure communications using Secure Sockets Layer

v Creating an SSL configuration

v Creating a keystore configuration

v Creating a certificate authority (CA) client

v Deleting a certificate authority (CA) client

v Viewing or Modifying a certificate authority (CA) client

v Creating a keystore configuration for a preexisting keystore file

v Creating a self-signed certificate

v Creating a certificate authority request

v Extracting a signer certificate from a personal certificate

v Retrieving signers from a remote SSL port

v Adding a signer certificate to a keystore

v Adding a signer certificate to the default signers keystore

v Exchanging signer certificates in a keystore

v Configuring certificate expiration monitoring

v Key management for cryptographic uses

v Creating a key set configuration

v Creating a key set group configuration

Secure communications using Secure Sockets Layer

The Secure Sockets Layer (SSL) protocol provides transport layer security including authenticity, data

signing, and data encryption to ensure a secure connection between a client and server that uses

WebSphere Application Server. The foundation technology for SSL is public key cryptography, which

guarantees that when an entity encrypts data using its public key, only entities with the corresponding

private key can decrypt that data.

WebSphere Application Server uses Java Secure Sockets Extension (JSSE) as the SSL implementation

for secure connections. JSSE is part of the Java 2 Standard Edition (J2SE) specification and is included in

© IBM Corporation 2006, 2007 573

the IBM implementation of the Java Runtime Extension (JRE). JSSE handles the handshake negotiation

and protection capabilities that are provided by SSL to ensure secure connectivity exists across most

protocols. JSSE relies on X.509 certificate-based asymmetric key pairs for secure connection protection

and some data encryption. Key pairs effectively encrypt session-based secret keys that encrypt larger

blocks of data. The SSL implementation manages the X.509 certificates.

Managing X.509 certificates

Secure communications for WebSphere Application Server require digitally-signed X.509 certificates. The

contents of an X.509 certificate, such as its distinguished name and expiration, are either signed by a

certificate authority (CA), signed by a root certificate in NodeDefaultRootStore or

DmgrDefaultRootStore, or are self-signed. When a trusted CA signs an X.509 certificate, WebSphere

Application Server identifies the certificate and freely distributes it. A certificate must be signed by a CA

because the certificate represents the identity of an entity to the general public. Server-side ports that

accept connections from the general public must use CA-signed certificates. Most clients or browsers

already have the signer certificate that can validate the X.509 certificate so signer exchange is not

necessary for a successful connection.

You can trust the identity of a self-signed X.509 certificate only within a peer in a controlled environment,

such as internal network communications, accepts the signer certificate. To complete a trusted handshake,

you must first send a copy of the entity certificate to every peer that connects to the entity.

CA, chained, and self-signed X.509 certificates reside in Java keystores. JSSE provides a reference to the

keystore in which a certificate resides. You can select from many types of keystores, including Java

Cryptographic Extension (JCE)-based and hardware-based keystores. Typically, each JSSE configuration

has two Java keystore references: a keystore and a truststore. The keystore reference represents a Java

keystore object that holds personal certificates. The truststore reference represents a Java keystore object

that holds signer certificates.

A personal certificate without a private key is an X.509 certificate that represents the entity that owns it

during a handshake. Personal certificates contain both public and private keys. A signer certificate is an

X.509 certificate that represents a peer entity or itself. Signer certificates contain just the public key and

verify the signature of the identity that is received during a peer-to-peer handshake.

For more information, see “Extracting a signer certificate from a personal certificate” on page 682

For more information about keystores, see csec_sslkeystoreconfs.dita.

Signer exchange

When you configure an SSL connection, you can exchange signers to establish trust in a personal

certificate for a specific entity. Signer exchange enables you to extract the X.509 certificate from the peer

keystore and add it into the truststore of another entity so that the two peer entities can connect. The

signer certificate also can originate from a CA as a root signer certificate or a chained certificate’s root

signer certificate or an intermediate signer certificate. You can also extract a signer certificate directly from

a self-signed certificate, which is the X.509 certificate with the public key.

Figure 1 illustrates a hypothetical keystore and truststore configuration. An SSL configuration determines

which entities can connect to other entities, and the peer connections that are trusted by an SSL

handshake. If you do not have the necessary signer certificate, the handshake fails because the peer

cannot be trusted.

Figure 15. Signer exchange

574 Securing applications and their environment

csec_sslkeystoreconfs.dita

Entity-B Signer

C 1

C 2

Entity- Signer

Entity- Signer

trust store

Entity-A Cert

keystore

C 1Entity- Signer

trust store

Entity-B Cert

keystore

Entity- SignerA

trust store

Entity-C Cert 1

Entity-C Cert 2

keystore

Entity-A Entity-B Entity-C

Signer Exchange Example

In this example, the truststore for Entity A contains three signers. Entity A can connect to any peer as long

as one of the three signers validates its personal certificate. For example, Entity A can connect to Entity B

or Entity C because the signers can trust both signed personal certificates. The truststore for Entity-B

contains one signer. Entity B is able to connect to Entity C only, and only when the peer endpoint is using

certificate Entity-C Cert 1 as its identity. The ports that use the other personal certificate for Entity C are

not trusted by Entity B. Entity C can connect to Entity A only.

In the example, the self-signed configuration seems to represent a one-to-one relationship between the

signer and the certificate. However, when a CA signs a certificate, it typically signs many at a time. The

advantage of using a single CA signer is that it can validate personal certificates that are generated by the

CA for use by peers. However, if the signer is a public CA, you must be aware that the signed certificates

might have been generated for another company other than your target entity. For your internal

communications, private CAs and self-signed certificates are preferable to public CAs because they enable

you to isolate the connections that you want to occur and prevent those that you do not want to occur.

SSL configurations

An SSL configuration comprises a set of configuration attributes that you can associate with an endpoint or

set of endpoints in the WebSphere Application Server topology. The SSL configuration enables you to

create an SSLContext object, which is the fundamental JSSE object that the server uses to obtain SSL

socket factories. You can manage the following configuration attributes:

v An alias for the SSLContext object

v A handshake protocol version

v A keystore reference

v A truststore reference

v A key manager

v One or more trust managers

v A security level selection of a cipher suite grouping or a specific cipher suite list

v A certificate alias choice for client and server connections

To understand the specifics of each SSL configuration attribute, see “Secure Sockets Layer configurations”

on page 579.

Chapter 7. Securing communications 575

Selecting SSL configurations

In previous releases of WebSphere Application Server, you can reference an SSL configuration only by

selecting the SSL configuration alias directly. Each secure endpoint was denoted by an alias attribute that

references a valid SSL configuration within a repertoire of SSL configurations. When you made a single

configuration change, you had to re-configure many alias references across the various processes.

Although the current release still supports direct selection, this approach is no longer recommended.

The current release provides improved capabilities for managing SSL configurations and more flexibility

when you select SSL configurations. In this release, you can select from the following approaches:

Programmatic selection

You can set an SSL configuration on the running thread prior to an outbound connection.

WebSphere Application Server ensures that most system protocols, including Internet Inter-ORB

Protocol (IIOP), Java Message Service (JMS), Hyper Text Transfer Protocol (HTTP), and

Lightweight Directory Access Protocol (LDAP), accept the configuration. See “Programmatically

specifying an outbound SSL configuration using JSSEHelper API” on page 641

Dynamic selection

You can associate an SSL configuration dynamically with a specific target host, port, or outbound

protocol by using a predefined selection criteria. When it establishes the connection, WebSphere

Application Server checks to see if the target host and port match a predefined criteria that

includes the domain portion of the host. Additionally, you can predefine the protocol for a specific

outbound SSL configuration and certificate alias selection. See “Dynamic outbound selection of

Secure Sockets Layer configurations” on page 591 for more information.

Direct selection

You can select an SSL configuration by using a specific alias, as in past releases. This method of

selection is maintained for backwards compatibility because many applications and processes rely

on alias references.

Scope selection

You can associate an SSL configuration and its certificate alias, which is located in the keystore

associated with that SSL configuration, with a WebSphere Application Server management scope.

This approach is recommended to manage SSL configurations centrally. You can manage

endpoints more efficiently because they are located in one topology view of the cell. The

inheritance relationship between scopes reduces the number of SSL configuration assignments

that you must set.

 Each time you associate an SSL configuration with a cell scope, the node scope within the cell

automatically inherits the configuration properties. However, when you assign an SSL configuration

to a node, the node configuration overrides the configuration that the node inherits from the cell.

Similarly, all of the application servers for a node automatically inherit the SSL configuration for

that node unless you override these assignments. Unless you override a specific configuration, the

topology relies on the rules of inheritance from the cell level down to the endpoint level for each

application server.

Note: If your applications are relying on SSL configurations that were set as individual settings for

each SSL configuration in the topology, but your application servers have inherited the SSL

configuration as deployed from the cell level down to the endpoint level, then there is the

possibility of communication errors occurring among servers (for example, handshake

errors). You need to ensure that your applications are operating consistent with the central

management of SSL configurations.

The topology view displays an inbound tree and outbound tree. You can make different SSL

configuration selections for each side of the SSL connection based on what that server connects

to as an outbound connection and what the server connects to as an inbound connection. See

“Central management of Secure Sockets Layer configurations” on page 591 for more information.

576 Securing applications and their environment

The runtime uses an order of precedence for determining which SSL configuration to choose because you

have many ways to select SSL configurations. Consider the following order of precedence when you select

a configuration approach:

1. Programmatic selection. If an application sets an SSL configuration on the running thread using the

com.ibm.websphere.ssl.JSSEHelper application programming interface (API), the SSL configuration is

guaranteed the highest precedence.

2. Dynamic selection criteria for outbound host and port or protocol.

3. Direct selection.

4. Scope selection. Scope inheritance guarantees that the endpoint that you select is associated with an

SSL configuration and is inherited by every scope beneath it that does not override this selection.

Default chained certificate configuration

By default, WebSphere Application Server creates a unique chained certificate for each node. The chained

certificate is signed with a root, a self-signed certificate stored in the DmgrDefaultRootStore or

NodeDefaultRootStore. WebSphere Application Server no longer relies on a self-signed certificate or the

default or dummy certificate that is shipped with the product. The key.p12 default keystore and the

trust.p12 truststore are stored in the configuration repository within the node directory. The default root

certificate is stored in the root-key.p12 in the configuration repository under the node directory.

All of the nodes put their signer certificates from the default root certificate in this common truststore

(trust.p12). Additionally, after you federate a node, the default SSL configuration is automatically modified

to point to the common truststore, which is located in the cell directory. The node can now communicate

with all other servers in the cell.

All default SSL configurations contain a keystore with the name suffix DefaultKeyStore, a truststore with

the name suffix DefaultTrustStore and a rootstore with the name suffix DefaultRootStore. These default

suffixes instruct the WebSphere Application Server runtime to add the root signer of the personal

certificate to the common truststore. If a truststore name does not end with DefaultKeyStore, the keystores

root signer certificates are not added to the common truststore when you federate the server. You can

change the default SSL configuration, but you must ensure that the correct trust is established for

administrative connections, among others.

For more information, see “Default chained certificate configuration” on page 597.

Certificate expiration monitoring

Certificate monitoring ensures that the default chained certificate for each node is not allowed to expire.

The certificate expiration monitoring function issues a warning before certificates and signers are set to

expire. Those certificates and signers that are located in keystores managed by the WebSphere

Application Server configuration can be monitored. You can configure the expiration monitor to

automatically replace a certificate. A chained certificate will be recreated based on the same data used for

the initial creation and sign it with the same root certificate that signed the original certificate. A self-signed

certificate or chained certificate is also recreated based upon the same data that is used for the initial

creation.

The monitor also can automatically replace old signers with the signers from the new chained or

self-signed certificates in keystores that are managed by WebSphere Application Server. The existing

signer exchanges that occurred by the runtime during federation and by administration are preserved. For

more information, see “Certificate expiration monitoring” on page 605.

The expiration monitor is configured to replace chained personal certificates that are signed by a root

certificate in DmgrDefaultRootStore or NodeDefaultRootStore. The certificate is renewed using the

same root certificate that was used to sign the original certificate.

Chapter 7. Securing communications 577

The monitor also can automatically replace old signers with the signers from the new self-signed

certificates in keystores that are managed by WebSphere Application Server. The existing signer

exchanges that occurred by the runtime during federation and by administration are preserved. For more

information, see “Certificate expiration monitoring” on page 605.

WebSphere Application Server clients: signer-exchange requirements

A new chained certificate is generated for each node during its initial startup. To ensure trust, clients must

be given the root signers to establish a connection. The introduction of chained certificates in the current

release makes this process simpler. Rather than exchanging the signer of a short lived self-signed

certificate, you can exchange the long lived root signer which will allow for preserved trust across personal

certificate renewals. In addition, you can gain access to the signer certificates of various nodes to which

the client must connect with any one of the following options (for more information, see “Secure installation

for client signer retrieval” on page 600):

v A signer exchange prompt enables you to import signer certificates that are not yet present in the

truststores during a connection to a server. By default, this prompt is enabled for administrative

connections and can be enabled for any client SSL configuration. When this prompt is enabled, any

connection that is made to a server where the signer is not already present offers the signer of the

server along with the certificate information and a Secure Hash Algorithm (SHA) digest of the certificate

for verification. The user is given a choice whether to accept these credentials. If the credentials are

accepted, the signer is added to the truststore of the client until the signer is explicitly removed. The

signer exchange prompt does not occur again when connecting to the same server unless the personal

certificate changes.

Note: It is unsafe to trust a signer exchange prompt without verifying the SHA digest. An unverified

prompt can originate from a browser when a certificate is not trusted.

v You can run a retrieveSigners administrative script from a client prior to making connections to servers.

To download signers, no administrative authority is required. To upload signers, you must have

Administrator role authority. The script downloads all of the signers from a specified server truststore

into the specified client truststore and can be called to download only a specific alias from a truststore.

You can also call the script to upload signers to server truststores. When you select the

CellDefaultTrustStore truststore as the specified server truststore and common truststore for a cell, all of

the signers for that cell are downloaded to the specified client truststore, which is typically

ClientDefaultTrustStore. For more information, see “retrieveSigners command” on page 603.

v You can physically distribute to clients the trust.p12 common truststore that is located in the cell

directory of the configuration repository. When doing this distribution, however, you must ensure that the

correct password has been specified in the ssl.client.props client SSL configuration file. The default

password for this truststore is WebAS. Change the default password prior to distribution. Physical

distribution is not as effective as the previous options. When changes are made to the personal

certificates on the server, automated exchange can fail.

Dynamic SSL configuration changes

The SSL runtime for WebSphere Application Server maintains listeners for most SSL connections. A

change to the SSL configuration causes the inbound connection listeners to create a new SSLContext

object. Existing connections continue to use the current SSLContext object. Outbound connections

automatically use the new configuration properties when they are attempted.

Make dynamic changes to the SSL configuration during off-peak hours to reduce the possibility of

timing-related problems and to prevent the possibility of the server starting again. If you enable the runtime

to accept dynamic changes, then change the SSL configuration and save the security.xml file. Your

changes take effect when the new security.xml file reaches each node.

Note: If configuration changes cause SSL handshake failures, administrative connectivity failures also can

occur, which can lead to outages. In this case, you must re-configure the SSL connections then

578 Securing applications and their environment

perform manual node synchronization to correct the problem. You must carefully complete any

dynamic changes. It is highly recommended that you perform changes to SSL configurations on a

test environment prior to making the same changes to a production system. For more information,

see “Dynamic configuration updates” on page 607.

Built-in certificate management

Certificate management that is comparable to iKeyMan functionality is now integrated into the keystore

management panels of the administrative console. Use built-in certificate management to manage personal

certificates, certificate requests, and signer certificates that are located in keystores. Additionally, you can

remotely manage keystores. For example, you can manage a file-based keystore that is located outside

the configuration repository on any node from the deployment manager. You also can remotely manage

hardware cryptographic keystores from the deployment manager.

With built-in certificate management, you can replace a chained or self-signed certificate along with all of

the signer certificates scattered across many truststores and retrieve a signer from a remote port by

connecting to the remote SSL host and port and intercepting the signer during the handshake. The

certificate is first validated according to the certificate SHA digest, then the administrator must accept the

validated certificate before it can be placed into a truststore.

When you make a certificate request, you can send it to a certificate authority (CA). When the certificate is

returned, you can accept it within the administrative console. For more information, see “Certificate

management” on page 609.

Note: Although iKeyMan functionality still ships with WebSphere Application Server, configure keystores

from the administrative console using the built-in certificate management functionality. iKeyMan is

still an option when it is not convenient to use the administrative console. For more information, see

csec_sslikeymancertman.dita.

AdminTask configuration management

The SSL configuration management panels in the administrative console rely primarily on administrative

tasks, which are maintained and enhanced to support the administrative console function. You can use

wsadmin commands from a Java console prompt to automate the management of keystores, SSL

configurations, certificates, and so on.

Secure Sockets Layer configurations

Secure Sockets Layer (SSL) configurations contain attributes that enable you to control the behavior of

both the client and the server SSL endpoints. You can assign SSL configurations to have specific

management scopes. The scope that an SSL configuration inherits depends upon whether you create it

using a cell, node, server, or endpoint link in the configuration topology.

When you create an SSL configuration, you can set the following SSL connection attributes:

v Keystore

v Default client certificate for outbound connections

v Default server certificate for inbound connections

v Truststore

v Key manager for selecting a certificate

v Trust manager or managers for establishing trust during the handshake

v Handshaking protocol

v Ciphers for negotiating the handshake

v Client authentication support and requirements

Chapter 7. Securing communications 579

csec_sslikeymancertman.dita

You can manage an SSL configuration using any of the following methods:

v Central management selection

v Direct reference selection

v Dynamic outbound connection selection

v Programmatic selection

Using the administrative console, you can manage all of the SSL configurations for WebSphere Application

Server. From the administrative console, click Security > SSL certificates and key management >

Manage endpoint security configurations > Inbound | Outbound > SSL_configuration. You can view

an SSL configuration at the level it was created and in the inherited scope below that point in the topology.

If you want the entire cell to view an SSL configuration, you must create the configuration at the cell level

in the topology.

SSL configuration in the security.xml file

The attributes defining an SSL configuration repertoire entry for a specific management scope are stored

in the security.xml file. The scope determines the point at which other levels in the cell topology can see

the configuration, as shown in the following example:

<repertoire xmi:id="SSLConfig_1" alias="NodeDefaultSSLSettings"

managementScope="ManagementScope_1" type="JSSE">

<setting xmi:id="SecureSocketLayer_1" clientAuthentication="false"

clientAuthenticationSupported="false" securityLevel="HIGH" enabledCiphers=""

jsseProvider="IBMJSSE2" sslProtocol="SSL_TLS" keyStore="KeyStore_1"

trustStore="KeyStore_2" trustManager="TrustManager_1" keyManager="KeyManager_1"

clientKeyAlias="default" serverKeyAlias="default"/>

</repertoire>

The SSL configuration attributes from the previous code sample are described in Table 1.

 Table 21. security.xml Attributes

security.xml attribute Description Default Associated SSL property

xmi:id The xml:id attribute represents

the unique identifier for this XML

entry and determines how the

SSL configuration is linked to

other XML objects, such as

SSLConfigGroup. This

system-defined value must be

unique.

The administrative

configuration service

defines the default

value.

None. This value is used only for XML

associations.

alias The alias attribute defines the

name of the SSL configuration.

Direct selection uses the alias

attribute and the node is not

prefixed to the alias. Rather, the

management scope takes care

of ensuring that the name is

unique within the scope.

com.ibm.ssl.alias

managementScope The managementScope attribute

defines the management scope

for the SSL configuration and

determines the visibility of the

SSL configuration at runtime.

The managementScope attribute is not

mapped to an SSL property. However, it

confirms whether or not the SSL configuration

is associated with a process.

type The type attribute defines the

Java Secure Socket Extension

(JSSE) or System Secure

Sockets Layer (SSSL)

configuration option. JSSE is the

SSL configuration type for most

secure communications within

WebSphere Application Server.

The default is JSSE. com.ibm.ssl.sslType

580 Securing applications and their environment

Table 21. security.xml Attributes (continued)

security.xml attribute Description Default Associated SSL property

clientAuthentication The clientAuthentication attribute

determines whether SSL client

authentication is required.

The default is false. com.ibm.ssl.clientAuthentication

clientAuthenticationSupported The

clientAuthenticationSupported

attribute determines whether

SSL client authentication is

supported. The client does not

have to supply a client

certificate if it does not have a

client certificate.

Note: When you set the

clientAuthentication attribute to

true, you override the value that

is set for the

clientAuthenticationSupported

attribute.

The default is false. com.ibm.ssl.client.AuthenticationSupported

securityLevel The securityLevel attribute

determines the cipher suite

group. Valid values include

HIGH (128-bit ciphers),

MEDIUM (40-bit ciphers), LOW

(for all ciphers without

encryption), and CUSTOM (if

the cipher suite group is

customized. When you set the

enabledCiphers attribute with a

specific list of ciphers, the

system ignores this attribute.

The default is HIGH. com.ibm.ssl.securityLevel

enabledCiphers You can set the enabledCiphers

attribute to specify a unique list

of cipher suites. Separate each

cipher suite in the list with a

space.

The default is the

securityLevel

attribute for cipher

suite selection.

com.ibm.ssl.enabledCipherSuites

jsseProvider The jsseProvider attribute

defines a specific JSSE

provider.

The default is

IBMJSSE2.

com.ibm.ssl.contextProvider

sslProtocol The sslProtocol attribute defines

the SSL handshake protocol.

Valid options include: SSLv2

(client-side only), SSLv3, SSL,

SSL_TLS, TLSv1, and TLS

values. The SSL option includes

SSLv2 and SSLv3 values. The

TLS option includes the TLSv1

value. SSL_TLS, which is the

most interoperable protocol,

includes all these values and

defaults to a Transport Layer

Security (TLS) handshake.

The default is

SSL_TLS.

com.ibm.ssl.protocol

keyStore The keyStore attribute defines

the keystore and attributes of

the keyStore instance that the

SSL configuration uses for key

selection.

For more information, see Keystore

configurations.

trustStore The trustStore attribute defines

the key store that the SSL

configuration uses for certificate

signing verification.

A trustStore is a logical JSSE term. It

signifies a key store that contains signer

certificates. Signer certificates validate

certificates that are sent to WebSphere

Application Server during an SSL handshake.

Chapter 7. Securing communications 581

csec_sslkeystoreconfs.dita
csec_sslkeystoreconfs.dita

Table 21. security.xml Attributes (continued)

security.xml attribute Description Default Associated SSL property

keyManager The keyManager attribute

defines the key manager that

WebSphere Application Server

uses to select keys from a key

store. A JSSE key manager

controls the

javax.net.ssl.X509KeyManager

interface. A custom key

manager controls the

javax.net.ssl.X509KeyManager

and the

com.ibm.wsspi.ssl.KeyManagerExtendedInfo

interfaces. The

com.ibm.wsspi.ssl.KeyManagerExtendedInfo

interface provides more

information from WebSphere

Application Server.

The default is

IbmX509.

com.ibm.ssl.keyManager defines a

well-known key manager and accepts the

algorithm and algorithm|provider formats, for

example IbmX509 and IbmX509|IBMJSSE2.

com.ibm.ssl.customKeyManager defines a

custom key manager and takes precedence

over the other keyManager properties. This

class must implement

javax.net.ssl.X509KeyManager and can

implement

com.ibm.wsspi.ssl.KeyManagerExtendedInfo.

For more information, see

csec_sslx509certIDkeyman.dita

trustManager The trustManager determines

which trust manager or list of

trust managers to use for

determining whether to trust the

peer side of the connection. A

JSSE trust manager implements

the

javax.net.ssl.X509TrustManager

interface. A custom trust

manager might also implement

com.ibm.wsspi.ssl.TrustManagerExtendedInfo

interface to get more information

from the WebSphere Application

Server environment.

The default is

IbmX509. You can

specify the IbmPKIX

trust manager for

certificate revocation

list (CRL) verification

when the certificate

contains a CRL

distribution point.

com.ibm.ssl.trustManager defines a

well-known trust manager, which is required

for most handshake situations.

com.ibm.ssl.trustManager performs certificate

expiration checking and signature validation.

You can define

com.ibm.ssl.customTrustManagers with

additional custom trust managers that are

called during an SSL handshake. Separate

additional trust managers with the vertical bar

(|) character. For more information, see

csec_sslx509certtrustdecisions.dita

Client SSL configurations are managed using the ssl.client.props properties file. The ssl.client.props

file is located in the ${USER_INSTALL_ROOT}/properties directory for each profile. For more information

about configuring this file, see the “ssl.client.props client configuration file” on page 651.

Trust manager control of X.509 certificate trust decisions

The role of the trust manager is to validate the Secure Sockets Layer (SSL) certificate that is sent by the

peer, which includes verifying the signature and checking the expiration date of the certificate. A Java

Secure Socket Extension (JSSE) trust manager determines if the remote peer can be trusted during an

SSL handshake.

WebSphere Application Server has the ability to call multiple trust managers during an SSL connection.

The default trust manager does the standard certificate validation; custom trust manager plug-ins run

customized validation such as host name verification. For more information, see “Example: Developing a

custom trust manager for custom SSL trust decisions” on page 632

When a trust manager is configured in a server-side SSL configuration, the server calls the isClientTrusted

method. When a trust manager is configured in a client-side SSL configuration, the client calls the

isServerTrusted method. The peer certificate chain is passed to these methods. If the trust manager

chooses not to trust the peer information, it might produce an exception to force a handshake failure.

Optionally, WebSphere Application Server provides the com.ibm.wsspi.ssl.TrustManagerExtendedInfo

interface so that additional information can be passed to the trust manager. For more information, see the

com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface.

582 Securing applications and their environment

csec_sslx509certIDkeyman.dita
csec_sslx509certtrustdecisions.dita

Default IbmX509 trust manager

The default IbmX509 trust manager, which is used in the following code sample, establishes trust by

performing standard certificate validation.

<trustManagers xmi:id="TrustManager_1132357815717" name="IbmX509" provider="IBMJSSE2"

algorithm="IbmX509" managementScope="ManagementScope_1132357815717"/>

The trust manager provides a signer certificate to verify the peer certificate that is sent during the

handshake. The signers who are added to the truststore for the SSL configuration must be trustworthy. If

you do not trust the signers or do not want to allow others to connect to your servers, consider removing

default root certificates from certificate authorities (CA). You might also remove any certificates if you

cannot verify their origination.

Default IbmPKIX trust manager

You can use the default IbmPKIX trust manager to replace the IbmX509 trust manager, which is shown in

the following code sample:

<trustManagers xmi:id="TrustManager_1132357815719" name="IbmPKIX" provider="IBMJSSE2"

algorithm="IbmPKIX" trustManagerClass="" managementScope="ManagementScope_1132357815717">

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1132357815717"

name="com.ibm.security.enableCRLDP" value="true" type="boolean"/>

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1132357815718"

name="com.ibm.jsse2.checkRevocation" value="true" type="boolean"/>

 </trustManagers>

<trustManagers xmi:id="TrustManager_managementNode_2" name="IbmPKIX" provider=

"IBMJSSE2" algorithm="IbmPKIX" trustManagerClass=""

managementScope="ManagementScope_managementNode_1">

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1" name="com.ibm.se

curity.enableCRLDP" value="false" type="boolean" displayNameKey="" nlsRangeKey="

" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_2" name="com.ibm.js

se2.checkRevocation" value="false" type="boolean" displayNameKey="" nlsRangeKey=

"" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_3" name="ocsp.enabl

e" value="false" type="String" displayNameKey="" nlsRangeKey="" hoverHelpKey=""

range="" inclusive="false" firstClass="false"/>

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_4" name="ocsp.respo

nderURL" value="http://ocsp.example.net:80" type="String" displayNameKey=""

nlsRangeKey="" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_5" name="ocsp.respo

nderCertSubjectName" value="" type="String" displayNameKey="" nlsRangeKey="" hov

erHelpKey="" range="" inclusive="false" firstClass="false"/>

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_6" name="ocsp.respo

nderCertIssuerName" value="" type="String" displayNameKey="" nlsRangeKey="" hove

rHelpKey="" range="" inclusive="false" firstClass="false"/>

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_7" name="ocsp.respo

nderCertSerialNumber" value="" type="String" displayNameKey="" nlsRangeKey="" ho

verHelpKey="" range="" inclusive="false" firstClass="false"/>

</trustManagers>

See “Example: Enabling certificate revocation checking with the default IbmPKIX trust manager” on page

585 for additional information in using the default IbmPKIX trust manager.

In addition to its role of standard certificate verification, the IbmPKIX trust manager checks for OCSP

properties and for certificates that contain certificate revocation list (CRL) distribution points. This process

is known as extended CRL checking. When you select a trust manager, its associated properties are

automatically set as Java System properties so that the IBMCertPath and IBMJSSE2 providers are aware

that CRL checking is enabled.

Chapter 7. Securing communications 583

Custom trust manager

You can define a custom trust manager to perform additional trust checking, which is based upon the

needs of the environment. For example, in one environment, you might enable connections from the same

Transmission Control Protocol (TCP) subnet only. The com.ibm.wsspi.ssl.TrustManagerExtendedInfo

interface provides extended information about the connection that is not provided by the standard Java

Secure Sockets Extension (JSSE) javax.net.ssl.X509TrustManager interface. The configured

trustManagerClass attribute determines which class is instantiated by the runtime, as shown in the

following code sample:

<trustManagers xmi:id="TrustManager_1132357815718" name="CustomTrustManager"

trustManagerClass="com.ibm.ws.ssl.core.CustomTrustManager"

managementScope="ManagementScope_1132357815717"/>

The trustManagerClass attribute must implement the javax.net.ssl.X509TrustManager interface and,

optionally, can implement the com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface.

Disabling the default trust manager

In some cases, you might not want to perform the standard certificate verification that is provided by the

IbmX509 and IbmPKIX default trust managers. For example, you might be working with an internal

automated test infrastructure that is not concerned with SSL client or server authentication, integrity, or

confidentiality. The following sample code shows a basic custom trust manager such as

com.ibm.ws.ssl.core.CustomTrustManager whose property is set to true.

com.ibm.ssl.skipDefaultTrustManagerWhenCustomDefined=true

You can set this property in the global properties at the top of the ssl.client.props file for clients or in the

security.xml custom properties file for servers. You must configure a custom trust manager when you

disable the default trust manager to prevent the server from calling the default trust manager even though

it is configured. Disabling the default trust manager is not a common practice. Be sure to test the system

with the disabled default trust manager in a test environment first. For more information on setting up a

custom trust manager, see “Creating a custom trust manager configuration” on page 628

Key manager control of X.509 certificate identities

The role of a Java Secure Socket Extension (JSSE) key manager is to retrieve the certificate that is used

to identify the client or server during a Secure Sockets Layer (SSL) handshake.

WebSphere Application Server provides a default key manager that can select a certificate from a keystore

when you define the following SSL configuration properties:

com.ibm.ssl.keyStoreClientAlias

Defines the alias that is chosen from the keystore for the client side of a connection. This alias

must be present in the keystore.

com.ibm.ssl.keyStoreServerAlias

Defines the alias that is chosen from the keystore for the server side of a connection. This alias

must be present in the keystore.

These two properties are set automatically when you use the administrative console because the default

key manager is already configured.

With WebSphere Application Server, you can configure only one key manager at a time for a given SSL

configuration. If you want custom certificate selection logic on the client side, you must write a new custom

key manager. The custom key manager could provide function that prompts the user to choose a

certificate dynamically. Also, you can implement an extended interface so that a key manager can provide

information during connection time. For more information on the extended interface, see the

com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface. For more information on custom key manager

development, see rsec_ssldevcustomkeymgr.dita.

584 Securing applications and their environment

rsec_ssldevcustomkeymgr.dita

Default IbmX509 key manager

The default IbmX509 key manager chooses a certificate to serve as the identity for an SSL handshake.

The key manager is called to enable client authentication on either side of the SSL handshake; frequently

on the server-side, and less frequently on the client side according to client and server requirements. If a

keystore is not configured on the client-side and SSL client authentication is enabled, the key manager

cannot select a certificate to send to the server. Therefore, the handshake fails.

The following sample code shows the key manager configuration in the security.xml file for an IbmX509

key manager.

<keyManagers xmi:id="KeyManager_1" name="IbmX509"

provider="IBMJSSE2" algorithm="IbmX509" keyManagerClass=""

managementScope="ManagementScope_1"/>

You do not specify the keyManagerClass class because the key manager is provided by the IBMJSSE2

provider. However, you can specify whether the key manager is a custom class implementation, in which

case you must specify the keyManager class, or an algorithm name that WebSphere Application Server

can start from the Java security provider framework.

Custom key manager

The following sample code shows the key manager configuration in the security.xml file for a custom

class.

<keyManagers xmi:id="KeyManager_2" name="CustomKeyManager"

keyManagerClass="com.ibm.ws.ssl.core.CustomKeyManager"

managementScope="ManagementScope_1"/>

The custom class must implement the javax.net.ssl.X509KeyManager interface and, optionally, implement

the com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface to retrieve additional WebSphere Application

Server information. This interface replaces the function of the default key manager because you can

configure only one key manager at a time. Therefore, the custom key manager has sole responsibility for

selecting the alias to use from the configured keystore. The benefit of a custom key manager is its ability,

on the client side, to prompt for an alias. This process enables the user to decide which certificate to use

in situations where the user knows the client certificate identity. For more information, see

tsec_sslcreatecuskeymgr.dita.

Example: Enabling certificate revocation checking with the default IbmPKIX trust

manager

The IbmPKIX trust manager is enabled in the WebSphere Application Server by default. The IbmPKIX trust

manager allows certificate revocation checking to occur. You enable certificate revocation checking by

using the administrative console or by manually updating the ssl.client.props file.

The default IbmPKIX trust manager

The IbmPKIX trust manager is enabled by default, but revocation checking is not enabled by default. The

following trust manager definition for IbmPKIX reflects the default condition:

<trustManagers xmi:id="TrustManager_managementNode_2" name="IbmPKIX" provider=

"IBMJSSE2" algorithm="IbmPKIX" trustManagerClass=""

managementScope="ManagementScope_managementNode_1">

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1" name="com.ibm.se

curity.enableCRLDP" value="false" type="boolean" displayNameKey="" nlsRangeKey="

" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_2" name="com.ibm.js

se2.checkRevocation" value="false" type="boolean" displayNameKey="" nlsRangeKey=

"" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_3" name="ocsp.enabl

e" value="false" type="String" displayNameKey="" nlsRangeKey="" hoverHelpKey=""

range="" inclusive="false" firstClass="false"/>

Chapter 7. Securing communications 585

tsec_sslcreatecuskeymgr.dita

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_4" name="ocsp.respo

nderURL" value="http://ocsp.example.net:80" type="String" displayNameKey=""

nlsRangeKey="" hoverHelpKey="" range="" inclusive="false" firstClass="false"/>

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_5" name="ocsp.respo

nderCertSubjectName" value="" type="String" displayNameKey="" nlsRangeKey="" hov

erHelpKey="" range="" inclusive="false" firstClass="false"/>

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_6" name="ocsp.respo

nderCertIssuerName" value="" type="String" displayNameKey="" nlsRangeKey="" hove

rHelpKey="" range="" inclusive="false" firstClass="false"/>

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_7" name="ocsp.respo

nderCertSerialNumber" value="" type="String" displayNameKey="" nlsRangeKey="" ho

verHelpKey="" range="" inclusive="false" firstClass="false"/>

</trustManagers>

Enabling certificate revocation checking with the default IbmPKIX trust manager

You can view and change IbmPKIX Trust Manager Custom Properties using the administrative console.

To do this,

v Click Security > SSL certificate and key management.

v Under Related Items, click Trust managers.

v Click IbmPKIX.

v Under Additional Properties, click Custom properties.

IbmPKIX custom properties

com.ibm.jsse2.checkRevocation

This property configures revocation checking for the Java Virtual Machine (JVM). This property is

set to false by default because the default WebSphere certificates used for SSL communication do

not contain certificate revocation list (CRL) distribution points or Online Certificate Status Protocol

(OCSP) information.

default

false

com.ibm.security.enableCRLDP

This property configures CRL distribution point checking for the PKIX trust manager.

Note: If you enable CRL distribution point revocation checking, the certificates used for secure

sockets layer (SSL) must contain a valid distribution point and the distribution point must be

accessible or else SSL communication will fail and the server will not function correctly.

default

false

For certificates that do not contain an internal CRL distribution point, the following properties can used so

the revocation status will be checked against a remote LDAP server containing the CRL.

com.ibm.security.ldap.certstore.host

This property specifies the LDAP server host name containing trusted certificates or certificate

revocation lists. The target LDAP server host is used to obtain CA certificates or certificate

revocation lists when validating a certificate and the local truststore does not contain the required

certificate. The local truststore must contain the required certificates if an LDAP server is not

specified. In cases when an LDAP server is used, the root CA certificates must also be located in

the local truststore as the LDAP server is not a trusted certificate store.

Note: Enabling this property in addition to the com.ibm.jsse2.checkRevocation property enables

revocation checking. The remote LDAP server must contain a valid certificate revocation list

and the server must be accessible. If the revocation status cannot be determined then the

check will fail and SSL communication will fail and the server will not function correctly.

586 Securing applications and their environment

default

none

com.ibm.security.ldap.certstore.port

This property specifies the LDAP server port. A port value of 389 will be used by default if no

LDAP server port is specified.

default

389

The following Java Development Kit (JDK) properties apply to enabling certificate revocation checking with

the default IbmPKIX trust manager:

v ocsp.enable

v ocsp.responder

v ocsp.responderCertSubjectName

v ocsp.responderCertIssuerName

v ocsp.responderCertSerialNumber

These JDK properties can be set using the administrative console. You should reference Java(TM)

Certification Path API Programmer’s Guide - SDK 6.0 for descriptions of these properties and their

allowable settings.

Note: In addition to its role of standard certificate verification, the IbmPKIX trust manager checks for

certificates that contain CRL distribution points. This process is known as extended CRL checking.

By default, CRL distribution point revocation checking is disabled. To enable CRL distribution point

revocation checking, you must set the following properties to true using the administrative console:

v com.ibm.security.enableCRLDP

v com.ibm.jsse2.checkRevocation

OCSP properties and CRL properties affect certificate revocation checking. By default OCSP

properties are checked first. If there is an error validating the certificate with OCSP, then validation

uses a CRL distribution point instead.

When you select a trust manager, its associated properties are automatically set as Java system

properties so that the IBMCertPath and IBMJSSE2 providers are aware that CRL checking is

enabled or disabled. Similarly, the same applies for OCSP properties, which are

java.security.Security properties.

Client considerations

You can also enable revocation checking for WebSphere application and administrative clients by directly

setting the properties in the ssl.client.props file. An example of the ssl.client.props file follows:

#---

Default Revocation Checking Properties

These properties are used for certificate revocation checking with the IBM

PKIX TrustManager.

To enable CRL Distribution Points extension checking, use the system property

com.ibm.security.enableCRLDP.

OCSP checking is not enabled by default. It is enabled by setting the

ocsp.enable property to "true". Use of the other ocsp properties is optional.

Note: Both OCSP and CRLDP checking is only effective if revocation checking

has also been enabled by setting com.ibm.jsse2.checkRevocation to "true".

#---

com.ibm.jsse2.checkRevocation=false

Chapter 7. Securing communications 587

http://www.ibm.com/developerworks/java/jdk/security/60/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/certpathDocs/API_users_guide.html

com.ibm.security.enableCRLDP=false

#ocsp.enable=true

#ocsp.responderURL=http://ocsp.example.net

#ocsp.responderCertSubjectName=CN=OCSP Responder, O=XYZ Corp

#ocsp.responderCertIssuerName=CN=Enterprise CA, O=XYZ Corp

#ocsp.responderCertSerialNumber=2A:FF:00

Note: In order for these properties to be effective, you must ensure that the IbmPKIX trust manager is

initialized by setting com.ibm.ssl.trustManager=IbmPKIX.

In addition, for revocation checking to be processed successfully on the client, you are required to turn off

the signer exchange prompt. To do this, change the value of the

com.ibm.ssl.enableSignerExchangePrompt property to false, in the ssl.client.props file.

For more information on these properties, see Java(TM) Certification Path API Programmer’s Guide - SDK

6.0.

Keystore configurations

Use keystore configurations to define how the runtime for WebSphere Application Server loads and

manages keystore types for Secure Sockets Layer (SSL) configurations.

By default, the java.security.Security.getAlgorithms(″KeyStore″) attribute does not display a predefined list

of keystore types in the administrative console. Instead, WebSphere Application Server retrieves all of the

KeyStore types that can be referenced by the java.security.KeyStore object, including hardware

cryptographic, z/OS platform, i5/OS platform, IBM Java Cryptography Extension (IBMJCE), and

Java-based content management system (CMS)-provider keystores. If you specify a keystore provider in

the java.security file or add it to the provider list programmatically, WebSphere Application Sever also

retrieves custom keystores. The retrieval list depends upon the java.security configuration for that platform

and process.

IBMJCE file-based keystores (JCEKS, JKS, and PKCS12)

A typical IBMJCE file-based keystore configuration is shown in the following sample code:

<keyStores xmi:id="KeyStore_1" name="NodeDefaultKeyStore"

password="{xor}349dkckdd=" provider="IBMJCE"

location="${USER_INSTALL_ROOT}/config/cells/myhostNode01Cell

/nodes/myhostNode01/key.p12" type="PKCS12" fileBased="true"

hostList="" initializeAtStartup="true" readOnly="false"

description="Default key store for myhostNode01" usage="SSLKeys"

managementScope="ManagementScope_1"/>

For more information about default keystore configurations, see “Default chained certificate configuration”

on page 597.

Table 1 describes the attributes that are used in the sample code.

 Table 22. keystore configurations

Attribute name Default Description

xmi:id Varies A value that issued to reference the keystore from

another area in the configuration, for example, from

an SSL configuration. Make this value unique within

the security.xml file.

name For Java Secure Socket Extension

(JSSE) keystore:

NodeDefaultKeyStore. For JSSE

truststore: NodeDefaultTrustStore.

A name that is used to identify the keystore by sight.

The name can determine if the keystore is a default

keystore based upon whether the name ends with

DefaultKeyStore or DefaultTrustStore.

588 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/60/secguides/certpathDocs/API_users_guide.html
http://www.ibm.com/developerworks/java/jdk/security/60/secguides/certpathDocs/API_users_guide.html

Table 22. keystore configurations (continued)

Attribute name Default Description

password The default keystore password is

WebAS. It is recommended that this be

changed as soon as possible. See

“Updating default key store

passwords using scripting” on page

935 for more information.

The password that is used to access the keystore

name is also the default that is used to store keys

within the keystore.

description No default A description of the keystore.

usage An attribute specifying what the

keystore is used for.

Valid values are: SSLKeys, KeySetKeys, RootKeys,

DeletedKeys, DefaultSigners, RSATokenKeys.

provider The default provider is IBMJCE. The Java provider that implements the type attribute

(for example, PKCS12 type). The provider can be left

unspecified and the first provider that implements the

keystore type specified is used.

location The default varies, but typically

references a key.p12 file or a

trust.p12 file in the node or cell

directories of the configuration

repository. These files are PKCS12

type keystores.

The keystore location reference. If the keystore is

file-based, the location can reference any path in the

file system of the node where the keystore is located.

However, if the location is outside of the configuration

repository, and you want to manage the keystore

remotely from the administrative console or from the

wsadamin utility, then specify the hostList attribute

that contains the host name of the node where it

resides.

type The default Java crypto device

keystore type is PKCS12.

This type specifies the keystore. Valid types can be

those returned by the

java.security.Security.getAlgorithms(″KeyStore″)

attribute. These types include the following keystore

types, and availability depends on the process and

platform java.security configuration:

v JKS

v JCEKS

v PKCS12

v PKCS11 (Java crypto device)

v CMSKS

v IBMi5OSKeyStore

v JCERACFKS

v JCECCAKS keystores (replacing JCE4758KS) -

(z/OS crypto device)

fileBased The default is true. This option is required for default keystores. It

indicates a file-system keystore so you can use a

FileInputStream or FileOutputStream for loading and

storing the keystore.

hostList The hostList attribute is used to

specify a remote hostname so that

the keystore can be remotely

managed. There are no remotely

managed keystores by default. All

default keystores are managed locally

in the configuration repository and

synchronized out to each of the

nodes.

The option manages a keystore remotely. You can set

the host name of a valid node for a keystore. When

you use either the administrative console or the

wsadmin utility to manage certificates for this

keystore, an MBean call is made to the node where

the keystore exists for the approved operation. You

can specify multiple hosts, although synchronization

of the keystore operations are not guaranteed. For

example, one of the hosts that is listed might be down

when a specific operation is performed. Therefore,

use multiple hosts in this list.

Chapter 7. Securing communications 589

Table 22. keystore configurations (continued)

Attribute name Default Description

initializeAtStartup The default is true. This option informs the runtime to initialize the

keystore during startup. This option can be important

for hardware cryptographic device acceleration.

readOnly The default is false. This option informs the configuration that you cannot

write to this keystore. That is, certain update

operations on the keystore cannot be attempted and

are not allowed. An example of a read-only keystore

type is JCERACFKS on the z/OS platform. This type

is read-only from the WebSphere certificate

management standpoint, but you can also update it

using the keystore management facility for RACF®.

managementScope The default scope is the node scope

for a base Application Server

environment and the cell scope for a

Network Deployment environment.

This option references a particular management

scope in which you can see this keystore. For

example, if a hardware cryptographic device is

physically located on a specific node, then create the

keystore from a link to that node in the topology view

under Security > Security Communications > SSL

configurations. You can also use management

scope to isolate a keystore reference. In some cases,

you might need to allow only a specific application

server to reference the keystore; the management

scope is for that specific server.

CMS keystores

You can set some provider-specific attributes in CMS keystores.

When you create a CMS keystore, the CMS provider is IBMi5OSJSSEProvider, and the CMS type is

IBMi5OSKeyStore, as shown in the following sample code:

<keyStores xmi:id="KeyStore_1132071489571" name="CMSKeyStore"

password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMi5OSJSSEProvider"

location="${USER_INSTALL_ROOT}\profiles\AppSrv01/config/cells/myhostCell01

/nodes/myhostNode01/servers/webserver1/plugin-key.kdb" type="IBMi5OSKeyStore"

fileBased="true" createStashFileForCMS="true"

managementScope="ManagementScope_1132071489569"/>

Note: The i5/OS keystore type IBMi5OSKeyStore does not recognize or generate .sth password stash

files. Instead it keeps an internal record of the password for the .kdb keystore file where it is

created. If the .kdb file is moved, the password is no longer associated with the keystore. In that

case, the Digital Certificate Manager (DCM) must be used to recreate the internal record of the

password for the .kdb key store file. For more information, see “Recreating the .kdb keystore

internal password record” on page 661.

Note: When you create chained personal certificates or use the requestCACertificate task with the

IBMi5OSKeyStore, the IBMi5OSJSSEProvider requires that the signer for each part of the chain be

present in the keystore prior to creation of the new certificate. Therefore, you must import the signer

into the IBMi5OSKeyStore keystore before creating the new certificate.

Hardware cryptographic keystores

For cryptographic device configuration, see “Key management for cryptographic uses” on page 697 and

“Configuring a hardware cryptographic keystore” on page 661.

590 Securing applications and their environment

You can add a slot either as the custom property, com.ibm.ssl.keyStoreSlot, or as the configuration

attribute, slot=″0″. The custom property is read before the attribute for backwards compatibility.

In certain environments, you can use the hardware cryptographic card for hardware acceleration. Either

set the useForAcceleration attribute to true or set the com.ibm.ssl.keyStoreUseForAcceleration custom

property. When you set the attribute to true, you are not required to configure a password. However, you

cannot use the device to store keys. For more information on configuring a hardware cryptographic

keystore, see Configuring hardware cryptographic keystore configurations.

Dynamic outbound selection of Secure Sockets Layer configurations

WebSphere Application Server provides dynamic outbound selection that enables you to choose a specific

Secure Sockets Layer (SSL) configuration and certificate alias for each outbound protocol, target host,

target port, or any combination of these attributes. You can specify the dynamic selection information for

outbound connections from a pure client or from a server that is acting as a client.

Before the SSL runtime for WebSphere Application Server starts an outbound connection, the runtime

attempts to match the outbound protocol, target host, and target port attributes with the dynamic outbound

selection information that is associated with an SSL configuration and certificate alias in the configuration.

The runtime caches both selection misses and selection hits, so the impact on performance can be

minimal. However, a relationship exists between the amount of dynamic outbound selection information

and its impact on the initial connection performance.

Target information during outbound connections

The dynamic outbound selection configurations are only effective when the outbound protocol uses the

JSSEHelper application programming interface (API) when you select an SSL configuration with a

specified connectionInfo hash map. This hash map must contain the following properties:

com.ibm.ssl.direction

The value for outbound connections is OUTBOUND.

com.ibm.ssl.remoteHost

The format should match what the protocol provides. Typically this is the canonical Domain Name

Space (DNS), but it also could be the IP address.

com.ibm.ssl.remotePort

The port is target port.

com.ibm.ssl.endPointName

The value for an outbound connection must be one of the following protocol strings:

v IIOP

v HTTP

v SIP

v LDAP

v ADMIN_IPC

v ADMIN_SOAP

v BUS_TO_BUS

v BUS_CLIENT

v BUS_TO_WEBSPHERE_MQ

Central management of Secure Sockets Layer configurations

By default, Secure Sockets Layer (SSL) configurations for servers are managed from a central location in

the topology view of the administrative console. You can associate an SSL configuration and certificate

Chapter 7. Securing communications 591

alias with a specific management scope. This method is the most efficient method to manipulate and

modify configurations when the server topology changes.

In prior releases, SSL configurations are managed for each process. You have to maintain individual

settings for each SSL configuration in the topology. In this release of WebSphere Application Server,

management control of your SSL configurations offers more options and additional flexibility. You are able

to make coarse-grained changes for the entire topology using the cell-scope and also make fine-grained

changes using a particular endpoint name for a specific application server process. Because the SSL

configuration associations manifest an inheritance behavior, you can simplify the number of associations

by referencing only the highest level management scope that needs a unique configuration.

The topology view provides the scoping mechanism. The SSL configuration inherits its scope, which can

be seen as its display in the topology. The scope encompasses the level where you created the

configuration and all the levels below that point. For example, when you create an SSL configuration at a

specific node, that configuration can be seen by that node agent and by every application server that is

part of that node. Any application server or node that is not part of this particular node can not see this

SSL configuration.

Your security environment influences issues such as the uniqueness of the SSL configurations, as well as

the SSL configuration and the certificate alias placement in the topology. You are also able to configure

different certificate aliases and different SSL configurations for inbound connections versus outbound

connections.

To configure the inbound and outbound topologies, which must be done separately in the administrative

console, click Security > SSL certificates and key management > Manage endpoint security

configurations > Inbound | Outbound.

Default centrally managed SSL configuration

The default management scope is the node scope. When a node is federated into a cell, the default SSL

configurations for the node are maintained, as shown in the following sample code for the sslConfigGroups

and management scopes attributes:

<sslConfigGroups xmi:id="SSLConfigGroup_1" name="myhostNode01"

direction="inbound" certificateAlias="default" sslConfig="SSLConfig_1"

managementScope="ManagementScope_1"/>

<sslConfigGroups xmi:id="SSLConfigGroup_2" name="myhostNode01"

direction="outbound" certificateAlias="default" sslConfig="SSLConfig_1"

managementScope="ManagementScope_1"/>

<managementScopes xmi:id="ManagementScope_1"

scopeName="(cell):myhostNode01Cell:(node):myhostNode01" scopeType="node"/>

The SSL configuration xmi:id ″SSLConfig_1″ is also federated and applicable:

<repertoire xmi:id="SSLConfig_1" alias="NodeDefaultSSLSettings"

managementScope="ManagementScope_1">

<setting xmi:id="SecureSocketLayer_1" clientAuthentication="true"

securityLevel="HIGH" enabledCiphers="" jsseProvider="IBMJSSE2"

sslProtocol="SSL_TLS" keyStore="KeyStore_1" trustStore="KeyStore_2"

trustManager="TrustManager_1" keyManager="KeyManager_1"/>

</repertoire>

The keystores that are associated with the SSLConfig_1 SSL configuration are also federated, and

key.p12 is located in the node directory of the configuration repository:

<keyStores xmi:id="KeyStore_1" name="NodeDefaultKeyStore"

password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMJCE"

location="${USER_INSTALL_ROOT}/config/cells/myhostNode01Cell/nodes

/myhostNode01/key.p12" type="PKCS12" fileBased="true" hostList=""

initializeAtStartup="true" managementScope="ManagementScope_1"/>

<keyStores xmi:id="KeyStore_2" name="NodeDefaultTrustStore"

592 Securing applications and their environment

password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMJCE"

location="${USER_INSTALL_ROOT}/config/cells/myhostNode01Cell

/nodes/myhostNode01/trust.p12" type="PKCS12" fileBased="true"

hostList="" initializeAtStartup="true" managementScope="ManagementScope_1"/>

Secure Sockets Layer node, application server, and cluster isolation

Secure Sockets Layer (SSL) enables you to ensure that any client that attempts to connect to a server

during the handshake first performs server authentication. Using SSL configurations at the node,

application server, and cluster scopes, you can isolate communication between severs that should not be

allowed to communicate with each other over secure ports.

Before you attempt to isolate communications controlled by WebSphere Application Server, you must have

a good understanding of the deployment topology and application environment. To isolate a node,

application server, or cluster, you must be able to control the signers that are contained in the truststores

that are associated with the SSL configuration. When the client does not contain the server signer, it

cannot establish a connection to the server. By default, WebSphere uses chained certificates and each

node has a unique root certificate signer. Because they the node shares the same root signer, all of the

server in that node can connect to each other because they share the same root signer. However, if you

use self-signed certificates, the server that created the personal certificate controls the signer, although

you do have to manage the self-signed certificates. If you obtain certificates from a certificate authority

(CA), you must obtain multiple CA signers because all of the servers can connect to each other if they

share the same signer.

Authenticating only the server-side of a connection is not adequate protection when you need to isolate a

server. Any client can obtain a signer certificate for the server and add it to its trust store. SSL client

authentication must also be enabled between servers so that the server can control its connections by

deciding which client certificates it can trust. For more information, see tsec_sslclientauthinbound.dita,

which applies as well to enabling SSL client authentication at the cell level.

Isolation also requires that you use centrally managed SSL configurations for all or most endpoints in the

cell. Centrally managed configurations can be scoped, unlike direct or end point configuration selection,

and they enable you to create SSL configurations, key stores, and trust stores at a particular scope.

Because of the inheritance hierarchy of WebSphere Application Server cells, if you select only the

properties that you need for an SSL configuration, only these properties are defined at your selected

scope or lower. For example, if you configure at the node scope, your configuration applies to the

application server and individual end point scopes below the node scope. For more information, see

tsec_sslassocconfigscope.dita, tsec_sslselconfigdirect.dita, and tsec_sslassocconfigout.dita

When you configure the key stores, which contain cryptographic keys, you must work at the same scope

at which you define the SSL configuration and not at a higher scope. For example, if you create a key

store that contains a certificate whose host name is part of the distinguished name (DN), then store that

keystore in the node directory of the configuration repository. If you decide to create a certificate for the

application server, then store that keystore on the application server in the application server directory.

When you configure the trust stores, which control trust decisions on the server, you must consider how

much you want to isolate the application servers. You cannot isolate the application servers from the node

agents or the deployment manager. However, you can configure the SOAP connector end points with the

same personal certificate or to share trust. Naming persistence requires IIOP connections when they pass

through the deployment manager. Because application servers always connect to the node agents when

the server starts, the IIOP protocol requires that WebSphere Application Server establish trust between the

application servers and the node agents.

Establishing node SSL isolation

By default, WebSphere Application Server installation uses a single chained certificate for each node so

you can isolate nodes easily. A common trust store, which is located in the cell directory of the

Chapter 7. Securing communications 593

tsec_sslclientauthinbound.dita
tsec_sslassocconfigscope.dita
tsec_sslselconfigdirect.dita
tsec_sslassocconfigout.dita

configuration repository, contains all of the signers for each node that is federated into the cell. After

federation, each cell process trusts all of the other cell processes because every SSL configuration

references the common trust store.

You can modify the default configuration so that each node has its own trust store, and every application

server on the node trusts only the node agent that uses the same personal certificate. You must also add

the signer to the node trust store so that WebSphere Application Server can establish trust with the

deployment manager. To isolate the node, ensure that the following conditions are met:

v The deployment manager must initiate connections to any process

v The node agent must initiate connections to the deployment manager and its own application servers

v The application servers must initiate connections to the applications servers on the same node, to its

own node agent, and the deployment manager

Figure 1 shows Node Agent A contains a key.p12 keystore and a trust.p12 trust store at the node level of

the configuration repository for node A.

server1

Dmgr

Node
Agent

(A)

Node
Agent

(B)

server2

server1

server2

key.p12

cell key

key.p12

nodeA key

key.p12

nodeB key
trust.p12

cell signer

nodeA signer

nodeB signer

trust.p12

nodeA signer
cell signer

trust.p12

nodeB signer
cell signer

server1

Dmgr

Node

Agent

(A)

server2

server1

server2

Figure 1: SSL Node Isolation

Node

Agent

(B)

When you associate an SSL configuration with this keystore and truststore, you break the link with the

cell-scoped trust store. To isolate the node completely, repeat this process for each node in the cell.

WebSphere Application Server SSL configurations override the cell scope and use the node scope instead

so that each process at this scope uses the SSL configuration and certificate alias that you selected at this

scope. You establish proper administrative trust by ensuring that nodeA signer is in the common trust store

and the cell signer is in the nodeA trust store. The same logic applies to node B as well. For more

information, see tsec_sslassocconfigscope.dita.

Figure 16.

594 Securing applications and their environment

tsec_sslassocconfigscope.dita

Establishing application server SSL isolation

Isolating application server processes from one another is more challenging than isolating nodes. You

must consider the following application design and topology conditions:

v An application server process might need to communicate with the node agent and deployment

manager

v Isolating application server processes from each other might disable single sign-on capabilities for

horizontal propagation

If you configure outbound SSL configurations dynamically, you can accommodate these conditions. When

you define a specific outbound protocol, target host, and port for each different SSL configuration, you can

override the scoped configuration.

Figure 2 shows how you might isolate an application server completely, although in practice this approach

would be more complicated.

 key.p12

nodeAserver1 key

server1

Dmgr

Node
Agent

(A)

Node
Agent

(B)

server2

server1

server2

key.p12

cell key

key.p12

nodeA key

key.p12

nodeB key
trust.p12

cell signer

nodeA signer

nodeB signer

trust.p12

nodeA signer

nodeAserver1 signer

nodeAserver2 signer

cell signer

trust.p12

nodeB signer

nodeBserver1 signer

nodeBserver2 signer

cell signer

key.p12

nodeAserver1 signer

nodeA signer

cell signer

key.p12

nodeAserver2key

key.p12

nodeAserver2 signer

nodeA signer

cell signer

key.p12

nodeBserver1 key

key.p12

nodeBserver1 signer

nodeB signer

cell signer

key.p12

nodeBserver2 key

key.p12

nodeBserver2 signer

nodeB signer

cell signer

server1

Dmgr

Node

Agent

(A)

server2

server1

server2

Figure 2: SSL Application Server Isolation

Node

Agent

(B)

The dynamic configuration enables server1 on Node A to communicate with server 1 on Node B only over

IIOP. The dynamic outbound rule is IIOP,nodeBhostname,*. For more information, see

tsec_sslassocconfigout.dita

Establishing cluster SSL isolation

You can configure application servers into clusters instead of scoping them centrally at the node or

dynamically at the server to establish cluster SSL isolation. While clustered servers can communicate with

each other, application servers outside of the cluster cannot communicate with the cluster, thus isolating

the clustered servers. For example, you might need to separate applications from different departments

Figure 17.

Chapter 7. Securing communications 595

tsec_sslassocconfigout.dita

while maintaining a basic level of trust among the clustered servers. Using the dynamic outbound SSL

configuration method described for servers above, you can easily extend the isolated cluster as needed.

Figure 3 shows a sample cluster configuration where cluster 1 contains a key.p12 with its own self-signed

certificate, and a trust.p12 that is located in the config/cells/<cellname>/clusters/<clustername> directory.

server1

Dmgr

Node

Agent

(A)

server2

server1

server2

Figure 3: SSL Cluster Isolation

key.p12
cell key

key.p12
nodeA key

key.p12
nodeB key

trust.p12
cell signer
nodeA signer
nodeB signer

trust.p12
nodeA signer
cluster1 signer
cluster2 signer
cell signer

trust.p12
nodeB signer
cluster1 signer
cluster2 signer
cell signer

Cluster 1

Cluster 2

key.p12
cluster1 key

trust.p12
cluster1 key
nodeA signer
nodeB signer
cell signer

trust.p12
cluster2 key
nodeA signer
nodeB signer
cell signer

key.p12
cluster2 key

server1

Dmgr

Node

Agent

(A)

server2

server1

server2

Cluster 1

Cluster 2

Node

Agent

(B)

In the example, cluster1 might contain web applications, and cluster2 might contain EJB applications.

Considering the various protocols, you decide to enable IIOP traffic between the two clusters. Your task is

to define a dynamic outbound SSL configuration at the cluster1 scope with the following properties:

IIOP,nodeAhostname,9403|IIOP,nodeAhostname,9404|IIOP,nodeBhostname,9403|IIOP,nodeBhostname,9404

You must create another SSL configuration at the cluster1 scope that contains a new trust.p12 file with the

cluster2 signer. Consequently, outbound IIOP requests go either to nodeAhostname ports 9403 and 9404

or to nodeBhostname ports 9403 and 9404. The IIOP SSL port numbers on these two application server

processes in cluster2 identify the ports.

As you review Figure 3, notice the following features of the cluster isolation configuration:

v The trust.p12 for cluster1 contains signers that allow communications with itself (cluster1 signer),

between both node agents (nodeAsigner and nodeBsigner), and with the deployment manager (cell

signer).

v The trust.p12 for cluster2 contains signers that allow communications with itself (cluster2 signer),

between both node agents (nodeAsigner and nodeBsigner), and with the deployment manager (cell

signer).

v Node agent A and Node agent B can communicate with themselves, the deployment manager, and both

clusters.

For more information, see tsec_sslassocconfigout.dita.

Figure 18.

596 Securing applications and their environment

tsec_sslassocconfigout.dita

Although this article presents an overview of isolation methods from an SSL perspective, you must also

ensure that non-SSL ports are closed or applications require the confidentiality constraint in the

deployment descriptor. For example, you can set the CSIv2 inbound transport panel to require SSL and

disable the channel ports that are not secure from the server ports configuration.

Also, you must enable SSL client authentication for SSL to enforce the isolation requirements on both

sides of a connection. Without mutual SSL client authentication, a client can easily obtain a signer for the

server programmatically and thus bypass the goal of isolation. With SSL client authentication, the server

would require the client’s signer for the connection to succeed. For HTTP/S protocol, the client is typically

a browser, a Web Service, or a URL connection. For the IIOP/S protocol, the client is typically another

application server or a Java client. WebSphere Application Server must know the clients to determine if

SSL client authentication enablement is possible. Any applications that are available through a public

protocol must not enable SSL client authentication because the client may fail to obtain a certificate to

authenticate to the server.

Note: It is beyond the scope of this article to describe all of the factors you must consider to achieve

complete isolation.

Default chained certificate configuration

When a WebSphere Application Server process starts for the first time, the Secure Sockets Layer (SSL)

runtime initializes the default keystores and truststores that are specified in the SSL configuration.

Default keystore and truststore properties

WebSphere Application Server creates the key.p12 default keystore file and the trust.p12 default

truststore file during profile creation. A default, chained certificate is also created in the key.p12 file

at this time. The root signer, or public key, of the chained certificate is extracted from the key.p12

file and added to the trust.p12 file. If the files do not exist during process startup, they are

recreated during startup.

 You can easily identify keystore and truststore defaults because of their suffixes: DefaultKeyStore

and DefaultTrustStore. Also, in the SSL configuration, you must set the fileBased attribute to

true so that the runtime only uses the default keystores and truststore.

On a base application server, default key and truststores are stored in the node directory of the

configuration repository. For example, the default key.p12 and trust.p12 stores are created with

the AppSrv01 profile name, the myhostNode01Cell name, and the myhostNode01 node name. The

key and truststores are located in the following directories:

C:\WebSphere\AppServer\profiles\AppSrv01\config\cells\myhostNode01Cell

\nodes\myhostNode01\key.p12

C:\WebSphere\AppServer\profiles\AppSrv01\config\cells\myhostNode01Cell

\nodes\myhostNode01\trust.p12

The default password is WebAS for all default keystores generated by WebSphere Application

Server. Change the default password after the initial configuration for a more secure environment.

Default chained certificate

The default self-signed certificate is created during profile creation for both the server and client for

that profile.

 You can recreate the certificates with different information simply by deleting the *.p12 files in

/config and /etc. Change the four properties below to the values you want the certificates to

contain, then restart the processes. This causes the server certificate in /config and the client

certificate in /etc to differ.

The certificate properties below that exist in the ssl.client.props file do not exist in the server

configuration. However, you can use these values in the server configuration by adding them as

custom security properties in the administrative console. The certificate properties appear in the

Chapter 7. Securing communications 597

ssl.client.props file, but do not appear in the server configuration. But, you can modify these

values in the server configuration by adding them as custom properties in the administrative

console.

Click Security > Global security > Custom properties to change the following properties:

com.ibm.ssl.defaultCertReqAlias=default_alias

com.ibm.ssl.defaultCertReqSubjectDN=cn=${hostname},ou=myhostNode01,ou=myhostNode01Cell,o=IBM,c=US

com.ibm.ssl.defaultCertReqDays=365

com.ibm.ssl.defaultCertReqKeySize=1024

com.ibm.ssl.rootCertSubjectDN=cn=${hostname},ou=Root Certificate, ou=myhostNode01,

ou=myhostNode01Cell,o=IBM,c=US

com.ibm.ssl.rootCertValidDays=7300

com.ibm.ssl.rootCertAlias=root

com.ibm.ssl.rootCertKeySize=1024

You must then delete the default chained certificate and restart the deployment manager (DMGR),

node and all of the servers. If the default certificate does not exist, WebSphere Application Server

automatically generates a new default certificate using the properties listed above.

If a default_alias value already exists, the runtime appends _#, where the number sign (#) is a

number that increases until it is unique in the keystore. ${hostname} is a variable that is resolved

to the host name where it was originally created. The default expiration date of chained certificates

is one year from their creation date.

The runtime monitors the expiration dates of chained certificates using the certificate expiration

monitor. These chained certificates are automatically replaced along with any signer certificates

when they are within the expiration threshold, which is typically 30 days before expiration. You can

increase the default key size beyond 1024 bits only when the Java runtime environment policy

files are unrestricted (that is, not exported). For more information, see “Certificate expiration

monitoring” on page 605.

Default keystore and truststore configurations for new Base Application Server processes

The following sample code shows the default SSL configuration for a base application server.

References to the default keystores and truststores files are highlighted.

<repertoire xmi:id="SSLConfig_1" alias="NodeDefaultSSLSettings"

managementScope="ManagementScope_1">

<setting xmi:id="SecureSocketLayer_1" clientAuthentication="false"

securityLevel="HIGH" enabledCiphers="" jsseProvider="IBMJSSE2" sslProtocol="SSL_TLS"

keyStore="KeyStore_1" trustStore="KeyStore_2" trustManager="TrustManager_1"

keyManager="KeyManager_1"/>

</repertoire>

Default keystore

In the following sample code, the keystore object that represents the default keystore is similar to

the XML object.

<keyStores xmi:id="KeyStore_1" name="NodeDefaultKeyStore"

password="{xor}349dkckdd=" provider="IBMJCE" location="${WAS_INSTALL_ROOT}/config

/cells/myhostNode01Cell/nodes/myhostNode01/key.p12" type="PKCS12" fileBased="true"

hostList="" initializeAtStartup="true" managementScope="ManagementScope_1"/>

The NodeDefaultKeyStore keystore contains the personal certificate that represents the identity

of the secure endpoint. Any keystore reference can use the ${WAS_INSTALL_ROOT} variable, which

is expanded by the runtime. The PKCS12 default keystore type is in the most interoperable format,

which means that it can be imported into most browsers. The myhostNode01Cell password is

encoded. The management scope determines which server runtime loads the keystore

configuration into memory, as shown in the following code sample:

<managementScopes xmi:id="ManagementScope_1" scopeName="

(cell):myhostNode01Cell:(node):myhostNode01" scopeType="node"/>

Any configuration objects that are stored in the security.xml file whose management scopes are

outside the current process scope are not loaded in the current process. Instead, the management

598 Securing applications and their environment

scope is loaded by servers that are contained within the myhostNode01 node. Any application

server that is on the specific node can view the keystore configuration.

When you list the contents of the key.p12 file to show the chained certificate, note that the

common name (CN) of the distinguished name (DN) is the host name of the resident machine.

This listing enables you to verify the host name by its URL connections. Additionally, you can verify

the host name from a custom trust manager. For more information, see “Trust manager control of

X.509 certificate trust decisions” on page 582.

Contents of default keystore

The following sample code shows the contents of the default key.p12 file in a keytool list:

keytool -list -v -keystore c:\WebSphere\AppServer\profile\AppSrv01\profiles\config

\cells\myhostNode01Cell\nodes\myhostNode01\key.p12 -storetype PKCS12 -storepass *****

Keystore type: PKCS12

Keystore provider: IBMJCE

Your keystore contains 1 entry

Alias name: default

Creation date: Dec 31, 1969

Entry type: keyEntry

Certificate chain length: 2

Certificate[1]:

Owner: CN=myhost.austin.ibm.com, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US

Issuer: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US

Serial number: 4e48f29aafea6

Valid from: 2/7/08 1:03 PM until: 2/6/09 1:03 PM

Certificate fingerprints:

 MD5: DB:FE:65:DB:40:13:F4:48:A4:CE:2F:4F:60:A5:FF:2C

 SHA1: A1:D4:DD:4B:DE:7B:45:F7:4D:AA:6A:FC:92:38:78:53:7A:99:F1:DC

Certificate[2]:

Owner: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US

Issuer: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US

Serial number: 4e48e5fd4eae3

Valid from: 2/7/08 1:03 PM until: 2/2/28 1:03 PM

Certificate fingerprints:

 MD5: A5:9B:05:78:CF:AB:89:94:C9:2E:F1:87:34:B3:FC:75

 SHA1: 43:74:B6:C7:FA:C1:0F:19:F2:51:2B:17:60:0D:34:93:55:BF:D5:D2

The default alias name and the keyEntry entry type indicate that the private key is stored with the

public key, which represents a complete personal certificate. The certificate is owned by

CN=myhost.austin.ibm.com, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US

and it is issued by the default root certificate, which is owned by

CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US

By default, the certificate is valid for one year from the date of creation.

Additionally, in some signer-exchange situations, the certificate fingerprint ensures that the sent

certificate has not been modified. The fingerprint, which is a hash algorithm output for the

certificate, is displayed by the WebSphere Application Server runtime during an automated signer

exchange on the client side. The client fingerprint must match the fingerprint that is displayed on

the server. The runtime typically uses the SHA1 hash algorithm to generate certificate fingerprints.

Default truststore

In the following sample code, the keystore object represents the default trust.p12 truststore. The

truststore contains signer certificates that are necessary for making trust decisions:

Chapter 7. Securing communications 599

<keyStores xmi:id="KeyStore_2" name="NodeDefaultTrustStore"

password="{xor}349dkckdd=" provider="IBMJCE" location="${WAS_INSTALL_ROOT}

/config/cells/myhostNode01Cell/nodes/myhostNode01/trust.p12" type="PKCS12"

fileBased="true" hostList="" initializeAtStartup="true" managementScope="ManagementScope_1"/>

Contents of default truststore

The following sample code shows the contents of the default trust.p12 truststore in a keytool

listing. By default, for the sample chained certificate, the root certificate signer is included in the

trust store. The root signer alias name and the trustedCertEntry entry type indicate that the

certificate is the public key. The private key is not stored in this truststore. In addition, all

truststores contain the default datapower certificate.

keytool -list -v -keystore c:\WebSphere\AppServer\profile\AppSrv01\profiles\config\cells\myhostNode01Cell

\nodes\myhostNode01\trust.p12 -storetype PKCS12 -storepass *****

Keystore type: PKCS12

Keystore provider: IBMJCE

Your keystore contains 2 entries

Alias name: root

Creation date: Dec 31, 1969

Entry type: trustedCertEntry

Owner: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US

Issuer: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US

Serial number: 4e48e5fd4eae3

Valid from: 2/7/08 1:03 PM until: 2/2/28 1:03 PM

Certificate fingerprints:

 MD5: A5:9B:05:78:CF:AB:89:94:C9:2E:F1:87:34:B3:FC:75

 SHA1: 43:74:B6:C7:FA:C1:0F:19:F2:51:2B:17:60:0D:34:93:55:BF:D5:D2

Alias name: datapower

Creation date: Dec 31, 1969

Entry type: trustedCertEntry

Owner: OU=Root CA, O="DataPower Technology, Inc.", C=US

Issuer: OU=Root CA, O="DataPower Technology, Inc.", C=US

Serial number: 0

Valid from: 6/11/03 1:23 PM until: 6/6/23 1:23 PM

Certificate fingerprints:

 MD5: 18:AC:86:D1:9A:90:A2:AE:8B:28:F9:A8:75:C8:A9:DB

 SHA1: A9:BA:A4:B5:BC:26:2F:5D:2A:80:93:CA:BA:F4:31:05:F2:54:14:17

Secure installation for client signer retrieval

Each profile in the WebSphere Application Server environment contains a unique chained certificate

signed by a unique long lived root certificate that was created when the profile was created. This certificate

replaces the default self-signed certificate that ships with WebSphere Application Server version 6.1 as

well as the default dummy certificate that ships in releases prior to version 6.1. When a profile is federated

to a deployment manager, the signer for the root signing certificate is added to the common truststore for

the cell, establishing trust for all certificates signed by that root certificate.

By default, clients do not trust servers from different profiles in the WebSphere Application Server

environment. That is, they do not contain the root signer for these servers. There are some things that you

can do to assist in establishing this trust:

1. Enable the signer exchange prompt to except the signer during the connection attempt.

2. Run the retrieveSigners utility to download the signers from that system prior to making the

connection.

3. Copy the trust.p12 file from the /config/cells/<cell_name>/nodes/<node_name> directory of the

server profile to the /etc directory of the client. Update the SSL configuration to reflect the new file

600 Securing applications and their environment

name and password, if they are different. Copying the file provides the client with a trust.p12 that

contains all signers from servers in that cell. Also, you might need to perform this step for back-level

clients that are still using the DummyClientTrustFile.jks file. In this case, you might need to change

the sas.client.props or soap.client.props file to reflect the new truststore, truststore password, and

truststore type (PKCS12).

For clients to perform an in-band signer exchange, you must specify the ssl.client.props file as a

com.ibm.SSL.ConfigURL property in the SSL configuration. For managed clients, this is done

automatically. Signers are designated either as in-band during the connection or out-of-band during

runtime. You must also set the com.ibm.ssl.enableSignerExchangePrompt attribute to true.

Note: You can configure a certificate expiration monitor to replace server certificates that are about to

expire. For more information about how clients can retrieve the new signer from the configuration,

see “Certificate expiration monitoring” on page 605.

Using the signer exchange prompt to retrieve signers from a client

When the client does not already have a signer to connect to a process, you can enable the signer

exchange prompt. The signer exchange prompt displays once for each unique certificate and for each

node. After the signer for the node is added, the signer remains in the client truststore. The following

sample code shows the signer exchange prompt retrieving a signer from a client:

/QIBM/UserData/WebSphere/AppServer/V7/Express/profiles/default/bin/serverStatus -all ADMU0116I:

Tool information is being logged in file

/QIBM/UserData/WebSphere/AppServer/V7/Express/profiles/default/logs/serverStatus.log ADMU0128I:

Starting tool with the default profile ADMU0503I: Retrieving server status for all servers

ADMU0505I: Servers found in

configuration: ADMU0506I: Server name: server1

*** SSL SIGNER EXCHANGE PROMPT *** SSL signer from target host 192.168.1.5

is not found in truststore

/QIBM/UserData/WebSphere/AppServer/V7/Express/profiles/default/etc/trust.p12.

Here is the signer information

(verify the digest value matches what is displayed at the server):

Subject DN: CN=myhost.austin.ibm.com, OU=myhostNode01Cell, OU=myhostNode01,

O=IBM, C=US Issuer DN:

CN=myhost.austin.ibm.com, O=IBM, C=US

Serial number: 2510775664686266 Expires: Thu Feb 19 15:58:49 CST 2009

SHA-1 Digest: 2F:96:70:23:08:58:6F:66:CD:72:61:E3:46:8B:39:D4:AF:62:98:C3

MD5 Digest: 04:53:F8:20:A2:8A:6D:31:D0:1D:18:90:3D:58:B9:9D

Subject DN: CN=myhost.austin.ibm.com, OU=Root Certificate, OU=myhostNode01Cell,

OU=myhostNode01, O=IBM, C=US Issuer DN: CN=myhost.austin.ibm.com, OU=Root

Certificate, OU=myhostNode01Cell, OU=myhostNode01, O=IBM, C=US Serial number:

2510773295548841 Expires: Tue Feb 15 15:58:46 CST 2028 SHA-1 Digest:

2F:96:70:23:08:58:6F:66:CD:72:61:E3:46:8B:39:D4:AF:62:98:C3

MD5 Digest: 04:53:F8:20:A2:8A:6D:31:D0:1D:18:90:3D:58:B9:9D

Add signer to the truststore now? (y/n) y A retry of the request may need to occur.

ADMU0508I: The Application Manager "server1" is STARTED

To automate this process, see rxml_retrievesigners.dita.

When a prompt occurs to accept the signer, a socket timeout can occur and the connection might be

broken. For this reason, the message A retry of the request may need to occur. displays after

answering the prompt. The message informs the user to resubmit the request. This problem should not

happen frequently, and it might be more prevalent for some protocols than others.

A retry of the request may need to occur if the socket times out while waiting for a prompt response. If the

retry is required, note that the prompt will not be re-displayed if (y) is entered, which indicates the signer

has already been added to the trust store.

Chapter 7. Securing communications 601

rxml_retrievesigners.dita

Verify the displayed SHA-1 digest, which is the signature of the certificate that is sent by the server. If you

look at the certificate on the server, verify that the same SHA-1 digest displays.

You can disable the prompt when you do not want it to display by running the retrieveSigners utility to

retrieve all of the signers for a particular cell. You can download or upload the signers from any remote

keystore to any local keystore by referencing a common truststore with this client script. For more

information, see “Default chained certificate configuration” on page 597.

Using the retrieveSigners utility to download signers for a client

You can run the retrieveSigners utility to retrieve all of the signers from the remote keystore for a

specified client keystore. The truststore contains the signers that enable the client to connect to its

processes. The retrieveSigners utility can point to any keystore in the target configuration, within the

scope of the target process, and can download the signers (certificate entries only) to any client keystore

in the ssl.client.props file.

Obtaining signers for clients and servers from a previous release

Note: When a client from a release prior to version 7.0 connects to the current release, the client must

obtain signers for a successful handshake. Clients using previous releases of WebSphere

Application Server cannot obtain signers as easily as in the current release. You can copy the

deployment manager common truststore to your back-level client or server, and then re-configure

the SSL configuration to directly reference that truststore. This common truststore of type PKCS12 is

located in the /config/cells/<cell_name>/nodes/<node_name> directory in the configuration

repository and has a default password of WebAS.

To collect all of the signers for the cell in a single trust.p12 keystore file, complete following steps:

1. Copy the trust.p12 keystore file on the server and replicate it on the client. The client references the

file directly from the sas.client.props and soap.client.props files that specify the SSL properties for

previous releases.

2. Change the client-side keystore password so that it matches the default cell name that is associated

with the copied keystore.

3. Change the default keystore type for the trust.p12 file to PKCS12 in the client configuration.

The following two code samples show you a before and an after view of the changes to make.

Default SSL configuration of sas.client.props for a previous release

com.ibm.ssl.protocol=SSL com.ibm.ssl.keyStore=/QIBM/UserData/WebSphere/AppServer/V7/Base/

profiles/default/

etc/DummyClientKeyFile.jks

com.ibm.ssl.keyStorePassword={xor}CDo9Hgw\= com.ibm.ssl.keyStoreType=JKS com.ibm.ssl.trustStore=

/QIBM/UserData/WebSphere/AppServer/

V7/Base/profiles/default/etc/DummyClientTrustFile.jks com.ibm.ssl.trustStorePassword={xor}CDo9Hgw\=

com.ibm.ssl.trustStoreType=JKS

SSL configuration changes that are required to common truststore file in the /etc directory of the

client

com.ibm.ssl.protocol=SSL com.ibm.ssl.keyStore=/QIBM/UserData/WebSphere/AppServer/V7/Base/

profiles/default/etc/

DummyClientKeyFile.jks com.ibm.ssl.keyStorePassword={xor}CDo9Hgw\= com.ibm.ssl.keyStoreType=JKS

com.ibm.ssl.trustStore=/QIBM/UserData/WebSphere/AppServer/V7/Base/profiles/default/etc/trust.p12

com.ibm.ssl.trustStorePassword=myhostNode01Cell com.ibm.ssl.trustStoreType=PKCS12

Note: You can run the PropsFilePasswordEncoder script, which is located in the /bin directory to reset

the password.

602 Securing applications and their environment

You can also make these changes in the soap.client.props file and specify the key.p12 file in place of

the DummyClientKeyFile.jks file. However, you must also change the keyStorePassword and

keyStoreType values to match those in the default key.p12 file.

In releases of WebSphere Application Server prior to version 7.0, you must edit the SSL configuration on

the server to replace the common truststore. The trust.p12 file, which is used by the server, also must

contain the default dummy certificate signer for connections among servers at previous release levels. You

might need to manually extract the default certificate from the DummyServerKeyFile.jks file and then import

the certificate into the trust.p12 file that you added to the configuration.

retrieveSigners command:

The retrieveSigners command creates a new client self-signed certificate, keystore, and SSL configuration

in the ssl.client.props file. Using this command you can optionally extract the signer to a file.

 For more information about where to run this command, read about Using command tools.

Syntax

Use the following command syntax to create a new client self-signed certificate, keystore, and SSL

configuration in the ssl.client.props file.

retrieveSigners <remoteKeyStoreName> <localKeyStoreName> [options]

The <remoteKeyStoreName> and <localKeyStoreName> parameters are required. The following optional

parameters are available:

[-remoteAlias aliasFromRemoteStore]

[-localAlias storeAsAlias]

[-listRemoteKeyStoreNames][-listLocalKeyStoreNames]

[-autoAcceptBootstrapSigner][-uploadSigners] [-host host]

[-port port][-conntype JSR160RMI|RMI|SOAP|IPC][-user user]

[-password password]

[-trace] [-logfile filename]

[-replacelog] [-quiet] [-help]

Parameters

The following parameters are available for the retrieveSigners command:

-remoteKeyStoreName

The name of a truststore that is located in the server configuration from which to retrieve the signers.

This parameter is typically the CellDefaultTrustStore file for a managed environment or the

NodeDefaultTrustStore file for an unmanaged environment.

-localKeyStoreName

The name of the truststore that is located in the ssl.client.props file for the profile to which the

retrieved signers is added. This parameter is typically the ClientDefaultTrustStore file for either a

managed or unmanaged environment.

-remoteAlias <aliasFromRemoteStore>

Specifies one alias from the remote truststore that you want to retrieve. Otherwise, all signers from the

remote truststore are retrieved.

-localAlias <storeAsAlias>

Determines the name of the alias stored in the local truststore. This option is only valid if you specify

the –remoteAlias option. If you do not specify the -localAlias option, then the alias name from the

remote truststore is used, if possible. If an alias clash occurs, then the alias name is used and has an

incremented number appended to the end of it until a unique alias is found.

Chapter 7. Securing communications 603

-listRemoteKeyStoreNames

Sends a remote request to the server to list all keystores that you can specify for the

remoteKeyStoreName parameter. Use this command when you are unsure of the name of the remote

truststore from which you want to download the signers.

-listLocalKeyStoreNames

Lists the keystores located in the ssl.client.props file that you can specify for the localKeyStoreName

parameter. This truststore receives the signers from the server. Use this parameter when you are

unsure of the name of the local truststore into which you want to retrieve the signers. The default

name of the truststore is ClientDefaultTrustStore and is located in the ssl.client.props file.

-autoAcceptBootstrapSigner

Automatically adds a signer to make a secure connection to the server. The purpose of the option is to

support automation of the command so that you do not need to accept the signer. After the signer is

added to the local truststore, an SHA hash prints so that you can verify the certificate.

-uploadSigners

Converts the signer download into a signer upload. The signers from the localKeyStoreName

parameter is sent to the remoteKeyStoreName parameter instead.

-host <host>

Specifies the target host from which the signers are retrieved.

-port <port>

Specifies the target administrative port to which you want to connect. You must specify the port based

on the -conntype parameter. If the conntype is SOAP, the default port is 8879. This value can vary for

different servers. If the conntype is RMI, the default port is 2809.

-conntype <JSR160RMI|IPC|RMI|Soap>

Determines the administrative connector type that is used for the MBean call to retrieve the signers.

Note: Eventually switch from the RMI connector to the JSR160RMI connector because support for the

RMI connector is deprecated.

-user <user>

When the -uploadSigners flag is used, you are required to specify this option to supply the user name

that is authenticated for the MBean operation. If you do not specify this parameter when the

-uploadSigners flag is used, then you are prompted for credentials by default.

-password <password>

When the -uploadSigners flag is used, you are required to specify this option to supply the password

that is authenticated for the MBean operation. The password goes along with the –user parameter.

-trace

When specified, this parameter enables tracing of the trace specification necessary to debug this

component. By default, the trace is located in the profiles/profile_name/log/retrieveSigners.log file.

-logfile <filename>

Overrides the default trace file. By default, the trace will appear in the profiles/profile_name/log/
retrieveSigners.log file.

-replacelog

Causes the existing trace file to be replaced when the command runs.

-quite

Suppresses most messages from printing to the console.

-help

Prints a usage statement.

-? Prints a usage statement.

604 Securing applications and their environment

Usage scenario

The following examples demonstrate correct syntax for using the retrieveSigners command:

v The following example lists remote and local keystores:

retrieveSigners -listRemoteKeyStoreNames -listLocalKeyStoreNames -conntype RMI -port 2809

Example output

CWPKI0306I: The following remote keystores exist on the specified server:

 CMSKeyStore, NodeLTPAKeys, NodeDefaultTrustStore, NodeDefaultKeyStore

CWPKI0307I: The following local keystores exist on the client:

 ClientDefaultKeyStore, ClientDefaultTrustStore

v The following example retrieves all signers from NodeDefaultTrustStore:

retrieveSigners NodeDefault TrustStore ClientDefaultTrustStore -autoAcceptBootstrapSigner

-conntype RMI -port 2809

Example output

CWPKI0308I: Adding signer alias "CN=BIRKT40.austin.ibm.com, O=IBM, C=US" to

 local keystore "ClientDefaultTrustStore" with the following SHA

 digest: 40:20:CF:BE:B4:B2:9C:F0:96:4D:EE:E5:14:92:9E:37:8D:51:A5:47

Certificate expiration monitoring

The certificate expiration monitor administrative task is a scheduled task that cycles through all the

keystores in the security configuration and reports on any certificates that are expired, certificates that fall

within the expiration threshold, and certificates that fall within the pre-notification period.

Certificate expiration monitoring relies on the following definitions:

Expired certificates

Certificates are created with a finite life span. Self-signed or chained certificates that have reached

the end of their life span are reported and replaced, if possible. Certificate authority (CA) signed

certificates cannot be replaced but will be reported. Replacing CA-signed certificates is the

responsibility of the administrator.

Certificates within the expiration threshold

There is a period of time before a certificate expires. A certificate in this period of time is one

within the expiration threshold. The server replaces certificates within the expiration threshold so

that the certificate does not expire and cause outages. By default the expiration threshold is 60

days, but can be configured as required.

Pre-notification period

Before a certificate falls within the expiration threshold there are warnings issued that indicate that

the certificate will be replaced, when the expiration threshold date is reached. The period of time

prior to the expiration threshold date is called the pre-notification period and is set at 90 days for

the certificate.

The certificate expiration monitor performs the following:

1. Clears out the NodeDefaultDeletedStore or DmgrDefaultDeletedStore. This operation is performed

silently without reporting that the certificates are deleted.

2. Checks the root key stores, DmgrDefaultRootStore or NodeDefaultRootStore and the

DmgrRSATokenRootStore or NodeRSATokenRootStore. If any root certificates are expired, falls in

the threshold period, or the pre-notification period, then the certificate is noted in the report.

3. If there are any root certificates that are expired or fall in the threshold period that root certificate is

recreated using all the information used to create the original one. Any signer certificates from the

original root certificate are replaced with the signers from the new root certificate.

4. If a root certificate is replaced, then all the keystores are checked to see if there are any chained

certificates signed with the original root certificate. If there are, then the chain certificate is renewed

(recreated with the new root certificate). Any signer certificate from the original certificate is replaced

with the signer from the recreated certificate.

Chapter 7. Securing communications 605

5. After all root keystores are processed, the rest of the keystores are checked for expired certificates,

certificates in the expiration threshold, or certificates in the pre-notification period. Any certificate falling

in any one of these categories is noted in the report.

6. If there are any expired certificates or certificates in the expiration threshold period and these

certificates are self-signed certificates or chained certificates created by WebSphere, then they are

replaced. If the chained certificates root is not in the root key store then it will be recreated as a default

root certificate. Any signer certificates from the original certificate are replaced with the signer from the

new certificate.″

7. A report is generated and returned, written to a log file, or mailed.

The server default certificate is a chained certificate with a 365 day life span. It is signed with the default

root certificate which has a 20 year life span.

You can configure this monitor task to run according to a particular schedule. The schedule produces the

next start date that persists in the configuration and, when the date is reached, WebSphere Application

Server starts the monitor to check all of the keystores for certificates that meet the expiration threshold.

You can start the task manually to run at any time.

The following security.xml configuration object specifies when the monitor task starts, determines the

certificate expiration threshold, and indicates whether you are notified in an e-mail using Simple Mail

Transfer Protocol (SMTP) or in a message log.

<wsCertificateExpirationMonitor xmi:id="WSCertificateExpirationMonitor_1"

name="Certificate Expiration Monitor" daysBeforeNotification="30"

isEnabled="true" autoReplace="true" deleteOld="true"

wsNotification="WSNotification_1" wsSchedule="WSSchedule_2"

nextStartDate="1134358204849"/>

The expiration monitor replaces self-signed certificates and chained personal certificates that are signed by

a root certificate in DmgrDefaultRootStore or NodeDefaultRootStore. Self-signed certificates are

renewed using all the information that was used to create the original self-signed certificate. A chained

certificate is renewed using the same root certificate that was used to sign the original certificate.

The expiration monitor automatically replaces only self-signed certificates and chained certificates that are

expired or that meet the expiration threshold criteria. To replace all of the signers from the old certificate

with the signer that belongs to the new certificate in all the keystores in the configuration for that cell, set

the autoReplace attribute to true. When the deleteOld attribute is true, the old personal certificate and old

signers also are deleted from the keystores. The isEnabled attribute determines whether the expiration

monitor task runs based upon the nextStartDate attribute that is derived from the schedule. The

nextStartDate attribute is derived from the schedule in milliseconds since 1970, and is identical to the

System.currentTimeMillis(). If the nextStartDate has already passed when an expiration monitor process

begins, and the expiration monitor is enabled, the task is started, but a new nextStartDate value is

established based on the schedule.

The following sample the schedule object shows the frequency attribute as the number of days between

each run of the certificate monitor.

<wsSchedules xmi:id="WSSchedule_2" name="ExpirationMonitorSchedule"

frequency="30" dayOfWeek="1" hour="21" minute="30"/>

The dayOfWeek attribute adjusts the schedule to run on a specified day of the week, which is always the

same day regardless of whether the frequency is set to 30 or 31 days. Based on 24-hour clock, the hour

and minute attributes determine when the expiration monitor is started on the specified day.

The following sample code of the notification object shows the notification configuration, which notifies you

after the expiration monitor runs.

<>wsNotifications xmi:id="WSNotification_1" name="MessageLog" logToSystemOut="true" emailList=""/

606 Securing applications and their environment

For expiration monitor notifications, you can select message log, e-mail using SMTP server, or both

methods of notification. When you configure the e-mail option, use the format user@domain@smtpserver. If

you do not specify an SMTP server, WebSphere Application Server defaults to the same domain as the

e-mail address. For example, if you configure joeuser@ibm.com, WebSphere Application Server attempts

to call smtp-server.ibm.com. To specify multiple e-mail addresses using scripting, you must add a pipe (|)

character between entries. When you specify the logToSystemOut attribute, the expiration monitor results

are sent to the message log for the environment, which is typically the SystemOut.log file.

The expiration monitor clears out the deleted certificates keystore. The monitor first clears out the deleted

keystore. Due to the nature of the PKCS12 keystore, there must be at lease one entry in the keystore so

the signer certificates from the dummy key store will remain in the deleted keystore. There is no reporting

on the certificate being deleted from the deleted keystore.

Note: When the expiration monitor replaces certificates, this can dynamically affect the runtime when the

following configuration option is enabled:

Security > SSL certificate and key management. Under configuration settings, check the

checkbox for Dynamically update the run time when SSL configuration changes occur.

When enabled, any certificates that are replaced causes the client SSL runtime to begin using the

new certificates immediately, which in turn, flushes SSL and keystore caches and causes some

ports using SSLServerSockets (RMI/IIOP on distributed and Admin SOAP) to restart. Restarting

ports breaks existing connections. These connections can be reconnected after the port restart is

completed. Endpoints using the channel framework (HTTP, BUS, RMI/IIOP on z/OS) leave existing

connections unaffected but still use the new certificates for new connections.

When the dynamic change property is disabled and before the new certificates become effective,

the administrator needs to recycle all processes in the entire cell after each node has the

synchronized configuration. Regardless of which method is chosen, you should always check the

health of your cell after the certificate expiration monitor has run (based on the schedule specified).

The schedule should be set to run the certificate expiration monitor during a maintenance period so

that if a restart is required after the certificate replacement, it will not cause unexpected outages.

Dynamic configuration updates

During the Secure Sockets Layer (SSL) runtime, dynamic configuration updates affect both inbound and

outbound SSL endpoints. For inbound SSL endpoints, the changes that are implemented by the SSL

channel are only affected by dynamic changes. For outbound SSL endpoints, all outbound connections

inherit the new configuration changes.

In this release, dynamic update functionality provides you with greater flexibility and efficiency. You can

change SSL configurations without restarting WebSphere Application Server for the changes to take effect.

To make dynamic changes, in the administrative console click Security > SSL certificates and key

management, then select the Dynamically update the runtime when SSL configuration changes

occur check box. You must save your changes and then synchronize the security.xml file with remote

systems. A remote system must be able to confirm that dynamicallyUpdateSSLConfig=true is in the

security.xml file.

The SSL runtime reloads the modified SSL configuration and creates a new SSLEngine for the modified

connections that are associated with inbound endpoints. New outbound connections use the new

configuration while existing connections continue to use the old SSLEngine object and are not affected.

Note: Make dynamic changes to the SSL configuration during off-peak hours. Synchronization delays can

negatively affect connections when you update SSL configurations during peak hours.

Chapter 7. Securing communications 607

You can turn on and off the dynamicallyUpdateSSLConfig attribute in the security.xml file to ensure

successful updates by doing the following actions:

1. Set dynamicallyUpdateSSLConfig=On.

2. Save the updated configuration.

3. Synchronize the security.xml file with remote systems.

4. Set the dynamicallyUpdateSSLConfig attribute to Off.

You must verify that all of the nodes receive the changes before turning off the

dynamicallyUpdateSSLConfig attribute. Test the changes in a test environment before updating the

production environment.

Note: Some SSL changes, especially administrative SSL changes, can cause server outages if you fail to

test them first. When a change prevents trust between two endpoints, the endpoints cannot

communicate with each other. Additionally, if administrative SSL connection updates cause system

outages, you might need to disable the nodes after you make corrective changes using the

deployment manager. From the command line, you can manually synchronize the server to retrieve

the new SSL changes, then restart the nodes.

Certificate management using iKeyman

Starting in WebSphere Application Server Version 6.1, you can manage your certificates from the

administrative console. When using versions of WebSphere Application Server prior to Version 6.1, use

iKeyman for certificate management. iKeyman is a key management utility.

WebSphere Application Server certificate management requires that you define the keystores in your

WebSphere Application Server configuration. With iKeyman, you need access to the keystore file only. You

can read a keystore file with personal certificates and signers that is created in iKeyman. A keystore file

can be read into the WebSphere Application Server configuration by using the createKeyStore command.

The majority of certificate management functions are the same between WebSphere Application Server

and iKeyman, especially for personal certificates and signer certificates. However, certificate requests are

special. The underlying behavior is different in the two certificate management schemes. Because of the

different behavior, when a certificate request is generated from iKeyman, the process must be completed

in iKeyman. For example, a certificate that is generated by a certificate request that originated in iKeyman

must be received in iKeyman as well.

The same is true for WebSphere Application Server. For example, when a certificate is generated from a

certificate request that originated in WebSphere Application Server, the certificate must be received in

WebSphere Application Server.

You can perform the following certificate operations using iKeyman:

 Types of certificates Functions Description

Personal certificates Create a self-signed certificate Creates a self-signed certificate and stores it in a

keystore.

List personal certificates Lists all the personal certificates in a keystore.

Get information about a personal

certificate

Gets information about a personal certificate.

Delete a personal certificate Deletes a personal certificate from a keystore.

Import a certificate Imports a certificate from a keystore to a keystore.

Export a certificate Exports a certificate from a keystore to another

keystore.

Extract a certificate Extracts the signer part of a personal certificate to a

file.

608 Securing applications and their environment

Types of certificates Functions Description

Receive a certificate Reads a certificate that comes from a certificate

authority (CA) into a keystore.

Signer certificates Add a signer certificate Adds a signer certificate from a file to a keystore.

List signer certificates Lists all the signer certificates in a keystore.

Get information about a signer

certificate

Gets information about a signer certificate.

Delete a signer certificate Deletes a signer certificate from a keystore.

Extract a signer certificate Extracts a signer certificate from a keystore, and

stores the certificate in a file.

Certificate requests Create a certificate request Creates a certificate request that can be sent to a

CA.

List certificate requests Lists the certificate requests in a keystore.

Get information about a certificate

request

Gets information about a certificate request.

Delete a certificate request Deletes a certificate request from a keystore.

Extract a certificate request Extracts a certificate request to a file.

Certificate management

You can manage certificate operations that involve personal certificates, signer certificates, and personal

certificate requests on the administrative console.

Types of certificates

WebSphere Application Server uses the certificates that reside in keystores to establish trust for a Secure

Sockets Layer (SSL) connection. Click Security > SSL certificate and key management > Manage

endpoint security configurations > Inbound | Outbound > SSL_configuration_name > Key stores

and certificates, then select an existing or create a new keystore. After selecting a keystore, and

depending on the type of certificate you need, choose one of the following types of certificates under

Related Items:

v Personal certificate

v Signer certificate

v Certificate Authority (CA) certificates

v Personal certificate request

The following table describes the certificate operations that you can perform on the administrative console:

 Types of certificates Functions Description

Personal certificates Create a self-signed certificate Creates a self-signed certificate and stores it in a

keystore.

List personal certificates Lists all the personal certificates in a keystore.

Get information about a personal

certificate

Gets information about a personal certificate.

Delete a personal certificate Deletes a personal certificate from a keystore.

Import a certificate Imports a certificate from a keystore to a keystore.

Export a certificate Exports a certificate from a keystore to another

keystore.

Chapter 7. Securing communications 609

Types of certificates Functions Description

Extract a certificate Extracts the signer part of a personal certificate to

a file.

Exchange signer certificates Exchange signer part of a personal certificate

between key store.

Receive a certificate Reads a certificate that comes from a certificate

authority (CA) into a keystore.

Replace a certificate Replaces all occurrences of a personal certificate

alias in the WebSphere Application Server

configuration with another certificate. Also, replaces

all occurrences of the personal certificates signer

with the new personal certificate signer.

Create a chained certificate Creates a chained certificate and stores it in a

keystore.

Renew a certificate Renews a certificate with a new public/private key

pair and stores it in a keystore.

Certificate authority (CA)

certificates

Create CA certificate Sends a certificate request to an external certificate

authority (CA).

Revoke CA certificate Sends a revocation request to an external

certificate authority (CA).

Signer certificates Add a signer certificate Adds a signer certificate from a file to a keystore.

List signer certificates Lists all the signer certificates in a keystore.

Get information about a signer

certificate

Gets information about a signer certificate.

Delete a signer certificate Deletes a signer certificate from a keystore.

Extract a signer certificate Extracts a signer certificate from a keystore, and

stores the certificate in a file.

Retrieve a signer from a port Retrieves a signer certificate from a port, and

stores it in a key store.

Certificate requests Create a certificate request Creates a certificate request that can be sent to a

CA.

List certificate requests Lists the certificate requests in a keystore.

Get information about a certificate

request

Gets information about a certificate request.

Delete a certificate request Deletes a certificate request from a keystore.

Extract a certificate request Extracts a certificate request to a file.

Personal certificates

The following table lists the operations that you can perform on personal certificates, the AdminTask object

that you can use to perform that operation, and how to navigate to the certificate on the console:

 Function AdminTask object Administrative console

Create a self-signed

certificate

createSelfSignedCertificate Security > Secure Communications > Key store and

certificates > key store > Create a Self-Signed

Certificate

List personal certificates listPersonalCertificates Security > Secure Communications > Key store and

certificates > key store > personal certificates

610 Securing applications and their environment

Function AdminTask object Administrative console

Get information about a

personal certificate

getPersonalCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates > alias

Delete a personal certificate deletePersonalCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates >

delete

Import a certificate importCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates >

import

Export a certificate exportCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates >

export

Extract a certificate extractCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates >

extract

Exchange signer certificates exchangeSignerCertificates Security > Secure Communications > Key store and

certificates > Exchange signers

Create a chained certificate createChainedCertificate Security > SSL certificate and key management >

Key store and certificates > keystore name >

Personal certificates. Click Create button and select

Chained certificate

Renew a certificate renewChainedCertificate Security > SSL certificate and key management >

Key store and certificates > keystore name >

Personal certificates. Select a certificate. Click Renew

button.

Certificate authority (CA) certificates

The following table lists the operations that you can perform on CA certificates, the AdminTask object that

you can use to perform that operation, and how to navigate to the certificate on the console:

 Function AdminTask object Administrative console

Create a CA certificate createCACertificate Security > Secure Communications > Key store and

certificates > key store > Personal certificates >

Create > CA-signed certificate

Revoke a CA certificate revokeCACertificate Security > Secure Communications > Key store and

certificates > key store > Personal certificates

personal certificate > Revoke

Signer certificates

The following table lists the operations that you can perform with signer certificates, the AdminTask object

that you can use to perform the operation, and how to navigate to the certificate on the console:

 Function AdminTask object Administrative console

Add a signer certificate addSignerCertificate Security > Secure communications > Key store and

certificates > key store > signer certificates > Add

List signer certificates listSignerCertificates Security > Secure communications > Key store and

certificates > key store > signer certificates

Get information about a

signer certificate

getSignerCertificate Security > Secure communications > Key store and

certificates > key store > signer certificates > alias

Chapter 7. Securing communications 611

Function AdminTask object Administrative console

Delete a signer certificate deleteSignerCertificate Security > Secure communications > Key store and

certificates > key store > signer certificate >delete

Extract a signer certificate to

a file

extractSignerCertificate Security > Secure communications > Key store and

certificates > key store > signer certificates >

extract

Retrieve a signer certificate

from a port

retrieveSignerFromPort Security > Secure communications > Key store and

certificates > key store > signer certificates >

retrieve from port

Personal certificate requests

The following table lists the operations that you can perform on personal certificate requests, the

AdminTask object that you can use to perform that operation, and how to navigate to the certificate

request on the console:

 Function AdminTask object Administrative console

Create a personal certificate

request

createCertificateRequest Security > Secure communications > Key store and

certificates > key store > Personal certificate

Requests > Add

List personal certificate

requests

listCertificateRequests Security > Secure communications > Key store and

certificates > key store > Personal certificate

requests

Get information about a

personal certificate request

getCertificateRequest Security > Secure communications > Key store and

certificates > key store > Personal certificate

requests > alias

Delete a personal certificate

request

deleteCertificateRequest Security > Secure communications > Key store and

certificates > key store > Personal certificate

requests > delete

Extract a personal certificate

request to a file

extractCertificateRequest Security > Secure communications > Key store and

certificates > key store > Personal certificate

requests > Extract

Using the retrieveSigners command to enable server to server trust

You can add a signer certificate to a server’s trust.p12 file, allowing that server to securely communicate

with another server. This can be done using the retrieveSigners command to add a signer to a server’s

trust.p12 file after making changes to the ssl.client.props file.

Before you begin

The server that will be communicating as a client must be identified before the server to server trust can

be established. You will make change to the ssl.client.props file and run the retrieveSigners command

on the server communicating as a client. If both servers will be acting as a client , these steps will be

required for both servers.

About this task

The ssl.client.props file is setup by default to configure Secure Socket Layer (SSL) communication for

clients. This makes the default behavior of the retrieveSigners command work on the client’s trust.p12

file and key.p12 file in the profile_root/etc directory. You can add a signer certificate to a server’s

trust.p12 file, allowing that server to act as a client communicating to another server. Using the

612 Securing applications and their environment

retrieveSigners command to add a signer to a server’s trust.p12 file requires some changes to the

ssl.client.props file.

1. Open the ssl.client.props file. The ssl.client.props file is located in profile_root/properties

ditrectory.

2. Uncomment the section of ssl.client.props that starts with com.ibm.ssl.alias=AnotherSSLSettings

property.

3. Uncomment the section of ssl.client.props that starts with

com.ibm.ssl.trustStoreName=AnotherTrustStore property.

4. Enter the location of the trust store that the signer should be added. If you are using the server trust

store for a deployment manager then it is located in profile_root/config/cells/cell name/trust.p12.

If using the trust store for an application server, it is located in profile_root/config/cells/cell

name/nodes/node name/trust.p12.

5. Update the remaining properties in this section with the values associated with the trust store being

used. A description of the properties can be found in ssl.client.props client configuration file.

6. Optional: Uncomment and update section that starts with

com.ibm.ssl.trustStoreName=AnotherKeyStore property. Most scenarios only require a signer to be

added to the trust store. This example only adds a signer to the trust store, but you can also add a

signer to the key store by updating the properties as you did for the trust store in steps 3 through 5.

7. Save the changes made to ssl.client.props.

8. Run the retrieveSigners command. For more information about where to run this command, see

Using command tools

retrieveSigners NodeDefaultTrustStore AnotherTrustStore -host ademyers.austin.ibm.com -port 8879

Example output:

CWPKI0308I: Adding signer alias "default_1" to local keystore

 "AnotherTrustStore" with the following SHA digest:

 F4:71:97:79:3E:C1:DC:E7:9F:8F:3D:F0:A0:15:1E:D1:44:73:2C:06

Results

After the steps have been successfully completed. the server acting as a client has the signing certificate

of the other server. This allows that server to establish a SSL connection to the other server.

Example

The example shows the modified section of the ssl.client.props file assuming that the server’s

trust.p12 file is being used. Any trust store existing trust store can be used if the properties are provided

for that trust store.

#---

com.ibm.ssl.alias=AnotherSSLSettings

com.ibm.ssl.protocol=SSL_TLS

com.ibm.ssl.securityLevel=HIGH

com.ibm.ssl.trustManager=IbmX509

com.ibm.ssl.keyManager=IbmX509

com.ibm.ssl.contextProvider=IBMJSSE2

com.ibm.ssl.enableSignerExchangePrompt=true

#com.ibm.ssl.keyStoreClientAlias=default

#com.ibm.ssl.customTrustManagers=

#com.ibm.ssl.customKeyManager=

#com.ibm.ssl.dynamicSelectionInfo=

#com.ibm.ssl.enabledCipherSuites=

KeyStore information

#com.ibm.ssl.keyStoreName=AnotherKeyStore

#com.ibm.ssl.keyStore=${user.root}/etc/key.p12

#com.ibm.ssl.keyStorePassword={xor}CDo9Hgw=

#com.ibm.ssl.keyStoreType=PKCS12

#com.ibm.ssl.keyStoreProvider=IBMJCE

#com.ibm.ssl.keyStoreFileBased=true

TrustStore information

com.ibm.ssl.trustStoreName=AnotherTrustStore

com.ibm.ssl.trustStore=${user.root}/config/cells/localhostCell01/trust.p12

Chapter 7. Securing communications 613

com.ibm.ssl.trustStorePassword={xor}CDo9Hgw=

com.ibm.ssl.trustStoreType=PKCS12

com.ibm.ssl.trustStoreProvider=IBMJCE

com.ibm.ssl.trustStoreFileBased=true

What to do next

After the signer has been added, edit the ssl.client.props file to comment out the sections that were to

used to add the signer certificate.

Creating a Secure Sockets Layer configuration

Secure Sockets Layer (SSL) configurations contain the attributes that you need to control the behavior of

client and server SSL endpoints. You create SSL configurations with unique names within specific

management scopes on the inbound and outbound tree in the configuration topology. This task shows you

how to define SSL configurations, including quality of protection and trust and key manager settings.

Before you begin

You must decide at which scope you need to define an SSL configuration, for instance, the cell, node

group, node, server, cluster, or endpoint scope, from the least specific to the most specific scope. When

you define an SSL configuration at the node scope, for example, only those processes within that node

can load the SSL configuration; however, any processes at the endpoint in the cell can use an SSL

configuration at the cell scope, which is higher in the topology.

You must also decide which scope to associate with the new SSL configuration, according to the

processes that the configuration affects. For example, an SSL configuration for a hardware cryptographic

device might require a keystore that is available only on a specific node, or you might need an SSL

configuration for a connection to a particular SSL host and port. For more information, see “Dynamic

outbound selection of Secure Sockets Layer configurations” on page 591.

About this task

Complete the following steps in the administrative console:

 1. Click Security > SSL certificate and key management > Manage endpoint security

configurations.

 2. Select an SSL configuration link on either the Inbound or Outbound tree, depending on the process

you are configuring.

v If the scope is already associated with a configuration and alias, the SSL configuration alias and

certificate alias are noted in parentheses.

v If the parenthetical information is not included, then the scope is not associated. Instead, the scope

inherits the configuration properties of the first scope above it that is associated with an SSL

configuration and certificate alias.

The cell scope must be associated with an SSL configuration because it is at the top of the topology

and represents the default SSL configuration for the inbound or outbound connection.

 3. Click SSL configurations under Related Items. You can view and select any of the SSL

configurations that are configured at this scope. You can also view and select these configuration at

every scope that is lower on the topology.

 4. Click New to display the SSL configuration panel. You cannot select links under Additional Properties

until you type a configuration name and click Apply.

 5. Type an SSL configuration name. This field is required. The configuration name is the SSL

configuration alias. Make the alias name unique within the list of SSL configuration aliases that are

already created at the selected scope. The new SSL configuration uses this alias for other

configuration tasks.

614 Securing applications and their environment

6. Select a truststore name from the drop-down list. A truststore name refers to a specific truststore that

holds signer certificates that validate the trust of certificates sent by remote connections during an

SSL handshake. If there is no truststore in the list, see “Creating a keystore configuration for a

preexisting keystore file” on page 660 to create a new truststore, which is a keystore whose role is to

establish trust during the connection.

 7. Select a keystore name from the drop-down list. A keystore contains the personal certificates that

represent a signer identity and the private key that WebSphere Application Server uses to encrypt

and sign data.

v If you change the keystore name, click Get certificate aliases to refresh the list of certificates from

which you can choose a default alias. WebSphere Application Server uses a server alias for

inbound connections and a client alias for outbound connections.

v If there is no keystore in the list, see “Creating a keystore configuration for a preexisting keystore

file” on page 660 to create a new keystore.

 8. Choose a default server certificate alias for inbound connections. Select the default only when you

have not specified an SSL configuration alias elsewhere and have not selected a certificate alias. A

centrally managed SSL configuration tree can override the default alias. For more information, see

“Central management of Secure Sockets Layer configurations” on page 591.

 9. Choose a default client certificate alias for outbound connections. Select the default only when the

server SSL configuration specifies an SSL client authentication.

10. Review the identified management scope for the SSL configuration. Make the management scope in

this field identical to the link you selected in Step 2. If you want to change the scope, you must click a

different link in the topology tree and continue at Step 3.

11. Click Apply if you intend to configure Additional Properties. If not, go to Step 24.

12. Click Quality of protection (QoP) settings under Additional Properties. QoP settings define the

strength of the SSL encryption, the integrity of the signer, and the authenticity of the certificate.

13. Select a client authentication setting to establish an SSL configuration for inbound connections and

for clients to send their certificates, if appropriate.

v If you select None, the server does not request that a client send a certificate during the

handshake.

v If you select Supported, the server requests that a client send a certificate. However, if the client

does not have a certificate, the handshake might still succeed.

v If you select Required, the server requests that a client send a certificate. However, if the client

does not have a certificate, the handshake fails.

Note: The signer certificate that represents the client must be in the truststore that you select for the

SSL configuration. By default, servers within the same cell trust each other because they use

the common truststore, trust.p12, that is located in the cell directory of the configuration

repository. However, if you use keystores and truststores that you create, perform a signer

exchange before you select either Supported or Required.

14. Select a protocol for the SSL handshake.

v The default protocol, SSL_TLS, supports client protocols TLSv1, SSLv3, and SSLv2.

v The TLSv1 protocol supports TLS and TLSv1. The SSL server connection must support this

protocol for the handshake to proceed.

v The SSLv3 protocol supports SSL and SSLv3. The SSL server connection must support this

protocol for the handshake to proceed.

Note: Do not use the SSLv2 protocol for the SSL server connection. Use it only when necessary on

the client side.

15. Select one of the following options:

v A predefined Java Secure Socket Extension (JSSE) provider. The IBMJSSE2 provider is

recommended for use on all platforms which support it. It is required for use by the channel

Chapter 7. Securing communications 615

framework SSL channel. When Federal Information Processing Standard (FIPS) is enabled,

IBMJSSE2 is used in combination with the IBMJCEFIPS crypto provider.

v A custom JSSE provider. Type a provider name in the Custom provider field.

16. Select from among the following cipher suite groups:

v Strong: WebSphere Application Server can perform 128-bit confidentiality algorithms for

encryption and support integrity signing algorithms. However, a strong cipher suite can affect the

performance of the connection.

v Medium: WebSphere Application Server can perform 40-bit encryption algorithms for encryption

and support integrity signing algorithms.

v Weak: WebSphere Application Server can support integrity signing algorithms but not to perform

encryption. Select this option with care because passwords and other sensitive information that

cross the network are visible to an Internet Protocol (IP) sniffer.

v Custom: you can select specific ciphers. Any time you change the ciphers that are listed from a

specific cipher suite group, the group name changes to Custom.

17. Click Update selected ciphers to view a list of the available ciphers for each cipher strength.

18. Click OK to return to the new SSL configuration panel.

19. Click Trust and key managers under Additional Properties.

20. Select a default trust manager for the primary SSL handshake trust decision.

v Choose IbmPKIX when you require certificate revocation list (CRL) checking using CRL distribution

points in the certificates or the online certificate status protocol (OCSP).

v Choose IbmX509 when you do not require CRL checking but do need increased performance. You

can configure a custom trust manager to perform CRL checking, if necessary.

21. Define a custom trust manager, if appropriate. You can define a custom trust manager that runs with

the default trust manager you select. The custom trust manager must implement the JSSE

javax.net.ssl.X509TrustManager interface and, optionally, the

com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface to obtain product-specific information.

a. Click Security > SSL certificate and key management > Manage endpoint security

configurations > SSL_configuration > Trust and key managers > Trust managers > New.

b. Type a unique trust manager name.

c. Select the Custom option.

d. Type a class name.

e. Click OK. When you return to the Trust and key managers panel, the new custom trust manager

displays in the Additional ordered trust managers field. Use the left and right list boxes to add

and remove custom trust managers.

22. Select a key manager for the SSL configuration. By default, IbmX509 is the only key manager unless

you create a custom key manager.

Note: If you choose to implement your own key manager, you can affect the alias selection behavior

because the key manager is responsible for selecting the certificate alias from the keystore.

The custom key manager might not interpret the SSL configuration as the WebSphere

Application Server key manager IbmX509 does. To define a custom key manager, click

Security > Secure communications > SSL configurations > SSL_configuration > Trust

and key managers > Key managers > New.

23. Click OK to save the trust and key manager settings and return to the new SSL configuration panel.

24. Click Save to save the new SSL configuration.

Results

Note: You can override the default trust manager when you configure at least one custom trust manager

and set the com.ibm.ssl.skipDefaultTrustManagerWhenCustomDefined property to true. Click

Custom Property on the SSL configuration panel. However, if you change the default, you leave all

616 Securing applications and their environment

the trust decisions to the custom trust manager, which is not recommended for production

environments. In test environments, use a dummy trust manager to avoid certificate validation.

Remember that these environment are not secure.

What to do next

In this release of WebSphere Application Server, you can associate SSL configurations with protocols

using one of the following methods:

v Set the SSL configuration on the thread programmatically

v Associate the SSL configuration with an outbound protocol, and target host and port. For more

information, see “Associating a Secure Sockets Layer configuration dynamically with an outbound

protocol and remote secure endpoint” on page 640

v Associate the SSL configuration directly using the alias. For more information, see

tsec_sslselconfigdirect.dita

v Manage the SSL configurations centrally by associating them with SSL configuration groups or zones

that are scoped for endpoints. For more information, see “Associating Secure Sockets Layer

configurations centrally with inbound and outbound scopes” on page 643.

SSL certificate and key management

Use this page to configure security for Secure Socket Layer (SSL) and key management, certificates, and

notifications. The SSL protocol provides secure communications between remote server processes or

endpoints. SSL security can be used for establishing communications inbound to and outbound from an

endpoint. To establish secure communications, a certificate and an SSL configuration must be specified for

the endpoint.

To view this administrative console page, click Security > SSL certificate and key management.

Configuration settings

Specifies the following administrative console tasks:

v Manage endpoint security configurations

v Manage certificate expiration

Use Federal Information Processing Standard (FIPS) algorithms

Specifies the Federal Information Processing Standard (FIPS)-compliant Java cryptography engine is

enabled.

v Does not affect the SSL cryptography that is performed by the application server for z/OS System

Secure Sockets Layer (SSSL).

v Does not change the JSSE provider if this cell includes any Application Server versions before the

application server for z/OS Version 6.0.x.

When you select the Use the Federal Information Processing Standard (FIPS) option, the Lightweight

Third Party Authentication (LTPA) implementation uses IBMJCEFIPS. IBMJCEFIPS supports the Federal

Information Processing Standard (FIPS)-approved cryptographic algorithms for Data Encryption Standard

(DES), Triple DES, and Advanced Encryption Standard (AES). Although the LTPA keys are backwards

compatible with prior releases of the application server, the LTPA token is not compatible with prior

releases. In prior releases, the application server did not generate the LTPA token using a FIPS-approved

algorithm.

The IBMJSSE2 JSSE provider does not perform cryptographic functions directly, and therefore does not

need to be FIPS-approved. Instead, the IBMJSSE2 JSSE provider uses the JCE framework for

cryptographic functions and uses IBMJCEFIPS when FIPS mode is enabled.

 Default: Disabled

Chapter 7. Securing communications 617

tsec_sslselconfigdirect.dita

Dynamically update the runtime when SSL configuration changes occur

Specifies that all of the SSL-related attributes that change must be read from the configuration dynamically

after they have been saved, then reused for new connections. To avoid customer impact, it is

recommended that changes to production servers be made during off-peak periods.

 Default: Disabled

When this option is selected, the configuration is updated each time you configure an SSL communication.

SSL configurations for selected scopes

Use this page to display Secure Socket Layer (SSL) configurations for selected scopes, such as a cell,

node, server, or cluster. From this page you can navigate to configuration panels for the following: SSL

configurations, dynamic inbound and outbound endpoint SSL configurations, key stores, key sets, key set

groups, key managers, and trust managers.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration.

Name

Specifies the SSL configuration scope, which is derived from the selected object in the hierarchy.

 Data type: Text

Direction

Specifies the direction for which the SSLConfig applies. Inbound refers to any listener port. Outbound

refers to outbound end point connections.

 Data type: Text

SSL configuration

Specifies the SSL configuration that is used by requests at this scope.

 Data type: Text

Update certificate alias list

Specifies the certificate aliases contained in the key store for this SSL configuration can be selected from

the Certificate alias in key store list. You must update the certificate list after choosing a different SSL

configuration alias. If you do not update the list, you will save a certificate alias that is not contained in the

SSL configuration.

Manage certificates

Specifies to open the keystore panel for the key store in this SSL configuration, which enables you to

manage personal certificates, signers, and certificate requests.

Certificate alias in key store

Specifies the certificate to use in the key store.

If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate

is used. If multiple certificates exist in the key store, the key manager might not consistently select the

same certificate.

 Data type: Text

618 Securing applications and their environment

SSL configurations collection

Use this page to define a list of Secure Sockets Layer (SSL) configurations.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click SSL configurations.

 Button Resulting action

New The Java Secure Socket Extension (JSSE) repertoire is for Java-based SSL

communications. You can define a new JSSE configuration that can be used

to create an SSLContext, URLStreamHandler, SSLSocketFactory,

SSLServerSocketFactory, and so on, using the

com.ibm.websphere.ssl.JSSEHelper API.

Delete Deletes an existing JSSE configuration (administrator only). Be careful that

any references to the SSL configuration have been removed prior to deleting

this SSL configuration.

Name

Specifies the unique name of the SSL configuration in the management scope.

SSL configuration settings

Use this page to define Secure Sockets Layer (SSL) configuration properties.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

nodes name. Under Related items, click SSL configurations > New.

Name

Specifies the unique name of the SSL configuration within the management scope in which it resides. For

ways to programmatically access the properties that are configured for this SSL configuration, see the

com.ibm.websphere.ssl.JSSEHelper application programming interface (API).

 Data type: Text

Trust store name

Specifies a reference to a specific trust store used by Java Secure Sockets Extension (JSSE). The trust

store holds signer certificates that validate the trust of certificates sent by remote connections during an

SSL handshake.

 Data type: Text

Default: selected trust store

Key store name

Specifies a reference to a specific key store. The key store holds personal certificates that represent the

identity of one side of a connection. The public key of this personal certificate is sent to the other side of

the connection to establish trust during the handshake. The remote side of the connection needs the root

certificate authority (CA) certificate or self-signed public key (signer) to be in the trust store to validate this

personal certificate.

 Data type: Text

Default: selected key store

Chapter 7. Securing communications 619

Get certificate aliases

Queries the keystore for the aliases of all the personal certificates in the keystore from which to choose.

Default server certificate alias

Specifies the certificate alias used as the identity for this SSL configuration if one has not been specified

elsewhere.

If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate

is used. If multiple certificates exist in the key store, the key manager might not consistently select the

same certificate.

 Data type: Text

Default client certificate alias

Specifies the certificate alias to be used if this configuration is to be used as a client.

If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate

is used. If multiple certificates exist in the key store, the key manager might not consistently select the

same certificate.

 Data type: Text

Management scope

Specifies the scope where this SSL configuration is visible. For example, if you choose a specific node,

then the configuration is visible only on that node and on any servers that are part of that node.

 Data type: Text

Certificate authority (CA) client configuration

Use this page to create, modify, and configure a certificate authority (CA) client.

To view this administrative console page, click Security > SSL Configurations and key management .

Under Related Items, click Certificate Authority (CA) client configurations. Then click either the New

button or select an existing CA client by clicking on its <client_name>.

Name

Specifies the unique name of the CA client configuration. This is the name to identify the CA client object.

This name needs to be unique to the scope.

 Data type: String

Implementation class

Specifies the name of the module that implements the com.ibm.wsspi.ssl.WSKPIClient interface that is

used to act as a client to a CA. This implementation class connects to the CA server and performs a

certificate create, revoke, or replace.

 Default: String

CA server host name

Specifies the host name of the CA server, if the implementation requires a host name.

 Data type: String

620 Securing applications and their environment

Port

Specifies the port where the CA server will communicate, if the implementation requires a port.

 Data type: String

User name

Specifies the user Id used to connect to the CA server, if the implementation requires a user to login to the

CA.

 Data type: String

Password

Specifies the password for the connection to the CA server.

 Data type: String

Confirm password

Confirms the password that is provided in the password field.

 Data type: String

Number of times to poll

Specifies the number of times to check the CA server to see if the certificate is complete. This poll number

applies to the CA that does not return certificates right away.

 Default: 5

Polling interval when requesting certificates

Specifies the amount of time, in minutes, between checks to the CA server to see if the certificate is

complete.

 Default: 10

Custom properties

Specifies arbitrary name and value pairs of data. The name is a property key, and the value is a string

value that can be used to set internal system configuration properties.

 Data type: string

Certificate authority (CA) client configuration collections

Use this page to define and manage certificate authority (CA) clients or view and modify existing CA

clients.

This panel allows you to create a certificate authority (CA) client object in the configuration. You can also

view and modify existing CA clients. The information in the CA client object can then be used by the

runtime to connect to a CA server to request, revoke, or query a certificate.

To view this administrative console page, click Security > SSL Configurations and key management > .

Under Related Items, click Certificate Authority (CA) client configurations.

Chapter 7. Securing communications 621

Button Resulting action

New Adds a new CA client object that can be referenced by Secure Sockets Layer

(SSL) configurations.

Delete Deletes an existing CA client object.

Name

Identifies the unique name of the CA client configuration.

Implementation class

Identifies the name of the module that implements the com.ibm.wsspi.ssl.WSKPIClient interface that is

used to act as a client to a CA.

Management Scope

Identifies the scope where this secure sockets layer (SSL) configuration is visible.

Create chained personal certificate

A chained personal certificate is a personal certificate that is created by using another personal certificate

to sign it. This chaining allows a certificate to be signed with a certificate (a root certificate) that has a long

life span. Root certificates are stored in the DmgrDefaultRootStore or NodeDefaultRootStore. The

server’s default personal certificate is a chained certificate created when the profile is created. Chained

certificates can also be created after profile creation

Before you begin

You use the administrative console to create a chained personal certificate.

1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. Click a <keystore name> to which you want to add the chained personal certificate.

4. Under Additional Properties, click Personal certificates .

5. Click the Create button and select Chained Certificate The listCertificates AdminTask can be used

to generate the list of root certificates available to sign the certificate.

Note:

6. Fill in the following information to the General Properties section as follows:

v Supply an alias name.

v Select Root certificate from the pull down list.

v Key size

v Common name

v Validity period

v Organization

v Organization Unit

v Locality

v State/Province

v Zip code

v Country or region

v

7. Click Apply then OK.

622 Securing applications and their environment

Results

The certificate is created, signed by the root certificate specified, and stored in the keystore. Once a

chained personal certificate is created, the certificate can be used by the runtime for SSL communication.

What to do next

Recovering deleted certificates

The SSL configuration contains a keystore created to hold personal certificates that were deleted from

other keystores in the configuration. Perform this task to recover deleted certificates.

Before you begin

The SSL configuration contains a keystore created to hold personal certificates that were deleted from

other keystores in the configuration. On a stand alone application server the keystore is called

NodeDefaultDeletedStore and on a deployment manager the keystore is called DmgrDefaultDeletedStore.

When a personal certificate is deleted from a keystore using the administrative console or in a script using

the deleteCertificate AdminTask, a copy of the certificate is stored in the DmgrDeletedKeyStore or

NodeDeletedKeyStore. The personal certificate takes the alias of <keystore>_<alias> > in the deleted

keystore. If the alias name is already used in that deleted keystore a <unique number> is appended to the

alias.

A personal certificate can be recovered from the deleted keystore by importing or exporting the personal

certificate to a keystore in the configuration. To recover a personal certificate using the administrative

console perform the following steps:

1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. From the Keystore usages drop-down list, select ″Deleted certificates keystore″.

4. Click DmgrDefaultDeletedStore or NodeDefaultDeletedStore.

5. Under Additional Properties, click Personal certificates.

6. Select a certificate.

7. Select Export

8. Click OK.

9. Perform the following:

v v Enter the keystore password of the deleted keystore.

v v Enter The alias to be assigned to the certificate (in the key store that will receive the certificate).

v v Select the ‘Managed key store’ radio button.

v v Select the key store from the drop down list that will receive the certificate.

v Click Apply then OK.

Results

Note: To recover a personal certificate you can also use the exportCertToManagedKS AdminTask

command.

Renewing a certificate

If a personal certificate has been compromised or is about to expire, then it should be renewed. Renewing

a certificate recreates the certificate with all the information from the original certificate, but with a new

expiration period and public/private key pair. Only self-signed certificates and chained certificates created

Chapter 7. Securing communications 623

by WebSphere can be renewed. If the certificate used to sign the chained certificate is not in the root

keystore then the default root certificate is used to renew the certificate.

Before you begin

You use the administrative console to renew the certificate.

1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. Click the appropriate <keystore name> to which you want to add the new certificate.

Note: Only self-signed certificates and chained certificates signed with root certificates from the root

keystore can be renewed.

4. Under Additional Properties, click Personal certificates to list the personal certificates.

5. 5. Select a personal certificate from the list.

6. 6. Click the Renew button.

7. Click Apply then OK.

Results

The certificate is renewed in the key store selected in the path to this panel . If the certificate is not a

self-signed certificate or a chained certificate signed with a root certificate from the default root store, an

error is returned.

Note: If this command is used with a CA certificate, an error occurs.

Revoke a CA certificate

If a certificate authority (CA) certificate is compromised and the servers cannot trust it anymore that CA

certificate can be revoked. To revoke a CA certificate, you perform the following task.

Before you begin

You use the administrative console to replace or revoke a CA certificate.

1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. Click a <keystore name> to which you want to add the new CA certificate.

4. Under Additional Properties, click Personal certificates to list the personal certificates.

5. Select a certificate to revoke (a CA certificate)

6. Click the Revoke button.

7. Fill in the following information to the CA certificate section.

v Revocation password

v Revocation reason

8. Click Apply then OK.

Results

The certificate is revoked in the key store selected in the path. If the certificate selected was not a CA

certificate, then an error is returned.

624 Securing applications and their environment

What to do next

Using a CA client to create a personal certificate to be used as the

default personal certificate

An external certificate authority (CA) certificate can be used as the server default personal certificate. The

CA certificate can be created using a CA client.

Before you begin

What you need to have before you perform this task is as follows:

v A certificate authority (CA) to make the certificate request to.

v A module that implements the com.ibm.wsspi.ssl.WSPKIClient interface. This module is needed to

connect to the CA server and request a certificate.

You use the administrative console to view or modify a CA client.

 1. Click Security > SSL certificate and key management.

 2. Under Related Items, click Certificate Authority (CA) client configurations. A panel displaying the

existing CA clients appears.

 3. Click the New button.

 4. Enter the CA client information as required.

v Name of the CA client.

v The management scope (selected from the drop-down list.

v Implementation class.

v CA server host name.

v User name.

v Password.

v Confirm of password.

v Number of times to poll.

v Polling interval (in minutes) when requesting certificates.

v Custom properties.

 5. Click Apply then Save.

 6. Navigate to the Server default key store personal certificate. Security > SSL configuration and

certificate management > Key stores and certificates > <server_default_keystore> . Under

Additional properties, click Personal certificates

 7. Click the Create button and select CA-signed certificate

 8. Fill in the following information to the CA certificate section.

v Revocation password

v Confirm password.

v Select the CA client that applies to this CA certificate.

Note: You can create a new CA client to apply to this CA authority by clicking the New button.

v Fill in the following information to the Request Specification section:

– Select the radio button for Predefined request alias if you have a predefined alias.

– If you do not have a predefined alias, fill in the following fields:

- Type an alias name in the Alias field. The alias identifies the certificate request in the

keystore.

- Type a common name (CN) value. This value is the CN value in the certificate distinguished

name (DN).

Chapter 7. Securing communications 625

- Optional: Type an organization value. This value is the O value in the certificate DN.

- Optional: Select a key size value. The default key size value is 1024 bits.

- Locality

- Optional: Type the State or Province value. This value is the ST value in the certificate DN.

- Optional: Type a zip code value. The zip code value is the POSTALCODE value in the

certificate DN.

- Optional: Type a country or region value from the list. This country value is the C= value in

the certificate request DN.

- Validity period

 9. Click Apply then Save.

10. Navigate to the Server Default Key store’s personal certificates Security > SSL configuration and

certificate management > Key stores and certificates > <server_default_keystore> . Under

Additional properties, click Personal certificates

11. Select the server default personal certificate and click the Replace button.

12. Select the CA certificate alias from the list of aliases.

13. Click Apply then Save.

Results

The CA certificate alias replaces the alias of the default certificate in places where it is referenced in the

configuration. All signer certificates from the default certificate are replaced with the signer certificate from

the CA certificate.

Create a CA certificate

Certificates can be created by a certificate authority (CA) when a CAClient object is configured to connect

to the CA to create the certificate. Certificates created by a certificate authority (CA) with a CA client are

tracked in the security configuration in an object called CACertificate. The certificate is stored in a

keystore and a CACertificate object is added to the configuration to reference the certificate. CA

certificates are personal certificates.

Before you begin

Before you begin, a CA client must be created to connect to the CA server. You then use the

administrative console to create a CA certificate.

1. Click Security > SSL certificate and key management.

2. Under Related Items, click Key stores and certificates.

3. Click a <keystore name> to which you want to add the new CA certificate.

4. Under Additional Properties, click Personal certificates to create a new CA certificate in the

configuration.

Note: You can also create a CA certificate by using the requestCACertificate AdminTask .

5. Click the Create button and select CA-signed Certificate

6. Fill in the following information to the CA certificate section.

v Revocation password

v Confirm password.

v Select the CA client from the pull down list.

Note: You can create a new CA client to apply to this CA authority by clicking the New button.

v Fill in the following information to the Request Specification section:

– Select the radio button for a predefined request alias if a certificate request is already created.

626 Securing applications and their environment

– If you do not have a predefined certificate request alias, fill in the following fields:

a. Type an alias name in the Alias field. The alias identifies the certificate request in the

keystore.

b. Type a common name (CN) value. This value is the CN value in the certificate distinguished

name (DN).

c. Optional: Type an organization value. This value is the O value in the certificate DN.

d. Optional: Select a key size value. The default key size value is 1024 bits.

e. Locality

f. Optional: Type the State or Province value. This value is the ST value in the certificate DN.

g. Optional: Type a zip code value. The zip code value is the POSTALCODE value in the

certificate DN.

h. Optional: Type a country or region value from the list. This country value is the C= value in

the certificate request DN.

7. Click Apply then OK.

Results

The certificate is stored in the keystore selected in the path to this panel and a CACertificate configuration

object is created. Once a CA certificate is created the certificate can be used by the runtime for SSL

communication.

An existing certificate request can be used to create the CA certificate or a new certificate request can be

created. This panel uses the requestCAClient AdminTask to create the CA certificate.

Developing the WSPKIClient interface for communicating with a

certificate authority

Implementing the WSPKIClient interface enables WebSphere Application Server security to communicate

with a remote certificate authority (CA).

1. Initialize the WSPKIClient method, with init(java.util.HashMap).

public void init(java.util.HashMap initAttrs) throws WSPKIException;

This method is called by WebSphere Application Server runtime to set up connection information to a

CA.

2. v Request a certificate with requestCertificate(byte[], X500Principal, byte[], java.util.HashMap).

public X509Certificate[] requestCertificate(byte[] certReq,

X500Principal SubjectDN, byte[] revocationPassword,

java.util.HashMap customAttrs) throws WSPKIException;

This method is called by WebSphere Application Server runtime to connect to a CA and requests a

certificate signed by the authority. A X509Certificate[] is returned if the requested certificate is created.

If a null is returned then queryCertificate() is called to check if the certificate is ready. This method is

used when the CA requires manual intervention to process a certificate request.

You can invoke this operation from the administrative console using the “Create a CA certificate” on

page 626 task and from a client using the requestCertificate script, see requestCertificate command.

3. v Revoke a certificate with revokeCertificate(X509Certiifcate[], byte[], String, java.util.HashMap).

public void revokeCertificate(X509Certificate[] cert, byte[] revocationPassword,

String revocationReason, java.util.HashMap customAttrs) throws WSPKIException;

This method called by WebSphere Application Server runtime to submit a request to a CA to revoke a

certificate.

You can invoke this operation from the administrative console using the revoke CA certificate task,

“Revoke a CA certificate” on page 624, or using the revokeCertificate script.

Chapter 7. Securing communications 627

4. v Query a certificate with queryCertificate(X509Certiifcate[], byte[], java.util.HashMap).

public X509Certificate[] queryCertificate(byte[] certReq,

java.util.HashMap customAttrs) throws WSPKIException;

This method is called by WebSphere Application Server runtime to query if certificate creation is

completed on the CA. A X509Certificate[] is returned if certificate request is complete. A null is returned

if the certificate request is pending.

You perform this operation from the administrative console using the Query (link to

usec_sslperscertreqs.html) option, see “Personal certificate requests collection” on page 675and from a

client using the queryCertificate script, see queryCertificate command.

Results

the WSPKIClient interface for communicating with a certificate authority (CA) is implemented.

Creating a custom trust manager configuration

You can create a custom trust manager configuration at any management scope and associate the new

trust manager with a Secure Sockets Layer (SSL) configuration.

Before you begin

You must develop, package, and locate a Java Archive JAR file for a custom key manager in the

was.install.root/lib/ext directory on WebSphere Application Server. For more information, see

“Example: Developing a custom trust manager for custom SSL trust decisions” on page 632.

About this task

Complete the following steps in the administrative console:

 1. Decide whether you want to create the custom trust manager at the cell scope or below the cell

scope at the node, server, or cluster, for example.

Note: When you create a custom trust manager at a level below the cell scope, you can associate it

only with a Secure Sockets Layer (SSL) configuration at the same scope or higher. An SSL

configuration at a scope lower than the trust manager does not see the trust manager

configuration.

v To create a custom trust manager at the cell scope, click Security > SSL certificate and key

management > Trust managers. Every SSL configuration in the cell can select the trust manager

at the cell scope.

v To create a custom trust manager at a scope below the cell level, click Security > SSL certificate

and key management > Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration > Trust managers.

 2. Click New to create a new custom trust manager.

 3. Type a unique trust manager name.

 4. Select the Custom implementation setting. The custom setting enables you to define a Java class

with an implementation of the javax.net.ssl.X509TrustManager Java interface and, optionally, the

com.ibm.wsspi.ssl.TrustManagerExtendedInfo WebSphere Application Server interface.

Note: The standard implementation setting applies only when the trust manager is already defined in

the Java security provider list as a provider and an algorithm, which is not the case for a

custom trust manager.

 5. Type a class name, for example, com.ibm.test.CustomTrustManager.

 6. Select one of the following actions:

628 Securing applications and their environment

v Click Apply, then click Custom properties under Additional Properties to add custom properties to

the new custom trust manager. When you are finished adding custom properties, click OK and

Save, then go to the next step.

v Click OK and Save, then go to the next step.

 7. Click SSL certificate and key management in the page navigation at the top of the panel.

 8. Select one of the following actions:

v Click SSL configurations under Related Items for a cell-scoped SSL configuration.

v Click Manage endpoint security configurations to select an SSL configuration at a lower scope.

 9. Click the link for the existing SSL configuration that you want to associate with the new custom trust

manager. You can create a new SSL configuration instead of associating the custom trust manager

with an existing configuration. For more information, see “Creating a Secure Sockets Layer

configuration” on page 614.

10. Click Trust and Key managers under Additional Properties. If the new custom trust manager is not

listed in the Additional ordered trust managers list, verify that you selected an SSL configuration

scope that is at the same level or below the scope that you selected in Step 8.

11. Click Add. This action adds the new trust manager to the list of custom trust managers.

12. Click OK and Save.

Results

You have created a custom trust manager configuration that references a JAR file in the install directory of

WebSphere Application Server and associates it with an SSL configuration during the connection

handshake.

What to do next

You can create a custom trust manager for a pure client. For more information, see

“TrustManagerCommands command group for the AdminTask object” on page 977.

Trust and key managers settings

Use this page to specify trust and key managers for the selected SSL configuration.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items click SSL configurations > SSL_configuration_name. Under

Additional Properties click Trust and key managers.

Note: The application server checks the default trust managers first before checking the additional

ordered trust managers in descending order.

Default trust manager:

Specifies the default trust manager. The default trust manager is IbmPKIX, which can be selected when

certificate revocation checks must be made using the X509Certificate CRL distribution list. The other

default trust manager is IbmX509.

 Data type: Text

Default: ibmPKIX

Additional ordered trust managers:

Specifies additional trust managers that are used in the order shown for this SSL configuration.

Chapter 7. Securing communications 629

Add:

Specifies to add the selection to the Additional ordered trust managers right-hand list.

Remove:

Specifies to remove the selection from the Additional ordered trust managers right-hand list.

Key manager:

Specifies the key manager that runs for this SSL configuration.

 Data type: Text

Default: IbmX509

Trust managers collection

Use this page to define the implementation settings for the trust manager. A trust manager is a class that

is invoked during a Secure Sockets Layer (SSL) handshake to make trust decisions about the remote end

point. A default trust manager is used to validate the signature and expiration of the certificate. Custom

trust managers can be plugged in to perform an extended certificate and host name check.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Trust managers.

 Button Resulting action

New Adds a new trust manager that can be selected by an SSL configuration. A

trust manager is invoked during an SSL handshake and can decide whether

the handshake should be accepted based on the information it knows about

the remote certificate and host.

Delete Deletes an existing trust manager. Make sure the trust manager is not

referenced by any SSL configuration before you delete it.

Name:

Specifies the name of the trust manager. This name is used as a selection in the SSL configuration panel.

Class name:

Specifies a class that implements the javax.net.ssl.X509TrustManager interface. Optionally, the class can

implement the com.ibm.wsspi.ssl.TrustMangerExtendedInfo interface to get extended information about the

connection. The class can use the information to verify the host name and so on.

Algorithm:

Specifies the algorithm name of the trust manager that is implemented by the selected provider.

Trust managers settings

This page enables you to view and set definitions for trust manager implementation settings. A trust

manager is a class that gets invoked during a Secure Sockets Layer (SSL) handshake to make trust

decisions about the remote end point. A default trust manager is used to validate the signature and

expiration of the certificate. Custom trust managers can be plugged in to perform an extended certificate

and hostname check.

630 Securing applications and their environment

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items click Trust managers > New .

Name:

Specifies the name of the trust manager.

 Data type: Text

Default: ibmX509TrustManager

Standard:

Specifies that the trust manager selection is available from a Java provider that is installed in the

java.security file. This provider might be shipped by the Java Secure Sockets Extension (JSSE) or might

be a custom provider that implements the javax.net.ssl.X509TrustManager interface.

 Default: Enabled

Provider:

Specifies the provider name that has an implementation of the javax.net.ssl.X509TrustManager interface.

This provider is typically set to IBMJSSE2.

 Enabled when Standard is selected.

 Default IBMJCE

Algorithm:

Specifies the algorithm name of the trust manager implemented by the selected provider.

 Enabled when Standard is selected.

 Default ibmX509 or IbmPKIX

Range ibmX509, IbmPKIX

Custom:

Specifies that the trust manager selection is based on a custom implementation class that implements the

javax.net.ssl.X509TrustManager interface and optionally the com.ibm.wsspi.ssl.TrustManagerExctendedInfo

interface to obtain additional connection information that is not otherwise available.

 Default: Disabled

Class name:

Specifies a class that implements the javax.net.ssl.X509TrustManager interface. Optionally, the class can

implement the com.ibm.wsspi.ssl.TrustMangerExtendedInfo interface to get extended information about the

connection. The class can use the information to verify the host name and so on.

Chapter 7. Securing communications 631

Enabled when Custom is selected.

 Data type: Text

Example: Developing a custom trust manager for custom SSL trust decisions

The following example is of a sample custom trust manager. The custom trust manager makes no trust

decisions but instead uses the information in the X.509 certificate that it references to make decisions.

After you build and package the custom trust manager, configure it either from the ssl.client.props file

for a pure client or the SSLConfiguration TrustManager link in the administrative console. See “Trust

manager control of X.509 certificate trust decisions” on page 582 for more information about trust

managers.

Note: This example should only be used as a sample, and is not supported.
import java.security.cert.X509Certificate;

import javax.net.ssl.*;

import com.ibm.wsspi.ssl.TrustManagerExtendedInfo;

public final class CustomTrustManager implements X509TrustManager,

TrustManagerExtendedInfo

{

 private static ThreadLocal threadLocStorage = new ThreadLocal();

 private java.util.Properties sslConfig = null;

 private java.util.Properties props = null;

 public CustomTrustManager()

 {

 }

 /**

 * Method called by WebSphere Application Server run time to set the target

 * host information and potentially other connection info in the future.

 * This needs to be set on ThreadLocal since the same trust manager can be

 * used by multiple connections.

 *

 * @param java.util.Map - Contains information about the connection.

 */

 public void setExtendedInfo(java.util.Map info)

 {

 threadLocStorage.set(info);

 }

 /**

 * Method called internally to retrieve information about the connection.

 *

 * @return java.util.Map - Contains information about the connection.

 */

 private java.util.Map getExtendedInfo()

 {

 return (java.util.Map) threadLocStorage.get();

 }

 /**

 * Method called by WebSphere Application Server run time to set the custom

 * properties.

 *

 * @param java.util.Properties - custom props

 */

 public void setCustomProperties(java.util.Properties customProps)

 {

 props = customProps;

 }

632 Securing applications and their environment

/**

 * Method called internally to the custom properties set in the Trust Manager

 * configuration.

 *

 * @return java.util.Properties - information set in the configuration.

 */

 private java.util.Properties getCustomProperties()

 {

 return props;

 }

 /**

 * Method called by WebSphere Application Server runtime to set the SSL

 * configuration properties being used for this connection.

 *

 * @param java.util.Properties - contains a property for the SSL configuration.

 */

 public void setSSLConfig(java.util.Properties config)

 {

 sslConfig = config;

 }

 /**

 * Method called by TrustManager to get access to the SSL configuration for

 * this connection.

 *

 * @return java.util.Properties

 */

 public java.util.Properties getSSLConfig ()

 {

 return sslConfig;

 }

 /**

 * Method called on the server-side for establishing trust with a client.

 * See API documentation for javax.net.ssl.X509TrustManager.

 */

 public void checkClientTrusted(X509Certificate[] chain, String authType)

 throws java.security.cert.CertificateException

 {

 for (int j=0; j<chain.length; j++)

 {

 System.out.println("Client certificate information:");

 System.out.println(" Subject DN: " + chain[j].getSubjectDN());

 System.out.println(" Issuer DN: " + chain[j].getIssuerDN());

 System.out.println(" Serial number: " + chain[j].getSerialNumber());

 System.out.println("");

 }

 }

 /**

 * Method called on the client-side for establishing trust with a server.

 * See API documentation for javax.net.ssl.X509TrustManager.

 */

 public void checkServerTrusted(X509Certificate[] chain, String authType)

 throws java.security.cert.CertificateException

 {

 for (int j=0; j<chain.length; j++)

 {

 System.out.println("Server certificate information:");

 System.out.println(" Subject DN: " + chain[j].getSubjectDN());

 System.out.println(" Issuer DN: " + chain[j].getIssuerDN());

 System.out.println(" Serial number: " + chain[j].getSerialNumber());

 System.out.println("");

 }

 }

Chapter 7. Securing communications 633

/**

 * Return an array of certificate authority certificates which are trusted

 * for authenticating peers. You can return null here since the IbmX509

 * or IbmPKIX will provide a default set of issuers.

 *

 * See API documentation for javax.net.ssl.X509TrustManager.

 */

 public X509Certificate[] getAcceptedIssuers()

 {

 return null;

 }

}

Related concepts

“Trust manager control of X.509 certificate trust decisions” on page 582
The role of the trust manager is to validate the Secure Sockets Layer (SSL) certificate that is sent by the

peer, which includes verifying the signature and checking the expiration date of the certificate. A Java

Secure Socket Extension (JSSE) trust manager determines if the remote peer can be trusted during an

SSL handshake.

Related tasks

“Creating a custom trust manager configuration” on page 628
You can create a custom trust manager configuration at any management scope and associate the new

trust manager with a Secure Sockets Layer (SSL) configuration.

Creating a custom key manager

You can create a custom key manager configuration at any management scope and associate the new

key manager with a Secure Sockets Layer (SSL) configuration.

Before you begin

You must develop, package, and locate a Java Archive (.JAR) file for a custom key manager in the

was.install.root/lib/ext directory on WebSphere Application Server. For more information, see

rsec_ssldevcustomkeymgr.dita.

About this task

Complete the following steps in the administrative console:

 1. Decide whether you want to create the custom key manager at the cell scope or below the cell scope

at the node, server, or cluster, for example.

Note: When you create a custom key manager at a level below the cell scope, you can associate it

only with a Secure Sockets Layer (SSL) configuration at the same scope or higher. An SSL

configuration at a scope lower than the key manager does not see the key manager

configuration.

v To create a custom key manager at the cell scope, click Security > SSL certificate and key

management > Key managers. Every SSL configuration in the cell can select the key manager at

the cell scope.

v To create a custom key manager at a scope below the cell level, click Security > SSL certificate

and key management > Manage endpoint security configurations > {Inbound | Outbound} >

SSL_configuration > Key managers.

 2. Click New to create a new key manager.

 3. Type a unique key manager name.

 4. Select the Custom implementation setting. With the custom setting, you can define a Java class that

has an implementation on the Java interface javax.net.ssl.X509KeyManager and, optionally, the

com.ibm.wsspi.ssl.KeyManagerExtendedInfo WebSphere Application Server interface. The standard

634 Securing applications and their environment

rsec_ssldevcustomkeymgr.dita

implementation setting applies only when the key manager is already defined in the Java security

provider list as a provider and an algorithm, which is not the case for a custom key manager. The

typical standard key manager is algorithm = IbmX509, provider = IBMJSSE2.

 5. Type a class name. For example, com.ibm.test.CustomKeyManager.

 6. Select one of the following actions:

v Click Apply, then click Custom properties under Additional Properties to add custom properties to

the new custom key manager. When you are finished adding custom properties, click OK and

Save, then go to the next step.

v Click OK and Save, then go to the next step.

 7. Click SSL certificate and key management in the page navigation at the top of the panel.

 8. Select one of the following actions:

v Click SSL configurations under Related Items for a cell-scoped SSL configuration.

v Click Manage endpoint security configurations to select an SSL configuration at a lower scope.

 9. Click the link for the existing SSL configuration that you want to associate with the new custom key

manager. You can create a new SSL configuration instead of associating the custom key manager

with an existing configuration. For more information, see “Creating a Secure Sockets Layer

configuration” on page 614.

10. Click Trust and Key managers under Additional Properties.

11. Select the new custom key manager in the Key manager drop-down list. If the new custom key

manager is not listed, verify that you selected an SSL configuration scope that is at the same level or

below the scope that you selected in Step 8.

12. Click OK and Save.

Results

You have created a custom key manager configuration that references a JAR file in the installation

directory of WebSphere Application Server and associates the custom configuration with an SSL

configuration during the connection handshake.

What to do next

You can create a custom key manager for a pure client. For more information, see

“keyManagerCommands command group for the AdminTask object” on page 950.

Example: Developing a custom key manager for custom Secure Sockets Layer key

selection

The following example is of a sample custom key manager. This simple key manager returns the

configured alias if it is set using the alias properties com.ibm.ssl.keyStoreClientAlias or

com.ibm.ssl.keyStoreServerAlias, depending on which side of the connection the key manager is used.

The key manager defers to the JSSE default IbmX509 key manager to select an alias if these properties

are not set.

After you build and package a custom key manager, you can configure it from either the ssl.client.props

file for a pure client or by using the SSLConfiguration KeyManager link in the administrative console. See

“Key manager control of X.509 certificate identities” on page 584 for more information about key

managers.

Because only one key manager can be configured at a time for any given Secure Sockets Layer (SSL)

configuration, the certificate selections on the server side might not work as they would when the default

IbmX509 key manager is specified. When a custom key manager is configured, it is up to the owner of

that key manager to ensure that the selection of the alias from the SSL configuration supplied is set

properly when chooseClientAlias or chooseServerAlias are called. Look for the

com.ibm.ssl.keyStoreClientAlias and com.ibm.ssl.keyStoreServerAlias SSL properties.

Chapter 7. Securing communications 635

Note: This example should only be used as a sample, and is not supported.

package com.ibm.test;

import java.security.cert.X509Certificate;

import com.ibm.wsspi.ssl.KeyManagerExtendedInfo;

public final class CustomKeyManager

 implements javax.net.ssl.X509KeyManager, com.ibm.wsspi.ssl.KeyManagerExtendedInfo

{

 private java.util.Properties props = null;

 private java.security.KeyStore ks = null;

 private javax.net.ssl.X509KeyManager km = null;

 private java.util.Properties sslConfig = null;

 private String clientAlias = null;

 private String serverAlias = null;

 private int clientslotnum = 0;

 private int serverslotnum = 0;

 public CustomKeyManager()

 {

 }

 /**

 * Method called by WebSphere Application Server runtime to set the custom

 * properties.

 *

 * @param java.util.Properties - custom props

 */

 public void setCustomProperties(java.util.Properties customProps)

 {

 props = customProps;

 }

 private java.util.Properties getCustomProperties()

 {

 return props;

 }

 /**

 * Method called by WebSphere Application Server runtime to set the SSL

 * configuration properties being used for this connection.

 *

 * @param java.util.Properties - contains a property for the SSL configuration.

 */

 public void setSSLConfig(java.util.Properties config)

 {

 sslConfig = config;

 }

 private java.util.Properties getSSLConfig()

 {

 return sslConfig;

 }

 /**

 * Method called by WebSphere Application Server runtime to set the default

 * X509KeyManager created by the IbmX509 KeyManagerFactory using the KeyStore

 * information present in this SSL configuration. This allows some delegation

 * to the default IbmX509 KeyManager to occur.

 *

636 Securing applications and their environment

* @param javax.net.ssl.KeyManager defaultX509KeyManager - default key manager for IbmX509

 */

 public void setDefaultX509KeyManager(javax.net.ssl.X509KeyManager defaultX509KeyManager)

 {

 km = defaultX509KeyManager;

 }

 public javax.net.ssl.X509KeyManager getDefaultX509KeyManager()

 {

 return km;

 }

 /**

 * Method called by WebSphere Application Server runtime to set the SSL

 * KeyStore used for this connection.

 *

 * @param java.security.KeyStore - the KeyStore currently configured

 */

 public void setKeyStore(java.security.KeyStore keyStore)

 {

 ks = keyStore;

 }

 public java.security.KeyStore getKeyStore()

 {

 return ks;

 }

 /**

 * Method called by custom code to set the server alias.

 *

 * @param String - the server alias to use

 */

 public void setKeyStoreServerAlias(String alias)

 {

 serverAlias = alias;

 }

 private String getKeyStoreServerAlias()

 {

 return serverAlias;

 }

 /**

 * Method called by custom code to set the client alias.

 *

 * @param String - the client alias to use

 */

 public void setKeyStoreClientAlias(String alias)

 {

 clientAlias = alias;

 }

 private String getKeyStoreClientAlias()

 {

 return clientAlias;

 }

 /**

 * Method called by custom code to set the client alias and slot (if necessary).

Chapter 7. Securing communications 637

*

 * @param String - the client alias to use

 * @param int - the slot to use (for hardware)

 */

 public void setClientAlias(String alias, int slotnum) throws Exception

 {

 if (!ks.containsAlias(alias))

 {

 throw new IllegalArgumentException ("Client alias " + alias + "

 not found in keystore.");

 }

 this.clientAlias = alias;

 this.clientslotnum = slotnum;

 }

 /**

 * Method called by custom code to set the server alias and slot (if necessary).

 *

 * @param String - the server alias to use

 * @param int - the slot to use (for hardware)

 */

 public void setServerAlias(String alias, int slotnum) throws Exception

 {

 if (! ks.containsAlias(alias))

 {

 throw new IllegalArgumentException ("Server alias " + alias + "

 not found in keystore.");

 }

 this.serverAlias = alias;

 this.serverslotnum = slotnum;

 }

 /**

 * Method called by JSSE runtime to when an alias is needed for a client

 * connection where a client certificate is required.

 *

 * @param String keyType

 * @param Principal[] issuers

 * @param java.net.Socket socket (not always present)

 */

 public String chooseClientAlias(String[] keyType, java.security.Principal[]

 issuers, java.net.Socket socket)

 {

 if (clientAlias != null && !clientAlias.equals(""))

 {

 String[] list = km.getClientAliases(keyType[0], issuers);

 String aliases = "";

 if (list != null)

 {

 boolean found=false;

 for (int i=0; i<list.length; i++)

 {

 aliases += list[i] + " ";

 if (clientAlias.equalsIgnoreCase(list[i]))

 found=true;

 }

 if (found)

638 Securing applications and their environment

{

 return clientAlias;

 }

 }

 }

 // client alias not found, let the default key manager choose.

 String[] keyArray = new String [] {keyType[0]};

 String alias = km.chooseClientAlias(keyArray, issuers, null);

 return alias.toLowerCase();

 }

 /**

 * Method called by JSSE runtime to when an alias is needed for a server

 * connection to provide the server identity.

 *

 * @param String[] keyType

 * @param Principal[] issuers

 * @param java.net.Socket socket (not always present)

 */

 public String chooseServerAlias(String keyType, java.security.Principal[]

 issuers, java.net.Socket socket)

 {

 if (serverAlias != null && !serverAlias.equals(""))

 {

 // get the list of aliases in the keystore from the default key manager

 String[] list = km.getServerAliases(keyType, issuers);

 String aliases = "";

 if (list != null)

 {

 boolean found=false;

 for (int i=0; i<list.length; i++)

 {

 aliases += list[i] + " ";

 if (serverAlias.equalsIgnoreCase(list[i]))

 found = true;

 }

 if (found)

 {

 return serverAlias;

 }

 }

 }

 // specified alias not found, let the default key manager choose.

 String alias = km.chooseServerAlias(keyType, issuers, null);

 return alias.toLowerCase();

 }

 public String[] getClientAliases(String keyType, java.security.Principal[] issuers)

 {

 return km.getClientAliases(keyType, issuers);

 }

 public String[] getServerAliases(String keyType, java.security.Principal[] issuers)

 {

 return km.getServerAliases(keyType, issuers);

Chapter 7. Securing communications 639

}

 public java.security.PrivateKey getPrivateKey(String s)

 {

 return km.getPrivateKey(s);

 }

 public java.security.cert.X509Certificate[] getCertificateChain(String s)

 {

 return km.getCertificateChain(s);

 }

 public javax.net.ssl.X509KeyManager getX509KeyManager()

 {

 return km;

 }

}

Associating a Secure Sockets Layer configuration dynamically with an

outbound protocol and remote secure endpoint

After you create a Secure Sockets Layer (SSL) configuration, you must associate a secure outbound

management scope with the new configuration. In this release, you can associate one SSL configuration

with one remote secure endpoint and a different SSL configuration to another remote secure endpoint.

Both endpoints can use the same outbound protocol, if appropriate. This task describes how to create the

association dynamically.

Before you begin

Dynamic outbound selection requires that you provide only the outbound protocol name, the target host,

and the target port so that WebSphere Application Server can make a connection between the SSL

configuration and the outbound protocol or remote secure endpoint. The dynamic outbound selection

method takes precedence over other selection methods, such as central management and direct selection,

but is second to the programmatic method, that is, setting an SSL configuration on the running thread. For

more information about the selection types and precedence rules, see “Secure communications using

Secure Sockets Layer” on page 573.

About this task

Complete the following steps in the administrative console:

 1. Click Security > SSL certificate and key management > Manage endpoint security

configurations > Outbound.

 2. Select the management scope that you want to associate with an SSL configuration on the topology

tree.

 3. Under Related Items, click Dynamic outbound endpoint SSL configurations. The default dynamic

outbound configuration name, the target protocol, host, and port connection information, and the SSL

configuration name display.

 4. Click New to create a new dynamic outbound configuration.

 5. Type a dynamic outbound configuration name. Use a name that is descriptive of the purpose of the

dynamic selection configuration.

 6. Optionally, type a dynamic selection configuration description.

 7. Type the connection information that you want to associate with the configuration that is displayed in

the SSL configuration drop-down list. The connection information must be in the format protocol

name, target host, target port. You can substitute an asterisk (*) for any value, as in the following

examples:

640 Securing applications and their environment

v *,*,443

v *,www.ibm.com,443

v HTTP,.austin.ibm.com,*

where 443 is a port, www.ibm.com is a host, HTTP is a protocol, and .austin.ibm.com is a target host.

You can add multiple connections, but each additional connection can affect outbound performance.

 8. Click Add to add the new connection to the set of SSL configuration connections. To remove a

connection, select it and click Remove.

 9. Select an SSL configuration from the list.

10. Click Get certificate aliases to refresh the certificate aliases that are contained in the associated key

store.

11. Choose a certificate alias from the list.

12. Click OK and Save.

Results

WebSphere Application Server is ready to connect one or more SSL configurations to one or more remote

secure endpoints.

What to do next

You can return to the outbound tree and select another management scope to associate with the same or

a new outbound configuration.

Programmatically specifying an outbound SSL configuration using JSSEHelper

API

WebSphere Application Server provides a way to specify programmatically which Secure Sockets Layer

(SSL) configurations to use prior to making an outbound connection. The

com.ibm.websphere.ssl.JSSEHelper interface provides a complete set of application programming

interfaces (APIs) for handling SSL configurations.

About this task

Perform the following steps for your application when using the JSSEHelper API to establish an SSL

properties object on the thread for use by the runtime. Some of these APIs have Java 2 Security

permission requirements. See the JSSEHelper API documentation for more information about the

permissions required by your application.

Select the approach that best fits your connection situation when you specify programmatically which

Secure Sockets Layer (SSL) configurations to use prior to making an outbound connection.

1. Obtain an instance of the JSSEHelper API.

com.ibm.websphere.ssl.JSSEHelper jsseHelper = com.ibm.websphere.ssl.JSSEHelper.getInstance();

2. Obtain SSL properties from the WebSphere Application Server configuration or use those provided by

your application. Use one of the following options.

v By direction selection of an alias name, within the same management scope or higher as in the

following example:

try

{ String alias = "NodeAServer1SSLSettings";

 // As specified in the WebSphere SSL configuration Properties

 sslProps = jsseHelper.getProperties(alias); }

 catch (com.ibm.websphere.ssl.SSLException e)

 { e.printStackTrace(); // handle exception }

v By using the getProperties API for programmatic, direction, dynamic outbound, or management

scope selection (based on precedence rules and inheritance). The SSL runtime uses the

Chapter 7. Securing communications 641

getProperties API to determine which SSL configuration to use for a particular protocol. This

decision is based on both the input (sslAlias and connectionInfo) and the management scope from

which the property is called. The getProperties API makes decisions in the following order:

a. The API checks the thread to see if properties already exist.

b. The API checks for a dynamic outbound configuration that matches the ENDPOINT_NAME,

REMOTE_HOST, and or REMOTE_PORT.

c. The API checks to see if the optional sslAlias property is specified. You can configure any

protocol as direct or centrally managed. When a protocol is configured as direct, the sslAlias

parameter is null. When a protocol is configured as centrally managed, the sslAlias parameter

is also null.

d. If no selection has been made, the API chooses the dynamic outbound configuration based on

the management scope it was called from. If the dynamic outbound configuration is not defined

in the same scope, it then searches the hierarchy to locate one.

The last choice is the cell-scoped SSL configuration (in Network Deployment) or the node-scoped

SSL configuration (in Base Application Server). The

com.ibm.websphere.ssl.SSLConfigChangeListener parameter is notified when the SSL configuration

that is chosen by a call to the getProperties API changes. The protocol can then call the API again

to obtain the new properties as in the following example:

try { String sslAlias = null;

 // The sslAlias is not specified directly at this time. String host = "myhost.austin.ibm.com";

 // the target host String port = "443";

 // the target port HashMap connectionInfo = new HashMap();

 connectionInfo.put(JSSEHelper.CONNECTION_INFO_DIRECTION, JSSEHelper.DIRECTION_OUTBOUND);

 connectionInfo.put(JSSEHelper.CONNECTION_INFO_REMOTE_HOST, host);

 connectionInfo.put(JSSEHelper.CONNECTION_INFO_REMOTE_PORT, Integer.toString(port));

 connectionInfo.put(JSSEHelper.CONNECTION_INFO_ENDPOINT_NAME, JSSEHelper.ENDPOINT_IIOP);

 java.util.Properties props = jsseHelper.getProperties(sslAlias, connectionInfo, null); }

 catch (com.ibm.websphere.ssl.SSLException e)

 { e.printStackTrace(); // handle exception }

v By creating your own SSL properties and then passing them to the runtime, as in the following

example:

try {

 // This is the recommended "minimum" set of SSL properties. The trustStore can

 // be the same as the keyStore. Properties sslProps = new Properties();

 sslProps.setProperty("com.ibm.ssl.trustStore", "some value");

 sslProps.setProperty("com.ibm.ssl.trustStorePassword", "some value");

 sslProps.setProperty("com.ibm.ssl.trustStoreType", "some value");

 sslProps.setProperty("com.ibm.ssl.keyStore", "some value");

 sslProps.setProperty("com.ibm.ssl.keyStorePassword", "some value");

 sslProps.setProperty("com.ibm.ssl.keyStoreType", "some value");

 jsseHelper.setSSLPropertiesOnThread(sslProps); }

 catch (com.ibm.websphere.ssl.SSLException e)

{ e.printStackTrace(); // handle exception }

3. Use the JSSEHelper.setSSLPropertiesOnThread(props) API to set the Properties object on the thread

so that the runtime picks it up and uses the same JSSEHelper.getProperties API. You can also obtain

properties from the thread after they are set with the jsseHelper.getSSLPropertiesOnThread() API, as

in the following example:

try

{ Properties sslProps = jsseHelper.getProperties(null, connectionInfo, null);

jsseHelper.setSSLPropertiesOnThread(sslProps); }

 catch (com.ibm.websphere.ssl.SSLException e)

{ e.printStackTrace(); // handle exception }

4. When the connection is completed, you must clear the SSL properties from the thread by passing the

null value to the setPropertiesOnThread API.

try

 { jsseHelper.setSSLPropertiesOnThread(null); }

 catch (com.ibm.websphere.ssl.SSLException e)

 { e.printStackTrace(); // handle exception }

642 Securing applications and their environment

Associating Secure Sockets Layer configurations centrally with inbound and

outbound scopes

After you create a Secure Sockets Layer (SSL) configuration, you must associate a secure inbound or

outbound management scope with the new configuration. You can manage the association centrally so

that you can easily make changes that affect all the scopes that are lower on the topology and that are

associated with the configuration. Beginning with WebSphere Application Server version 6.1, the

recommended and the default configuration method is centrally managed SSL configurations.

Before you begin

You can simplify the number of associations that you need to make for an SSL configuration by

associating the configuration with the highest level management scope requiring a unique configuration.

SSL configuration associations manifest inheritance behaviors. Because of the inheritance behaviors, all of

the scopes that are lower on the topology inherit this SSL configuration. For example, an association you

make at the cell level affects nodes, servers, clusters, and endpoints. For more information, see “Central

management of Secure Sockets Layer configurations” on page 591.

A precedence rule determines which SSL configuration association is used at a particular scope. The

highest precedence is given to endpoints on the topology. If you establish an association at the endpoint,

this association overrides any prior association that you made higher up on the management scope

topology.

About this task

Complete the following steps in the administrative console:

 1. Click Security > SSL certificate and key management.

 2. Select the Dynamically update the runtime when SSL configuration changes check box if you

want changes that you make to an existing SSL configuration to occur dynamically. All outbound SSL

communications honor the dynamic SSL changes. Protocols that do not use the channel frameworks

SSL channel for inbound communications, including Object Request Broker (ORB) and administrative

SOAP protocols, do not honor dynamic updates. For more information, see “Dynamic configuration

updates” on page 607.

 3. Click Manage endpoint security configurations.

 4. Select either the inbound or the outbound tree. After finishing the selected tree, you can return to this

step to repeat the following steps for the other tree.

 5. Click the link for the selected cell, node, node group, server, cluster, or endpoint on the topology tree.

If the scope already has an associated SSL configuration and alias, these objects display in

parentheses immediately following the scope name, for example:

Node01(NodeDefaultSSLSettings,default). If the deployment manager has federated a node, the node

scope SSL configuration overrides the cell scope configuration above it in the topology.

 6. Decide whether to override the inherited values that display in the read-only fields. Read-only fields

include the management scope name, the direction, and the inherited SSL configuration name and

certificate alias.

v If you are satisfied with these values, do not override them.

v If you want to override the inherited values, select the Override inherited values check box.

 7. Select an SSL configuration from the list.

 8. Click Update certificate alias list. The certificate alias list comes from the key store that is

referenced by the new SSL configuration.

 9. Click Manage certificates if you want to manage the personal certificates that are contained in the

key store that is referenced in the SSL configuration.

10. Click Update certificate alias list to refresh the list of aliases.

11. Select a certificate alias in the key store to represent the identity of the endpoint.

Chapter 7. Securing communications 643

12. Click OK to save your changes.

13. Click Manage endpoint security configurations and trust zones to return to the topology tree.

14. Configure the opposite direction on the topology tree using the steps in this task. You can also select

additional scopes to associate with the SSL configuration, as needed.

Results

Each SSL configuration at the selected scope and at scopes beneath it on the topology tree have the

same SSL configuration properties. The following SSL configuration methods override the centrally

managed configurations that you associate in the tree view:

v Direct selection at the endpoint

v Dynamic outbound SSL configuration associations

v Programmatic specifications

What to do next

At any management scope, you can configure the following objects: dynamic outbound endpoint SSL

configurations, key stores, key sets, key set groups, key managers, and trust managers. Like SSL

configurations, these objects are scoped automatically so that they are not visible higher up in the tree nor

are they loaded during runtime by processes that are higher up in the tree.

Selecting an SSL configuration alias directly from an endpoint configuration

You can associate a secure outbound endpoint with a new Secure Sockets Layer (SSL) configuration

directly. If you are migrating from a release prior to version 6.1, WebSphere Application Server still

supports configurations that were selected directly at an endpoint. Direct selection always overrides

centrally managed configurations and preserves migrated configurations.

About this task

Select an SSL configuration alias directly at the following endpoints:

v Security > Global security > RMI/IIOP security > CSIv2 outbound transport

v Security > Global security > RMI/IIOP security > CSIv2 inbound transport

v System administration > Deployment manager > Transport Chain > WCInboundAdminSecure >

SSL inbound channel (SSL_1)

v System administration > Deployment manager > Administration Services > JMX connectors >

SOAPConnector > Custom Properties > sslConfig

v System administration > Node agents > nodeagent > Administration Services > JMX connectors

> SOAPConnector > Custom Properties > sslConfig

v Servers > Application servers > server1 > Messaging engine inbound transports >

InboundSecureMessaging > SSL inbound channel (SIB_SSL_JFAP)

v Servers > Application servers > server1 > WebSphere MQ link inbound transports >

InboundSecureMQLink > SSL inbound channel (SIB_SSL_MQFAP)

v Servers > Application servers > server1 > SIP Container Settings > SIP container transport

chains > SIPCInboundDefaultSecure > SSL inbound channel (SSL_5)

v Servers > Application servers > server1 > Web Container Settings > Web container transport

chains > WCInboundAdminSecure > SSL inbound channel (SSL_1)

v Servers > Application servers > server1 > Web Container Settings > Web container transport

chains > WCInboundDefaultSecure > SSL inbound channel (SSL_2)

Note: The central management of SSL configurations can be a more efficient strategy because multiple

configurations can be contained within a single SSLConfigGroup. If you need to convert

configuration references that are already directly managed to centrally managed configurations,

644 Securing applications and their environment

modify each endpoint individually. Use the AdminConfig.modify command to set the

sslConfigAlias value to an empty string (″″). Below is an example of doing this:

v Using Jacl:

set s1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

set sslChannel [lindex [$AdminConfig list SSLInboundChannel $s1] 0]

$AdminConfig modify $sslChannel [list[list sslConfigAlias ""]]

For more information on using this command, see Configuring processes using scripting

For more information on specific wsadmin commands that affect a repertoire as opposed to

individual endpoints, see the SSLConfigGroupCommands group for the AdminTask here,

“SSLConfigGroupCommands group for the AdminTask object” on page 973.

Complete the following steps in the administrative console:

Note: These steps provide an example to follow when you directly select any of the endpoints listed

above.

1. Click Security > Global security > RMI/IIOP security > CSIv2 outbound transport.

2. Click Use specific SSL alias. When you identify a specific SSL alias, you override the centrally

managed scope associations.

3. Select an SSL configuration alias from the drop-down list.

4. Click OK.

5. Repeat these steps for additional protocols or endpoints, if desired.

Results

By associating the endpoint directly, you have overridden a centrally managed SSL configuration.

What to do next

If you decide to use management scopes instead of endpoints to associate an SSL configuration, follow

the steps above, but click Centrally managed instead of Use specific SSL alias, then click Manage

endpoint security configurations. The console is redirected to Security > SSL certificate and key

management > Manage endpoint security configurations.

Enabling Secure Sockets Layer client authentication for a specific inbound

endpoint

When you establish a Secure Sockets Layer (SSL) configuration, you can enable client authentication for a

specific inbound endpoint.

Before you begin

The endpoint configuration must already exist in the SSL topology.

About this task

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> Inbound > SSL_configuration. If you want to enable SSL client authentication for all processes,

define an SSL configuration for the new endpoint at the node or cell level so that it is visible to all

processes on the same node or on the entire cell. For more information, see “Creating a Secure

Sockets Layer configuration” on page 614.

2. Select Override inherited values. The SSL configuration is used for the current scope and any lower

scopes that have not already designated an SSL configuration. This field displays for server and node

groups within the object hierarchy and does not display for the top-level node or cell.

Chapter 7. Securing communications 645

3. Select an SSL configuration from the drop-down list.

4. Click Update certificate alias list.

5. Select a Certificate alias from the drop-down list.

6. Click OK to save the configuration.

Results

You can repeat the previous steps for each endpoint that uses the same SSL configuration to enable client

authentication for the inbound endpoints.

What to do next

CSIv2 Protocol Exception:

The Common Secure Interoperability Version 2 (CSIv2) secure endpoints, used for Remote Method

Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) security, cannot override inherited values. While

the rest of the SSL properties are effective for CSIv2 when they are selected at the centrally-managed

Secure Communications panel, the client authentication selection is controlled by the CSIv2 protocol

configuration.

To enable SSL client certificate authentication for the CSIv2 protocol, you must use the CSIv2 inbound and

outbound authentication panels. For SSL client authentication to occur between two servers, you must

enable (support or require) SSL client certificate authentication for both the inbound and the outbound

policies.

WebSphere Application Server can either request (support) clients to provide signer certificates for the

SSL handshake, or the server can require clients to provide a valid signer certificate for the SSL

handshake, which is a more secure method. However, when the server requires certificates, the server

must obtain a signer for each client that connects to the server, which involves more server-side

management.

The client certificate should not be used for the identity when it is used from server-to-server. However,

when a pure client sends the client certificate it is used for the identity unless a message level identity is

specified, such as a user ID or a password.

Do the following to enable client certificate authentication for the CSIv2 protocol for server-to-server:

1. Click Security > Global security.

2. Expand the RMI/IIOP security section.

3. Click CSIv2 inbound authentication.

4. Under Client authentication, select either supported or required. When you select required, only one

SSL port is opened (CSV2_SSL_MUTUALAUTH_LISTENER_ADDRESS). When you select supported,

two SSL ports are opened (both CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS and

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS).

If there are two ports, the client can select either based on the security configuration policy of the port.

5. Click OK to save.

6. If you want server-to-server SSL client authentication, then complete the remaining steps. If you don’t

complete the remaining steps, only pure clients are enabled to send client certificates.

7. Expand the RMI/IIOP security section.

8. Click CSIv2 outbound authentication.

9. Under Client authentication, select either supported or required.

The SSL configuration for the inbound secure endpoints for which you enable SSL client certificate

authentication must have the signer certificate from any client that attempts to open a connection to that

646 Securing applications and their environment

inbound secure endpoint. You must collect those signers and then add them to the trust store associated

with the inbound secure endpoints SSL configuration.

Manage endpoint security configurations

Use this page to select a Secure Socket Layer (SSL) configuration from the Local Topology hierarchy,

which includes cells, nodes, node groups, servers, and clusters.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations.

Local topology:

The Local topology represents the hierarchy of nodes, node groups, clusters, servers, and end points

within the cell that comprise a centralized SSL configuration.

 The topology acts as a hierarchical tree in terms of inheritance. For example, if an SSL configuration has

been associated with a specific node, then all servers within that node will inherit that SSL configuration

selection, provided the servers are not associated with an SSL configuration at the server scope.

Centralized management of SSL is the default configuration; however, it can be overridden at various

locations to directly select a specific SSL alias as in previous releases for backwards compatibility.

 Scope Description

Inbound/Outbound Specifies the topology tree in terms of connection

direction. For example, the inbound tree represents all

server endpoints that receive connections at the various

servers within the cell. The outbound tree represents the

client side of connections from the various servers within

the cell.

Nodes Specifies the nodes that are part of the cell. The list of

nodes is updated anytime a node gets federated into the

cell.

Servers Specifies the servers that are part of a specific node. You

can enable a specific server to have an SSL configuration

associated with it so that resources within the same

server can use the associated SSL configuration.

Clusters Specifies the clusters that are part of the cell. When an

SSL configuration is associated with a cluster, all servers

within the cluster will use the same SSL configuration

unless specified at a lower level in the topology.

Nodegroups Specifies the node groups that are part of the cell. When

an SSL configuration is associated with a node group, all

nodes within that node group may use the same SSL

configuration unless one is specified at a lower scope in

the topology or the specific end point has chosen a direct

alias reference.

Secure port and transport Specifies an endpoint name to associate with an SSL

configuration when more specific SSL settings are

needed at this level. You could select an alias directly at

the endpoint panel; however, when you use Secure port

and transport, you can maintain more centralized control

of the SSL configuration and make changes more easily.

Dynamic inbound and outbound endpoint SSL configurations collection

Use this page to manage dynamic endpoint Secure Sockets Layer (SSL) configurations, which represent

associations between Secure Socket Layer (SSL) configurations and their target protocol, host, and port.

Chapter 7. Securing communications 647

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Dynamic outbound endpoint SSL configurations.

When an outbound connection is attempted, this association is checked ahead of the SSL configuration

scope association. Based on the target protocol,host,port, the outbound SSL configuration used can be

different from the default specified in the SSL scope configuration.

 Button Resulting action

New Adds a new dynamic outbound selection criteria. The outbound connection

selects an SSL configuration based upon connection information, including

DNS host name and domain, port, and protocol type. When an outbound

connection is being made, the dynamic outbound selection criteria are queried

for a match, and if found the SSL configuration associated is used.

Delete Deletes an existing dynamic outbound endpoint SSL configuration.

Name:

Specifies the unique name of the dynamic endpoint configuration.

Connection information:

Specifies the set of target protocol, host, port for the outbound request in the form protocol,host,port.

SSL Configuration:

Specifies the SSL configuration that is used by requests at this scope when a match occurs for the given

selection criteria.

Dynamic outbound endpoint SSL configuration settings

Use this page to set properties for dynamic outbound endpoint SSL configurations, which represent

associations between SSL configurations and their target protocol, host, and port.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Dynamic [inbound | outbound] endpoint SSL

configurations. Then click the New button.

When an outbound connection is attempted, this association is checked ahead of the Secure Sockets

Layer (SSL) configuration scope association. This means based on the target protocol,host,port, the

outbound SSL configuration used can be different than the default specified in the SSL scope

configuration.

Name:

Specifies the unique name of the dynamic endpoint configuration.

 Data type: Text

Description:

Specifies text that describes the purpose of this dynamic selection criteria.

 Data type: Text

648 Securing applications and their environment

Add connection information:

Specifies select information in the form protocol,host,port for the outbound connection. Multiple selection

criteria can be entered. An asterisk (*) can be used to mean all protocols, hosts, or ports. You can use an

* for any field.

 Data type: Text

An example of selection criteria is *,www.ibm.com,*, which means that any time the target host is

www.ibm.com, you must use the SSL configuration specified here. Another example selection criteria is

IIOP,*,*, which means that any outbound IIOP request uses the SSL configuration that is specified in the

SSL configuration field. When there is a conflict between two selection criteria, the application server uses

the first match. The list of valid protocols you can use include: IIOP, HTTP, JMS, LDAP, SIP,

ADMIN_SOAP, ADMIN_IIOP, or WEBSERVICES_HTTP.

Add:

Specifies to add the selected information from the Add select information menu to the right-hand list.

Remove:

Specifies to remove the selection from the right-hand list.

SSL Configuration:

Specifies the SSL configuration to be used by requests at this scope when a match occurs for the given

selection criteria.

 Data type: Text

Get certificate alias:

When selected, the keystore within the selected SSL configuration is queried for a list of personal

certificates from which to choose.

Certificate alias:

Specifies the certificate alias that is used as the identity for the connection.

 If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate

is used. If multiple certificates exist in the keystore, the key manager might not consistently select the

same certificate.

 Data type: Text

Default: (none)

Quality of protection (QoP) settings

Use this page to specify security level, ciphers, and mutual authentication settings for the Secure Socket

Layer (SSL) configuration.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click SSL configurations > . Click on {SSL_configuration_name

}. Under Additional Properties, click Quality of protection (QoP) settings.

Chapter 7. Securing communications 649

Client authentication

Specifies the whether SSL client authentication should be requested if the SSL connection is used for the

server side of the connection.

If None is selected, the server does not request that a client certificate be sent during the handshake. If

Supported is selected, the server requests that a client certificate be sent. If the client does not have a

certificate, the handshake might still succeed. If Required is selected, the server requests that a client

certificate be sent. If the client does not have a certificate, the handshake fails.

 Data type: Text

Default: None

Protocol

Specifies the Secure Sockets Layer (SSL) handshake protocol. This protocol is typically SSL_TLS, which

supports all handshake protocols except for SSLv2 on the server side. When United States Federal

Information Processing standard (FIPS) option is enabled, Transport Layer Security (TLS) is automatically

used regardless of this setting.

 Data type: text

Default: SSL_TLS

Predefined JSSE provider

Specifies one of the predefined Java Secure Sockets Extension (JSSE) providers. The IBMJSSE2 provider

is recommended for use on all platforms which support it. It is required for use by the channel framework

SSL channel. When Federal Information Processing Standard (FIPS) is enabled, IBMJSSE2 is used in

combination with the IBMJCEFIPS crypto provider.

 Default: Enabled

Select provider

Specifies a package that implements a subset of the cryptography aspects for the Java security application

programming interface (API). This value is a JSSE provider name that is listed in the java.security file.

Note that cipher suites and protocol values depend upon the provider.

 Data type: Text

Default: IBMJSSE2

Custom JSSE provider

Specifies that a custom JSSE provider should be used.

 Default: Disabled

Custom provider

Specifies a package that implements a subset of the cryptography aspects for the Java security application

programming interface (API). This value is a Java Secure Sockets Extension (JSSE) provider name that is

listed in the java.security file. Note that cipher suites and protocol values depend upon the provider.

 Data type: Text

Cipher suite groups

Specifies the various cipher suite groups that can be chosen depending upon your security needs. The

stronger the cipher suite strength, the better the security; however, this can result in performance

consequences.

650 Securing applications and their environment

Data type: Text

Default: Strong

Update selected ciphers

When selected, the cipher suites that are contained within the selected Cipher suite group are added to

the list of Selected ciphers. Any change to this list changes the Cipher suite group to custom.

Selected ciphers

Specifies the ciphers that are effective when the configuration is saved. These ciphers are used to

negotiate with the remote side of the connection during the handshake. A common cipher needs to be

selected or the handshake fails.

 Data type: Text

Add

Specifies to add the selected cipher to the Selected ciphers list.

Remove

Specifies to remove the selected cipher from the Selected ciphers list.

ssl.client.props client configuration file

Use the ssl.client.props file to configure Secure Sockets Layer (SSL) for clients. In previous releases of

WebSphere Application Server, SSL properties were specified in the sas.client.props or

soap.client.props files or as system properties. By consolidating the configurations, WebSphere

Application Server enables you to manage security in a manner that is comparable to server-side

configuration management. You can configure the ssl.client.props file with multiple SSL configurations.

Setting up the SSL configuration for clients

Client runtimes are dependent on the WebSphere Application Server ssl.client.props configurations.

-Dcom.ibm.SSL.ConfigURL=file:profile_root

\properties\ssl.client.props

Use the setupCmdLine script on the command line to specify the com.ibm.SSL.ConfigURL system property.

The setupclient script also sets the CLIENTSSL variable.

-Dcom.ibm.SSL.ConfigURL=file:/QIBM/UserData/WebSphere/AppServer/V61/Express

/profiles/default/properties/ssl.client.props

The com.ibm.SSL.ConfigURL property references a file URL that points to the ssl.client.props file. You

can reference the CLIENTSSL variable on the command line of any script that uses the setupCmdLine file.

When you specify the com.ibm.SSL.ConfigURL system property, the SSL configuration is available to all

protocols that use SSL. SSL configurations, which are referenced in the ssl.client.props file, also have

aliases that you can reference. In the following sample code from the sas.client.props file, all of the SSL

properties are replaced with a property that points to an SSL configuration in the ssl.client.props file:

com.ibm.ssl.alias=DefaultSSLSettings

The following sample code shows a property in the soap.client.props file that is similar to the

com.ibm.SSL.ConfigURL property. This property references a different SSL configuration on the client side:

com.ibm.ssl.alias=DefaultSSLSettings

In the ssl.client.props file, you can change the administrative SSL configuration to avoid modifying the

soap.client.props file.

Chapter 7. Securing communications 651

Note: Support for SSL properties is still specified in the sas.client.props and soap.client.props files.

However, consider moving the SSL configurations to the ssl.client.props file, because this file is

the new configuration model for client SSL.

Properties of the ssl.client.props file

This section describes the default ssl.client.props file properties in detail, by sections within the file.

Global properties

Global SSL properties are process-specific properties that include Federal Information Processing

Standard (FIPS) enablement, the default SSL alias, the profile_root of the profile for specifying the root

location of the key and truststore paths, and so on.

 Property Default Description

com.ibm.ssl.defaultAlias DefaultSSLSettings Specifies the default alias that is used whenever an alias is

not specified by the protocol that calls the JSSEHelper API to

retrieve an SSL configuration. This property is the final arbiter

on the client side for determining which SSL configuration to

use.

com.ibm.ssl.validationEnabled false When set to true, this property validates each SSL

configuration as it is loaded. Use this property for debug

purposes only, to avoid unnecessary performance overhead

during production.

com.ibm.ssl.performURLHostNameVerification false When set to true, this property enforces URL host name

verification. When HTTP URL connections are made to target

servers, the common name (CN) from the server certificate

must match the target host name. Without a match, the host

name verifier rejects the connection. The default value of

false omits this check. As a global property, it sets the default

host name verifier. Any javax.net.ssl.HttpsURLConnection

object can choose to enable host name verification for that

specific instance by calling the setHostnameVerifier method

with its own HostnameVerifier instance.

com.ibm.security.useFIPS false When set to true, FIPS-compliant algorithms are used for

SSL and other Java Cryptography Extension (JCE)-specific

applications. This property is typically not enabled unless the

property is required by the operating environment.

user.root /QIBM/UserData

/WebSphere/AppServer

/v61/Express/profiles

/default

This property can be used by key and truststore location

properties as a single property for specifying the root path to

the key and truststores. Typically, this property is the profile

root. However, you can modify this property to any root

directory on the local machine that has the proper read and

potentially write authority to that directory.

Certificate creation properties

Use certificate creation properties to specify the default self-signed certificate values for the major

attributes of a certificate. You can define the distinguished name (DN), expiration date, key size, and alias

that are stored in the keystore.

 Property Default Description

com.ibm.ssl.defaultCertReqAlias default_alias This property specifies the default alias to use to

reference the self-signed certificate that is created in the

keystore. If the alias already exists with that name, the

default alias is appended with _#, where the number

sign (#) is an integer that starts with 1 and increments

until it finds a unique alias.

652 Securing applications and their environment

Property Default Description

com.ibm.ssl.defaultCertReqSubjectDN cn=${hostname},

o=IBM,c=US

This property uses the property distinguished name

(DN) that you set for the certificate when it is created.

The ${hostname} variable is expanded to the host name

on which it resides. You can use correctly formed DNs

as specified by the X.509 certificate.

com.ibm.ssl.defaultCertReqDays 365 This property specifies the validity period for the

certificate and can be as small as 1 day and as large as

the maximum number of days that a certificate can be

set, which is approximately 20 years.

com.ibm.ssl.defaultCertReqKeySize 1024 This property is the default key size. The valid values

depend upon the Java Virtual Machine (JVM) security

policy files that are installed. By default, the product

JVMs ship with the export policy file that limits the key

size to 1024. To get a large key size such as 2048, you

can download the restricted policy files from the Web

site.

Certificate revocation checking

To enable certificate revocation checking, you can set a combination of Online Certificate Status Protocol

(OCSP) properties. These properties are not used unless you set the com.ibm.ssl.trustManager property to

IbmPKIX. In addition, to successfully process revocation checking on the client, you must turn off the signer

exchange prompt. To turn off the signer exchange prompt, change the

com.ibm.ssl.enableSignerExchangePrompt property to false. For more information, see the related link to

the ″Enabling certificate revocation checking with the default IbmPKIX trust manager″ topic.

SSL configuration properties

Use the SSL configuration properties section to set multiple SSL configurations. For a new SSL

configuration specification, set the com.ibm.ssl.alias property because the parser starts a new SSL

configuration with this alias name. The SSL configuration is referenced by using the alias property from

another file, such as sas.client.props or soap.client.props, through the default alias property. The

properties that are specified in the following table enable you to create a javax.net.ssl.SSLContext, among

other SSL objects.

 Property Default Description

com.ibm.ssl.alias DefaultSSLSettings This property is the name of this SSL configuration and must be

the first property for an SSL configuration because it references

the SSL configuration. If you change the name of this property

after it is referenced elsewhere in the configuration, the runtime

defaults to the com.ibm.ssl.defaultAlias property whenever the

reference is not found. The error trust file is null or key

file is null might display when you start an application using

an SSL reference that is no longer valid.

com.ibm.ssl.protocol SSL_TLS This property is the SSL handshake protocol that is used for this

SSL configuration. This property attempts Transport Layer

Security (TLS) first, but accepts any remote handshake

protocol, including SSLv3 and TLS. Valid values for this property

include SSLv2 (client side only), SSLv3, SSL, TLS, TLSv1, and

SSL_TLS.

com.ibm.ssl.securityLevel HIGH This property specifies the cipher group that is used for the SSL

handshake. The typical selection is HIGH, which specifies

128-bit or higher ciphers. The MEDIUM selection provides 40-bit

ciphers. The LOW selection provides ciphers that do not

perform encryption, but do perform signing for data integrity. If

you specify your own cipher list selection, uncomment the

property com.ibm.ssl.enabledCipherSuites.

Chapter 7. Securing communications 653

Property Default Description

com.ibm.ssl.trustManager IbmX509 This property specifies the default trust manager that you must

use to validate the certificate sent by the target server. This trust

manager does not perform certificate revocation list (CRL)

checking. You can choose to change this value to IbmPKIX for

CRL checking using CRL distribution lists in the certificate,

which is a standard way to perform CRL checking. When you

want to perform custom CRL checking, you must implement a

custom trust manager and specify the trust manager in the

com.ibm.ssl.customTrustManagers property. The IbmPKIX

option might affect performance because this option requires

IBMCertPath for trust validation. Use IbmX509 unless CRL

checking is necessary. If you are using the Online Certificate

Status Protocol (OCSP) properties, set this property value to

IbmPKIX.

com.ibm.ssl.keyManager IbmX509 This property specifies the default key manager to use for

choosing the client alias from the specified keystore. This key

manager uses the com.ibm.ssl.keyStoreClientAlias property to

specify the keystore alias. If this property is not specified, the

choice is delegated to Java Secure Socket Extension (JSSE).

JSSE typically chooses the first alias that it finds.

com.ibm.ssl.contextProvider IBMJSSE2 This property is used to choose the JSSE provider for the SSL

context creation. It is recommended that you default to

IBMJSSE2 when you use a Java virtual machine (JVM). The

client plug-in can use the SunJSSE provider when using a Sun

JVM.

com.ibm.ssl.enableSignerExchangePrompt true This property determines whether to display the signer

exchange prompt when a signer is not present in the client

truststore. The prompt displays information about the remote

certificate so that WebSphere Application Server can decide

whether or not to trust the signer. It is very important to validate

the certificate signature. This signature is the only reliable

information that can guarantee that the certificate has not been

modified from the original server certificate. For automated

scenarios, disable this property to avoid SSL handshake

exceptions. Run the retrieveSigners script, which sets up the

SSL signer exchange, to download the signers from the server

prior to running the client. If you are using the Online Certificate

Status Protocol (OCSP) properties, set this property value to

false.

com.ibm.ssl.keyStoreClientAlias default This property is used to reference an alias from the specified

keystore when the target does not request client authentication.

When WebSphere Application Server creates a self-signed

certificate for the SSL configuration, this property determines the

alias and overrides the global com.ibm.ssl.defaultCertReqAlias

property.

com.ibm.ssl.customTrustManagers Commented out by

default

This property enables you to specify one or more custom trust

managers, which are separated by commas. These trust

managers can be in the form of algorithm|provider or

classname. For example, IbmX509|IBMJSSE2 is in the

algorithm|provider format, and the

com.acme.myCustomTrustManager interface is in the classname

format. The class must implement the

javax.net.ssl.X509TrustManager interface. Optionally, the class

can implement the

com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface. These

trust managers run in addition to the default trust manager that

is specified by the com.ibm.ssl.trustManager interface. These

trust managers do not replace the default trust manager.

654 Securing applications and their environment

Property Default Description

com.ibm.ssl.customKeyManager Commented out by

default

This property enables you to have one, and only one, custom

key manager. The key manager replaces the default key

manager that is specified in the com.ibm.ssl.keyManager

property. The form of the key manager is algorithm|provider or

classname. See the format examples for the

com.ibm.ssl.customTrustManagers property. The class must

implement the javax.net.ssl.X509KeyManager interface.

Optionally, the class can implement the

com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface. This key

manager is responsible for alias selection.

com.ibm.ssl.dynamicSelectionInfo Commented out by

default

This property enables dynamic association with the SSL

configuration. The syntax for a dynamic association is

outbound_protocol, target_host, or target_port. For multiple

specifications, use the vertical bar (|) as the delimiter. You can

replace any of these values with an asterisk (*) to indicate a

wildcard value. Valid outbound_protocol values include: IIOP,

HTTP, LDAP, SIP, BUS_CLIENT, BUS_TO_WEBSPHERE_MQ,

BUS_TO_BUS, and ADMIN_SOAP. When you want the

dynamic selection criteria to choose the SSL configuration,

uncomment the default property, and add the connection

information. For example, add the following on one line

com.ibm.ssl.dynamicSelectionInfo=HTTP,

.ibm.com,443|HTTP,.ibm.com,9443

com.ibm.ssl.enabledCipherSuites Commented out by

default

This property enables you to specify a custom cipher suite list

and override the group selection in the

com.ibm.ssl.securityLevel property. The valid list of ciphers

varies according to the provider and JVM policy files that are

applied. For cipher suites, use a space as the delimiter.

com.ibm.ssl.keyStoreName ClientDefaultKeyStore This property references a keystore configuration name. If you

have not already defined the keystore, the rest of the keystore

properties must follow this property. After you define the

keystore, you can specify this property to reference the

previously specified keystore configuration. New keystore

configurations in the ssl.client.props file have a unique name.

com.ibm.ssl.trustStoreName ClientDefaultTrustStore This property references a truststore configuration name. If you

have not already defined the truststore, the rest of the truststore

properties must follow this property. After you define the

truststore, you can specify this property to reference the

previously specified truststore configuration. New truststore

configurations in the ssl.client.props file should have a

unique name.

Keystore configurations

SSL configurations reference keystore configurations whose purpose is to identify the location of

certificates. Certificates represent the identity of clients that use the SSL configuration. You can specify

keystore configurations with other SSL configuration properties. However, it is recommended that you

specify the keystore configurations in this section of the ssl.client.props file after the

com.ibm.ssl.keyStoreName property identifies the start of a new keystore configuration. After you fully

define the keystore configuration, the com.ibm.ssl.keyStoreName property can reference the keystore

configuration at any other point in the file.

 Property Default Description

com.ibm.ssl.keyStoreName ClientDefaultKeyStore This property specifies the name of the keystore as it is

referenced by the runtime. Other SSL configurations can

reference this name further down in the

ssl.client.props file to avoid duplication.

Chapter 7. Securing communications 655

Property Default Description

com.ibm.ssl.keyStore ${user.root}/etc/
key.p12

This property specifies the location of the keystore in the

required format of the com.ibm.ssl.keyStoreType

property. Typically, this property references a keystore file

name. However, for cryptographic token types, this

property references a Dynamic Link Library (DLL) file.

com.ibm.ssl.keyStorePassword WebAS This property is the default password, which is the cell

name for the profile when it is created. The password is

typically encoded using an {xor} algorithm. You can use

iKeyman to change the password in the keystore, then

change this reference. If you do not know the password

and if the certificate is created for you, change the

password in this property, then delete the keystore from

the location where it resides. Restart the client to

recreate the keystore by using the new password, but

only if the keystore name ends with DefaultKeyStore and

if the fileBased property is true. Delete both the keystore

and truststore at the same time so that a proper signer

exchange can occur when both are recreated together.

com.ibm.ssl.keyStoreType PKCS12 This property is the keystore type. Use the default,

PKCS12, because of its interoperability with other

applications. You can specify this property as any valid

keystore type that is supported by the JVM on the

provider list.

com.ibm.ssl.keyStoreProvider IBMJCE The IBM Java Cryptography Extension property is the

keystore provider for the keystore type. The provider is

typically IBMJCE or IBMPKCS11Impl for cryptographic

devices.

com.ibm.ssl.keyStoreFileBased true This property indicates to the runtime that the keystore is

file-based, meaning it is located on the file system.

com.ibm.ssl.keyStoreReadOnly false This property indicates to the run time for WebSphere

Application Server whether the key store can be modified

during the run time.

Truststore Configurations

SSL configurations reference truststore configurations, whose purpose is to contain the signer certificates

for servers that are trusted by this client. You can specify these properties with other SSL configuration

properties. However, it is recommended that you specify truststore configurations in this section of the

ssl.client.props file after the com.ibm.ssl.trustStoreName property has identified the start of a new

truststore configuration. After you fully define the truststore configuration, the com.ibm.ssl.trustStoreName

property can reference the configuration at any other point in the file.

A truststore is a keystore that JSSE uses for trust evaluation. A truststore contains the signers that

WebSphere Application Server requires before it can trust the remote connection during the handshake. If

you configure the com.ibm.ssl.trustStoreName=ClientDefaultKeyStore property, you can reference the

keystore as the truststore. Further configuration is not required for the truststore because all of the signers

that are generated through signer exchanges are imported into the keystore where they are called by the

runtime.

656 Securing applications and their environment

Property Default Description

com.ibm.ssl.trustStoreName ClientDefaultTrustStore This property specifies the name of

the truststore as it is referenced by

the runtime. Other SSL configurations

can reference further down in the

ssl.client.props file to avoid

duplication.

com.ibm.ssl.trustStore ${user.root}/etc/trust.p12 This property specifies the location of

the truststore in the format that is

required by the truststore type that is

referenced by the

com.ibm.ssl.trustStoreType property.

Typically, this property references a

truststore file name. However, for

cryptographic token types, this

property references a DLL file.

com.ibm.ssl.trustStorePassword WebAS This property specifies the default

password, which is the cell name for

the profile when it is created. The

password is typically encoded using

an {xor} algorithm. You can use

iKeyman to change the password in

the keystore, then change the

reference in this property. If you do

not know the password and if the

certificate was created for you,

change the password in this property,

then delete the truststore from the

location where it resides. Restart the

client to recreate the truststore by

using the new password, but only if

the keystore name ends with

DefaultTrustStore and the fileBased

property is true. It is recommended

that you delete the keystore and the

truststore at the same time so that a

proper signer exchange can occur

when both are recreated together.

com.ibm.ssl.trustStoreType PKCS12 This property is the truststore type.

Use the default PKCS12 type

because of its interoperability with

other applications. You can specify

this property as any valid truststore

type that is supported by the JVM

functionality on the provider list.

com.ibm.ssl.trustStoreProvider IBMJCE This property is the truststore provider

for the truststore type. The provider is

typically IBMJCE or IBMPKCS11Impl

for cryptographic devices.

com.ibm.ssl.trustStoreFileBased true This property indicates to the runtime

that the truststore is file-based,

meaning it is located on the file

system.

com.ibm.ssl.trustStoreReadOnly false This property indicates to the run time

for WebSphere Application Server

whether the truststore can be modified

during the run time.

Chapter 7. Securing communications 657

Create a CA client

A plug point is provided to allow users to connect to a certificate authority (CA) to request, query, and

revoke certificates. A security configuration object, called a CAClient, must be created for WebSphere to

communicate with the CA. The CAClient object must contain a WSPKIClient() implementation, and it will

handle the connection and communicate with the CA server. Users can also create there own

implementation.

Before you begin

The WSPKIClient interface must be implemented and the class name provided as part of the CAClient

when it is created.

You use the administrative console to create a new CA client.

1. Click Security > SSL certificate and key management.

2. Click Certificate Authority (CA) client configurations. A panel of existing CA clients appears.

3. Click New to create a new CA client in the configuration.

Note: You can also create a CA client by using the createCAClient AdminTask .

4. Fill in the following information for the CA client

v Name of the CA client.

v The management scope (selected from the drop-down list.

v o WSPKIClient implementation class.

v CA server host name.

v User name.

v Password.

v Confirm of password.

v Number of times to poll.

v Polling interval (in minutes) when requestin certificates.

v Custom properties.

5. Click Apply then OK.

Results

The information in the object can then be used by the runtime to connect to a CA to create, revoke, or

replace a certificate.

Delete a CA client

You can delete the CAClient object from the security configuration if a connection to a certificate authority

(CA) is no longer needed.

Before you begin

You use the administrative console to delete a CA client.

1. Click Security > SSL certificate and key management.

2. Click Certificate Authority (CA) client configurations. A panel displaying the existing CA clients

appears.

3. Click the CA client name you want to delete.

4. Click the Delete button.

658 Securing applications and their environment

Note: You can also use the deleteAClient AdminTask to delete the CA client.

Results

The CA client is deleted from the configuration.

Note: When you use the deleteCAClient AdminTask to delete the CA client, the CA client cannot be

deleted if a CA certificate that exists in the keystore was obtained from the certificate authority and

is still referenced by the CA client. For example, when such CA certificate still exists, the user

receives the following message:

wsadmin>$AdminTask deleteCAClient {-caClientName myca}

WASX7015E: Exception running command:

 "$AdminTask deleteCAClient {-caClientName myca}"; exception information:

 com.ibm.websphere.management.cmdframework.CommandValidationException:

 CWPKI0687E: The Certificate Authority (CA) client myca is still referenced by:

 [Certificate alias myca21 in key store CellDefaultKeyStore].

wsadmin>

View or modify a CA client

You can view or modify the CAClient object settings in the security configuration. The CAClient object

contains all the information needed to connect and communicate with a certificate authority (CA). A

connection to a Certificate Authority is used to request a certificate, query a certificate, or revoke a

certificate.

Before you begin

You use the administrative console to view or modify a CA client.

1. Click Security > SSL certificate and key management.

2. Click Certificate Authority (CA) client configurations. A panel displaying the existing CA clients

appears.

3. Click the CA client name you want to examine and modify.

Note: You can also use the getCAClient AdminTask to get information about the existing CA client

and the modifyCACleint AdminTask to make changes to the CA client.

4. Make the changes to the CA client information as required. Modify the following information as

required.

v Name of the CA client.

v The management scope (selected from the drop-down list.

v Implementation class.

v CA server host name.

v User name.

v Password.

v Confirm of password.

v Number of times to poll.

v Polling interval (in minutes) when requestin certificates.

v Custom properties.

5. Click Apply then OK.

Results

The information in the object can then be used by the runtime to connect to a CA to create, revoke, or

replace a certificate

Chapter 7. Securing communications 659

What to do next

Creating a keystore configuration for a preexisting keystore file

A Secure Sockets Layer (SSL) configuration references keystore configurations during WebSphere

Application Server runtime. Whether a keystore file was created by another keystore tool or saved from a

previous configuration, the file must be referenced by a keystore configuration object to be used by the

server. A keystore configuration object can be created to reference a pre-existing keystore object.

Before you begin

A keystore must already exist.

Note: To create a keystore by using the wsadmin tool, use the createKeyStore command of the

AdminTask object. For more information, see “KeyStoreCommands command group for the

AdminTask object” on page 954

About this task

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound}.

2. Under Related Items, click Key stores and certificates, then click New.

3. Type a name in the Name field. This name uniquely identifies the keystore in the configuration.

4. Type the location of the keystore file in the Path field. The location can be a file name or a file URL to

an existing keystore file.

5. Type the keystore password in the Password field. This password is for the keystore file that you

specified in the Path field.

6. Type the keystore password again in the Confirm Password field to confirm the password.

7. Select a keystore type from the list. The type that you select is for the keystore file that you specified

in the Path field.

8. Select any of the following optional selections:

v The Read only selection creates a keystore configuration object but does not create a keystore file.

If this option is selected, the keystore file that you specified in the Path field must already exist.

v The Initialize at startup selection initializes the keystore during runtime.

v The Enable cryptographic operations on a hardware device specifies whether a hardware

cryptographic device is used for cryptographic operations only.

Note: Operations that require login are not supported when using this option.

9. Click Apply and Save.

Results

You have created a keystore configuration object for the keystore file that you specified. This keystore can

now be used in an SSL configuration.

What to do next

You can create additional keystore configurations, as needed.

660 Securing applications and their environment

Recreating the .kdb keystore internal password record

The i5/OS keystore type IBMi5OSKeyStore does not recognize or generate .sth password stash files.

Instead it keeps an internal record of the password for the .kdb keystore file where it is created. If the .kdb

file is moved, the password is no longer associated with the keystore. In that case, you must use the

Digital Certificate Manager (DCM) to recreate the internal record of the password for the .kdb keystore file.

Before you begin

Refer to the topic csec_sslkeystoreconfs.dita before attempting this task.

About this task

To recreate the internal record of the password for the .kdb keystore file, start the DCM. For more

information, see the Digital Certificate Manager information.

 1. Click Select a Certificate Store.

 2. Select Other System Certificate Store.

 3. Enter the certificate store path and filename.

 4. Enter the certificate store password.

 5. Click Continue.

 6. In the left hand panel, select Manage Certificate Store.

 7. Click Change password.

 8. Enter the new password and confirm it. Note that DCM requires a different password than the one

you specified in step 4.

 9. Select Automatic login.

10. Click Continue.

11. Click OK when a message displays that confirms that the password is changed.

12. Repeat steps 1 through 5 to create the internal record of the new password for the .kdb keystore file.

13. Repeat steps 1 through 12 to change the password back to the original password and to create the

internal record of the original password for the .kdb keystore file.

Results

You have recreated the internal record of the password for the .kdb keystore file.

Configuring a hardware cryptographic keystore

You can create a hardware cryptographic keystore that WebSphere Application Server can use to provide

cryptographic token support in the server configuration.

About this task

Complete the following steps in the administrative console:

 1. Click Security > SSL certificate and key management > Key stores and certificates.

 2. Click New.

 3. Type a name to identify the keystore. This name is used to enable hardware cryptography in the Web

services security configuration.

 4. Optionally, you can type a description for the keystore in the Description field.

 5. You can specify a Management scope for the key store. This is not required. The management

scope specifies the scope where this Secure Sockets Layer (SSL) configuration is visible. For

example, if you choose a specific node, then the configuration is only visible on that node and any

servers that are part of that node.

Chapter 7. Securing communications 661

csec_sslkeystoreconfs.dita

6. Type the path for the hardware device-specific configuration file. The configuration file is a text file

that contains entries in the following format: attribute = value. The valid values for attribute and

value are described in detail in the Software Developer Kit, Java Technology Edition documentation.

The two mandatory attributes are name and library, as shown in the following sample code:

name = FooAccelerator

library = /opt/foo/lib/libpkcs11.so

slotListIndex = 0

The configuration file should also include device-specific configuration data. Navigate to the

PKCS11ImplConfigSamples.jar file, which contains sample configuration files, under the heading

″PKCS 11 Implementation Provider″ on the Java technology site http://www.ibm.com/developerworks/
java/jdk/security/50/.

Note: If you want to use the IBMPKCS11Impl provider, you must initialize the provider individually

and explicitly express the provider in the JCE getInstance method. JSEE2 is unable to use the

IBMPKCS11Impl provider for acceleration.

a. You can use this link http://www.ibm.com/developerworks/java/jdk/security/50/secguides/
pkcs11implDocs/IBMJavaPKCS11ImplementationProvider.html to initialize the IBMPKCS11

provider in a thread safe way

b. Specify a unique .cfg file that contains information about the supported hardware device. A

list of supported hardware devices are available at http://www.ibm.com/developerworks/
java/jdk/security/50/secguides/pkcs11implDocs/IBMPKCS11SupportList.html

c. You specify the Signature.getInstance method with the properly initialized IBMPKCS11Impl

provider instance as shown.

Signature.getInstance("SHA1withRSA", ibmpkcs11implinstance);

 7. Type a password if the token login is required. Operations that use keys on the token require a

secure login. This field is optional if the keystore is used as a cryptographic accelerator. In this case,

you need to select Enable cryptographic operations on hardware device.

 8. Select the PKCS11 type.

 9. Select Read only.

10. Click OK and Save.

Results

WebSphere Application Server can now provide cryptographic token support in the server configuration.

What to do next

You can refer to this keystore in any server Secure Sockets Layer (SSL) configuration to achieve the

following results:

v Cryptographic acceleration because the cryptographic hardware device has no persistent key storage

v Secure cryptographic hardware because a cryptographic token generates and securely stores the

private key that WebSphere Application Server uses for SSL key exchange.

You can also refer to this keystore in the Web services security default bindings configuration to achieve

similar results.

Managing keystore configurations remotely

You can manage keystores remotely in a Network Deployment environment on separate machines. A node

server can hold the configuration for a keystore, while the actual keystore resides on another system. After

you set up a remotely managed configuration, you can perform all of the certificate and keystore

operations for the keystore on the remote machine from the server that contains the keystore remote

configuration.

662 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/50/
http://www.ibm.com/developerworks/java/jdk/security/50/
http://www.ibm.com/developerworks/java/jdk/security/50/secguides/pkcs11implDocs/IBMJavaPKCS11ImplementationProvider.html
http://www.ibm.com/developerworks/java/jdk/security/50/secguides/pkcs11implDocs/IBMJavaPKCS11ImplementationProvider.html
http://www.ibm.com/developerworks/java/jdk/security/50/secguides/pkcs11implDocs/IBMPKCS11SupportList.html
http://www.ibm.com/developerworks/java/jdk/security/50/secguides/pkcs11implDocs/IBMPKCS11SupportList.html

Before you begin

Key stores can be remotely managed only in network deployed environments.

Note: To manage a self-signed certificates by using the wsadmin tool, use the

PersonalCertificateCommands group commands of the AdminTask object. For more information,

see “PersonalCertificateCommands command group for the AdminTask object” on page 995.

About this task

Complete the following steps in the administrative console:

 1. Click Security > SSL certificate and key management > Manage endpoint security

configurations > {Inbound | Outbound} > ssl_configuration > Key stores and certificates.

 2. Click New.

 3. Type a name in the Name field. This name uniquely identifies the keystore in the configuration.

 4. Type the location of the keystore file in the Path field. The location can be a file name or a file

Uniform Resource Locator (URL) to an existing keystore file.

 5. Type the keystore password in the Password field. This password is for the keystore file that you

specified in the Path field.

 6. Type the keystore password again in the Confirm Password field to confirm the password.

 7. Select a keystore type from the list. The type you select is for the keystore file that you specified in

the Path field.

 8. Select the Remotely managed check box, and then fill in one or more hosts names of the systems

where the keystore file is to be located. If you provide multiple host names, separate the host names

with a pipe (|).

 9. Select any of the following optional selections:

v The Read only selection creates a keystore configuration object but does not create a keystore

file. If this option is selected, the keystore file that you specified in the Path field must already

exist.

v The Initialize at startup selection initializes the keystore during run time.

10. Select Apply and Save.

Results

A keystore configuration object is created on the server from where the command was run. The keystore

file for the configuration will be created on each system that you specified in the host list.

What to do next

Now, you can perform all certificate management operations on the keystore from the system where the

keystore configuration resides. For example, you can perform certificate management operations, such as:

creating a self-signed certificate, extracting a certificate, or extracting a signer certificate.

Keystores and certificates collection

Use this page to manage keystore types, including cryptography, Resource Access Control Facility (RACF)

, Certificate Management Services (CMS), Java, and all trust store types.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Keystores and certificates.

Chapter 7. Securing communications 663

Button Resulting action

New Adds a new keystore object that can be referenced by Secure Sockets Layer

(SSL) configurations or KeySets. The Keystore management scope is based

on the part of the topology tree from which it was created.

Delete Deletes an existing keystore. The keystore should not be referenced by any

other parts of the configuration before you delete it.

Change password Allows for changing a keystore password.

Exchange signers Refers to exchanging signers in a keystore. You can select two keystores,

along with personal certificates or signer certificates from a selected keystore,

then add them as a signer to another selected keystore.

Keystore usages

Filters the keystore usage types in the keystore collection.

The default value for the keystore usage filter depends on the navigation path that you followed to get to

the Keystores and certificates panel. You can change the value of the keystore usage filter by clicking on

the drop-down list and selecting a different filter value.

 Navigation path Keystore usage default value

Security > Global security > Administrative authentication

> Manage administrative keystore > Keystores and

certificates

RSA token keystores

Security > SSL certificate and key management >

Keystores and certificates

SSL keystores

Security > SSL certificate and key management > Key

sets > CellLTPAKeyPair > Keystores and certificates

Key set keystores

Security > SSL certificate and key management > SSL

configurations > CellDefaultSSLSettings > Keystores and

certificates

SSL keystores

Security > SSL certificate and key management >

Manage endpoint security configurations > node name >

Keystores and certificates

SSL keystores

Name

Specifies the unique name that is used to identify the keystore. This name is typically scoped by the

ManagementScope scopeName and based upon the location of the keystore. The name must be unique

within the existing keystore collection.

This is a user-defined name.

Description

Specifies the description of the keystore.

This is a user-defined description.

Path

Specifies the location of the keystore file in the format needed by the keystore type. This file can be a

card-specific configuration file for cryptographic devices or a filename or file URL for file-based keystores.

It can be a safkeyring URL for RACF keyrings.

664 Securing applications and their environment

Key store settings

Use this page to create all keystore types, including cryptographic, Resource Access Control Facility

(RACF), Certificate Management Services (CMS), Java, and all truststore types.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound}. Under

Related Items, click Key stores and certificates. Click either New or an existing keystore.

Links to Personal certificates, Signer certificates, and Personal certificate requests enable you to manage

certificates in a manner similar to iKeyman capabilities. A keystore can be file-based, such as CMS or

Java keystore types, or it can be remotely managed.

Note: Any changes made to this panel are permanent.

Name

Specifies the unique name to identify the keystore. The keystore is typically scoped by the

ManagementScope scopeName based on the location of the keystore. The name must be unique within

the existing keystore collection.

 Data type: Text

Description

Specifies the description of the keystore.

 Data type: Text

Management scope

Specifies the scope where this Secure Sockets Layer (SSL) configuration is visible. For example, if you

choose a specific node, then the configuration is only visible on that node and any servers that are part of

that node.

 Data type: Text

Path

Specifies the location of the keystore file in the format needed by the keystore type. This file can be a

dynamic link library (DLL) for cryptographic devices or a filename or file URL for file-based keystores. It

can be a safkeyring URL for RACF keyrings.

 Data type: Text

Control region user

Specifies the Control region Started Task user ID in which the Control region System Authorization Facility

(SAF) keyring is created. The user ID must match the exact ID being used by the Control region. Note:

This option only applies when creating writable SAF keyrings on z/OS.

 Data type: Text

Servant region user

Specifies the Servant region Started Task user ID in which the Servant region System Authorization

Facility (SAF) keyring is created. The user ID must match the exact ID being used by the Servant region.

Note: This option only applies when creating writable SAF keyrings on z/OS.

 Data type: Text

Chapter 7. Securing communications 665

Password [new keystore] | Change password [existing keystore]

Specifies the password used to protect the keystore. For the default keystore (names ending in

DefaultKeyStore or DefaultTrustStore), the password is WebAS. This default password must be changed.

This field can be edited.

 Data type: Text

Confirm password

Specifies confirmation of the password to open the keystore file or device.

 Data type: Text

Type

Specifies the implementation for keystore management. This value defines the tool that operates on this

keystore type.

The list of options is returned by java.security.Security.getAlgorithms(″KeyStore″). Some options might be

filtered and some might be added based on the java.security configuration.

 Data type: Text

Default: PKCS12

Read only

Specifies whether the keystore can be written to or not. If the keystore cannot be written to, certain

operations cannot be performed, such as creating or importing certificates.

 Default: Disabled

Remotely managed

Specifies whether the key store is remotely managed, which means that a remote MBean call is needed to

update the key store based on the host name specified in the host list field. Most hardware cryptographic

token devices are remotely managed. If a key store is marked remotely managed, list the host name of the

server where the device is installed in the Host list field.

 Default:

Initialize at startup

Specifies whether the keystore needs to be initialized before it can be used for cryptographic operations. If

enabled, the keystore is initialized at server startup.

 Default: Disabled

Enable cryptographic operations on hardware device

Specifies whether a hardware cryptographic device is used for cryptographic operations only. Operations

that require a login are not supported when using this option.

 Default: Disabled

666 Securing applications and their environment

Key managers collection

Use this page to define the implementation settings for key managers. A key manager is invoked during a

Secure Sockets Layer (SSL) handshake to determine which certificate alias is used. The default key

manager (WSX509KeyManager) performs alias selection. If more advanced function is desired, define a

custom key manager on the Manage endpoint security configurations panel.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key managers.

 Button Resulting action

New Adds a new key manager that can be selected by an SSL configuration. A key

manager is invoked during an SSL handshake to select a specific certificate

alias to use from a key store.

Delete Deletes an existing key manager. The key manager should not be referenced

by any SSL configuration before you can delete it.

Name

Specifies the name of the key manager, which you can select on the SSL configuration panel.

Class name

Specifies the name of the key manager implementation class. This class implements

javax.net.ssl.X509KeyManager interface and, optionally, the com.ibm.wsspi.ssl.KeyManagerExtendedInfo

interface.

Algorithm

Specifies the algorithm name of the key manager that is implemented by the selected provider.

Key managers settings

Use this page to define key managers implementation settings. A key manager gets invoked during an

Secure Sockets Layer (SSL) handshake to determine the certificate alias to be used. The default key

manager (WSX509KeyManager) performs alias selection. If more advanced function is desired, a custom

key manager can be specified here and selected in the SSL configuration.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key managers. Then click the New button.

Name

Specifies the name of the key manager, which you can select on the SSL configuration panel.

 Data type: Text

Standard

Specifies the key manager selection that is available from a Java provider that is installed in the

java.security file. This provider might be shipped by Java Secure Sockets Extension (JSSE) or be a

custom provider that implements an X509KeyManager interface.

 Default: Enabled

Provider

Specifies the provider name that has an implementation of an X509KeyManager interface. This provider is

typically set to IBMJSSE2.

Chapter 7. Securing communications 667

Data type: Text

Default: IBMJCE

Algorithm

Specifies the algorithm name of the trust manager implemented by the selected provider.

 Data type: Text

Default: IbmX509

Custom

Specifies that the key manager selection is based on a custom implementation class that implements the

javax.net.ssl.X509KeyManager interface and optionally the com.ibm.wsspi.ssl.KeyManagerExtendedInfo

interface to obtain additional connection information not otherwise available.

 Default: Disabled

Class name

Specifies the name of the key manager implementation class.

 Data type: Text

Creating a self-signed certificate

You can create a self-signed certificate. WebSphere Application Server uses the certificate at runtime

during the handshake protocol. Self-signed certificates are located in the default keystore.

Before you begin

You must create a keystore before you can create a self-signed certificate.

Note: To create a self-signed certificate by using the wsadmin tool, use the createSelfSignedCertificate

command of the AdminTask object. For more information, see “PersonalCertificateCommands

command group for the AdminTask object” on page 995.

About this task

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore].

2. From Additional Properties, click Personal certificates.

3. Click Create a self-signed certificate.

4. Type a certificate alias name. The alias identifies the certificate request in the keystore.

5. Type a common name (CN) value. This value is the CN value in the certificate distinguished name

(DN).

6. Type the validity period The default validity period value is 365 days.

7. You can configure one or more of the following optional values:

a. Optional: Select a key size value. The default key size value is 1024 bits.

b. Optional: Type an organization value. This value is the O value in the certificate DN.

c. Optional: Type an organizational unit value. This organizational unit value is the OU value in the

certificate DN.

d. Optional: Type a locality value. This locality value is the L value in the certificate DN.

668 Securing applications and their environment

e. Optional: Type a state or providence value. This value is the ST value in the certificate DN.

f. Optional: Type a zip code value. This zip code value is the POSTALCODE value in the certificate

DN.

g. Optional: Select a country value from the list. This country value is the C= value in the certificate

request DN.

8. Click Apply.

Results

You have created a self-signed certificate that resides in the keystore. The SSL configuration for the

WebSphere Application Server runtime uses this certificate for SSL communication. Extract the signer of

the self-signed certificate to add the signer to another keystore.

Replacing an existing self-signed certificate

Occasionally, you need to replace an existing or expired self-signed certificate with a new certificate.

Certificates are referenced in the runtime configuration by the Secure Sockets Layer (SSL) Configuration

object and the Dynamic SSL Configuration Selection object. You can replace a certificate with a new

certificate alias reference or with a new signer certificate.

Before you begin

The current certificate and the certificate replacement must exist in the same keystore before you can

replace a certificate.

Note: To replace a self-signed certificate by using the wsadmin tool, use the replaceCertificate command

of the AdminTask object. For more information, see rxml_atpersonalcert.dita.

About this task

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore].

2. Under Additional Properties, click Personal certificates.

3. Select the certificate to be replaced. The alias list must include the certificate to be replaced and the

certificate to replace it with.

4. Click Replace.

5. Select a replacement certificate alias from the list.

6. You can delete one of the following types of certificates:

v Select Delete old certificate to delete the existing or expired certificate.

v Select Delete old signers to delete the existing signer certificates.

7. Click Apply.

Results

Your results depend on what you selected:

v If you selected Delete old certificate, the new certificate alias replaces all of the references to the

certificate alias in the configuration.

v If you selected Delete old signers, the new signer certificate replaces all of the occurrences of the old

signer certificates.

v If the new certificate alias replaces the existing alias, the WebSphere Application Server runtime checks

to make sure that:

Chapter 7. Securing communications 669

rxml_atpersonalcert.dita

– All of the SSL Configurations objects reference the certificate

– The Dynamic SSL Configuration Selections objects and the SSL Configuration group objects

reference the certificate.

v If you selected Delete old signers, the existing signer certificates are replaced.

v If you selected Delete old certificate, the existing certificate is deleted.

Creating a certificate authority request

To ensure Secure Sockets Layer (SSL) communication, servers require a personal certificate that is either

self-signed, chained or signed by an external certificate authority (CA). You must first create a personal

certificate request to obtain a certificate that is signed by a CA.

Before you begin

The keystore that contains a personal certificate request must already exist.

Note: To create a certificate request by using the wsadmin tool, use the createCertificateRequest

command of the AdminTask object. For more information, see “CertificateRequestCommands

command group of the AdminTask object” on page 1021.

About this task

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Key stores and certificates > keystore.

2. Click Personal certificate requests > New.

3. Type the full path of the certificate request file. The certificate request is created in this location.

4. Type an alias name in the Key label field. The alias identifies the certificate request in the keystore.

5. Type a common name (CN) value. This value is the CN value in the certificate distinguished name

(DN).

6. You can configure one or more of the following optional values:

a. Optional: Select a key size value. The default key size value is 1024 bits.

b. Optional: Type an organization value. This value is the O value in the certificate DN.

c. Optional: Type an organizational unit value. This organizational unit value is the OU value in the

certificate DN.

d. Optional: Type a locality value. This locality value is the L value in the certificate DN.

e. Optional: Type a state or providence value. This value is the ST value in the certificate DN.

f. Optional: Type a zip code value. The zip code value is the POSTALCODE value in the certificate

DN.

g. Optional: Select a country value from the list. This country value is the C= value in the certificate

request DN.

7. Click Apply.

Results

The certificate request is created in the specified file location in the keystore. The request functions as a

temporary placeholder for the signed certificate until you manually receive the certificate in the keystore.

Note: Key store tools (such as iKeyman and keyTool) cannot receive signed certificates that are

generated by certificate requests from WebSphere Application Server. Similarly, WebSphere

Application Server cannot accept certificates that are generated by certificate requests from other

keystore utilities.

670 Securing applications and their environment

What to do next

Now you can receive the CA-signed certificate into the keystore to complete the process of generating a

signed certificate for your server.

Certificate request settings

Use this page to verify the properties of a personal certificate request.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional

Properties, click Personal certificate requests > certificate request .

File for certificate request

Specifies the fully qualified name of the file that contains the certificate request that can be sent to a

certificate authority (CA) server.

Key label

Specifies the certificate alias name for the signer in the key store.

Key size

Specifies the size of the keys that are generated.

Requested by

Specifies the Subject distinguished name (DN) that represents the identity of the certificate request.

Fingerprint (SHA Digest)

Specifies the SHA hash of the personal certificate, which can be used to verify that the certificate has not

been altered when it is used in a remote connection.

Signature algorithm

Specifies the algorithm used to sign the certificate.

Personal certificates collection

Use this page to manage personal certificates.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional

Properties, click Personal certificates.

The Personal certificates page lists all personal certificates in the selected key store. You can do most

certificate management operations in this panel, including creating a new self-signed certificate, deleting a

certificate, receiving one generated from a CA, replacing a certificate (simultaneous delete and create,

replacing references across all key stores), extracting the signer, and importing or exporting a personal

certificate.

Personal certificate requests are temporary place holders for certificates that will be signed by a certificate

authority (CA).

The Key store collection must contain at least two key store files. You must select one file in order to

replace, extract, or export a key store,

Chapter 7. Securing communications 671

Button Resulting action

Create (drop-down list) Enables the application server to create the following certificates:

v Self-signed Certificate

v CA-signed Certificate

v Chained Certificate

Delete Specifies to delete a certificate from the key store. Be careful that the

certificate alias is not referenced elsewhere in the Secure Sockets Layer

configuration.

Receive a certificate from a

certificate authority

Enables the application server to receive a certificate authority (CA)-generated

certificate from a file to complete a certificate request.

Replace Replaces a personal certificate with another personal certificate. All key stores

in the configuration looking for signer certificate form the original personal

certificate and replaces them with the new personal certificates signer. Any

place in the security configuration where the certificate alias is referenced will

be replaced with the new certificate alias.

Extract Extracts the signer part of personal certificate from the key store and stores it

to a file. The file can then be used to add the signer to another key store.

Import Imports a certificate, including the private key, from a key store file or managed

key store.

Export Exports a certificate, including the private key, to a specified key store file or

manage key store.

Revoke Revokes a CA-signed certificate.

Renew Renews a self signed or chained certificate.

Alias

Specifies the alias by which the personal certificate is referenced in the key store.

When you select an alias, the View Certificate panel opens.

Issued by

Specifies the distinguished name of the entity by which the certificate was issued. This name is the same

as the issued-to distinguished name when the personal certificate is self-signed.

Issued to

Specifies the distinguished name of the entity to which the certificate was issued.

Serial number

Specifies the certificate serial number that is generated by the issuer of the certificate.

Expiration

Specifies the expiration date of the signer certificate for validation purposes.

Self-signed certificates settings

Use this page to create self-signed certificates.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates > keystore. Under Additional

Properties, click Personal certificates > Create (drop-down list) > Self-signed certificate.

This same help file is available when you create a new certificate or view an existing certificate. The fields

in this help file are described according to how they appear and are used on the administrative console.

672 Securing applications and their environment

Alias

Specifies the alias for the personal certificate in the keystore.

You enter the alias name for the personal certificate in the keystore when you are creating a certificate.

The alias name is read-only when you view an existing certificate.

 Data type: Text

Version

Specifies the version of the personal certificate. Valid versions include X509 V3, X509 V2, or X509 V1. It is

recommended to use X509 V3 certificates.

This field is read-only when you create or view a certificate.

 Data type: Text

Default: X509 V3

Range:

Key size

Specifies the key size of the private key that is used by the personal certificate.

When you are creating a certificate you can select the key size from the drop-down list. This field is

read-only when you view a certificate.

 Data type: Integer

Default: 1024

Other valid key sizes: 512, 2048, 4096

Common name

Specifies the common name portion of the distinguished name (DN). It is recommended that this name be

the host name of the machine on which the certificate resides. In some cases, the common name is used

to login during Secure Socket Layer (SSL) certificate authentication; therefore, in some cases, this name

might be used as a user ID for a local operating system registry.

When you create a new certificate you can enter the common name in this field. This field does not

display when you view an existing certificate.

 Data type: Text

Serial number

Identifies the certificate serial number that is generated by the issuer of the certificate. When creating a

certificate this field does not appear.

This field is read-only when you view an existing certificate.

Validity period

Specifies the length in days during which the certificate is valid. The default is 365 days. You can enter

any number of days you wish.

This field is read-only when you view an existing certificate. This field displays a validity period as a range

of days between two dates. For example, Valid from March 16, 2008 to March 16, 2009.

 Data type: Text

Chapter 7. Securing communications 673

Organization

You enter the organization portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

 Data type: Text

Organization unit

Specifies the organization unit portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

 Data type: Text

Locality

Specifies the locality portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

 Data type: Text

State/Province

Specifies the state portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

 Data type: Text

Zip code

Specifies the zip code portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

 Data type: Integer

Country or region

Select the country portion of the distinguished name from the drop-down list. This field is optional.

This field displays only when you create a new certificate.

 Data type: Text

Default: (none)

Refer to http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html for a list of

ISO 3166 country codes.

Validity period

Identifies the length, in days, when the certificate is valid. The default is 365 days.

This field is read-only when you view an existing certificate and shows the start and end dates.

674 Securing applications and their environment

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

Issued to

Identifies the distinguished name of the entity to which the certificate was issued.

This field is read-only when you view an existing certificate.

Issued by

Identifies the distinguished name of the entity that issued the certificate. When the personal certificate is

self-signed, this name is identical to the Issued to distinguished name.

This field is read-only when you view an existing certificate.

Fingerprint (SHA Digest)

Identifies the Secure Hash Algorithm (SHA hash) of the certificate, which can be used to verify the

certificate’s hash at another location, such as the client side of a connection.

This field is read-only when you view an existing certificate.

Signature algorithm

Identifies the algorithm used to sign the certificate.

This field is read-only when you view an existing certificate.

Personal certificate requests collection

Use this page to manage personal certificate requests. Personal certificate requests are temporary place

holders for certificates that will be signed by a certificate authority (CA).

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional

Properties, click Personal certificate requests.

A private key is generated during the certificate request generation, but only the certificate is sent to the

CA. The CA generates a new certificate, signed by the CA. This can be added in the Personal Certificates

panel.

 Button Resulting action

New Creates a personal certificate request that can be given to a certificate

authority to complete.

Delete Deletes a personal certificate request.

Extract Extracts a personal certificate request. Only one certificate request can be

selected at a time.

Query Queries a personal certificate request. Only one certificate request can be

selected at a time.

Note: Any changes made to this panel are permanent.

Key label

Specifies the alias that represents the personal certificate request in the key store.

Requested by

Specifies the Subject distinguished name (DN) that represents the identity of the certificate request.

Chapter 7. Securing communications 675

Personal certificate requests settings

Use this page to create a new certificate request that can be extracted and sent to a certificate authority

(CA).

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional

Properties, click Personal certificates requests. Then click the New button.

Personal certificate requests are temporary place holders for certificates that will be signed by a certificate

authority (CA). The private key is generated during the certificate request generation, but only the

certificate is sent to the CA. The CA generates a new certificate, signed by the CA.

Note: Any changes made to this panel are permanent.

File for certificate request

Specifies the fully qualified file name from which the certificate request is exported. This portion of the

certificate request can be given to the certificate authority to generate the real certificate. After the real

certificate is generated, you can perform a ″Receive a certificate from a certificate authority″ from the

personal certificate collection view.

 Data type: String

Key label

Specifies the alias that represents the personal certificate request in the key store.

 Data type: String

Key size

Specifies the size of the keys that are generated.

 Data type: Integer

Default: 1024

Common name

Specifies the name of the entity that the certificate represents. This common name can represent a

person, company, or machine. For Web sites, the common name is frequently the DNS host name where

the server resides.

 Data type: String

Organization

Specifies the organization portion of the distinguished name.

 Data type: String

Organizational unit

Specifies the organization unit portion of the distinguished name. This field is optional.

 Data type: String

Locality

Specifies the locality portion of the distinguished name. This field is optional.

676 Securing applications and their environment

Data type: String

State or province

Specifies the state portion of the distinguished name. This field is optional.

 Data type: String

Zip code

Specifies the zip code portion of the distinguished name. This field is optional.

 Data type: Integer

Country or region

Specifies the country portion of the distinguished name.

 Data type: String

Refer to http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html for a list of

ISO 3166 country codes.

Extract certificate request

Use this page to extract a certificate request to a file so it can be sent to a certificate authority (CA).

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional

Properties, click Personal certificate requests > Extract.

Key label

Specifies the alias that represents the personal certificate request in the key store.

File for certificate request

Specifies the filename where the extracted certificate request is placed.

 Data type: Text

Receiving a certificate issued by a certificate authority

When a certificate authority (CA) receives a certificate request, it issues a new certificate that functions as

a temporary placeholder for a CA-issued certificate. A keystore receives the certificate from the CA and

generates a CA-signed personal certificate that WebSphere Application Server can use for Secure Sockets

Layer (SSL) security.

Before you begin

The keystore must contain the certificate request that was created and sent to the CA. Also, the keystore

must be able to access the certificate that is returned by the CA.

Note: To receive a certificate by using the wsadmin tool, use the receiveCertificate command of the

AdminTask object. For more information, see “PersonalCertificateCommands command group for

the AdminTask object” on page 995.

Chapter 7. Securing communications 677

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

About this task

WebSphere Application Server can receive only those certificates that are generated by a WebSphere

Application Server certificate request. It cannot receive certificates that are created with certificate requests

from other keystore tools, such as iKeyman and keyTool.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore].

2. Under Additional Properties, click Personal certificates.

3. Select a personal certificate.

4. Click Receive a certificate from a certificate authority.

5. Type the full path and name of the certificate file.

6. Select a data type from the list.

7. Click Apply and Save.

Results

The keystore contains a new personal certificate that is issued by a CA. The original certificate request is

changed to a personal certificate.

What to do next

The SSL configuration is ready to use the new CA-signed personal certificate.

Export certificate to a keystore file or a managed keystore

Use this page to specify a personal certificate to export to a keystore file or a managed keystore.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates > keystore . Under Additional

Properties, click Personal certificates. Select a personal certificate using the check box. Then click the

Export button.

Certificate alias to export:

Displays the name of the certificate that you selected to export on the previous panel.

 Data type: Text

Keystore Password:

Type in the password of the keystore to use for the export.

 Data type: Text

Alias:

Specifies the alias that the personal certificate is referenced by in the destination keystore.

 Data type: Text

Managed key store:

678 Securing applications and their environment

Select this option with the radio button. Then select a keystore from the pull-down list, which is managed

by the security configuration, to export the certificate to.

 Data type: Drop-down list

Key file name:

Select this option with the radio button. Then type the keystore file name into which the exported certificate

is added. If the keystore file name already exists, the exported certificate is added. If the keystore file

name does not already exist, a keystore file name is created, and the exported certificate is added.

 Data type: Text

Type:

Specifies the type of keystore file. The valid types are listed in the drop-down list.

 Data type: Text

Default: PKCS12

Key file password:

Specifies the password that is used to access the keystore file.

 Data type: Text

Import certificate from a key file or managed keystore

Use this page to specify a personal certificate to import from a keystore or key file.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates > keystore . Under Additional

Properties, click Personal certificates. Select a personal certificate using the check box. Then click the

Import button.

Managed key store:

Select this option with the radio button. This selection indicates that the keystore that contains the

certificate to import is a managed keystore.

 Data type: radio button

Get key store aliases:

Clicking this button queries the configuration for the list of keystore aliases for which the certificate will be

imported to.

Key store:

Select an alias of the keystore from the pull-down list of managed keystores that are managed by the

security configuration. The alias you select identifies the keystore that contains the certificate to import.

 Data type: drop-down list

Chapter 7. Securing communications 679

Key store password:

Specifies the password for the keystore to use for import.

 Data type: Text

Key store file:

Select this option with the radio button. This selection indicates a keystore file that contains the certificate

to import.

 Data type: radio button

Key file name:

Specifies the fully qualified path to keystore file that contains the certificate to import.

 Data type: Text

Get key file aliases:

Clicking this button, queries the key file for the aliases of all the personal certificates in the keystore from

which to choose.

Type:

Specify the type of keystore file. Select a valid type from the drop-down list.

 Data type: Text

Key file password:

Type the password that is used to access the keystore file.

 Data type: Text

Certificate alias to import:

Specifies the certificate alias identified as the Key file name that you want to import into the current

keystore.

 Data type: Text

Default: (none)

Imported certificate alias:

Specifies the new alias that you want the certificate to be named in the current keystore.

 Data type: Text

680 Securing applications and their environment

Receive certificate from CA

Use this page to import your personal certificate from the certificate authority (CA). The imported certificate

replaces the temporary certificate associated with the public/private keys in the certificate request that is

stored in the key store.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items click Key stores and certificates > key store . Under Additional

Properties, click Personal certificates > Receive certificate from certificate authority.

Certificate file name:

Specifies the filename that contains the certificate generated by the certificate authority (CA).

 Data type: Text

Data type:

Specifies the format of the file that is either Base64 encoded ASCII data or Binary DER data.

 Data type: Text

Default: Base64-encoded ASCII data

Replace a certificate

Use this page to specify two certificates: the first selected certificate is replaced by the second selected

certificate. The replace function replaces all the old signer certificates in key stores that are managed

throughout the cell with the new signer from the new certificate. The same level of trust that was

established with the old certificate is maintained. All places the certificate’s alias is referenced in the

security configuration will be replaced with the certificate’s alias. The alias could be referenced on a

security object like the SSL configuration, the dynamic outbound endpoint SSL configuration and key set

groups.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional

Properties click Personal certificates. Select a personal certificate, then click the Replace button.

Old certificate

Specifies the certificate that you want to replace.

 Data type: Text

Replace with

Specifies the certificate that you want to replace the old certificate.

 Data type: Text

Default: (none)

Delete old certificate after replacement

Specifies that you want to delete the old certificate and all associated signer certificates after the new

certificate replaces it. If you do not replace the old personal certificate, it might be assigned a new alias

name.

Chapter 7. Securing communications 681

Default: Disabled

Delete old signers

Specifies that you want to delete the old signer certificates that are associated with the old certificate after

the new signer certificates replace them. If you do not delete the old signer certificates, they might be

assigned new alias names.

 Default: Disabled

Extracting a signer certificate from a personal certificate

Personal certificates contain a private key and a public key. You can extract the public key, called the

signer certificate, to a file, then import the certificate into another keystore. The client requires the signer

portion of a personal certificate for Security Socket Layer (SSL) communication.

Before you begin

The keystore that contains a personal certificate must already exist.

Note: To extract a signer certificate from a personal certificate using the wsadmin tool, use the

extractCertificate command of the AdminTask object. For more information, see

“PersonalCertificateCommands command group for the AdminTask object” on page 995.

About this task

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > keystore .

2. Under Additional Properties, click Personal certificates.

3. Select a personal certificate.

4. Click Extract.

5. Type the full path for the certificate file name. The signer certificate is written to this certificate file.

6. Select a data type from the list.

7. Click Apply.

Results

The signer portion of the personal certificate is stored in the file that is provided.

What to do next

This signer can now be imported into other keystores.

Extract certificate

Use this page to extract the signer from the personal certificate and store it in a file. The certificate can be

added to a trust store for trust verification. When extracting the signer from a chained personal certificate,

the signer at the top level of the chain is extracted.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates > key store . Under Additional

Properties, click Personal certificates > Extract.

682 Securing applications and their environment

Certificate alias to extract

Displays the name of the certificate that you selected for extraction on the previous panel.

 Data type: Text

Certificate file name

Specifies the fully qualified path where the certificate file will reside.

 Data type: Text

Data type

Specifies the format of the file, which is either Base64-encoded ASCII data or Binary DER data.

 Data type: Text

Default: Base64-encoded ASCII data

Extract signer certificate

Use this page to extract a signer certificate from the keystore to a file so that it can be added elsewhere.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional

Properties, click Signer certificates . Select a signer certificate, then click the Extract button

File name

Specifies the fully qualified file name where the extracted signer certificate is placed.

 Data type: Text

Data type

Specifies the format of the file, which is either Base64 encoded ASCII data or Binary DER data.

 Data type: Text

Retrieving signers using the retrieveSigners utility at the client

The client requires the signer certificates from the server to be able to communicate with WebSphere

Application Server. Use the retrieveSigners command to get the signer certificate from a server.

Before you begin

The retrieveSigners utility is located in one of the following directories, depending on your operating

system:

v profile_root/bin

In this release, a Java client that does not have access to a stdin console prompt should use the

retrieveSigners utility to download the signers from the remote server key store when signers are needed

for a Secure Sockets Layer (SSL) handshake. For example, you might interpret the client as failing to

respond if an applet client or Java Web Start Client application cannot access the stdin signer exchange

prompt. Thus, you must add the WebSphere Java method call

com.ibm.wsspi.ssl.RetrieveSignersHelper.callRetrieveSigners to your client application to retrieve the

signers and to avoid running the retrieveSigners utility manually.

Chapter 7. Securing communications 683

Use the retrieveSigners utility for situations where you cannot verify whether or not the

com.ibm.ssl.enableSignerExchangePrompt= property is enabled or disabled when the application makes a

request. Set the com.ibm.ssl.enableSignerExchangePrompt= property to false in the ssl.client.props file if

you cannot see the console.

Alternatively, you can manually create the server key in the client truststore.

About this task

Complete the following steps, as required:

1. Use the retrieveSigners command to get the signer certificate from a server. You can find details

about the retrieveSigners parameters in “Secure installation for client signer retrieval” on page 600.

2. If the client and server are on the same machine, you will need only the remoteKeyStoreName and

localKeyStoreName parameters. The most typical key store to reference on a remote system is

CellDefaultTrustStore on a network deployed environment and NodeDefaultTrustStore on an

application server.

3. When retrieving signers from a remote server, add these required connection-related parameters:

–host host, –port port, –conntype {RMI | SOAP}.

4. Use the –autoAcceptBootstrapSigner parameter if you want to enable automation of the signer

retrieval. This parameter automatically adds to the server all the signers that are needed to make the

connection.

Results

After running, the command displays the SHI-1 digest of the signers added. The output looks similar to the

following output:

/QIBM/UserData/WebSphere/AppServer/V67/Express/profiles/AppSrv01/bin/retrieveSigners

CellDefaultTrustStore ClientDefaultTrustStore

CWPKI0308I: Adding signer alias "default_signer" to local keystore

 "ClientDefaultTrustStore" with the following SHA digest:

Example

The following examples illustrate how to call the retrieveSigners.bat file.

To retrieve signers on the same system, enter:

profile_root/bin/retrieveSigners CellDefaultTrustStore ClientDefaultTrustStore

To retrieve signers on a remote system with a SOAP connection, enter:

profile_root/bin/retrieveSigners CellDefaultTrustStore ClientDefaultTrustStore

-host myRemoteHost -port 8879 -conntype SOAP -autoAcceptBootstrapSigner

To retrieve signers on a remote system that has security enabled, enter:

profile_root/bin/retrieveSigners CellDefaultTrustStore ClientDefaultTrustStore

-host myRemoteHost -port 8879 -conntype SOAP -user testuser -password testuserpwd

-autoAcceptBootstrapSigner

Changing the signer auto-exchange prompt at the client

For clients to communicate with WebSphere Application Server, clients must obtain a signer certificate

from the server. Clients can use the retrieveSigners command to connect to a server to obtain the

appropriate signer. A prompt displays that asks whether or not you want to add a signer to the truststore. If

the Secure Sockets Layer (SSL) configuration uses an automated script that might hang, use the prompt

to obtain the certificate.

684 Securing applications and their environment

Before you begin

The com.ibm.ssl.enableSignerExchangePrompt property in the profile_home/properties/
ssl.client.props file controls the signer certificate prompt. By default, this property is set to true,

meaning the prompt is enabled.

About this task

Complete the following steps to disable or enable the signer-exchange prompt at the client:

1. Open the profile_home/properties/ssl.client.props file using an editor.

2. Locate the section containing the SSL configuration information for the client that you are working with.

3. Change the value of the com.ibm.ssl.enableSignerExchangePrompt property to false if you do not

want the signer-exchange prompt, or set it to true if you want to be prompted.

4. Save and close the file.

Results

When the com.ibm.ssl.enableSignerExchangePrompt property is set to false, no prompt displays if a

signer is not trusted. In this case the SSL handshake fails. Once the proper signer for the connection

being made is manually installed in the trust store, the SSL handshake can succeed.

When the com.ibm.ssl.enableSignerExchangePrompt property is set to true, a signer-exchange prompt

displays, and you are asked to accept or reject the certificate. If you accept the certificate, it is installed in

the trust store automatically and the handshake succeeds. If you reject the certificate, it does not get

installed in the trust store and the handshake fails since the certificate is not trusted.

The prompt looks like the following example:

Example

/QIBM/UserData/WebSphere/AppServer/V7/Express/profiles/default/bin/serverStatus -all

ADMU0116I: Tool information is being logged in file

/QIBM/UserData/WebSphere/AppServer/V7/Express/profiles/default/logs/serverStatus.log

ADMU0128I: Starting tool with the default profile

ADMU0503I: Retrieving server status for all servers

ADMU0505I: Servers found in configuration:

ADMU0506I: Server name: server1

*** SSL SIGNER EXCHANGE PROMPT ***

SSL signer from target host 192.174.1.5 is not found in truststore

/QIBM/UserData/WebSphere/AppServer/V7/Express/profiles/default/etc/trust.p12.

Verify that the digest value matches what is displayed at the server in the following signer information:

Subject DN: CN=hostname.austin.ibm.com, O=IBM, C=US

Issuer DN: CN=hostname.austin.ibm.com, O=IBM, C=US

Serial number: 1128544457

Expires: Thu Oct 20 15:34:17 CDT 2006

SHA-1 Digest: 91:A1:A9:2D:F2:7D:70:0F:04:06:73:A3:B4:A4:9C:56:9D:A8:A3:BA

MD5 Digest: 88:72:C5:88:00:1C:A7:FA:D6:EB:04:88:AC:A1:C9:13

Add signer to the truststore now? (y/n) y

A retry of the request might need to occur.

ADMU0508I: The Application Server "server1" is STARTED.

What to do next

Clients can instigate communications for various processes using signer certificates obtained from

WebSphere Application Server.

Chapter 7. Securing communications 685

Retrieving signers from a remote SSL port

To perform Secure Sockets Layer (SSL) communication with a server, WebSphere Application Server must

retrieve a signer certificate from a secure remote SSL port during the handshake. After the signer

certificate is retrieved, you can add the signer certificate to a keystore.

Before you begin

The keystore that is to contain the signer certificate must already exist.

Note: To retrieve a signer certificate from a port using the wsadmin tool, use the retrieveSignerFromPort

command of the AdminTask object. For more information, see “SignerCertificateCommands

command group for the AdminTask object” on page 1016.

About this task

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > Key stores and certificates > keystore > Signer certificates > Retrieve

from port.

2. Click Retrieve from port.

3. Type the host name of the machine on which the signer resides.

4. Type the port location on the host machine on which the signer resides. The port location is not limited

to ports on WebSphere Application Server. The ports can include Lightweight Directory Access

Protocol (LDAP) ports or ports on any server on which an SSL port is already configured, such as

SIB_ENDPOINT_SECURE_ADDRESS.

5. Select an SSL configuration for the outbound connection from the list.

6. Type an alias name for the certificate.

7. Click Retrieve signer information. A message window displays information about the retrieved signer

certificate, such as: the serial number, issued-to and issued-by identities, SHA hash, and expiration

date.

8. Click Apply. This action indicates that you accept the credentials of the signer.

Results

The signer certificate that is retrieved from the remote port is stored in the keystore.

What to do next

An SSL configuration or client process that requires an SSL connection to the server can use the retrieved

and approved signer certificate.

Retrieve from port

Use this page to retrieve a signer certificate from a remote SSL port. The system connects to the specified

remote SSL host and port and receives the signer during the handshake using a trust manager. The signer

SHA hash displays for validation and, if approved by an administrator, is added to the currently selected

trust store.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional

Properties, click Signer certificates. Then click the Retrieve from port button.

686 Securing applications and their environment

Host

Specifies the host name to which you connect when attempting to retrieve the signer certificate from the

Secure Sockets Layer (SSL) port.

 Data type: Text

Port

Specifies the SSL port to which you connect when attempting to retrieve the signer certificate.

 Data type: Text

SSL configuration for outbound connection

Specifies the SSL configuration that is used to connect to the previously specified SSL port. This

configuration is also the SSL configuration that contains the signer after retrieval. This SSL configuration

does not need to have the trusted certificate for the SSL port as it is retrieved during validation and

presented here.

 Data type: Text

Default: DefaultSSLConfig

Alias

Specifies the certificate alias name that you want to reference the signer in the key store, which is

specified in the SSL configuration.

 Data type: Text

Retrieved signer information

Specifies the signer certificate information if it is retrieved from the remote host and port.

Serial number

Specifies the certificate serial number that is generated by the issuer of the certificate.

Issued to

Specifies the distinguished name of the entity to which the certificate was issued.

Issued by

Specifies the distinguished name of the entity that issued the certificate. This name is the same as the

issued-to distinguished name when the signer certificate is self-signed.

Fingerprint (SHA Digest)

Specifies the Secure Hash Algorithm (SHA hash) of the certificate, which can be used to verify the

certificate’s hash at another location, such as the client side of a connection.

Expiration

Specifies the expiration date of the retrieved signer certificate for validation purposes.

Adding a signer certificate to a keystore

Signer certificates establish the trust relationship in SSL communication. You can extract the signer part of

a personal certificate from a keystore, and then you can add the signer certificate to other keystores.

Before you begin

The keystore that you want to add the signer certificate to must already exist.

Chapter 7. Securing communications 687

Note: To add a signer certificate to a keystore by using the wsadmin tool, use the addSignerCertificate

command of the AdminTask object. For more information, see rxml_atsignercert.dita.

About this task

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> Inbound | Outbound > SSL_configuration_name > Key stores and certificates.

2. Select a keystore from the list of keystores.

3. Click Add signers.

4. Enter an alias for the signer certificate in the Alias field

5. Enter the full path to the signer certificate file in the File name field.

6. Select a data type from the list in the Data type field.

7. Click Apply.

Results

When these steps are completed, the signer from the certificate file is stored in the keystore. You can see

the signer in the keystore files list of signer certificates. Use the keystore to establish trust relationships for

the SSL configurations.

Add signer certificate settings

Use this page to add a signer certificate in a certificate file to the keystore in the security configuration.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration > Key stores

and certificates > keystore > Signer certificates > Add..

Alias

Specifies the alias that is used to identify the signer certificate in the keystore.

 Data type: String

File name

Specifies the path to the filename where the signer certificate is located.

 Data type: String

Data type

Specifies the format of the file, which is either Base64 encoded ASCII data or Binary DER data.

 Data type: String

Signer certificates collection

Use this page to manage signer certificates in key stores. Signer certificates are used by Java Secure

Socket Extensions (JSSE) to validate certificates sent by the remote side of the connection during a

Secure Sockets Layer (SSL) handshake. If a signer does not exist in the trust store that can validate the

certificate sent, the handshake fails and generates an ″unknown certificate″ error.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional

688 Securing applications and their environment

rxml_atsignercert.dita

Properties, click Signer certificates.

 Button Resulting action

Add Adds a new trusted (signer) certificate.

Delete Deletes an existing signer certificate.

Extract Extracts a signer certificate from a personal certificate to a file.

Retrieve from port Makes a test connection to an SSL port and retrieves the signer from the

server during the handshake. The information from the certificate will be

displayed so you can decide whether to trust it based upon the MD5 and/or

SHA hash.

Alias

Specifies the alias for this signer certificate in the key store.

Issued to

Specifies the distinguished name of the entity that requested the certificate.

Fingerprint (SHA digest)

Specifies the Secure Hash Algorithm (SHA hash) of the certificate. This can be used to verify the hash for

the certificate at another location, such as the client side of a connection.

Expiration

Specifies the expiration date of the signer certificate for validation purposes.

Signer certificate settings

Use this page to verify the general properties of the selected signer certificate.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates > key store. Under Additional

Properties, click Signer certificates. Then click on a signer certificate.

Alias

Specifies the alias for this signer certificate in the key store.

Version

Specifies the version of the personal certificate. Valid versions include X509 V3, X509 V2, or X509 V1.

Key size

Specifies the key size of the public key used by the signer certificate.

Serial number

Specifies the certificate serial number that is generated by the issuer of the certificate.

Validity period

Specifies the begin and end dates of the certificate.

Issued to

Specifies the distinguished name of the entity that requested the certificate.

Issued by

Specifies the distinguished name of the entity that issued the certificate. This name is the same as the

issued-to distinguished name when the signer certificate is self-signed.

Chapter 7. Securing communications 689

Fingerprint (SHA Digest)

Specifies the Secure Hash Algorithm (SHA) hash of the certificate, which can be used to verify the hash

for the certificate at another location such as the client side of a connection.

Signature algorithm

Specifies the algorithm that is used to sign the certificate.

Adding a signer certificate to the default signers keystore

Signer certificates are added to a keystore on the client side of an SSL communication to establish trust

with the server. There is common practice for keystores to have trust established when they are created.

The DmgrDefaultSignersStore on a deployment manager and the NodeDefaultSignersStore on a stand

alone application server are created to hold signer certificates used to establish trust by default in newly

create keystores.

Before you begin

The default signers key store is created during profile creation and contains the signer certificate of the

server default root certificate. Additional signer certificates can be added to the default signers key store at

any time. Anytime a keystore is created using the admin console or by using the createKeyStore

AdminTask object in scripting, all signer certificates from the default signer store are added to the newly

created keystore.

Note:

v To add a signer certificate to a default signer keystore by using the wsadmin tool, use the

addSignerCertificate command of the AdminTask object.

v To create a new keystore by using the wsadmin tool, use the createKeyStore command of the

AdminTask object.

v To extract the signer from a personal certificate using the wsadmin tool, use the

extractCertificate of the AdminTask object.

v To exchange a signer certificate using the wsadmin tool, use the KeyStoreCommands

command group for the AdminTask object.

For more information, see rxml_atsignercert.dita and rxml_atkeystore.dita

1. If the certificate is in a certificate file, it can be added to the default signer keystore using the

administrative console.

a. Click Security > SSL certificate and key management.

b. Under Related Items, click Key stores and certificates.

c. c. Select Default signers keystore under KeyStore Usages. A panel displaying a list of keystores

appears.

d. Click on DmgrDefaultSignersStore.

e. Under Additional Properties, click Signer certificates.

f. Click Add .

g. Enter an alias in the alias box, a path to the certificate file in the filename box, and an asterisk (v).

Select the format of the certificate file from the pull down list in the “Data type” box.

h. Click Apply then Save.

Note: You can also perform this addition using the AdminTask, addSignerCertificate.

2. If the signer certificate form of a personal certificate needs to be added to default signers keystore, you

can extract the signer from the personal certificate to a certificate file or the signer can be extracted

directly to the default signers keystore. To extract a signer certificate from a personal certificate to a

certificate file,

a. Click Security > SSL certificate and key management.

690 Securing applications and their environment

rxml_atsignercert.dita
rxml_atkeystore.dita

b. Under Related Items, click Key stores and certificates.

c. c. Select All under Keystore Usages. A panel displaying a list of keystores appears.

d. Click on the keystore name

e. Under Additional Properties, click Personal certificates.

f. Select a personal certificate.

g. Click Extract.

h. Enter the path to the certificate file in “Certificate file name” box and select a format type from the

pull down list in “Data type” box

i. Click Apply then Save.

j. The signer can be added to the default signers keystore by following step 1.

Note: You can also extract the signer from a personal certificate using scripting and the AdminTask

extractCertificate.

3. To extract a signer certificate to the default signers keystore, an exchange of the signer certificate can

be performed from the administrative console.

a. Click Security > SSL certificate and key management

b. Under Related Items, click Key stores and certificates.

c. c. Select All under Keystore Usages. A panel displaying a list of keystores appears.

d. Click on the default signers keystore and the keystore that contains the personal certificate whose

signer certificate is needed.

e. Click Exchange Signers.

f. Select the personal certificate whose signer is needed.

g. Click Add.

h. Click Apply then Save.

Note: You can also perform the exchange using the AdminTask, exchangeSigner.

Results

When these steps are completed, the signer from the certificate file is stored in the default signers

keystore. You can see the signer in the keystore files list of signer certificates.

What to do next

The new keystore will contain the default signers that were added to the default signers keystore.

Exchanging signer certificates

To establish trust relationships, you can exchange signer certificates between keystores. When you

exchange signer certificates, you are extracting a personal certificate from one keystore and adding it to

another keystore as a signer certificate.

Before you begin

To exchange signer certificates, there must be two keystores.

About this task

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates.

Chapter 7. Securing communications 691

2. Select two keystores from the list of keystores.

3. Click Exchange signers.

4. Select any of the certificates in the first personal certificates list, and click Add. After adding, the signer

part of the selected personal certificate appears in the other (second) keystore signers list.

5. Select any of the certificates in the second personal certificates list, and click Add. After adding, the

signer part of the selected personal certificate appears in the other (first) keystore signers list.

6. Optional: If you need to remove any of the certificates from either of the signers lists, highlight one or

more of the certificates, and click Remove.

7. Click Apply and Save.

Results

The signer certificate appears in the list for each keystore.

What to do next

The extracted signer certificate is available to both keystores during the connection handshake.

Keystores and certificates exchange signers

Use this page to extract the signer part of a personal certificate from one keystore and add it to another

keystore as a signer certificate. Signer certificates can also be listed, and they will be added to the other

keystore as well.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key stores and certificates then select two key stores to

exchange and click the Exchange signers.

Note: Any changes made to this panel are permanent.

[keystore] personal certificates

Specifies the personal certificates and signer certificates that are currently stored in the specified keystore.

Press and hold the Ctrl key to select more than one item from the list.

 Data type: Text

[keystore] signers

Specifies the trusted signer certificates that are currently stored in the specified keystore and selected for

the exchange.

Press and hold the Ctrl key to select more than one item from the list.

 Data type: Text

Add

Specifies to extract the signer from the selected personal certificate in the keystore list on the left and add

it to the signers list of the keystore on the right.

After the certificate is added, it no longer displays in the left-hand list. The personal certificate is still in the

keystore, but it is no longer selectable

692 Securing applications and their environment

Remove

Specifies to remove a selected signer from the signers list of the keystore on the right. The removed

certificate displays in the keystore list on the left.

Configuring certificate expiration monitoring

When certificates expire, they can no longer be used by the system. WebSphere Application Server

provides a utility to monitor certificates that are close to expiration or have already expired. You can

schedule certificate monitoring, or you can request certificate monitoring on demand. You can also

configure options for deleting expired certificates and for recreating certificates.

Before you begin

WebSphere Application Server notifies you when a certificate is about to expire. Complete the information

required for notification messaging in “Notifications” on page 695.

About this task

Complete the following configuration steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage certificate expiration.

2. Type a number for the number of days threshold in the Expiration notification threshold field.

WebSphere Application Server issues an expiration warning n number of days before expiration.

3. Select or check one or more of the following options:

v Expiration check notification. Select the method from the list that you want to use to receive your

notification.

v Automatically replace expiring self-signed certificates. If you do not want to recreate the

self-signed certificate, clear the check box.

Note: When using writable System Authorization Facility (SAF) keyrings in your configuration, the

certificate expiration monitor does not replace expired certificates in the writable SAF

keyrings, but only provides a notification of the expiration.

v Delete expiring certificates and signers after replacement. If you do not want to delete the

expired certificates and signers, clear the check box.

v Enable checking. If you do not want to have certificate monitoring enabled, clear the check box.

4. Enter the time of day when you want certificate monitoring to take place to schedule the running of the

certificate expiration monitor.

5. Select one of the following options:

v Check by calendar. For Weekday, enter the day of week that you want to run the certificate

expiration monitor. For Repeat Interval, specify the frequency to run the certificate monitor.

v Check by number of days. Enter a number for how frequently the monitor runs, in number of days.

6. Click Apply.

Results

After completing the settings, a certificate expiration monitor object and a schedule are set up in the

configuration. The certificate expiration monitor runs according to the configurations options that you

configured.

What to do next

You can generate reports that state which certificates have expired. The reports identify the notifications of

certificate replacements and deletions. The report is sent according to the notification option that you

specified.

Chapter 7. Securing communications 693

Manage certificate expiration settings

Use this page to configure the certificate expiration monitor.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, clickManage certificate expiration.

Note: To see the changes to the Expiration checking fields, you must click Apply.

Start now

Specifies to start certificate monitoring. When the monitor runs, it visits all the key stores and checks to

see if they are within certificate expiration range. If you set the option to delete or replace expired

certificates, you can run these operations immediately by pressing Start now.

Expiration notification threshold

Specifies the period of time that occurs chronologically just before the expiration day of the certificate,

within which, if the ExpirationMonitor thread runs, and Automatically replace expiring self-signed and

chained certificates is enabled, a new self-signed or chained certificate is generated. By default, the

replacement period for the certificate is 60 days in length or less as defined in the daysBeforeNotification

property.

There is a pre-notification period where the certificate is added to the notification list but not touched for 90

days prior to the 60 days. By default, this pre-notification period is 90 days in length as defined in the

com.ibm.ws.security.expirationMonitorNotificationPeriod property.

 Data type: Integer

Default: 60 days or less

Enable checking

Specifies the certificate monitor is active and will run as scheduled.

Scheduled time of day to check for expired certificates

Specifies the scheduled time that the system checks for expired certificates.

You can type the scheduled time in hours and minutes, specify either A.M. or P.M., or 24-hour.

 Data type Integer

Default: 0, 0

Range: 1–12, 0–59

Check by calendar

Indicates that you want to schedule a specific day of the week on which the expiration monitor runs. For

example, it might run on Sunday.

 Default: Disabled

Weekday

Specifies the day of the week on which the expiration monitor runs if Check on a specific day is

selected.

 Default: Sunday

Range: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday

694 Securing applications and their environment

Repeat interval

Specifies the period of time between each schedule time to check for expired certificates or the interval

between schedule checks.

 Default: Daily

Range: Daily, Weekly

Check by number of days

Specifies that you want to schedule a specific number of days between each run of the expiration monitor.

The day of the week on which this occurs is not counted. For example, if you set the interval to check for

expired certificates every seven days, the expiration monitor runs on day eight.

 Default: Disabled

Next start date

Specifies the date for the next scheduled check. This allows the deployment manager to be stopped and

restarted without resetting the date.

Expiration check notification

Specifies the notification type (such as e-mail or System Out) when an expiration monitor runs.

 Default:

Automatically replace expiring self-signed certificates and chained certificates

Specifies a new self-signed certificate or chained certificate be generated using the same certificate

information if the expiration notification threshold is reached. The old certificate is replaced and uses the

same alias. All old signers are managed by the key store configuration are also replaced. The system only

replaces self-signed certificates.

Note: This checkbox is only applicable when using file based keystores.

 Default: Enabled

Delete expiring certificates and signers after replacement

Specifies whether to completely remove old, self-signed certificates from the key store during a replace

operation or leave them there under a renamed alias. If an old certificate is not deleted, the system

renames the alias so that the new certificate can use the old alias, which might be referenced elsewhere

in the configuration.

Note: This checkbox is only applicable when using file based keystores.

 Default: Enabled

Notifications

Use this page to specify the generic notification definitions that are used in certificate expiration monitors.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, clickManage certificate expiration. Under Related items, click Notifications.

Chapter 7. Securing communications 695

Button Resulting action

New Adds a notification. The notification configures how the expiration monitor

notifies the administrator of certificates that will expire within the specified

threshold.

Delete Deletes an existing notification.

Notification name

Specifies the notification name.

Message log

Specifies that this configuration intends to log certificate expiration information to the message log file.

Send E-mail

Specifies that this configuration intends to send certificate expiration information to the list of users in the

e-mail list.

List of E-mail Addresses

Specifies the e-mail addresses that are sent notifications when certificates fall within the expiration

threshold. You must specify the SMTP server for each e-mail address. If an e-mail address is not

specified, by default the application server assumes that the SMTP server is ″smtp-server.″ For example, if

you type name@domain, the SMTP server will be smtp-server.domain.

Notifications settings

Use this page to set properties for new notifications used in certificate expiration monitors or for security

audit subsystem failures.

To view this administrative console page perform one of the following:

v Click Security > SSL certificate and key management > Manage certificate expiration

>Notifications > New.

v Click Security → Security auditing → Audit monitor → New

.

Notification name

Specifies the name of the notification configuration.

 Data type: Text

Message log

Specifies that this configuration will log the notification to a message log file.

 Default: Disabled

Email sent to notification list

Specifies that this configuration send a notification as an e-mail to the e-mail list.

 Default: Disabled

Email address to add

Specifies the e-mail addresses that are sent notifications. You must specify the SMTP server for each

e-mail address. If an e-mail address is not specified, by default the application server assumes that the

SMTP server is ″smtp-server.″ For example, if you type name@domain, the SMTP server will be

smtp-server.domain.

696 Securing applications and their environment

Data type: Text (format as valid Internet mail address)

Add

Adds the e-mail address to the right-hand list.

Remove

Removes the e-mail address from the right-hand list.

Outgoing mail (SMTP) server

Specifies the SMTP server to be used with the e-mail address. If none is specified, the e-mail realm will be

used.

Key management for cryptographic uses

WebSphere Application Server provides a framework for managing keys (secret keys or key pairs) that

applications use to perform cryptographic operations on data. The key management framework provides

an application programming interface (API) for retrieving these keys. Keys are managed in keystores so

the keystore type can be supported by WebSphere Application Server, provided that the keystores can

store the referenced key type. You can configure keys and scope keystores so that they are visible only to

particular processes, nodes, clusters, and so on.

The key management infrastructure is based on two key configuration object types: key sets and key set

groups. WebSphere Application Server uses a key set to manage instances of keys of the same type. You

can configure a key set to generate a single key or a key pair, depending on the key or key pair generator

class. A key set group manages one or more key sets and enables you to configure and generate different

key types at the same time. For example, if your application needs both a secret key and key pair for

cryptographic operations, you can configure two key sets, one for the key pair and one for the secret key

that the key set group manages. The key set group controls the auto-generation characteristics of the

keys, including the schedule. The framework can automatically generate keys on a scheduled basis, such

as on a particular day of the week and time of day, so that key generation is done during off-peak hours.

Figure 1 shows an example of a key set group that is configured to manage two key sets: key set 1 and

key set 2.

Chapter 7. Securing communications 697

Key set 1 generates key pairs. Key set 2 generates secret keys. The application needs both types of keys

for its cryptographic operations, signing and encryption, on data. The keys for each key set need to be

generated in tandem. The application stores the key set group name with the encrypted data. The key set

group generates a new set of keys every Sunday night at 11 P.M.. The application maintains key

generation data for two weeks.

Creating a key set configuration

You can use key sets to manage multiple instances of cryptographic keys. WebSphere Application Server

uses keys to encrypt or sign outbound data, and decrypt or verify inbound data during cryptographic

operations.

Before you begin

You must have write-access to the keystore that will contain the keys after you generate them from a key

set. However, if you want to generate keys outside of WebSphere Application Server, you can reference

the keys from a read-only keystore that contains a secret key that you can access when you generate the

keys. If you are creating a key pair using an X509Certificate and a PrivateKey object , see “Example:

Developing a key or key pair generation class for automated key generation” on page 705.

About this task

Complete the following steps in the administrative console:

Key set group:

Auto -generate

every Sunday

at 11pm

Key set 1:

KeyPairGenerator
Key set 2:

KeyGenerator

com.ibm.websphere.crypto.KeySetHelper API

Key store Key store

Key reference
Key reference

Key reference
Key reference

Key reference
Key reference

Active key history:

Keep the 3 most recent

Actual keys

Application

getAllKeysForKeySetGroup:
used for decryption of

getLatestKeysForKeySetGroup:
used for encryption of

Active key history:

Keep the 3 most recent

Key set group:

Auto -generate

every Sunday

at 11pm

Key set 1:

KeyPairGenerator

Key set 2:

KeyGenerator

com.ibm.websphere.crypto.KeySetHelper API

Key store Key store

Key reference
Key reference

Key reference

Key reference
Key reference

Key reference

Active key history:

Keep the 3 most recent

Actual key pairs

Application

getAllKeysForKeySetGroup:
used for decryption of dataexistingused for encryption of datanew

Active key history:

Keep the 3 most recent

Figure 1: Key Management Infrastructure

Figure 19.

698 Securing applications and their environment

1. Decide whether you want to create the key set at the cell scope or below the cell scope at the node,

server, or cluster, for example:

v To create a key set at the cell scope, click Security > SSL certificate and key management >

Key sets.

v To create a key set at a scope below the cell level, click Security > SSL certificate and key

management > Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration > Key sets.

 2. Click New to create a new key set.

 3. Type a key set name. For example, CellmyKey.

 4. Type a key alias prefix name. For example, myKey. This field specifies the prefix for the key alias

when the new key is generated and stored in the keystore. Following the prefix is the key reference

version number, for example, 2, so that the full key alias name would be myKey_2. If the key reference

already has a specified alias for a key that exists in the keystore, then WebSphere Application Server

ignores this field.

 5. Type a key password. The key password protects the key in the keystore. This password is ignored

by WebSphere Application Server if you already specified a password for the key alias reference. To

check for a key reference password, click Active key history under Additional Properties. The key

reference password protects keys that are generated by a key generator class.

 6. Type the password again to confirm it.

 7. Optional: Type the key generator class name. For example,

com.ibm.ws.security.ltpa.LTPAKeyGenerator. The class name generates keys. If the class

implements com.ibm.websphere.crypto.KeyGenerator, then a getKey method returns a

java.security.Key object that is set in the keystore using the setKey method without a certificate chain.

If the class implements com.ibm.websphere.crypto.KeyPairGenerator, then a getKeyPair method

returns a com.ibm.websphere.crypto.KeyPair object that contains either a java.security.PublicKey and

java.security.PrivateKey or a java.security.cert.Certificate and a java.security.PrivateKey object. The

key generator class and the KeySetHelper API specify the details of the keys that are generated.

 8. Optional: Select Delete key references that are beyond the maximum number of keys if you do

not want old keys saved in the keystore after WebSphere Application Server removes their references

from the Active key history listing. The Active key history lists the keys that the KeySetHelper API is

currently tracking. The number of keys in the list is equal to the number of keys that you specify in

Maximum number of keys referenced.

 9. Type a numeric value for the maximum number of keys referenced. For example, if you type 3 and

select Delete key references that are beyond the maximum number of keys, the fourth key

version generation automatically triggers WebSphere Application Server to delete the first key version

from the keystore. If you choose not to delete the old keys, they do not display in the Active key

history list but instead remain in the keystore where you can remove them manually.

10. Select a keystore from the drop-down list.

v Select a JCEKS keystore if you are storing a secret key.

v Select any keystore if you are storing a key pair with an X509Certificate and PrivateKey object.

11. Optional: Select Generates key pair if your key generator class name implements the

com.ibm.websphere.crypto.KeyPairGenerator interface instead of the

com.ibm.websphere.crypto.KeyGenerator interface. This option designates that the key references a

key pair instead of a single key. A key pair contains both a public key and a private key. The

WebSphere Application Server run time determines whether or not key pairs are stored and loaded

differently than single keys.

12. Optional: Click Apply if you want to select Active key history under Additional Properties to add

alias references or generate more keys.

a. Click Active key history.

b. Click Add key alias reference if you are not using the key generator class name to add key alias

references to the keys that already exist in the keystore. Use this option to retrieve the keys from

a read-only keystore without the key set generating them.

Chapter 7. Securing communications 699

c. Type an alias reference.

d. Click Generate key if you want to generate a key using the class name that you defined in the

key sets panel. Each new key increments numerically, for example, myAlias_2.

e. Click Apply.

13. Click the key set name in the navigation path at the top of the panel.

14. Click OK and Save.

Results

You have created a key set that you can manage using the Active key history link. You can generate

keys manually to associate them with specified key sets.

What to do next

After you generate new keys from a key set, you can access them programmatically using the

com.ibm.websphere.crypto.KeySetHelper API. You must have Java 2 Security permissions, if enabled, to

access keys in key sets. Specify the key set name within the fine-grained permissions, as in the following

code sample: WebSphereRuntimePermission "getKeySets.keySetName". For more information, see

“Example: Retrieving the generated keys from a key set group” on page 704. To generate multiple key

types at the same time or to schedule the key generation on a specific schedule, see “Creating a key set

group configuration” on page 703.

Active key history collection

Use this page to manage key alias references.

To view this administrative console page, click Security → SSL certificate and key management →

Manage endpoint security configurations > {Inbound | Outbound} → ssl_configuration → Key Sets →

key set → Active key history.

 Button Resulting action

Alias reference Adds a reference to a key that already exists in a key store. If a key

generation class is configured, the references are added automatically during

generation and do not need to be added manually.

Delete Deletes an existing key reference. This action does not delete the key in the

keystore.

Generate key Generates a key. The button is displayed only if a generator class name is

specified for the key set, and the selected key store is editable.

Key alias reference

Specifies the name of the alias as it appears in the keystore.

Add key alias reference settings

Use this page to access key alias reference information.

To view this administrative console page, Under Configuration settings, click Manage endpoint security

configurations > {Inbound | Outbound} > ssl_configuration. Under Related items, click Key Sets >

key set. Under Additional Properties, click Active key history then click the Add key alias reference

button.

Alias reference

Specifies the name of the alias as it appears in the key store.

 Data type: Text

700 Securing applications and their environment

Password

Specifies the key password to get access to the key. This password is enforced by the keystore for that

specific key. If the key does not have a password, this field can be left blank.

 Data type: Text

Confirm password

Confirms the password entered in the previous field.

 Data type: Text

Key sets collection

Use this page to manage key sets, which control a set of key instances of the same type for use in

cryptographic operations. The keys can either be generated using a custom class or reference keys that

already exist in a keystore.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key sets.

 Button Resulting action

New Adds a new key set.

Delete Deletes an existing key set. Make sure the key set is not referenced by a key

set group before deleting it.

Key set name

Specifies the key set name that is used to select the key set from a key set group and from runtime

application programming interfaces (API).

Key store

Specifies the key store that contains the keys for storage, retrieval, or both.

Key alias prefix name

Specifies the prefix for the key alias when a new key is generated and stored in a key store. The rest of

the key alias comes from the key reference version number.

For example, if the alias prefix is mykey and the key reference version is 2, the keystore references the key

using alias mykey_2. If the key reference already has a specified alias for a key already existing in the

keystore, this field is ignored.

Key sets settings

Use this page to set the properties for a new key set.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key sets. Then click the New button.

Key set name

Specifies the key set name that is used to select the key set from a key set group and from runtime

application programming interfaces (API).

Chapter 7. Securing communications 701

Data type: Text

Key alias prefix name

Specifies the prefix for the key alias when a new key is generated and stored in a keystore. The rest of

the key alias comes from the key reference version number. For example, if the alias prefix is mykey and

the key reference version is 2, the keystore references the key using alias mykey_2. If the key reference

already has a specified alias for a key already existing in the keystore, this field is ignored.

 Data type: Text

Key password

Specifies the password used to protect the key in the keystore. If a password is specified in the key

reference as well, this password is ignored. This password is used for keys that get generated by a key

generator class.

 Data type: Text

Confirm password

Specifies the same password again to confirm it was entered correctly the first time.

 Data type: Text

Key generator class name

Specifies the class name that generates keys. If the class implements

com.ibm.websphere.crypto.KeyGenerator, then a getKey() method should return a java.security.Key object

that is set in the key store using the setKey method without a certificate chain. The key store type

associated with the key set must support storing keys without certificates, such as JCEKS.

 Data type: Text

If the class implements com.ibm.websphere.crypto.KeyPairGenerator, then a getKeyPair() method should

return a com.ibm.websphere.crypto.KeyPair object containing either a java.security.PublicKey and

java.security.PrivateKey, or a java.security.cert.Certificate[] and a java.security.PrivateKey. The key

generator class and the caller of the KeySetHelper API should know the details of the keys that are

generated. This framework does not need to understand the key algorithms and lengths.

Delete key references that are beyond the maximum number of keys:

Specifies that the keys are deleted from the keystore at the same time that the key reference is deleted.

The server deletes the older key references as the Maximum number of keys referenced value is

exceeded.

Maximum number of keys referenced

Specifies the maximum number of key instances that are returned when keys from this key set are

requested. The oldest key reference gets removed whenever a new key reference gets generated after the

maximum has been reached.

 Data type: Integer

Default: 3

Key store

Specifies the key store that contains the keys for storage, retrieval, or both.

702 Securing applications and their environment

Data type: Text

Generates key pair

Specifies that a key references a key pair instead of a key. The key pair contains both a public key and a

private key.

Creating a key set group configuration

A key set group manages one or more key sets. WebSphere Application Server uses key set groups to

automatically generate cryptographic keys or multiple synchronized key sets.

About this task

Complete the following steps in the administrative console:

 1. Decide whether you want to create the key set group at the cell scope or below the cell scope at the

node, server, or cluster, for example.

v To create a key set group at the cell scope, click Security > SSL certificate and key

management > Key set groups.

v To create a key set group at a scope below the cell level, click Security > SSL certificate and

key management > Manage endpoint security configurations > {Inbound | Outbound} >

SSL_configuration > Key set groups.

 2. You can choose to generate a key for an existing key set group, delete an existing key set group, or

create a new key set group.

v To generate a key for an existing key set group, select a key set group from the list of existing key

set groups, and click Generate keys. You have generated a new key for each key set in the

selected group.

v To delete an existing key set group, select a key set group from the list of existing key set groups,

and click Delete. You have deleted the key set group.

v To create a new key set group, go to step 3.

Note: Do not delete the cell or node LTPAKeySetGroup, which is used by the Lightweight Third Party

Authentication (LPTA) mechanism.

 3. Click New to create a new key set group.

 4. Type a key set group name. You can reference this name by using the

com.ibm.websphere.crypto.KeySetHelper API to retrieve the managed keys from an application.

 5. Select one or more key sets from the Key sets list.

Note: If the key set(s) you want is not listed, make sure that it was created at the same scope or a

higher scope than where you are creating the new key set group.

 6. Click Add to add the selected key set(s) to the new key set group.

 7. Select Automatically generate keys to generate the new keys on a schedule. If you decide to

generate keys automatically, then you must specify a scheduled time of day.

 8. Specify the scheduled time to generate keys automatically in hours and minutes, A.M. or P.M., or

every 24 hours.

 9. You can choose to generate new keys on a specific day or at an interval.

v Select Generate on a specific day. Select a day of the week from the drop-down list, and type a

repeat interval number for the number of days between each key generation. This choice enables

you to schedule key generation when your systems are least busy.

v Select Generate at an interval. Type a repeat interval number for the number of days between

each key generation. This choice enables you to schedule key generation more frequently than

once a week.

Chapter 7. Securing communications 703

Note: The Next start date is a read-only field that specifies the date for the next scheduled

generation. You can stop and restart the deployment manager or base application server

without resetting this date. If you do not see the next start date appear after changing the

configuration, click OK to save it, then check that the next start date displays.

10. Click Save.

Results

You have created a new key set group to manage key sets and key generation on a schedule.

What to do next

After you generate new keys from a key set, you can access them programmatically using the

com.ibm.websphere.crypto.KeySetHelper API. You must have Java 2 Security permissions, if enabled, to

access keys in key sets. Specify the key set name within the fine-grained permissions, as in the following

code sample: WebSphereRuntimePermission ″getKeySets.keySetName″. For more information, see

“Example: Retrieving the generated keys from a key set group.”

Example: Retrieving the generated keys from a key set group

This example shows how applications can use the com.ibm.websphere.crypto.KeySetHelper API to retrieve

managed keys from the KeySet or KeySetGroup configurations. Use the

com.ibm.websphere.crypto.KeySetHelper API to get either the latest set of keys or all the keys in the

KeySet or KeySetGroup object.

Use the latest keys when performing any new cryptographic operations. All of the other keys that are

defined in the KeySet or KeySetGroup object are for the validation of previously performed cryptographic

operations.

The following example uses a method that an application might use to initialize the keys in the associated

KeySetGroup object. The application might want to store the keys in two separate maps, one for

generation and one for validation. Refer to the API documentation for KeySetHelper API to determine

which Java 2 Security requirements are required.

/**

 * Initializes the primary and secondary Maps used for initializing the keys.

 */

 public void initializeKeySetGroupKeys() throws com.ibm.websphere.crypto.KeyException

 {

 java.util.Map generationKeys = null;

 java.util.Map validationKeys = null;

 PublicKey tempPublicKey = null;

 PrivateKey tempPrivateKey = null;

 byte[] tempSharedKey = null;

 keySetGroupName = "ApplicationKeySetGroup";

 com.ibm.websphere.crypto.KeySetHelper ksh = com.ibm.websphere.crypto.KeySetHelper.getInstance();

 generationKeys = ksh.getLatestKeysForKeySetGroup(keySetGroupName);

 /***

 * Latest keys: {

 * KeyPair_3=com.ibm.websphere.crypto.KeyPair@64ec64ec,

 * Secret_3=javax.crypto.spec.SecretKeySpec@fffe8aa7

 * }

 ***/

 if (generationKeys != null)

 {

 Iterator iKeySet = generationKeys.keySet().iterator();

704 Securing applications and their environment

while (iKeySet.hasNext())

 {

 String keyAlias = (String)iKeySet.next();

 Object key = generationKeys.get(keyAlias);

 if (key instanceof java.security.Key)

 {

 tempSharedKey = ((java.security.Key)key).getEncoded();

 }

 else if (key instanceof com.ibm.websphere.crypto.KeyPair)

 {

 java.security.Key publicKeyAsSecret =

 ((com.ibm.websphere.crypto.KeyPair)key).getPublicKey();

 tempPublicKey = new PublicKey(publicKeyAsSecret.getEncoded());

 java.security.Key privateKeyAsSecret =

 ((com.ibm.websphere.crypto.KeyPair)key).getPrivateKey();

 tempPrivateKey = new PrivateKey(privateKeyAsSecret.getEncoded());

 }

 }

 // save these for use later, if necessary

 validationKeys = ksh.getAllKeysForKeySetGroup(keySetGroupName);

 /***

 * All keys: {

 * version_1=

 * {Secret_1=javax.crypto.spec.SecretKeySpec@178cf,

 * KeyPair_1=com.ibm.websphere.crypto.KeyPair@1c121c12},

 * version_2=

 * {Secret_2=javax.crypto.spec.SecretKeySpec@17a77,

 * KeyPair_2=com.ibm.websphere.crypto.KeyPair@182e182e},

 * version_3=

 * {Secret_3=javax.crypto.spec.SecretKeySpec@fffe8aa7,

 * KeyPair_3=com.ibm.websphere.crypto.KeyPair@4da04da0}

 * }

 ***/

 }

 else

 {

 throw new com.ibm.websphere.crypto.KeyException("Could not generateKeys.");

 }

 }

Example: Developing a key or key pair generation class for automated

key generation

A class that generates keys for cryptographic operations can be created automatically. With this capability,

the key management infrastructure can maintain a list of keys for a predefined key set, and applications

can access these keys.

You can schedule new key generation at predefined frequencies. Remember that key generation

frequency affects the security of your data. For example, for persistent data, you might schedule key

generation less frequently than for real time communications, which require that the keys be generated

more often as old keys expire.

When you develop a key generation class, decide if you are creating a shared key or a key pair because

this decision determines the interface you must use.

If you are developing shared keys, refer to the following example, which uses the KeyGenerator class to

implement the com.ibm.websphere.crypto.KeyGenerator interface. The interface returns a java.security.Key

key, which is stored as a SecretKey in a JCEKS keystore type. You can use any other keystore type that

supports storing secret keys.

Chapter 7. Securing communications 705

package com.ibm.test;

import java.util.*;

import com.ibm.ws.ssl.core.*;

import com.ibm.ws.ssl.config.*;

import com.ibm.websphere.crypto.KeyException;

public class KeyGenerator implements com.ibm.websphere.crypto.KeyGenerator

{

 private java.util.Properties customProperties = null;

 private java.security.Key secretKey = null;

 public KeyGenerator()

 {

 }

 /**

 * This method is called to pass any custom properties configured with

 * the KeySet to the implementation of this interface.

 *

 * @param java.util.Properties

 **/

 public void init (java.util.Properties customProps)

 {

 customProperties = customProps;

 }

 /**

 * This method is called whenever a key needs to be generated either

 * from the schedule or manually requested. The key is stored in the

 * KeyStore referenced by the configured KeySet that contains the

 * keyGenerationClass implementing this interface. The implementation of

 * this interface manages the key type. The user of the KeySet

 * must know the type that is returned by this keyGenerationClass.

 *

 * @return java.security.Key

 * @throws com.ibm.websphere.crypto.KeyException

 **/

 public java.security.Key generateKey () throws KeyException

 {

 try

 {

 // Assume generate3DESKey is there to create the key.

 byte[] tripleDESKey = generate3DESKey();

 secretKey = new javax.crypto.spec.SecretKeySpec(tripleDESKey, 0, 24, "3DES");

 if (secretKey != null)

 {

 return secretKey;

 }

 else

 {

 throw new com.ibm.websphere.crypto.KeyException ("Key could not be generated.");

 }

 }

 catch (Exception e)

 {

 e.printStackTrace(); // handle exception

 }

 }

}

If you are developing a key pair, refer to the following example, which uses the KeyPairGenerator class to

implement the com.ibm.websphere.crypto.KeyPairGenerator interface.

package com.ibm.test;

import java.util.*;

import javax.crypto.spec.SecretKeySpec;

import com.ibm.websphere.crypto.KeyException;

706 Securing applications and their environment

/**

 * This implementation defines the method to generate a java.security.KeyPair.

 * When a keyGeneration class implements this method, the generateKeyPair method

 * is called and a KeyPair is stored in the keystore. The isKeyPair

 * attribute is ignored since the KeyGenerationClass is an

 * implementation of KeyPairGenerator. The isKeyPair attributes is for when

 * the keys already exist in a KeyStore, and are just read (not

 * generating them).

 *

 * @author IBM Corporation

 * @version WebSphere Application Server 6.1

 * @since WebSphere Application Server 6.1

 **/

public class KeyPairGenerator implements com.ibm.websphere.crypto.KeyPairGenerator

{

 private java.util.Properties customProperties = null;

 public KeyPairGenerator()

 {

 }

 /**

 * This method is called to pass any custom properties configured with

 * the KeySet to the implementation of this interface.

 *

 * @param java.util.Properties

 **/

 public void init (java.util.Properties customProps)

 {

 customProperties = customProps;

 }

 /**

 * This method is called whenever a key needs to be generated either

 * from the schedule or manually requested and isKeyPair=true in the KeySet

 * configuration. The key is stored in the KeyStore referenced by

 * the configured KeySet which contains the keyGenerationClass implementing

 * this interface. The implementation of this interface manages the

 * type of the key. The user of the KeySet must know the type that

 * is returned by this keyGenerationClass.

 *

 * @return com.ibm.websphere.crypto.KeyPair

 * @throws com.ibm.websphere.crypto.KeyException

 **/

 public com.ibm.websphere.crypto.KeyPair generateKeyPair () throws KeyException

 {

 try

 {

 java.security.KeyPair keyPair = generateKeyPair();

 // Store as SecretKeySpec

 if (keyPair != null)

 {

 java.security.PrivateKey privKey = keyPair.getPrivate();

 java.security.PublicKey pubKey = keyPair.getPublic();

 SecretKeySpec publicKeyAsSecretKey = new SecretKeySpec

 (pubKey.getEncoded(), "RSA_PUBLIC");

 SecretKeySpec privateKeyAsSecretKey = new SecretKeySpec

 (privKey.getEncoded(), "RSA_PRIVATE");

 com.ibm.websphere.crypto.KeyPair pair = new

 com.ibm.websphere.crypto.KeyPair(publicKeyAsSecretKey, privateKeyAsSecretKey);

 return pair;

 }

 else

 {

 throw new com.ibm.websphere.crypto.KeyException ("Key pair could

 not be generated.");

 }

 }

 catch (Exception e)

Chapter 7. Securing communications 707

{

 e.printStackTrace(); // handle exception

 }

 }

}

This interface returns a com.ibm.websphere.crypto.KeyPair key pair, which can contain either a

X509Certificate and PrivateKey object or PublicKey and PrivateKey objects. If the

com.ibm.websphere.crypto.KeyPair interface contains aX509Certificate and PrivateKey object, the

certificate and private key are stored in the keystore. Consequently, they can use any KeyStore type.

If the com.ibm.websphere.crypto.KeyPair interface contains PublicKey and PrivateKey objects, you must

convert the encoded values to the SecretKeySpec object in order to store them. The WebSphere

Application Server runtime stores and retrieves the key pair as secret keys. The runtime converts the key

pair back to PublicKey and PrivateKey objects when the server retrieves the pair during the handshake.

Use the following constructors to develop the com.ibm.websphere.crypto.KeyPair interface:

v Public and private constructor

public KeyPair(java.security.Key publicKey, java.security.Key privateKey)

v Certificate and private constructor.

public KeyPair(java.security.cert.Certificate[] certChain,

java.security.Key privateKey)

The previous example code shows the KeyPairGenerator class using the public and private constructor.

Each call to this class generates a new and unique key pair, and this class is invoked by a KeySet to

create a new key pair when isKeyPair=true. The version number in the key set increments each time it is

called.

Key set groups collection

Use this page to manage groups of public, private, and shared keys. These key groups enable the

application server to control multiple sets of Lightweight Third Party Authentication (LTPA) keys.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key set groups.

 Button Resulting action

New Adds a key set group. A key set group combines one or more key sets

together as a single key set group. It allows the generation of multiple different

types of keys to occur at the same time. A single key set represents one type

of key, so a key set group allows you to group the different types.

Delete Deletes an existing key set group. You must be sure that there are no other

references to this key set group before you delete it.

Generate keys Generates keys for key set group. The system generates keys for each key set

within the key set group so that the keys remain synchronized with each other

in terms of version. You must configure a valid key generation class and a key

store that is writable. See the com.ibm.websphere.crypto.KeySetHelper

application programming interfaces (APIs) to enable the use of keys that are

managed by a KeySetGroup or KeySet.

Key set group name

Specifies the name of the key set group used to reference it.

Automatically generate keys

Specifies that the keys are to be generated automatically on a schedule.

708 Securing applications and their environment

Key set groups settings

Use this page to create new key set groups.

To view this administrative console page, click Security > SSL certificate and key management. Under

Configuration settings, click Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration. Under Related items, click Key set groups. Then click the New button.

Key set group name

Specifies the name of key set group used. This name can be referenced using the

com.ibm.websphere.crypto.KeySetHelper API to retrieve the managed keys from an application.

 Data type: Text

Key sets

Specifies a set of key instances of the same type for use in cryptographic operations.

Add

Specifies to add the selected key set part of this key set group.

Remove

Specifies to remove the selection from the Key sets list.

Automatically generate keys

Specifies that the keys are generated automatically on a schedule. When a new key is generated, the

security.xml is updated and saved by the runtime to track the key reference version. This can cause

save conflicts when updating the same file from admin applications.

 Default: Enabled

Scheduled time for generation

Specifies the scheduled time when the system generates selected key set group or groups. You can

specify the scheduled time in hours and minutes; specify either A.M. or P.M., or specify 24-hour. You can

also specify the day of the week you want the scheduled event to occur. It is recommended that you set

this event to occur during a low peak time, especially for keys that are used by runtime for token

validation.

 Data type Integer

Default: 0, 0

Range: 1–12, 0–59

Generate on a specific day

Specifies whether to have the generation occur on a specific day of the week. It is best to auto-generate

keys during a low peak day.

 Default: Enabled

Weekday

Specifies the day of the week on which the expiration monitor will run if the Check on a specific day option

is selected.

 Default: Sunday

Range: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday

Chapter 7. Securing communications 709

Repeat interval

Specifies the period of time between each schedule time to check for expired certificates or the interval

between schedule checks.

 Default: Daily

Range: Daily, Weekly

Generate at an interval

Specifies to generate keys at the specified frequency regardless of the day of the week on which

generation occurs.

 Default: Disabled

Next start date

Specifies the date for the next scheduled check. This allows the deployment manager to be stopped and

restarted without resetting the date.

710 Securing applications and their environment

Chapter 8. Developing extensions to the WebSphere security

infrastructure

WebSphere Application Server provides various plug points so that you can extend the security

infrastructure. Extending this security infrastructure involves several activities including: Developing custom

user registries, developing applications that us programmatic security, and customizing Web application

login forms.

About this task

The following topics are covered in this section:

v Developing custom user registries

v Developing applications that use programmatic security

v Customizing Web application login forms

v Customizing application login forms with Java Authentication and Authorization Service (JAAS)

v Securing transports with Java Secure Sockets Extension (JSSE) and Java Cryptography Extension

(JCE) programming interfaces

v Implementing tokens for security attribute propagation

Developing standalone custom registries

This development provides considerable flexibility in adapting WebSphere Application Server security to

various environments where some notion of a user registry, other than LDAP or Local OS, already exists

in the operational environment.

Before you begin

WebSphere Application Server security supports the use of standalone custom registries in addition to the

local operating system registry, standalone Lightweight Directory Access Protocol (LDAP) registries, and

federated repositories for authentication and authorization purposes. A standalone custom-implemented

registry uses the UserRegistry Java interface as provided by WebSphere Application Server. A standalone

custom-implemented registry can support virtually any type or notion of an accounts repository from a

relational database, flat file, and so on.

Implementing a standalone custom registry is a software development effort. Implement the methods that

are defined in the com.ibm.websphere.security.UserRegistry interface to make calls to the appropriate

registry to obtain user and group information. The interface defines a general set of methods for

encapsulating a wide variety of registries. You can configure a standalone custom registry as the selected

repository when configuring WebSphere Application Server security on the Global security panel.

In WebSphere Application Server Version 7.0, make sure that your implementation of the standalone

custom registry does not depend on any WebSphere Application Server components such as data

sources, Enterprise JavaBeans (EJB) and Java Naming and Directory Interface (JNDI). You can not have

this dependency because security is initialized and enabled prior to most of the other WebSphere

Application Server components during startup. If your previous implementation used these components,

make a change that eliminates the dependency. For example, if your previous implementation used data

sources to connect to a database, instead use the JDBC java.sql.DriverManager interface to connect to

the database.

Refer to the “Migrating custom user registries” on page 16 for more information on migrating. If your

previous implementation uses data sources to connect to a database, change the implementation to use

Java database connectivity (JDBC) connections.

© Copyright IBM Corp. 2008 711

1. Implement all the methods in the interface except for the CreateCredential method, which is

implemented by WebSphere Application Server. “FileRegistrySample.java file” on page 127 is provided

for reference.

Note: The sample provided is intended to familiarize you with this feature. Do not use this sample in

an actual production environment.

2. Build your implementation.

To compile your code, you need the com.ibm.ws.runtime.jar and the

com.ibm.ws.security.crypto.jar files in your class path. For example:

javac -extdirs app_server_root/java/ext:/QIBM/UserData/Java400/ext:

/QIBM/ProdData/Java400/jdk6/lib/ext:app_server_root/lib

-classpath app_server_root/plugins/com.ibm.ws.runtime.jar:

app_server_root/com.ibm.ws.security.crypto.jar

 com/ibm/websphere/security/FileRegistrySample.java

The previous lines of code for your class path are one continuous line.

Note: If you do not have Java SE Development Kit 6 (Classic) installed, use /QOpenSys/QIBM/
ProdData/JavaVM/jdk60/32bit/jre/lib/ext or /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit/
jre/lib/ext instead of /QIBM/ProdData/Java400/jdk6/lib/ext.

3. Create a classes subdirectory in your profile for custom classes. For more information, see “Creating a

classes subdirectory in your profile for custom classes.”

4. Copy the class files that are generated in the previous step to the product class path.

The preferred location is the app_server_root/classes directory. For more information, see “Creating a

classes subdirectory in your profile for custom classes.” Copy the class files to all the product process

class paths including the cell, all of the node agents.

5. Follow the steps in “Configuring standalone custom registries” on page 123 to configure your

implementation using the administrative console. This step is required to implement custom user

registries.

What to do next

If you enable security, make sure that you complete the remaining steps:

1. Save and synchronize the configuration and restart all of the servers.

2. Try accessing some J2EE resources to verify that the custom registry implementation is correct.

Creating a classes subdirectory in your profile for custom classes

You can create a classes subdirectory in the profile in which you can place your custom security

components.

About this task

WebSphere Application Server resides in two main default directories:

app_server_root

Contains product Java archive (JAR) files, scripts, and the master copies of the administrative

application, samples, and properties files. This directory is referred to by the ${WAS_INSTALL_ROOT}

WebSphere Application Server variable. Do not modify files in these directories.

profile_root

Contains user profile data, that is a combination of unique files and symmetric links to files in the

app_server_root directories. This directory is referred to by the ${USER_INSTALL_ROOT} WebSphere

Application Server variable.

The product files are separated for the following reasons:

712 Securing applications and their environment

v To separate the files that run the product from files that you can modify, either by editing or through the

administrative interfaces. When you apply product fixes, the separate directory structure keeps these

fixes from overwriting user-defined data, such as modifying properties files.

v To isolate configuration differences between profiles. For example, each profile subdirectory can have its

own copy of the Java 2 Security files, by which the profile can have a unique Java 2 Security

configuration, rather than all profiles conforming to one product-wide configuration only.

WebSphere Application Server provides application programming interfaces (APIs) that you can use to

develop your own security components for WebSphere Application Server. For example, you can create

custom user registries, custom trust association interceptors, and custom login modules. For other

WebSphere Application Server platforms, place the files for your custom security component in the

app_server_root/classes directory.

For the i5/OS platform, this action is not recommended because the files are accessible from all server

profiles, which might not be a desirable or secure behavior. Additionally, the classes directory is granted

Java 2 Security AllPermissions authority, which might not be appropriate for your secured environment.

Therefore, create a /classes subdirectory in the profile in which you can place your custom security

components. Additionally, the QEJBSVR user profile must have authority to the directory. To create the

classes subdirectory and grant the necessary authorities, complete the following steps:

1. Use the CRTDIR DIR command to create the classes subdirectory. For example, run the following

command from the CL command line:

CRTDIR DIR(’profile_root/classes’)

Alternatively, you can map or mount a workstation network drive to the iSeries server and create the

/classes subdirectory from the workstation command prompt or a graphical file explorer utility such as

Windows Explorer.

2. If you are using Java 2 Security, update your profile_root/properties/server.policy file to grant the

appropriate Java 2 Security permissions to the classes in the directory. For more information about the

permissions, see “server.policy file permissions” on page 740.

3. If you create the directory from the Qshell command line, explicitly grant the QEJBSVR user profile

read, write, and run (*RWX) authority to the directory because the proper authorities are not inherited

from the parent directory. For example, run the following command:

CHGAUT OBJ(’profile_root/classes’) USER(QEJBSVR) DTAAUT(*RWX)

Results

You have a classes subdirectory that you can use for custom classes.

Example: Standalone custom registries

Use these links to view registry examples.

A standalone custom registry is a customer-implemented registry that implements the UserRegistry Java

interface, as provided by WebSphere Application Server. A custom-implemented registry can support

virtually any type or form of an accounts repository from a relational database, flat file, and so on. The

custom registry provides considerable flexibility in adapting WebSphere Application Server security to

various environments where some form of a registry, other than a federated repository, Lightweight

Directory Access Protocol (LDAP) registry, or local operating system registry, already exist in the

operational environment.

To view a sample standalone custom registry, refer to the following files:

v “FileRegistrySample.java file” on page 127

v “users.props file” on page 144

v “groups.props file” on page 145

Chapter 8. Developing extensions to the WebSphere security infrastructure 713

Result.java file

This module is used by user registries in WebSphere Application Server when calling the getUsers and

getGroups methods. The user registries use this method to set the list of users and groups and to indicate

if more users and groups in the user registry exist than requested.

//

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2005

// All Rights Reserved * Licensed Materials - Property of IBM

//

package com.ibm.websphere.security;

import java.util.List;

public class Result implements java.io.Serializable {

 /**

 Default constructor

 */

 public Result() {

 }

 /**

 Returns the list of users and groups

 @return the list of users and groups

 */

 public List getList() {

 return list;

 }

 /**

 indicates if there are more users and groups in the registry

 */

 public boolean hasMore() {

 return more;

 }

 /**

 Set the flag to indicate that there are more users and groups

 in the registry to true

 */

 public void setHasMore() {

 more = true;

 }

 /*

 Set the list of users and groups

 @param list list of users/groups

 */

 public void setList(List list) {

 this.list = list;

 }

 private boolean more = false;

 private List list;

}

UserRegistry.java files

The following file is a custom property that is used with a custom user registry.

For more information, see “Configuring standalone custom registries” on page 123.

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2005

// All Rights Reserved * Licensed Materials - Property of IBM

//

// DESCRIPTION:

714 Securing applications and their environment

//

// This file is the UserRegistry interface that custom registries in WebSphere

// Application Server implement to enable WebSphere security to use the custom

// registry.

//

package com.ibm.websphere.security;

import java.util.*;

import java.rmi.*;

import java.security.cert.X509Certificate;

import com.ibm.websphere.security.cred.WSCredential;/**

 * Implementing this interface enables WebSphere Application Server Security

 * to use custom registries. This interface extends java.rmi.Remote because the

 * registry can be in a remote process.

 *

 * Implementation of this interface must provide implementations for:

*

* initialize(java.util.Properties)

* checkPassword(String,String)

* mapCertificate(X509Certificate[])

* getRealm

* getUsers(String,int)

* getUserDisplayName(String)

* getUniqueUserId(String)

* getUserSecurityName(String)

* isValidUser(String)

* getGroups(String,int)

* getGroupDisplayName(String)

* getUniqueGroupId(String)

* getUniqueGroupIds(String)

* getGroupSecurityName(String)

* isValidGroup(String)

* getGroupsForUser(String)

* getUsersForGroup(String,int)

* createCredential(String)

**/

public interface UserRegistry extends java.rmi.Remote

{

 /**

 * Initializes the registry. This method is called when creating the

 * registry.

 *

 * @param props the registry-specific properties with which to

 * initialize the custom registry

 * @exception CustomRegistryException

 * if there is any registry specific problem

 * @exception RemoteException

 * as this extends java.rmi.Remote

 **/

 public void initialize(java.util.Properties props)

 throws CustomRegistryException,

 RemoteException; /**

 * Checks the password of the user. This method is called to authenticate a

 * user when the user’s name and password are given.

 *

 * @param userSecurityName the name of the user

 * @param password the password of the user

 * @return a valid userSecurityName. Normally this is

 * the name of same user whose password was checked but if the

 * implementation wants to return any other valid

 * userSecurityName in the registry it can do so

Chapter 8. Developing extensions to the WebSphere security infrastructure 715

* @exception CheckPasswordFailedException if userSecurityName/

 * password combination does not exist in the registry

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String checkPassword(String userSecurityName, String password)

 throws PasswordCheckFailedException,

 CustomRegistryException,

 RemoteException; /**

 * Maps a certificate (of X509 format) to a valid user in the registry.

 * This is used to map the name in the certificate supplied by a browser

 * to a valid userSecurityName in the registry

 *

 * @param cert the X509 certificate chain

 * @return the mapped name of the user userSecurityName

 * @exception CertificateMapNotSupportedException if the particular

 * certificate is not supported.

 * @exception CertificateMapFailedException if the mapping of the

 * certificate fails.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException,

 RemoteException; /**

 * Returns the realm of the registry.

 *

 * @return the realm. The realm is a registry-specific string indicating

 * the realm or domain for which this registry

 * applies. For example, for OS400 or AIX this would be the

 * host name of the system whose user registry this object

 * represents.

 * If null is returned by this method realm defaults to the

 * value of "customRealm". It is recommended that you use

 * your own value for realm.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getRealm()

 throws CustomRegistryException,

 RemoteException; /**

 * Gets a list of users that match a pattern in the registry.

 * The maximum number of users returned is defined by the limit

 * argument.

 * This method is called by administrative console and by scripting (command

 * line) to make available the users in the registry for adding them (users)

 * to roles.

 *

 * @parameter pattern the pattern to match. (For example., a* will match all

 * userSecurityNames starting with a)

 * @parameter limit the maximum number of users that should be returned.

 * This is very useful in situations where there are thousands of

 * users in the registry and getting all of them at once is not

 * practical. A value of 0 implies get all the users and hence

 * must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @exception CustomRegistryException if there is any registry specific

716 Securing applications and their environment

* problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public Result getUsers(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException; /**

 * Returns the display name for the user specified by userSecurityName.

 *

 * This method is called only when the user information displays

 * (information purposes only, for example, in the administrative console) and not used

 * in the actual authentication or authorization purposes. If there are no

 * display names in the registry return null or empty string.

 *

 * In WebSphere Application Server Version 4.0 custom registry, if you had a display

 * name for the user and if it was different from the security name, the display name

 * was returned for the EJB methods getCallerPrincipal() and the servlet methods

 * getUserPrincipal() and getRemoteUser().

 * In WebSphere Application Server Version 5.0 for the same methods the security

 * name is returned by default. This is the recommended way as the display name

 * is not unique and might create security holes.

 *

 * See the documentation for more information.

 *

 * @parameter userSecurityName the name of the user.

 * @return the display name for the user. The display name

 * is a registry-specific string that represents a descriptive, not

 * necessarily unique, name for a user. If a display name does

 * not exist return null or empty string.

 * @exception EntryNotFoundException if userSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUserDisplayName(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException; /**

 * Returns the unique ID for a userSecurityName. This method is called when

 * creating a credential for a user.

 *

 * @parameter userSecurityName the name of the user.

 * @return the unique ID of the user. The unique ID for a user is

 * the stringified form of some unique, registry-specific, data

 * that serves to represent the user. For example, for the UNIX

 * user registry, the unique ID for a user can be the UID.

 * @exception EntryNotFoundException if userSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueUserId(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException; /**

 * Returns the name for a user given its unique ID.

 *

 * @parameter uniqueUserId the unique ID of the user.

 * @return the userSecurityName of the user.

 * @exception EntryNotFoundException if the uniqueUserID does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

Chapter 8. Developing extensions to the WebSphere security infrastructure 717

public String getUserSecurityName(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Determines if the userSecurityName exists in the registry

 *

 * @parameter userSecurityName the name of the user

 * @return true if the user is valid. false otherwise

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Gets a list of groups that match a pattern in the registry.

 * The maximum number of groups returned is defined by the limit

 * argument.

 * This method is called by the administrative console and scripting

 * (command line) to make available the groups in the registry for adding

 * them (groups) to roles.

 *

 * @parameter pattern the pattern to match. (For e.g., a* will match all

 * groupSecurityNames starting with a)

 * @parameter limit the maximum number of groups to return.

 * This is very useful in situations where there are thousands of

 * groups in the registry and getting all of them at once is not

 * practical. A value of 0 implies get all the groups and hence

 * must be used with care.

 * @return a Result object that contains the list of groups

 * requested and a flag to indicate if more groups exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Returns the display name for the group specified by groupSecurityName.

 *

 * This method may be called only when the group information displayed

 * (for example, the administrative console) and not used in the actual

 * authentication or authorization purposes. If there are no display names

 * in the registry return null or empty string.

 *

 * @parameter groupSecurityName the name of the group.

 * @return the display name for the group. The display name

 * is a registry-specific string that represents a descriptive, not

 * necessarily unique, name for a group. If a display name does

 * not exist return null or empty string.

 * @exception EntryNotFoundException if groupSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getGroupDisplayName(String groupSecurityName)

 throws EntryNotFoundException,

718 Securing applications and their environment

CustomRegistryException,

 RemoteException;

 /**

 * Returns the unique ID for a group.

 * @parameter groupSecurityName the name of the group.

 * @return the unique ID of the group. The unique ID for

 * a group is the stringified form of some unique,

 * registry-specific, data that serves to represent the group.

 * For example, for the UNIX user registry, the unique ID might

 * be the GID.

 * @exception EntryNotFoundException if groupSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueGroupId(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the unique IDs for all the groups that contain the unique ID of

 * a user.

 * Called during creation of a user’s credential.

 *

 * @parameter uniqueUserId the unique ID of the user.

 * @return a list of all the group unique IDs that the unique user ID

 * belongs to. The unique ID for an entry is the stringified

 * form of some unique, registry-specific, data that serves

 * to represent the entry. For example, for the

 * UNIX user registry, the unique ID for a group could be the GID

 * and the unique ID for the user could be the UID.

 * @exception EntryNotFoundException if unique user ID does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public List getUniqueGroupIds(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the name for a group given its unique ID.

 *

 * @parameter uniqueGroupId the unique ID of the group.

 * @return the name of the group.

 * @exception EntryNotFoundException if the uniqueGroupId does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getGroupSecurityName(String uniqueGroupId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Determines if the groupSecurityName exists in the registry

 *

Chapter 8. Developing extensions to the WebSphere security infrastructure 719

* @parameter groupSecurityName the name of the group

 * @return true if the groups exists, false otherwise

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Returns the securityNames of all the groups that contain the user

 *

 * This method is called by administrative console and scripting

 * (command line) to verify the user entered for RunAsRole mapping belongs

 * to that role in the roles to user mapping. Initially, the check is done

 * to see if the role contains the user. If the role does not contain the user

 * explicitly, this method is called to get the groups that this user

 * belongs to so that checks are made on the groups that the role contains.

 *

 * @parameter userSecurityName the name of the user

 * @return a List of all the group securityNames that the user

 * belongs to.

 * @exception EntryNotFoundException if user does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public List getGroupsForUser(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Gets a list of users in a group.

 *

 * The maximum number of users returned is defined by the limit

 * argument.

 *

 * This method is used by the WebSphere Business Integration

 * Server Foundation process choreographer when staff assignments

 * are modeled using groups.

 *

 * In rare situations where you are working with a user registry and it is not

 * practical to get all of the users from any of your groups (for example if

 * a large number of users exist) you can create the NotImplementedException

 * for those particular groups. Make sure that if the WebSphere Business

 * Integration Server Foundation Process Choreographer is installed (or

 * if installed later) that the users are not modeled using these particular groups.

 * If no concern exists about the staff assignments returning the users from

 * groups in the registry it is recommended that this method be implemented

 * without throwing the NotImplemented exception.

 *

 * @parameter groupSecurityName that represents the name of the group

 * @parameter limit the maximum number of users to return.

 * This option is very useful in situations where lots of

 * users are in the registry and getting all of them at

 * once is not practical. A value of 0 means get all of

 * the users and must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @deprecated This method will be deprecated in the future.

720 Securing applications and their environment

* @exception NotImplementedException create this exception in rare situations

 * if it is not practical to get this information for any of the

 * groups from the registry.

 * @exception EntryNotFoundException if the group does not exist in

 * the registry

 * @exception CustomRegistryException if any registry-specific

 * problem occurs

 * @exception RemoteException as this extends java.rmi.Remote interface

 **/

 public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * This method is implemented internally by the WebSphere Application Server

 * code in this release. This method is not called for the custom registry

 * implementations for this release. Return null in the implementation.

 *

 * Note that because this method is not called you can also return the

 * NotImplementedException as the previous documentation says.

 *

 **/

 public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

}

Implementing custom password encryption

WebSphere Application Server supports the use of custom password encryption.

Before you begin

An installation can implement any password encryption algorithm it chooses.

About this task

Complete the following steps to implement custom password encryption:

1. Build your custom password encryption class. An example of a custom password encryption class

follows.

// CustomPasswordEncryption

// Encryption and decryption functions

public interface CustomPasswordEncryption {

 public EncryptedInfo encrypt(byte[] clearText) throws PasswordEncryptException;

 public byte[] decrypt(EncryptedInfo cipherTextInfo) throws PasswordEncryptException;

 public void initialize(HashMap initParameters);

};

// Encapsulation of cipher text and label

public class EncryptedInfo {

 public EncryptedInfo(byte[] bytes, String keyAlias);

 public byte[] getEncryptedBytes();

 public String getKeyAlias();

};

2. Enable custom password encryption.

Chapter 8. Developing extensions to the WebSphere security infrastructure 721

a. Set the custom property com.ibm.wsspi.security.crypto.customPasswordEncryptionClass to

the name of the class that is to be given control.

b. Enable the function. Set the custom property,

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled to true.

Results

Custom password encryption at the installation is complete.

Developing applications that use programmatic security

For some applications, declarative security is not sufficient to express the security model of the application.

Use this topic to develop applications that use programmatic security.

About this task

IBM WebSphere Application Server provides security components that provide or collaborate with other

services to provide authentication, authorization, delegation, and data protection. WebSphere Application

Server also supports the security features that are described in the Java Platform, Enterprise Edition (Java

EE) specification. An application goes through three stages before it is ready to run:

v Development

v Assembly

v Deployment

Most of the security for an application is configured during the assembly stage. The security that is

configured during the assembly stage is called declarative security because the security is declared or

defined in the deployment descriptors. The declarative security is enforced by the security runtime. For

some applications, declarative security is not sufficient to express the security model of the application. For

these applications, you can use programmatic security.

1. Develop secure Web applications. For more information, see “Developing with programmatic security

APIs for Web applications” on page 744.

2. Develop servlet filters for form login processing. For more information, see “Developing servlet filters

for form login processing” on page 758.

3. Develop form login pages. For more information, see “Customizing Web application login” on page

753.

4. Develop enterprise bean component applications. For more information, see “Developing with

programmatic APIs for EJB applications” on page 749.

5. Develop with Java Authentication and Authorization Service to log in programmatically. For more

information, see “Developing programmatic logins with the Java Authentication and Authorization

Service” on page 377.

6. Develop your own Java EE security mapping module. For more information, see “Configuring

programmatic logins for Java Authentication and Authorization Service” on page 391.

7. Develop custom user registries. For more information, see “Developing standalone custom registries”

on page 711.

8. Develop a custom interceptor for trust associations.

Protecting system resources and APIs (Java 2 security)

Java 2 security is a programming model that is very pervasive and has a huge impact on application

development.

Before you begin

Java 2 security is orthogonal to Java Platform, Enterprise Edition (Java EE) role-based security; you can

disable or enable it independently of administrative security.

722 Securing applications and their environment

However, it does provide an extra level of access control protection on top of the Java EE role-based

authorization. It particularly addresses the protection of system resources and application programming

interfaces (API). Administrators need to consider the benefits against the risks of disabling Java 2 security.

The following recommendations are provided to help enable Java 2 security in a test or production

environment:

1. Make sure the application is developed with the Java 2 security programming model. Developers have

to know whether or not the APIs that are used in the applications are protected by Java 2 security. It is

very important that the required permissions for the APIs used are declared in the policy file

(was.policy), or the application fails to run when Java 2 security is enabled. Developers can reference

the Web site for Development Kit APIs that are protected by Java 2 security. See the Programming

model and decisions section of the Security: Resources for learning topic to visit this Web site.

2. Make sure that migrated applications from previous releases are given the required permissions.

Because Java 2 security is not supported or partially supported in previous WebSphere Application

Server releases, applications developed prior to Version 5 most likely are not using the Java 2 security

programming model. No easy way to find out all the required permissions for the application is

available. The following are activities you can perform to determine the extra permissions that are

required by an application:

v Code review and code inspection

v Application documentation review

v Sandbox testing of migrated enterprise applications with Java 2 security enabled in a preproduction

environment. Enable tracing in WebSphere Java 2 security manager to help determine the missing

permissions in the application policy file. The trace specification is:

com.ibm.ws.security.core.SecurityManager=all=enabled.

v Use the com.ibm.websphere.java2secman.norethrow system property to aid debugging. Do not use

this property in a production environment.

Refer to “Java 2 security” on page 32

The default permission set for applications is the recommended permission set defined in the J2EE 1.3

Specification. The default is declared in the profile_root/config/cells/cell_name/nodes/node_name/
app.policy policy file with permissions defined in the Development Kit policy file that grants permissions to

everyone. The java.policy file is located in the java_home directory depending on the Java virtual

machine (JVM) that is enabled for the profile.

Note: Only Java SE 6 has a JRE.(for example, /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit/jre/lib/
ext).

For all Java virtual machines, the java.policy file is used system-wide. Do not edit the java.policy file on

the server. Applications are denied permissions that are declared in the profile_root/config/cells/
cell_name/filter.policy file. Permissions declared in the filter.policy file are filtered for applications

during the permission check.

Use the showVariables command of the AdminTask object to retrieve JAVA_HOME for the node associated

with the server’s profile. For example, if the node is myNode:

1. Enter QShell.

2. cd to profile_root/bin

3. Run the following command:

wsadmin -conntype NONE -c ’$AdminTask showVariables {-scope Node=myNode -variableName JAVA_HOME}’

Define the required permissions for an application in a was.policy file and embed the was.policy file in

the application enterprise archive (EAR) file as YOURAPP.ear/META-INF/was.policy, see “Configuring Java

2 security policy files” on page 725 for details.

The following steps describe how to enforce Java 2 security on the cell level for WebSphere Application

Server Network Deployment and the server level for WebSphere Application Server and WebSphere

Application Server Express:

Chapter 8. Developing extensions to the WebSphere security infrastructure 723

1. Click Security > Global security. The Global security panel is displayed.

2. Select the Use Java 2 security to restrict application access to local resources option.

3. Click OK or Apply.

4. Click Save to save the changes.

5. Restart the server for the changes to take effect.

Results

Java 2 security is enabled and enforced for the servers. Java 2 security permission is selected when a

Java 2 security protected API is called.

When to use Java 2 security

1. Enable protection on system resources, for example when opening or listening to a socket connection,

reading or writing to operating system file systems, reading or writing Java virtual machine system

properties, and so on.

2. Prevent application code from calling destructive APIs, for example, calling the System.exit method

brings down the application server.

3. Prevent application code from obtaining privileged information (passwords) or gaining extra privileges

(obtaining server credentials).

What to do next

The Java 2 security manager is enhanced to dump the Java 2 security permissions that are granted to all

classes on the call stack when an application is denied access to a resource. The

java.security.AccessControlException exception is created. However, this tracing capability is disabled by

default. You can enable this capability by specifying the server trace service with the

com.ibm.ws.security.core.SecurityManager=all=enabled trace specification. When the exception is

created, the trace dump provides hints to determine whether the application is missing permissions or the

product runtime code or the third-party libraries that are used are not properly marked as privileged when

accessing Java 2 security-protected resources. See the Security Problem Determination Guide for details.

Using PolicyTool to edit policy files

Use the PolicyTool utility to update policy files.

Before you begin

Java 2 security uses several policy files to determine the granted permission for each Java program. The

Java Development Kit provides the PolicyTool tool to edit these policy files. This tool is recommended for

editing any policy file to verify the syntax of its contents. Syntax errors in the policy file cause an

AccessControlException exception when the application runs, including the server start. Identifying the

cause of this exception is not easy because the user might not be familiar with the resource that has an

access violation. Be careful when you edit these policy files.

See “Java 2 security policy files” on page 36 for the list of available policy files.

You must install either the client or plug-ins component of WebSphere Application Server on a workstation

in order to access the PolicyTool. It is not currently supported on the iSeries server.

 1. Map a drive to the operating system to navigate the directory tree to the policy file.

 2. Start the PolicyTool.

Click OK.

 3. Click File > Open.

 4. Navigate the directory tree in the Open window to pick up the policy file that you need to update.

After selecting the policy file, click Open. The code base entries are listed in the window.

 5. Create or modify the code base entry.

724 Securing applications and their environment

a. Modify the existing code base entry by double-clicking the code base, or click the code base and

click Edit Policy Entry. The Policy Entry window opens with the permission list defined for the

selected code base.

b. Create a new code base entry by clicking Add Policy Entry.

The Policy Entry window opens. At the code base column, enter the code base information as a

URL format.

For example, you can enter:

profile_root/InstalledApps/testcase.ear

 6. Modify or add the permission specification.

a. Modify the permission specification by double-clicking the entry that you want to modify, or by

selecting the permission and clicking Edit Permission. The Permissions window opens with the

selected permission information.

b. Add a new permission by clicking Add Permission. The Permissions window opens. In the

Permissions window are four rows for Permission, Target Name, Actions, and Signed By.

 7. Select the permission from the Permission list. The selected permission displays. After a permission

is selected, the Target Name, Actions, and Signed By fields automatically show the valid choices or

they enable text input in the right text input area.

a. Select Target Name from the list, or enter the target name in the right text input area.

b. Select Actions from the list.

c. Input Signed By if it is needed.

Note: The Signed By keyword is not supported in the following policy files: app.policy,

spi.policy, library.policy, was.policy, and filter.policy files. However, the Signed By

keyword is supported in the following policy files: #java.policy, server.policy, and

client.policy files. The Java Authentication and Authorization Service (JAAS) is not

supported in the app.policy, spi.policy, library.policy, was.policy, and filter.policy

files. However, the JAAS principal keyword is supported in a JAAS policy file when it is

specified by the java.security.auth.policy Java virtual machine (JVM) system property.

 8. Click OK to close the Permissions window. Modified permission entries of the specified code base

display.

 9. Click Done to close the window. Modified code base entries are listed. Repeat the previous steps

until you complete editing.

10. Click File > Save after you finish editing the file.

Results

A policy file is updated. If any policy files need editing, use the PolicyTool utility. Do not edit the policy file

manually. Syntax errors in the policy files can potentially cause application servers or enterprise

applications to not start or function incorrectly. For the changes in the updated policy file to take effect,

restart the Java processes.

Configuring Java 2 security policy files

Users can configure Java 2 security policy files so that the required permission is granted for the specified

WebSphere Application Server enterprise application.

Before you begin

Java 2 security uses several policy files to determine the permissions for each Java programs.

Two types of policy files are supported by WebSphere Application Server: dynamic policy files and static

policy files. Static policy files provide the default permissions. Dynamic policy files provide application

permissions. Six dynamic policy files are provided:

Chapter 8. Developing extensions to the WebSphere security infrastructure 725

Policy file name Description

app.policy Contains default permissions for all of the enterprise applications in the cell.

Note: Updates to the app.policy file only apply to the enterprise applications on the

node to which the app.policy file belongs.

was.policy Contains application-specific permissions for an WebSphere Application Server

enterprise application. This file is packaged in an enterprise archive (EAR) file.

ra.xml Contains connector application specific permissions for a WebSphere Application Server

enterprise application. This file is packaged in a resource adapter archive (RAR) file.

spi.policy Contains permissions for Service Provider Interface (SPI) or third-party resources that

are embedded in WebSphere Application Server. The default contents grant everything.

Update this file carefully when the cell requires more protection against SPI in the cell.

This file is applied to all of the SPIs that are defined in the resources.xml file.

library.policy Contains permissions for the shared library of enterprise applications.

filter.policy Contains the list of permissions that require filtering from the was.policy file and the

app.policy file in the cell. This filtering mechanism only applies to the was.policy and

app.policy files.

In WebSphere Application Server, applications must have the appropriate thread permissions specified in

the was.policy or app.policy file. Without the thread permissions specified, the application cannot

manipulate threads and WebSphere Application Server creates a java.security.AccessControlException

exception. The app.policy file applies to a specified node. If you change the permissions in one

app.policy file, you must incorporate the new thread policy in the same file on the remaining nodes. Also,

if you add the thread permissions to the app.policy file, you must restart WebSphere Application Server to

enforce the new permissions. However, if you add the permissions to the was.policy file for a specific

application, you do not need to restart WebSphere Application Server. An administrator must add the

following code to a was.policy or app.policy file for an application to manipulate threads:

grant codeBase "file:${application}" {

 permission java.lang.RuntimePermission "stopThread";

 permission java.lang.RuntimePermission "modifyThread";

 permission java.lang.RuntimePermission "modifyThreadGroup";

};

Note: The Signed By keyword is not supported in the following policy files: app.policy, spi.policy,

library.policy, was.policy, and filter.policy files. However, the Signed By keyword is

supported in the following policy files:java.policy, server.policy, and client.policy files. The

Java Authentication and Authorization Service (JAAS) is not supported in the app.policy,

spi.policy, library.policy, was.policy, and filter.policy files. However, the JAAS principal

keyword is supported in a JAAS policy file when it is specified by the java.security.auth.policy

Java virtual machine (JVM) system property. You can statically set the authorization policy files in

java.security.auth.policy with auth.policy.url.n=URL, where URL is the location of the

authorization policy.

1. Identify the policy file to update.

v If the permission is required by an application, update the static policy file. Refer to “Configuring

static policy files” on page 739.

v If the permission is required by all of the WebSphere Application Server enterprise applications in

the node, refer to “spi.policy file permissions” on page 734.

v If the permission is required only by specific WebSphere Application Server enterprise applications

and the permission is required only by connector, update the ra.xml file. Refer to Assembling

resource adapter (connector) modules. Otherwise, update the was.policy file. Refer to “Configuring

the was.policy file” on page 731 and “Adding the was.policy file to applications” on page 737.

v If the permission is required by shared libraries, refer to “library.policy file permissions” on page 735.

v If the permission is required by SPI libraries, refer to “spi.policy file permissions” on page 734.

726 Securing applications and their environment

Note: Pick up the policy file with the smallest scope. You can avoid giving an extra permission to the

Java programs and protect the resources. You can update the ra.xml file or the was.policy file

rather than the app.policy file. Use specific component symbols ($(ejbcomponent),

${webComponent},${connectorComponent} and ${jars}) than ${application} symbols. Update

dynamic policy files, rather than static policy files.

Add any permission that you never want granted to the WebSphere Application Server enterprise

application in the cell to the filter.policy file. Refer to “filter.policy file permissions” on page 730.

2. Restart the WebSphere Application Server enterprise application.

Results

The required permission is granted for the specified WebSphere Application Server enterprise application.

Example

If an WebSphere Application Server enterprise application in a cell requires permissions, some of the

dynamic policy files need updating. The symptom of the missing permission is the

java.security.AccessControlException exception. The missing permission is listed in the exception data,

which will appear as one line, but is split in sections below for readability.

java.security.AccessControlException: access denied (java.io.FilePermission

${was.install.root}/java/ext/mail.jar read)

When a Java program receives this exception and adding this permission is justified, add a permission to

an adequate dynamic policy file.

grant codeBase "file:user_client_installed_location" {

 permission java.io.FilePermission

"${was.install.root}$(/)java$(/)jre$(/)lib$(/)ext$(/)mail.jar", "read";

};

The previous permission information lines are split for the illustration. Enter the permission on one line.

To decide whether to add a permission, refer to the “Access control exception” on page 40 topic.

app.policy file permissions:

Java 2 security uses several policy files to determine the granted permissions for each Java program. The

union of the permissions that are contained in these following files is applied to the WebSphere Application

Server enterprise application. This union determines the granted permissions.

 For the list of available policy files that are supported by WebSphere Application Server, see the “Java 2

security policy files” on page 36 article The app.policy file is a default policy file that is shared by all of

the WebSphere Application Server enterprise applications. The union of the permissions that are contained

in the following files is applied to the WebSphere Application Server enterprise application:

v Any policy file that is specified in the policy.url.* properties in the java.security file.

v The app.policy files, which are managed by configuration and file replication services.

v The server.policy file.

v The java.policy file.

v The application was.policy file.

v The permission specification of the ra.xml file.

v The shared library, which is the library.policy file.

In WebSphere Application Server, applications that manipulate threads must have the appropriate thread

permissions specified in the was.policy or app.policy file. Without the thread permissions specified, the

application cannot manipulate threads and WebSphere Application Server creates a

Chapter 8. Developing extensions to the WebSphere security infrastructure 727

java.security.AccessControlException exception. If an administrator adds thread permissions to the

app.policy file, the permission change requires a restart of the WebSphere Application Server. An

administrator must add the following code to a was.policy or app.policy file for an application to

manipulate threads:

grant codeBase "file:${application}" {

 permission java.lang.RuntimePermission "stopThread";

 permission java.lang.RuntimePermission "modifyThread";

 permission java.lang.RuntimePermission "modifyThreadGroup";

};

Note: The Signed By and the Java Authentication and Authorization Service (JAAS) principal keywords

are not supported in the app.policy file. However, the Signed By keyword is supported in the

following files: java.policy, server.policy, and the client.policy files. The JAAS principal

keyword is supported in a JAAS policy file when it is specified by the java.security.auth.policy Java

virtual machine (JVM) system property. You can statically set the authorization policy files in the

java.security.auth.policy property with auth.policy.url.n=URL where URL is the location of the

authorization policy.

If the default permissions for enterprise applications (the union of the permissions that is defined in the

java.policy file, the server.policy file and the app.policy file) are enough; no action is required. The

default app.policy file is used automatically. If a specific change is required to all of the enterprise

applications in the cell, update the app.policy file. Syntax errors in the policy files cause start failures in

the application servers. Edit these policy files carefully.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the

app.policy file belongs.

To extract the policy file, use a command prompt to enter the following command on one line using the

appropriate variable values for your environment:

wsadmin> set obj [$AdminConfig extract cells/cell_name/node/node_name/app.policy /temp/test/app.policy]

Edit the extracted app.policy file with the Policy Tool. For more information, see “Using PolicyTool to edit

policy files” on page 724. Changes to the app.policy file are local for the node.

To check in the policy file, use a command prompt to enter the following command on one line using the

appropriate variable values for your environment:

wsadmin> $AdminConfig checkin cells/cell_name/nodes/node_name/app.policy temp/test/app.policy $obj

Several product-reserved symbols are defined to associate the permission lists to a specific type of

resource.

 Symbol Meaning

file:${application} Permissions apply to all resources within the application

file:${jars} Permissions apply to all utility Java archive (JAR) files within the application

file:${ejbComponent} Permissions apply to enterprise bean resources within the application

file:${webComponent} Permissions apply to Web resources within the application

file:${connectorComponent} Permissions apply to connector resources both within the application and within

standalone connector resources.

Five embedded symbols are provided to specify the path and name for the java.io.FilePermission

permission. These symbols enable flexible permission specifications. The absolute file path is fixed after

the installation of the application.

728 Securing applications and their environment

Symbol Meaning

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

Note: You cannot use the ${was.module.path} in the ${application} entry.

The app.policy file supplied by WebSphere Application Server is located in the profile_root/config/cells/
cell_name/nodes/node_name/app.policy, which contains the following default permissions:

Note: In the following code sample, the first two lines that are related to java.io.FilePermission permission

are split into two lines for illustrative purposes only.
grant codeBase "file:${application}" {

 // The following are required by JavaMail

 permission java.io.FilePermission "${was.install.root}${/}lib${/}activation-impl.jar", "read";

 permission java.io.FilePermission "${was.install.root}${/}lib${/}mail-impl.jar", "read";

};

grant codeBase "file:${jars}" {

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

grant codeBase "file:${connectorComponent}" {

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

grant codeBase "file:${webComponent}" {

 permission java.io.FilePermission "${was.module.path}${/}-", "read, write";

 permission java.lang.RuntimePermission "loadLibrary.*";

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

grant codeBase "file:${ejbComponent}" {

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

If all of the WebSphere Application Server enterprise applications in a cell require permissions that are not

defined as defaults in the java.policy file, the server.policy file and the app.policy file, then update the

app.policy file. The symptom of a missing permission is the java.security.AccessControlException

exception.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the

app.policy file belongs.

When a Java program receives this exception and adding this permission is justified, add a permission to

the server.policy file, for example:

grant codeBase "file:user_client_installed_location" {

 permission java.io.FilePermission

"${was.install.root}$(/)java$(/)jre$(/)lib$(/)ext$(/)mail.jar", "read";

 };

Chapter 8. Developing extensions to the WebSphere security infrastructure 729

The previous permission information lines are split for the illustration. You actually enter the permission on

one line.

To decide whether to add a permission, refer to the AccessControlException topic.

Restart all WebSphere Application Server enterprise applications to ensure that the updated app.policy

file takes effect.

filter.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program. Java

2 security policy filtering is only in effect when Java 2 security is enabled.

 Before modifying the filter.policy file, you must start the wsadmin tool. See the Starting the wsadmin

scripting client article for more information.

Refer to “Protecting system resources and APIs (Java 2 security)” on page 722. The filtering policy defined

in the filter.policy file is cell wide. The filter.policy file is the only policy file that is used when

restricting the permission instead of granting permission. The permissions that are listed in the filter policy

file are filtered out from the app.policy file and the was.policy file. Permissions that are defined in the

other policy files are not affected by the filter.policy file.

When a permission is filtered out, an audit message is logged. However, if the permissions that are

defined in the app.policy file and the was.policy file are compound permissions like the

java.security.AllPermission permission, for example, the permission is not removed. A warning message is

logged. If the Issue Permission Warning flag is enabled (default) and if the app.policy file and the

was.policy file contain custom permissions (non-Java API permission, the permission package name

begins with characters other than java or javax), a warning message is logged and the permission is not

removed. You can change the value of the Warn if applications are granted custom permissions option

on the Global security panel. It is not recommended that you use the AllPermission permission for the

enterprise application.

Some default permissions that are defined in the filter.policy file. These permissions are the minimal

ones that are recommended by the product. If more permissions are added to the filter.policy file,

certain operations can fail for enterprise applications. Add permissions to the filter.policy file carefully.

You cannot use the Policy Tool to edit the filter.policy file. Editing must be completed in a text editor.

Be careful and verify that no syntax errors exist in the filter.policy file. If any syntax errors exist in the

filter.policy file, the file is not loaded by the product security runtime, which implies that filtering is

disabled.

To extract the filter.policy file, enter the following command using information from your environment:

set obj [$AdminConfig extract cells/cell_name/filter.policy /temp/test/filter.policy]

To check in the policy file, enter the following command using information from your environment:

$AdminConfig checkin cells/cell_name/filter.policy /temp/test/filter.policy $obj

An updated filter.policy file is applied to all of the WebSphere Application Server enterprise

applications after the servers are restarted. The filter.policy file is managed by configuration and file

replication services.

The filter.policy file supplied by WebSphere Application Server resides at: profile_root/config/cells/
cell_name/filter.policy.

730 Securing applications and their environment

This fill contains these permissions as defaults:

filterMask {

permission java.lang.RuntimePermission ″exitVM″;

permission java.lang.RuntimePermission ″setSecurityManager″;

permission java.security.SecurityPermission ″setPolicy″;

permission javax.security.auth.AuthPermission ″setLoginConfiguration″; };

runtimeFilterMask {

permission java.lang.RuntimePermission ″exitVM″;

permission java.lang.RuntimePermission ″setSecurityManager″;

permission java.security.SecurityPermission ″setPolicy″;

permission javax.security.auth.AuthPermission ″setLoginConfiguration″; };

The permissions that are defined in filterMask filter are for static policy filtering. The security runtime tries

to remove the permissions from applications during application startup. Compound permissions are not

removed, but are issued with a warning, and application deployment is stopped if applications contain

permissions that are defined in the filterMask filter, and if scripting is used. The runtimeFilterMask filter

defines permissions that are used by the security runtime to deny access to those permissions to

application thread. Do not add more permissions to the runtimeFilterMask filter. Application start failure or

incorrect functioning might result. Be careful when adding more permissions to the runtimeFilterMask filter.

Usually, you only need to add permissions to the filterMask stanza.

WebSphere Application Server relies on the filter policy file to restrict or disallow certain permissions that

can compromise the integrity of the system. For instance, WebSphere Application Server considers the

exitVM and setSecurityManager permissions as those permissions that most applications never have. If

these permissions are granted, the following scenarios are possible:

exitVM

A servlet, JavaServer Pages (JSP) file, enterprise bean, or other library that is used by the

aforementioned might call the System.exit API and cause the entire WebSphere Application Server

process to terminate.

setSecurityManager

An application might install its own security manager and either grant more permissions or bypass

the default policy that the WebSphere Application Server security manager enforces.

Note: In application code, do not use the setSecurityManager permission to set a security manager. When

an application uses the setSecurityManager permission, a conflict exists with the internal security

manager within WebSphere Application Server. If you must set a security manager in an application

for Remote Method Invocation (RMI) purposes, you also must select the Use Java 2 security to

restrict application access to local resources option on the Global security panel within the

WebSphere Application Server administrative console. WebSphere Application Server then registers

a security manager, which the application code can verify is registered by using the

System.getSecurityManager application programming interface (API).

For the updated filter.policy file to take effect, restart related Java processes.

Configuring the was.policy file:

You should update the was.policy file if the application has specific resources to access.

 Before you begin

Java 2 security uses several policy files to determine the granted permission for each Java program. The

was.policy file is an application-specific policy file for WebSphere Application Server enterprise

applications. This file is embedded in the META-INF/was.policy enterprise archive (.EAR) file. The

was.policy file is located in:

Chapter 8. Developing extensions to the WebSphere security infrastructure 731

profile_root/config/cells/cell_name/applications/

ear_file_name/deployments/application_name/META-INF/was.policy

See “Java 2 security policy files” on page 36 for the list of available policy files that are supported by

WebSphere Application Server Version 6.1.

The union of the permissions that are contained in the following files is applied to the WebSphere

Application Server enterprise application:

v Any policy file that is specified in the policy.url.* properties in the java.security file.

v The app.policy files, which are managed by configuration and file replication services.

v The server.policy file.

v The java.policy file.

v The application was.policy file.

v The permission specification of the ra.xml file.

v The shared library, which is the library.policy file.

Several product-reserved symbols are defined to associate the permission lists to a specific type of

resources.

 Symbol Definition

file:${application} Permissions apply to all resources used within the

application.

file:${jars} Permissions apply to all utility Java archive (JAR) files

within the application

file:${ejbComponent} Permissions apply to enterprise bean resources within the

application

file:${webComponent} Permissions apply to Web resources within the

application

file:${connectorComponent} Permissions apply to connector resources within the

application

In WebSphere Application Server, applications that manipulate threads must have the appropriate thread

permissions specified in the was.policy or app.policy file. Without the thread permissions specified, the

application cannot manipulate threads and WebSphere Application Server creates a

java.security.AccessControlException exception. If you add the permissions to the was.policy file for a

specific application, you do not need to restart WebSphere Application Server. An administrator must add

the following code to a was.policy or app.policy file for an application to manipulate threads:

grant codeBase "file:${application}" {

 permission java.lang.RuntimePermission "stopThread";

 permission java.lang.RuntimePermission "modifyThread";

 permission java.lang.RuntimePermission "modifyThreadGroup";

};

An administrator can add the thread permissions to the app.policy file, but the permission change

requires a restart of WebSphere Application Server.

Note: The Signed By and the Java Authentication and Authorization Service (JAAS) principal keywords

are not supported in the was.policy file. The Signed By keyword is supported in the java.policy,

server.policy, and client.policy policy file. The JAAS principal keyword is supported in a JAAS

policy file when it is specified by the java.security.auth.policy Java virtual machine (JVM)

system property. You can statically set the authorization policy files in the

java.security.auth.policy file with the auth.policy.url.n=URL, where URL is the location of the

authorization policy.

732 Securing applications and their environment

Other than these blocks, you can specify the module name for granular settings. For example,

grant codeBase "file:DefaultWebApplication.war" {

 permission java.security.SecurityPermission "printIdentity";

};

grant codeBase "file:IncCMP11.jar" {

 permission java.io.FilePermission

 "${user.install.root}${/}bin${/}DefaultDB${/}-",

 "read,write,delete";

};

Five embedded symbols are provided to specify the path and name for the java.io.FilePermission

permission. These symbols enable flexible permission specification. The absolute file path is fixed after the

application is installed.

 Symbol Definition

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

About this task

If the default permissions for the enterprise application are enough, an action is not required. The default

permissions are a union of the permissions that are defined in the java.policy file, the server.policy file,

and the app.policy file. If an application has specific resources to access, update the was.policy file. The

first two steps assume that you are creating a new policy file.

Note: Syntax errors in the policy files cause the application server to fail. Use care when editing these

policy files.

1. Create or edit a new was.policy file by using the PolicyTool. For more information, see “Using

PolicyTool to edit policy files” on page 724.

2. Package the was.policy file into the enterprise archive (EAR) file.

For more information, see “Adding the was.policy file to applications” on page 737.The following

instructions describe how to import a was.policy file.

a. Import the EAR file into an assembly tool.

b. Open the Project Navigator view.

c. Expand the EAR file and click META-INF. You might find a was.policy file in the META-INF

directory. If you want to delete the file, right-click the file name and select Delete.

d. At the bottom of the Project Navigator view, click J2EE Hierarchy.

e. Import the was.policy file by right-clicking the Modules directory within the deployment descriptor

and by clicking Import > Import > File system.

f. Click Next.

g. Enter the path name to the was.policy file in the From directory field or click Browse to locate

the file.

h. Verify that the path directory that is listed in the Into directory field lists the correct META-INF

directory.

i. Click Finish.

j. To validate the EAR file, right-click the EAR file, which contains the Modules directory, and click

Run Validation.

Chapter 8. Developing extensions to the WebSphere security infrastructure 733

k. To save the new EAR file, right-click the EAR file, and click Export > Export EAR file. If you do

not save the revised EAR file, the EAR file will contain the new was.policy file. However, if the

workspace becomes corrupted, you might lose the revised EAR file.

l. To generate deployment code, right-click the EAR file and click Generate Deployment Code.

3. Update an existing installed application, if one already exists. Modify the was.policy file with the Policy

Tool. For more information, see “Using PolicyTool to edit policy files” on page 724.

Results

The updated was.policy file is applied to the application after the application restarts.

Example

java.security.AccessControlException: access denied (java.io.FilePermission

${was.install.root}/java/ext/mail.jar read)

If an application must access a specific resource that is not defined as a default in the java.policy file,

the server.policy file, and the app.policy, delete the was.policy file for that application. The symptom of

the missing permission is the java.security.AccessControlException exception. The missing permission is

listed in the exception data:

Note: Examples that appear below are split into several lines for illustration only. You actually enter the

permission on one line.

java.security.AccessControlException: access denied (java.io.FilePermission

${was.install.root}/java/ext/mail.jar read)

When a Java program receives this exception and adding this permission is justified, add the following

permission to the was.policy file:

grant codeBase "file:user_client_installed_location" {

 permission java.io.FilePermission

"${was.install.root}$(/)java$(/)jre$(/)lib$(/)ext$(/)mail.jar", "read";

};

To determine whether to add a permission, see “Access control exception” on page 40.

What to do next

Restart all applications for the updated app.policy file to take effect.

spi.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

 For the list of available policy files that are supported by WebSphere Application Server Version 6.0.x, see

“Java 2 security policy files” on page 36.

Because the default permission for the Service Provider Interface (SPI) is the AllPermission permission,

the only reason to update the spi.policy file is a restricted SPI permission. When a change in the

spi.policy is required, complete the following steps.

Syntax errors in the policy files cause the application server to fail. Edit these policy files carefully.

Note: Do not place the codebase keyword or any other keyword after the filterMask and

runtimeFilterMask keywords. The Signed By and the Java Authentication and Authorization Service

(JAAS) Principal keywords are not supported in the spi.policy file. The Signed By keyword is

supported in the java.policy, server.policy, and client.policy policy files. The JAAS Principal

keyword is supported in a JAAS policy file that is specified by the java.security.auth.policy Java

734 Securing applications and their environment

virtual machine (JVM) system property. You can statically set the authorization policy files in

java.security.auth.policy with auth.policy.url.n=URL, where URL is the location of the

authorization policy.

To extract the filter.policy file, enter the following command using information from your environment:

set obj [$AdminConfig extract profiles/profile_name/cells/cell_name/nodes/node_name/spi.policy

/tmp/test/spi.policy]

Edit the file using the Policy Tool. For more information, see “Using PolicyTool to edit policy files” on page

724.

To check in the policy file, enter the following command using information from your environment:

The updated spi.policy is applied to the Service Provider Interface (SPI) libraries after the Java process

is restarted.

$AdminConfig checkin profiles/profile_name/cells/cell_name/nodes/node_name/spi.policy

 /tmp/test/spi.policy $obj

Examples

The spi.policy file is the template for SPIs or third-party resources embedded in the product. Examples

of SPIs are Java Message Services (JMS) (MQSeries®) and Java database connectivity (JDBC) drivers.

They are specified in the resources.xml file. The dynamic policy grants the permissions that are defined in

the spi.policy file to the class paths defined in the resources.xml file. The union of the permission that is

contained in the java.policy file and the spi.policy file are applied to the SPI libraries. The spi.policy

files are managed by configuration and file replication services.

You can find the spi.policy file that is supplied by WebSphere Application Server in the following location:

profile_root/config/cells/cell_name/nodes/node_name/spi.policy. It contains the following default

permission:

grant {

 permission java.security.AllPermission;

};

Restart the related Java processes for the changes in the spi.policy file to become effective.

library.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

 For the list of available policy files that are supported by WebSphere Application Server, see “Java 2

security policy files” on page 36.

The library.policy file is the template for shared libraries (Java library classes). Multiple enterprise

applications can define and use shared libraries. Refer to Managing shared libraries for information on how

to define and manage the shared libraries.

If the default permissions for a shared library (union of the permissions defined in the java.policy file, the

app.policy file and the library.policy file) are enough, no action is required. The default library policy is

picked up automatically. If a specific change is required to share a library in the cell, update the

library.policy file.

Syntax errors in the policy files cause the application server to fail. Edit these policy files carefully.

Chapter 8. Developing extensions to the WebSphere security infrastructure 735

Note: Do not place the codebase keyword or any other keyword after the grant keyword. The Signed By

keyword and the Java Authentication and Authorization Service (JAAS) Principal keyword are not

supported in the library.policy file. The Signed By keyword is supported in the java.policy, the

server.policy, and the client.policy policy files. The JAAS Principal keyword is supported in a

JAAS policy file when it is specified by the Java virtual machine (JVM) system property,

java.security.auth.policy. You can statically set the authorization policy files in the

java.security.auth.policy file with auth.policy.url.n=URL where URL is the location of the

authorization policy.

To extract the policy file, use a command prompt to enter the following command using the appropriate

variable values for your environment:The previous two lines were split onto two lines for illustrative

purposes only.

wsadmin> set obj [$AdminConfig extract cells/cell_name/nodes/

node_name/library.policy /temp/test/library.policy]

Edit the extracted library.policy file with the Policy Tool. For more information, see “Using PolicyTool to

edit policy files” on page 724.

To check in the policy file, use a command prompt to enter the following command using the appropriate

variable values for your environment:An updated library.policy is applied to shared libraries after the

servers restart.

wsadmin> $AdminConfig checkin cells/cell_name/nodes/node_name/library.policy

 temp/test/library.policy $obj

Example

The union of the permission that is contained in the java.policy file, the app.policy file, and the

library.policy file are applied to the shared libraries. The library.policy file is managed by

configuration and file replication services.

The library.policy file supplied by WebSphere Application Server resides in the profile_root/config/
cells/cell_name/nodes/node_name/ directory. The file contains an empty permission entry as a default.

For example:

grant {

 };

If the shared library in a cell requires permissions that are not defined as defaults in the java.policy file,

the app.policy file and the library.policy file, update the library.policy file. The missing permission

causes the java.security.AccessControlException exception. The missing permission is listed in the

exception data.

For example:

java.security.AccessControlException: access denied (java.io.FilePermission

app_server_rootBase/lib/mail-impl.jar read)

The previous lines are split into two lines for illustrative purposes only.

When a Java program receives this exception and adding this permission is justified, add a permission to

the library.policy file.

For example:

grant codeBase "file:user_client_installed_location" { permission

java.io.FilePermission "app_server_rootBase/lib/mail-impl.jar", "read"; };

736 Securing applications and their environment

The previous lines are split into two lines for illustrative purposes only

To decide whether to add a permission, refer to “Access control exception” on page 40.

Restart the related Java processes for the changes in the library.policy file to become effective.

Adding the was.policy file to applications:

An application might need a was.policy file if it accesses resources that require more permissions than

those granted in the default app.policy file.

 About this task

When Java 2 security is enabled for a WebSphere Application Server, all the applications that run on

WebSphere Application Server undergo a security check before accessing system resources. An

application might need a was.policy file if it accesses resources that require more permissions than those

granted in the default app.policy file. By default, the product security reads an app.policy file that is

located in each node and grants the permissions in the app.policy file to all the applications. Include any

additional required permissions in the was.policy file. The was.policy file is only required if an application

requires additional permissions.

The default policy file for all applications is specified in the app.policy file. This file is provided by the

product security, is common to all applications, and you do not change this file. Add any new permissions

that are required for an application in the was.policy file.

The app.policy file supplied by WebSphere Application Server resides at app_server_root/config/cells/
profile/profile_name/config/cell_name/nodes/node_name/app.policy. The contents of the app.policy

file are presented in the following example:

Note: In the following code sample, the two permissions that are required by JavaMail are split onto two

lines for illustration only. You actually enter the permission on one line.
// The following permissions apply to all the components under the application.

grant codeBase "file:${application}" {

 // The following are required by JavaMail

 permission java.io.FilePermission "

 ${was.install.root}${/}lib${/}activation-impl.jar",

"read";

 permission java.io.FilePermission "

 ${was.install.root}${/}lib${/}mail-impl.jar","read";

 };

 // The following permissions apply to all utility .jar files (other

 // than enterprise beans JAR files) in the application.

grant codeBase "file:${jars}" {

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

// The following permissions apply to connector resources within the application

grant codeBase "file:${connectorComponent}" {

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

// The following permissions apply to all the Web modules (.war files)

// within the application.

grant codeBase "file:${webComponent}" {

 permission java.io.FilePermission "${was.module.path}${/}-", "read, write";

Chapter 8. Developing extensions to the WebSphere security infrastructure 737

// where "was.module.path" is the path where the Web module is

 // installed. Refer to Dynamic policy concepts for other symbols.

 permission java.lang.RuntimePermission "loadLibrary.*";

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

// The following permissions apply to all the EJB modules within the application.

grant codeBase "file:${ejbComponent}" {

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

If additional permissions are required for an application or for one or more modules of an application, use

the was.policy file for that application. For example, use codeBase of ${application} and add required

permissions to grant additional permissions to the entire application. Similarly, use codeBase of

${webComponent} and ${ejbComponent} to grant additional permissions to all the Web modules and all

the enterprise bean modules in the application. You can assign additional permissions to each module

(.war file or .jar file), as shown in the following example.

This example illustrates adding extra permissions for an application in the was.policy file:

Note: In the following code sample, the permission for the EJB module was split onto two lines for

illustration only. You actually enter the permission on one line.
// grant additional permissions to a Web module

grant codeBase " file:aWebModule.war" {

 permission java.security.SecurityPermission "printIdentity";

};

// grant additional permission to an EJB module

grant codeBase "file:aEJBModule.jar" {

 permission java.io.FilePermission "

 ${user.install.root}${/}bin${/}DefaultDB${/}-" ."read.write,delete";

 // where, ${user.install.root} is the system property whose value is

 // located in the app_server_root directory.

 };

To use a was.policy file for your application, perform the following steps:

1. Create a was.policy file using the policy tool. For more information on using the policy tool, see “Using

PolicyTool to edit policy files” on page 724.

2. Add the required permissions in the was.policy file using the policy tool.

3. Place the was.policy file in the application enterprise archive (EAR) file under the META-INF directory.

Update the application EAR file with the newly created was.policy file by using the jar command.

4. Verify that the was.policy file is inserted and start an assembly tool.

Note: An assembly tool is not available. Use an assembly tool on another platform such as Linux

Intel® or Windows.

5. Verify that the was.policy file in the application is syntactically correct. In an assembly tool, right-click

the enterprise application module and click Run Validation.

Results

An application EAR file is now ready to run when Java 2 security is enabled.

738 Securing applications and their environment

Example

This step is required for applications to run properly when Java 2 security is enabled. If the was.policy file

is not created and it does not contain required permissions, the application might not access system

resources.

The symptom of the missing permissions is the java.security.AccessControlException exception. The

missing permission is listed in the exception data, for example,

java.security.AccessControlException: access denied (java.io.FilePermission

${was.install.root}/java/ext/mail.jar read)

When an application program receives this exception and adding this permission is justified, include the

permission in the was.policy file, for example,

grant codeBase "file:user_client_installed_location" {

 permission java.io.FilePermission

"${was.install.root}$(/)java$(/)jre$(/)lib$(/)ext$(/)mail.jar", "read";

};

The previous permission information lines are split for the illustration. Enter the permission on one line.

What to do next

Install the application.

Configuring static policy files

By configuring the static policy files, the required permission will be granted for all of the Java programs.

Before you begin

Java 2 security uses several policy files to determine the granted permission for each Java program.

See the “Java 2 security policy files” on page 36 topic for the list of available policy files that are supported

by WebSphere Application Server.

Two types of policy files are supported by WebSphere Application Server: dynamic policy files and static

policy files. Static policy files provide the default permissions. Dynamic policy files provide application

permissions.

 Policy file name Description

java.policy Contains default permissions for all of the Java programs on the node. This

file seldom changes.

server.policy Contains default permissions for all of the WebSphere Application Server

programs on the node. This file is rarely updated.

client.policy Contains default permissions for all of the applets and client containers on

the node.

The static policy file is not a configuration file that is managed by the repository and the file replication

service. Changes to this file are local and do not get replicated to the other machine.

1. Identify the policy file to update.

v If the permission is required only by an application, update the dynamic policy file. Refer to

“Configuring Java 2 security policy files” on page 725.

v If the permission is required only by applets and client containers, update the client.policy file.

Refer to “client.policy file permissions” on page 742.

Chapter 8. Developing extensions to the WebSphere security infrastructure 739

v If the permission is required only by WebSphere Application Server (servers, agents, managers and

application servers), update the server.policy file. Refer to “server.policy file permissions.”

v If the permission is required by all of the Java programs running on the Java virtual machine (JVM),

update the java.policy file. Refer to “java.policy file permissions.”

2. Stop and restart WebSphere Application Server.

Results

The required permission is granted for all of the Java programs that run with the restarted JVM.

Example

If Java programs on a node require permissions, the policy file needs updating. If the Java program that

required the permission is not part of an enterprise application, update the static policy file. The missing

permission results in the creation of the java.security.AccessControlException exception. The missing

permission is listed in the exception data.

For example:

java.security.AccessControlException: access denied (java.io.FilePermission

app_server_root/lib/mail-impl.jar read)

When a Java program receives this exception and adding this permission is justified, add a permission to

an adequate policy file.

For example:

grant codeBase "file:user_client_installed_location" {

 permission java.io.FilePermission

 "app_server_root/Base/lib/mail-impl.jar",

 "read";

};

To decide whether to add a permission, refer to “Access control exception” on page 40.

java.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

 See “Java 2 security policy files” on page 36 for the list of available policy files that are supported by

WebSphere Application Server.

The java.policy file is located in java_home/lib/security if your application server profile is enabled for the

Classic JVM. Otherwise, The java.policy file is located in java_home/jre/lib/security if you application

server is enabled for the IBM Technology for Java JVM. For all JVMs, the java.policy file is used

system-wide. Do not edit the java.policy file on the server.

Use the showVariables command of the AdminTask object to retrieve java_home for the node associated

with the server’s profile. For example, if the node is myNode:

1. Enter QShell.

2. cd to profile_root/bin.

3. Invoke wsadmin -conntype NONE -c ’$AdminTask showVariables {-scope Node=myNode -variableName

JAVA_HOME}’.

server.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

740 Securing applications and their environment

The server.policy file is a default policy file that is shared by all of the WebSphere Application Servers on

a node. The server.policy file is not a configuration file that is managed by the repository and the file

replication service. Changes to this file are local and do not replicate to the other machine.

If the default permissions for a server (the union of the permissions that is defined in the java.policy file

and the server.policy file) are enough, no action is required. The default server policy is picked up

automatically. If a specific change is required to some of the server programs on a node, update the

server.policy file with the Policy Tool. Refer to the “Using PolicyTool to edit policy files” on page 724 topic

to edit policy files. Changes to the server.policy file are local for the node. Syntax errors in the policy

files cause the application server to fail. Edit these policy files carefully. An updated server.policy file is

applied to all the server programs on the local node. Restart the servers for the updates to take effect.

If you want to add permissions to an application, use the app.policy file and the was.policy file.

Note: Updates to the app.policy file only apply to the enterprise applications on the node to which the

app.policy file belongs.

When you do need to modify the server.policy file, locate this file at: profile_root/properties/
server.policy. This file contains these default permissions:

// Allow to use sun tools

grant codeBase "file:${java.home}/../lib/tools.jar" {

permission java.security.AllPermission;

};

// Allow to use ibm jdk extensions

grant codeBase "file:${was.install.root}/java/ext/-" {

permission java.security.AllPermission;

};

// Allow to use additional ibm jdk extensions with j9

grant codeBase "file:${was.install.root}/java/extj9/-" {

permission java.security.AllPermission;

};

// Allow to use sun and ibm tools

grant codeBase "file:${was.install.root}/java/tools/-" {

permission java.security.AllPermission;

};

// WebSphere system classes

grant codeBase "file:${was.install.root}/plugins/-" {

permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/lib/-" {

permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/classes/-" {

permission java.security.AllPermission;

};

// Allow the WebSphere deploy tool all permissions

grant codeBase "file:${was.install.root}/deploytool/-" {

permission java.security.AllPermission;

};

// Allow the WebSphere deploy tool all permissions

grant codeBase "file:${was.install.root}/optionalLibraries/-" {

permission java.security.AllPermission;

};

// Allow Channel Framework classes all permission

grant codeBase "file:${was.install.root}/installedChannels/-" {

permission java.security.AllPermission;

Chapter 8. Developing extensions to the WebSphere security infrastructure 741

};

grant codeBase "file:${was.install.root}/util/-" {

permission java.security.AllPermission;

};

grant codeBase "file:${user.install.root}/lib/-" {

permission java.security.AllPermission;

};

grant codeBase "file:${user.install.root}/classes/-" {

permission java.security.AllPermission;

};

If some server programs on a node require permissions that are not defined as defaults in the

server.policy file and the server.policy file, update the server.policy file. The missing permission

creates the java.security.AccessControlException exception. The missing permission is listed in the

exception data.

For example:

java.security.AccessControlException: access denied (java.io.FilePermission

app_server_rootBase/lib/mail-impl.jar read)

The previous two lines are split into two lines for illustrative purposes only.

When a Java program receives this exception and adding this permission is justified, add a permission to

the server.policy file.

For example:

grant codeBase "file:user_client_installed_location" {

permission java.io.FilePermission

"app_server_root/Base/lib/mail-impl.jar", "read"; };

To decide whether to add a permission, refer to “Access control exception” on page 40.

Restart all of the Java processes for the updated server.policy file to take effect.

client.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

 For the list of available policy files that are supported by WebSphere Application Server, see “Java 2

security policy files” on page 36.

v The client.policy file is a default policy file that is shared by all of the WebSphere Application Server

client containers and applets on a node.

v The union of the permissions that is contained in the java.policy file and the client.policy file are

given to all of the client containers for WebSphere Application Server and applets running on the node.

v The client.policy file is not a configuration file that is managed by the repository and the file

replication service. Changes to this file are local and do not replicate to the other machine.

v The client.policy file supplied by WebSphere Application Server is located in the

profile_root/properties/client.policy.

v If the default permissions for a client (union of the permissions defined in the java.policy file and the

client.policy file) are enough, no action is required. The default client policy is picked up

automatically.

v If a specific change is required to some of the client containers and applets on a node, modify the

client.policy file with the Policy Tool. Refer to “Using PolicyTool to edit policy files” on page 724, to

edit policy files. Changes to the client.policy file are local for the node.

742 Securing applications and their environment

This file contains these default permissions:

grant codeBase "file:${was.install.root}/java/ext/*" {

 permission java.security.AllPermission;

};

// JDK classes

grant codeBase "file:${was.install.root}/java/ext/-" {

 permission java.security.AllPermission;

};

// Allow to use additional ibm jdk extensions with j9

grant codeBase "file:${was.install.root}/java/extj9/-" {

 permission java.security.AllPermission;

};

// Allow to use sun and ibm tools

grant codeBase "file:${was.install.root}/java/tools/-" {

 permission java.security.AllPermission;

};

// WebSphere system classes

grant codeBase "file:${was.install.root}/lib/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/plugins/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/classes/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/installedConnectors/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${user.install.root}/installedConnectors/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/installedChannels/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/util/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${user.install.root}/lib/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${user.install.root}/classes/-" {

 permission java.security.AllPermission;

};

// J2EE 1.4 permissions for client container WAS applications in $WAS_HOME/installedApps

grant codeBase "file:${user.install.root}/installedApps/-" {

 //Application client permissions

 permission java.awt.AWTPermission "accessClipboard";

 permission java.awt.AWTPermission "accessEventQueue";

 permission java.awt.AWTPermission "showWindowWithoutWarningBanner";

 permission java.lang.RuntimePermission "exitVM";

 permission java.lang.RuntimePermission "loadLibrary";

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.net.SocketPermission "localhost:1024-", "accept,listen";

 permission java.io.FilePermission "*", "read,write";

 permission java.util.PropertyPermission "*", "read";

Chapter 8. Developing extensions to the WebSphere security infrastructure 743

};

// J2EE 1.4 permissions for client container - expanded ear file code base

grant codeBase "file:${com.ibm.websphere.client.applicationclient.archivedir}/-" {

 permission java.awt.AWTPermission "accessClipboard";

 permission java.awt.AWTPermission "accessEventQueue";

 permission java.awt.AWTPermission "showWindowWithoutWarningBanner";

 permission java.lang.RuntimePermission "exitVM";

 permission java.lang.RuntimePermission "loadLibrary";

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.net.SocketPermission "localhost:1024-", "accept,listen";

 permission java.io.FilePermission "*", "read,write";

 permission java.util.PropertyPermission "*", "read";

};

All of the client containers and applets on the local node are granted the updated permissions when they

start. If some client containers or applets on a node require permissions that are not defined as defaults in

the java.policy file and the default client.policy file, update the client.policy file. The missing

permission creates the java.security.AccessControlException exception. The missing permission is listed in

the exception data, for example,

java.security.AccessControlException: access denied (java.io.FilePermission

app_server_root/Base/lib/mail-impl.jar read)

The previous two lines of sample code are one continuous line, but presented as such for illustrative

purposes only.

When a client program receives this exception and adding this permission is justified, add a permission to

the client.policy file, for example, grant codebase ″file:user_client_installed_location″ { permission

java.io.FilePermission ″app_server_root/lib/mail-impl.jar″, ″read″; };.

To decide whether to add a permission, refer to “Access control exception” on page 40.

If you update the policy file, you must restart the browser and any client applications.

Developing with programmatic security APIs for Web applications

Use this information to programmatically secure APIs for Web applications.

Before you begin

Programmatic security is used by security-aware applications when declarative security alone is not

sufficient to express the security model of the application. Programmatic security consists of the following

methods of the HttpServletRequest interface:

getRemoteUser

Returns the user name that the client used for authentication. Returns null if no user is

authenticated.

isUserInRole

(String role name): Returns true if the remote user is granted the specified security role. If the

remote user is not granted the specified role, or if no user is authenticated, it returns false.

getUserPrincipal

Returns the java.security.Principal object that contains the remote user name. If no user is

authenticated, it returns null.

You can configure several options for Web authentication that determine how the Web client interacts with

protected and unprotected Uniform Resource Identifiers (URI). Also, you can specify whether WebSphere

744 Securing applications and their environment

Application Server challenges the Web client for basic authentication information if the certificate

authentication for the HTTPS client fails. For more information, see “Selecting an authentication

mechanism” on page 225.

When the isUserInRole method is used, declare a security-role-ref element in the deployment descriptor

with a role-name subelement containing the role name that is passed to this method, or with the

@DeclareRoles annotation. Because actual roles are created during the assembly stage of the application,

you can use a logical role as the role name and provide enough hints to the assembler in the description

of the security-role-ref element to link that role to the actual role. During assembly, the assembler creates

a role-link subelement to link the role name to the actual role. Creation of a security-role-ref element is

possible if an assembly tool such as Rational Application Developer (RAD) is used. You also can create

the security-role-ref element during assembly stage using an assembly tool.

1. Add the required security methods in the servlet code.

2. Create a security-role-ref element with the role-name field. If a security-role-ref element is not created

during development, make sure it is created during the assembly stage.

Results

A programmatically secured servlet application.

Example

This step is required to secure an application programmatically. This action is particularly useful when a

Web application needs to access external resources and wants to control the access to external resources

using its own authorization table (external-resource to remote-user mapping). In this case, use the

getUserPrincipal or the getRemoteUser methods to get the remote user and then it can consult its own

authorization table to perform authorization. The remote user information also can help retrieve the

corresponding user information from an external source such as a database or from an enterprise bean.

You can use the isUserInRole method in a similar way.

After development, a security-role-ref element can be created:

<security-role-ref>

 <description>Provide hints to assembler for linking this role

 name to an actual role here<\description>

 <role-name>Mgr<\role-name>

</security-role-ref>

During assembly, the assembler creates a role-link element:

<security-role-ref>

 <description>Hints provided by developer to map the role

 name to the role-link</description>

 <role-name>Mgr</role-name>

 <role-link>Manager</role-link>

</security-role-ref>

You can add programmatic servlet security methods inside any servlet doGet, doPost, doPut, and

doDelete service methods. The following example depicts using a programmatic security API:

public void doGet(HttpServletRequest request,

HttpServletResponse response) {

 // to get remote user using getUserPrincipal()

 java.security.Principal principal = request.getUserPrincipal();

 String remoteUser = principal.getName();

 // to get remote user using getRemoteUser()

 remoteUser = request.getRemoteUser();

Chapter 8. Developing extensions to the WebSphere security infrastructure 745

// to check if remote user is granted Mgr role

 boolean isMgr = request.isUserInRole("Mgr");

 // use the above information in any way as needed by

 // the application

}

When developing Servlet 2.5 modules, the value of the rolename argument in isCallerInRole method can

be defined using Java annotations instead of declaring a security-role-ref elements in the deployment

descriptor.

@javax.annotation.security.DeclareRoles("Mgr")

public void doGet(HttpServletRequest request,

HttpServletResponse response) {

 // to get remote user using getUserPrincipal()

 java.security.Principal principal = request.getUserPrincipal();

 String remoteUser = principal.getName();

 // to get remote user using getRemoteUser()

 remoteUser = request.getRemoteUser();

 // to check if remote user is granted Mgr role

 boolean isMgr = request.isUserInRole("Mgr");

 // use the above information in any way as needed by

 // the application

}

What to do next

After developing an application, use an assembly tool to create roles and to link the actual roles to role

names in the security-role-ref elements. For more information, see Securing Web applications using an

assembly tool.

getRemoteUser and getAuthType methods

The getRemoteUser and getAuthType methods are methods of the javax.servlet.http.HttpServletRequest

interface. If the user has been authenticated, the getRemoteUser method returns the login of the user that

makes the request. If the user is not authenticated, the getRemoteUser method returns null. The

getAuthType method returns the name of the authentication scheme that is used to protect the servlet (for

example, BASIC or SSL). If the servlet is not protected, the getAuthType method returns null.

For both methods, the data that is returned depends upon whether security is enabled in the application

server where the servlet is deployed. The following possibilities exist:

v If security is not enabled, a servlet is requested and it is configured with Web server protection. The

getRemoteUser method returns the login and getAuthType method returns the authentication scheme.

v If security is enabled and a servlet is requested, both methods return null when WebSphere Application

Server protection is not configured for the servlet.

v If security is enabled, a servlet is requested, and the servlet is configured with WebSphere Application

Server protection, then the getRemoteUser method returns the login and the getAuthType method

returns the configured authentication scheme.

Example: Using a programmatic security model for a Web application

The following example depicts a Web application or servlet using the programmatic security model.

746 Securing applications and their environment

This example illustrates one use and not necessarily the only use of the programmatic security model. The

application can use the information that is returned by the getUserPrincipal, isUserInRole, and the

getRemoteUser methods in any other way that is meaningful to that application. Use the declarative

security model whenever possible.

File : HelloServlet.java

 public class HelloServlet extends javax.servlet.http.HttpServlet {

 public void doPost(

 javax.servlet.http.HttpServletRequest request,

 javax.servlet.http.HttpServletResponse response)

 throws javax.servlet.ServletException, java.io.IOException {

 }

public void doGet(

 javax.servlet.http.HttpServletRequest request,

 javax.servlet.http.HttpServletResponse response)

 throws javax.servlet.ServletException, java.io.IOException {

 String s = "Hello";

 // get remote user using getUserPrincipal()

 java.security.Principal principal = request.getUserPrincipal();

 String remoteUserName = "";

 if(principal != null)

 remoteUserName = principal.getName();

// get remote user using getRemoteUser()

 String remoteUser = request.getRemoteUser();

 // check if remote user is granted Mgr role

 boolean isMgr = request.isUserInRole("Mgr");

 // display Hello username for managers and bob.

 if (isMgr || remoteUserName.equals("bob"))

 s = "Hello " + remoteUserName;

 String message = "<html> \n" +

 "<head><title>Hello Servlet</title></head>\n" +

 "<body> /n +"

 "<h1> " +s+ </h1>/n " +

 byte[] bytes = message.getBytes();

 // displays "Hello" for ordinary users

 // and displays "Hello username" for managers and "bob".

 response.getOutputStream().write(bytes);

 }

}

After developing the servlet, you can create a security role reference for the HelloServlet servlet as shown

in the following example:

<security-role-ref>

 <description> </description>

 <role-name>Mgr</role-name>

</security-role-ref>

Web authentication settings

Use this page to specify the Web authentication settings that are associated with a Web client.

To view this administrative console page, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, expand Web and SIP security and click General settings.

Chapter 8. Developing extensions to the WebSphere security infrastructure 747

You can override the global Web authentication setting that you select on this panel by specifying a

system property on the server level. To specify the system property, complete the following steps:

1. Click Servers > Server Types > WebSphere application servers > server_name.

2. Under Server infrastructure, click Java and Process Management > Process definition.

3. Under Additional properties, click Java Virtual Machine > Custom properties > New

You can specify the following system properties on the server level for Web authentication.

 Table 23. Web authentication system property values

Property name Value Explanation

com.ibm.wsspi.security.web.webAuthReq lazy This value is equivalent to the

Authenticate only when the URI is

protected option.

com.ibm.wsspi.security.web.webAuthReq persisting This value is equivalent to the Use

available authentication data when

an unprotected URI is accessed

option.

com.ibm.wsspi.security.web.webAuthReq always This value is equivalent to the

Authenticate when any URI is

accessed option.

com.ibm.wsspi.security.web.failOverToBasicAuth true This value is equivalent to the Default

to basic authentication when

certificate authentication for the

HTTPS client fails option.

Authenticate only when the URI is protected:

The application server challenges the Web client to provide authentication data when the Web client

accesses a Uniform Resource Identifier (URI) that is protected by a Java 2 Platform, Enterprise Edition

(J2EE) role. The authenticated identity is available only when the Web client accesses a protected URI.

 This option is the default J2EE Web authentication behavior that is also available in previous releases of

WebSphere Application Server.

Note: When you select this option, the administrative console login page is missing images. You might

encounter the following error in the administrative console: ″CWLAA6003: Could not display the

portlet, the portlet may not be started. Check the error logs″.

The missing images and the error message are a side-effect of this option. The images do not

display because the URIs for the images now need authentication, which requires you to log in. You

can ignore this error message.

 Default: Enabled

Use available authentication data when an unprotected URI is accessed:

The Web client can access validated authenticated data that it previously could not access. This option

enables the Web client to call the getRemoteUser, isUserInRole, and getUserPrincipal methods to retrieve

an authenticated identity from an unprotected URI.

 When you select this option with the Authenticate only when the URI is protected option, the Web client

can use authenticated data when the URI is protected or not protected.

748 Securing applications and their environment

Note: This option does not challenge the Web client to provide authenticated data if the Web client

accesses an unprotected URI without authenticated data.

 Default: Disabled

Authenticate when any URI is accessed:

The Web client must provide authentication data regardless of whether the URI is protected.

 Default: Disabled

Default to basic authentication when certificate authentication for the HTTPS client fails:

When the required HTTPS client certificate authentication fails, the application server uses the basic

authentication method to challenge the Web client to provide a user ID and password.

 The HTTP client certification authentication that is performed by the application server security is different

from the client authentication that is performed by the Web server plug-in. If you configure the Web server

plug-in for mutual authentication and client authentication fails, the following situations will occur:

v The Web server produces a error and the Web request is not processed by application server security.

v The application server cannot fail over to basic authentication.

 Default: Disabled

Developing with programmatic APIs for EJB applications

Use this topic to programmatically secure your Enterprise JavaBeans (EJB) applications.

About this task

Programmatic security is used by security-aware applications when declarative security alone is not

sufficient to express the security model of the application. The javax.ejb.EJBContext application

programming interface (API) provides two methods whereby the bean provider can access security

information about the enterprise bean caller.

v IsCallerInRole(String rolename): Returns true if the bean caller is granted the security role that is

specified by role name. If the caller is not granted the specified role, or if the caller is not authenticated,

it returns false. If the specified role is granted Everyone access, it always returns true.

v getCallerPrincipal: Returns the java.security. Principal object that contains the bean caller name. If the

caller is not authenticated, it returns a principal that contains an unauthorized name.

You can enable a login module to indicate which principal class is returned by these calls.

When the isCallerInRole method is used, declare a security-role-ref element in the deployment descriptor

with a role-name that is subelement containing the role name that is passed to this method. Because

actual roles are created during the assembly stage of the application, you can use a logical role as the

role name and provide enough hints to the assembler in the description of the security-role-ref element to

link that role to an actual role. During assembly, the assembler creates a role-link subelement to link the

role-name to the actual role. Creation of a security-role-ref element is possible if an assembly tool such as

Rational Application Developer (RAD) is used. You also can create the security-role-ref element during the

assembly stage using an assembly tool.

1. Add the required security methods in the EJB module code.

2. Create a security-role-ref element with a role-name field for all the role names used in the

isCallerInRole method. If a security-role-ref element is not created during development, make sure it is

created during the assembly stage.

Chapter 8. Developing extensions to the WebSphere security infrastructure 749

Results

Performing the previous steps result in a programmatically secured EJB application.

Example

Hard coding security policies in applications is strongly discouraged. The Java Platform, Enterprise Edition

(Java EE) security model capabilities of declaratively specifying security policies is encouraged wherever

possible. Use these APIs to develop security-aware EJB applications.

Using Java EE security model capabilities to specify security policies declaratively is useful when an EJB

application wants to access external resources and wants to control the access to these external

resources using its own authorization table (external-resource to user mapping). In this case, use the

getCallerPrincipal method to get the caller identity and then the application can consult its own

authorization table to perform authorization. The caller identification also can help retrieve the

corresponding user information from an external source, such as database or from another enterprise

bean. You can use the isCallerInRole method in a similar way.

After development, you can create a security-role-ref element:

<security-role-ref>

<description>Provide hints to assembler for linking this role-name to

actual role here<\description>

<role-name>Mgr<\role-name>

</security-role-ref>

During assembly, the assembler creates a role-link element:

<security-role-ref>

<description>Hints provided by developer to map role-name to role-link</description>

<role-name>Mgr</role-name>

<role-link>Manager</role-link>

</security-role-ref>

You can add programmatic EJB component security methods for example isCallerInRole and

getCallerPrincipal, inside any business methods of an enterprise bean. The following example of

programmatic security APIs includes a session bean:

public class aSessionBean implements SessionBean {

 // SessionContext extends EJBContext. If it is entity bean use EntityContext

 javax.ejb.SessionContext context;

 // The following method will be called by the EJB container

 // automatically

 public void setSessionContext(javax.ejb.SessionContext ctx) {

 context = ctx; // save the session bean’s context

 }

 private void aBusinessMethod() {

 // to get bean’s caller using getCallerPrincipal()

 java.security.Principal principal = context.getCallerPrincipal();

 String callerId= principal.getName();

 // to check if bean’s caller is granted Mgr role

 boolean isMgr = context.isCallerInRole("Mgr");

750 Securing applications and their environment

// use the above information in any way as needed by the

 //application

 }

}

When developing EJB 3.0 modules, the value of the rolename argument in isCallerInRole method can be

defined using Java annotations instead of declaring a security-role-ref elements in the deployment

descriptor.

@javax.annotation.security.DeclareRoles("Mgr")

public class aSessionBean implements SessionBean {

 // SessionContext extends EJBContext. If it is entity bean use EntityContext

 javax.ejb.SessionContext context;

 // The following method will be called by the EJB container

 // automatically

 public void setSessionContext(javax.ejb.SessionContext ctx) {

 context = ctx; // save the session bean’s context

 }

 private void aBusinessMethod() {

 // to get bean’s caller using getCallerPrincipal()

 java.security.Principal principal = context.getCallerPrincipal();

 String callerId= principal.getName();

 // to check if bean’s caller is granted Mgr role

 boolean isMgr = context.isCallerInRole("Mgr");

 // use the above information in any way as needed by the

 //application

 }

}

What to do next

After developing an application, use an assembly tool to create roles and to link the actual roles to role

names in the security-role-ref elements. For more information, see Securing enterprise bean applications.

Example: Enterprise bean application code

The following Enterprise JavaBeans (EJB) component example illustrates the use of the isCallerInRole and

the getCallerPrincipal methods in an EJB module.

Using declarative security is recommended. The following example is one way of using the isCallerInRole

and the getCallerPrincipal methods. The application can use this result in any way that is suitable.

Chapter 8. Developing extensions to the WebSphere security infrastructure 751

A remote interface

File : Hello.java

package tests;

import java.rmi.RemoteException;

/**

 * Remote interface for Enterprise Bean: Hello

 */

public interface Hello extends javax.ejb.EJBObject {

 public abstract String getMessage()throws RemoteException;

 public abstract void setMessage(String s)throws RemoteException;

}

A home interface

File : HelloHome.java

package tests;

/**

 * Home interface for Enterprise Bean: Hello

 */

public interface HelloHome extends javax.ejb.EJBHome {

 /**

 * Creates a default instance of Session Bean: Hello

 */

 public tests.Hello create() throws javax.ejb.CreateException,

 java.rmi.RemoteException;

}

A bean implementation

File : HelloBean.java

package tests;

/**

 * Bean implementation class for Enterprise Bean: Hello

 */

public class HelloBean implements javax.ejb.SessionBean {

 private javax.ejb.SessionContext mySessionCtx;

 /**

 * getSessionContext

 */

 public javax.ejb.SessionContext getSessionContext() {

 return mySessionCtx;

 }

 /**

 * setSessionContext

 */

 public void setSessionContext(javax.ejb.SessionContext ctx) {

 mySessionCtx = ctx;

 }

 /**

 * ejbActivate

 */

 public void ejbActivate() {

 }

 /**

 * ejbCreate

 */

 public void ejbCreate() throws javax.ejb.CreateException {

 }

 /**

752 Securing applications and their environment

* ejbPassivate

 */

 public void ejbPassivate() {

 }

 /**

 * ejbRemove

 */

 public void ejbRemove() {

 }

 public java.lang.String message;

 //business methods

 // all users can call getMessage()

 public String getMessage() {

 return message;

 }

 // all users can call setMessage() but only few users can set new message.

 public void setMessage(String s) {

 // get bean’s caller using getCallerPrincipal()

 java.security.Principal principal = mySessionCtx.getCallerPrincipal();

 java.lang.String callerId= principal.getName();

 // check if bean’s caller is granted Mgr role

 boolean isMgr = mySessionCtx.isCallerInRole("Mgr");

 // only set supplied message if caller is "bob" or caller is granted Mgr role

 if (isMgr || callerId.equals("bob"))

 message = s;

 else

 message = "Hello";

 }

}

After the development of the entity bean, create a security role reference in the deployment descriptor

under the session bean, Hello:

<security-role-ref>

 <description>Only Managers can call setMessage() on this bean (Hello)</description>

 <role-name>Mgr</role-name>

</security-role-ref>

For an explanation of how to create a <security-role-ref> element, see Securing enterprise bean

applications. Use the information under Map security-role-ref and role-name to role-link to create the

element.

Customizing Web application login

You can create a form login page and an error page to authenticate a user.

Before you begin

A Web client or a browser can authenticate a user to a Web server using one of the following

mechanisms:

Chapter 8. Developing extensions to the WebSphere security infrastructure 753

v HTTP basic authentication: A Web server requests the Web client to authenticate and the Web client

passes a user ID and a password in the HTTP header.

v HTTPS client authentication: This mechanism requires a user (Web client) to possess a public key

certificate. The Web client sends the certificate to a Web server that requests the client certificates. This

authentication mechanism is strong and uses the Hypertext Transfer Protocol with Secure Sockets

Layer (HTTPS) protocol.

v Form-based Authentication: A developer controls the look and feel of the login screens using this

authentication mechanism.

The Hypertext Transfer Protocol (HTTP) basic authentication transmits a user password from the Web

client to the Web server in simple base64 encoding. Form-based authentication transmits a user password

from the browser to the Web server in plain text. Therefore, both HTTP basic authentication and

form-based authentication are not very secure unless the HTTPS protocol is used.

The Web application deployment descriptor contains information about which authentication mechanism to

use. When form-based authentication is used, the deployment descriptor also contains entries for login

and error pages. A login page can be either an HTML page or a JavaServer Pages (JSP) file. This login

page displays on the Web client side when a secured resource (servlet, JSP file, HTML page) is accessed

from the application. On authentication failure, an error page displays. You can write login and error pages

to suit the application needs and control the look and feel of these pages. During assembly of the

application, an assembler can set the authentication mechanism for the application and set the login and

error pages in the deployment descriptor.

Form login uses the servlet sendRedirect method, which has several implications for the user. The

sendRedirect method is used twice during form login:

v The sendRedirect method initially displays the form login page in the Web browser. It later redirects the

Web browser back to the originally requested protected page. The sendRedirect(String URL) method

tells the Web browser to use the HTTP GET request to get the page that is specified in the Web

address. If HTTP POST is the first request to a protected servlet or JavaServer Pages (JSP) file, and

no previous authentication or login occurred, then HTTP POST is not delivered to the requested page.

However, HTTP GET is delivered because form login uses the sendRedirect method, which behaves as

an HTTP GET request that tries to display a requested page after a login occurs.

v Using HTTP POST, you might experience a scenario where an unprotected HTML form collects data

from users and then posts this data to protected servlets or JSP files for processing, but the users are

not logged in for the resource. To avoid this scenario, structure your Web application or permissions so

that users are forced to use a form login page before the application performs any HTTP POST actions

to protected servlets or JSP files.

1. Create a form login page with the required look and feel, including the required elements to perform

form-based authentication. For an example, see “Example: Form login” on page 756.

2. Create an error page. You can program error pages to retry authentication or to display an appropriate

error message.

3. Place the login page and error page in the Web archive (.war) file relative to the top directory. For

example, if the login page is configured as /login.html in the deployment descriptor, place it in the top

directory of the WAR file. An assembler can also perform this step using the assembly tool.

4. Create a form logout page and insert it to the application only when the Web application requires a

form-based authentication mechanism.

Example: Form login

See the “Example: Form login” on page 756 article for sample form login pages.

The WebSphere Application Server Samples Gallery provides a form login Sample that demonstrates how

to use the WebSphere Application Server login facilities to implement and configure form login procedures.

The Sample integrates the following technologies to demonstrate the WebSphere Application Server and

Java Platform, Enterprise Edition (Java EE) login functionality:

754 Securing applications and their environment

v Java EE form-based login

v Java EE servlet filter with login

v IBM extension: form-based login

The form login sample is part of the Technology Samples package. For more information on how to access

the form login sample, see Accessing the Samples (Samples Gallery).

For the authentication to proceed appropriately, the action of the login form must always have the

j_security_check action. The following example shows how to code the form into the HTML page:

<form method="POST" action="j_security_check">

<input type="text" name="j_username">

<input type="text" name="j_password">

<\form>

Use the j_username input field to get the user name, and use the j_password input field to get the user

password.

On receiving a request from a Web client, the Web server sends the configured form page to the client

and preserves the original request. When the Web server receives the completed form page from the Web

client, the server extracts the user name and password from the form and authenticates the user. On

successful authentication, the Web server redirects the call to the original request. If authentication fails,

the Web server redirects the call to the configured error page.

The following example depicts a login page in HTML (login.html):

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">

<html>

<META HTTP-EQUIV = "Pragma" CONTENT="no-cache">

<title> Security FVT Login Page </title>

<body>

<h2>Form Login</h2>

<FORM METHOD=POST ACTION="j_security_check">

<p>

 Enter user ID and password:

 User ID <input type="text" size="20" name="j_username">

 Password <input type="password" size="20" name="j_password">

 And then click this button:

<input type="submit" name="login" value="Login">

</p>

</form>

</body>

</html>

The following example depicts an error page in a JSP file:

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">

<html>

<head><title>A Form login authentication failure occurred</head></title>

<body>

<H1>A Form login authentication failure occurred</H1>

<P>Authentication may fail for one of many reasons. Some possibilities include:

The user-id or password may be entered incorrectly; either misspelled or the

wrong case was used.

The user-id or password does not exist, has expired, or has been disabled.

</P>

</body>

</html>

Chapter 8. Developing extensions to the WebSphere security infrastructure 755

After an assembler configures the Web application to use form-based authentication, the deployment

descriptor contains the login configuration as shown:

<login-config id="LoginConfig_1">

<auth-method>FORM<auth-method>

<realm-name>Example Form-Based Authentication Area</realm-name>

<form-login-config id="FormLoginConfig_1">

<form-login-page>/login.html</form-login-page>

<form-error-page>/error.jsp</form-error-page>

</form-login-config>

</login-config>

A sample Web application archive (WAR) file directory structure that shows login and error pages for the

previous login configuration follows:

META-INF

 META-INF/MANIFEST.MF

 login.html

 error.jsp

 WEB-INF/

 WEB-INF/classes/

 WEB-INF/classes/aServlet.class

What to do next

After developing login and error pages, add them to the Web application. Use the assembly tool to

configure an authentication mechanism and insert the developed login page and error page in the

deployment descriptor of the application.

Example: Form login

This article provides several examples pertaining to form login.

For the authentication to proceed appropriately, the action of the login form must always have the

j_security_check action. The following example shows how to code the form into the HTML page:

<form method="POST" action="j_security_check">

<input type="text" name="j_username">

<input type="text" name="j_password">

<\form>

Use the j_username input field to get the user name, and use the j_password input field to get the user

password.

On receiving a request from a Web client, the Web server sends the configured form page to the client

and preserves the original request. When the Web server receives the completed form page from the Web

client, the server extracts the user name and password from the form and authenticates the user. On

successful authentication, the Web server redirects the call to the original request. If authentication fails,

the Web server redirects the call to the configured error page.

The following example depicts a login page in HTML (login.html):

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">

<html>

<META HTTP-EQUIV = "Pragma" CONTENT="no-cache">

<title> Security FVT Login Page </title>

<body>

<h2>Form Login</h2>

<FORM METHOD=POST ACTION="j_security_check">

<p>

 Enter user ID and password:

 User ID <input type="text" size="20" name="j_username">

 Password <input type="password" size="20" name="j_password">

756 Securing applications and their environment

 And then click this button:

<input type="submit" name="login" value="Login">

</p>

</form>

</body>

</html>

The following example depicts an error page in a JSP file:

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">

<html>

<head><title>A Form login authentication failure occurred</head></title>

<body>

<H1>A Form login authentication failure occurred</H1>

<P>Authentication may fail for one of many reasons. Some possibilities include:

The user-id or password may be entered incorrectly; either misspelled or the

wrong case was used.

The user-id or password does not exist, has expired, or has been disabled.

</P>

</body>

</html>

After an assembler configures the Web application to use form-based authentication, the deployment

descriptor contains the login configuration as shown:

<login-config id="LoginConfig_1">

<auth-method>FORM<auth-method>

<realm-name>Example Form-Based Authentication Area</realm-name>

<form-login-config id="FormLoginConfig_1">

<form-login-page>/login.html</form-login-page>

<form-error-page>/error.jsp</form-error-page>

</form-login-config>

</login-config>

A sample Web application archive (WAR) file directory structure that shows login and error pages for the

previous login configuration follows:

META-INF

 META-INF/MANIFEST.MF

 login.html

 error.jsp

 WEB-INF/

 WEB-INF/classes/

 WEB-INF/classes/aServlet.class

Form logout

Form logout is a mechanism to log out without having to close all Web-browser sessions. After logging out

of the form logout mechanism, access to a protected Web resource requires re-authentication. This feature

is not required by J2EE specifications, but it is provided as an additional feature in WebSphere Application

Server security.

Suppose that you want to log out after logging into a Web application and perform some actions. A form

logout works in the following manner:

1. The logout-form URI is specified in the Web browser and loads the form.

2. The user clicks Submit on the form to log out.

3. The WebSphere Application Server security code logs the user out. During this process, the

Application Server completes the following processes:

a. Clears the Lightweight Third Party Authentication (LTPA) / single sign-on (SSO) cookies

Chapter 8. Developing extensions to the WebSphere security infrastructure 757

b. Invalidates the HTTP session

c. Removes the user from the authentication cache
4. Upon logout, the user is redirected to a logout exit page.

Form logout does not require any attributes in a deployment descriptor. The form-logout page is an HTML

or a JavaServer Pages (JSP) file that is included with the Web application. The form-logout page is like

most HTML forms except that like the form-login page, the form-logout page has a special post action.

This post action is recognized by the Web container, which dispatches the post action to a special internal

form-logout servlet. The post action in the form-logout page must be ibm_security_logout.

You can specify a logout-exit page in the logout form and the exit page can represent an HTML or a JSP

file within the same Web application to which the user is redirected after logging out. Additionally, the

logout-exit page permits a fully qualified URL in the form of http://hostname:port/URL. The logout-exit

page is specified as a parameter in the form-logout page. If no logout-exit page is specified, a default

logout HTML message is returned to the user.

Here is a sample form logout HTML form. This form configures the logout-exit page to redirect the user

back to the login page after logout.

<!DOCTYPE HTML PUBliC "-//W3C/DTD HTML 4.0 Transitional//EN">

<html>

 <META HTTP-EQUIV = "Pragma" CONTENT="no-cache">

 <title>Logout Page </title>

 <body>

 <h2>Sample Form Logout</h2>

 <FORM METHOD=POST ACTION="ibm_security_logout" NAME="logout">

 <p>

 Click this button to log out:

 <input type="submit" name="logout" value="Logout">

 <INPUT TYPE="HIDDEN" name="logoutExitPage" VALUE="/login.html">

 </p>

 </form>

 </body>

</html>

The WebSphere Application Server Samples Gallery provides a form login Sample that demonstrates how

to use the WebSphere Application Server login facilities to implement and configure form login procedures.

The Sample integrates the following technologies to demonstrate the WebSphere Application Server and

Java 2 Platform, Enterprise Edition (J2EE) login functionality:

v J2EE form-based login

v J2EE servlet filter with login

v IBM extension: form-based login

The form login Sample is part of the Technology Samples package.

Developing servlet filters for form login processing

You can control the look and feel of the login screen using the form-based login mechanism. In

form-based login, you specify a login page that is used to retrieve the user ID and password information.

You also can specify an error page that displays when authentication fails.

About this task

If additional authentication or additional processing is required before and after authentication, servlet

filters are an option. Servlet filters can dynamically intercept requests and responses to transform or to use

the information that is contained in the requests or responses. One or more servlet filters can be attached

758 Securing applications and their environment

to a servlet or to a group of servlets. Servlet filters also can attach to JavaServer Pages (JSP) files and

HTML pages. All of the attached servlet filters are called before the servlet is invoked.

Both form-based login and servlet filters are supported by any servlet Version 2.3 specification-complaint

Web container. The form login servlet performs the authentication and servlet filters perform additional

authentication, auditing, or logging information.

To perform pre-login and post-login actions using servlet filters, configure these filters for either form login

page support or for the /j_security_check URL. The j_security_check is posted by a form login page with

the j_username parameter that contains the user name and the j_password parameter that contains the

password. A servlet filter can use the user name parameter and password information to perform more

authentication or other special needs.

1. A servlet filter implements the javax.servlet.Filter class. Implement three methods in the filter class:

v init(javax.servlet.FilterConfig cfg). This method is called by the container once, when the servlet

filter is placed into service. The FilterConfig passed to this method contains the init-parameters of

the servlet filter. Specify the init-parameters for a servlet filter during configuration using the

assembly tool.

v destroy. This method is called by the container when the servlet filter is taken out of a service.

v doFilter(ServletRequest req, ServletResponse res, FilterChain chain). This method is called by

the container for every servlet request that maps to this filter before invoking the servlet. The

FilterChain chain that is passed to this method can be used to invoke the next filter in the chain of

filters. The original requested servlet runs when the last filter in the chain calls the chain.doFilter

method. Therefore, all filters call the chain.doFilter method for the original servlet to run after

filtering. If an additional authentication check is implemented in the filter code and results in failure,

the original servlet does not run. The chain.doFilter method is not called and can be redirected to

some other error page.

2. If a servlet maps to many servlet filters, servlet filters are called in the order that is listed in the web.xml

deployment descriptor of the application. Place the servlet filter class file in the WEB-INF/classes

directory of the application.

Example

An example of a servlet filter follows: This login filter can map to the /j_security_check URL to perform

pre-login and post-login actions.

import javax.servlet.*;

 public class LoginFilter implements Filter {

 protected FilterConfig filterConfig;

 // Called once when this filter is instantiated.

 // If mapped to j_security_check, called

 // very first time j_security_check is invoked.

 public void init(FilterConfig filterConfig) throws ServletException {

 this.filterConfig = filterConfig;

 }

 public void destroy() {

 this.filterConfig = null;

 }

 // Called for every request that is mapped to this filter.

 // If mapped to j_security_check,

 // called for every j_security_check action

 public void doFilter(ServletRequest request,

 ServletResponse response, FilterChain chain)

 throws java.io.IOException, ServletException {

 // perform pre-login action here

 chain.doFilter(request, response);

 // calls the next filter in chain.

 // j_security_check if this filter is

 // mapped to j_security_check.

 // perform post-login action here.

 }

 }

Chapter 8. Developing extensions to the WebSphere security infrastructure 759

Example: Using servlet filters to perform pre-login and post-login processing

during form login

This example illustrates one way that the servlet filters can perform pre-login and post-login processing

during form login.

Servlet filter source code: LoginFilter.java

/**

 * A servlet filter example: This example filters j_security_check and

 * performs pre-login action to determine if the user trying to log in

 * is in the revoked list. If the user is on the revoked list, an error is

 * sent back to the browser.

 *

 * This filter reads the revoked list file name from the FilterConfig

 * passed in the init() method. It reads the revoked user list file and

 * creates a revokedUsers list.

 *

 * When the doFilter method is called, the user logging in is checked

 * to make sure that the user is not on the revoked Users list.

 *

 */

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class LoginFilter implements Filter {

 protected FilterConfig filterConfig;

 java.util.List revokeList;

 /**

 * init() : init() method called when the filter is instantiated.

 * This filter is instantiated the first time j_security_check is

 * invoked for the application (When a protected servlet in the

 * application is accessed).

 */

 public void init(FilterConfig filterConfig) throws ServletException {

 this.filterConfig = filterConfig;

 // read revoked user list

 revokeList = new java.util.ArrayList();

 readConfig();

 }

 /**

 * destroy() : destroy() method called when the filter is taken

 * out of service.

 */

 public void destroy() {

 this.filterConfig = null;

 revokeList = null;

 }

 /**

 * doFilter() : doFilter() method called before the servlet to

 * which this filter is mapped is invoked. Since this filter is

 * mapped to j_security_check,this method is called before

 * j_security_check action is posted.

 */

 public void doFilter(ServletRequest request, ServletResponse response,

FilterChain chain) throws java.io.IOException, ServletException {

 HttpServletRequest req = (HttpServletRequest)request;

 HttpServletResponse res = (HttpServletResponse)response;

 // pre login action

760 Securing applications and their environment

// get username

 String username = req.getParameter("j_username");

 // if user is in revoked list send error

 if (revokeList.contains(username)) {

 res.sendError(javax.servlet.http.HttpServletResponse.SC_UNAUTHORIZED);

 return;

 }

 // call next filter in the chain : let j_security_check authenticate

 // user

 chain.doFilter(request, response);

 // post login action

 }

 /**

 * readConfig() : Reads revoked user list file and creates a revoked

 * user list.

 */

 private void readConfig() {

 if (filterConfig != null) {

 // get the revoked user list file and open it.

 BufferedReader in;

 try {

 String filename = filterConfig.getInitParameter("RevokedUsers");

 in = new BufferedReader(new FileReader(filename));

 } catch (FileNotFoundException fnfe) {

 return;

 }

 // read all the revoked users and add to revokeList.

 String userName;

 try {

 while ((userName = in.readLine()) != null)

 revokeList.add(userName);

 } catch (IOException ioe) {

 }

 }

 }

}

Note: In the previous code sample, the line that begins public void doFilter(ServletRequest request is

broken into two lines for illustrative purposes only. The public void doFilter(ServletRequest

request line and the line after it are one continuous line.

An example of the web.xml file that shows the LoginFilter filter configured and mapped to the

j_security_check URL:

<filter id="Filter_1">

 <filter-name>LoginFilter</filter-name>

 <filter-class>LoginFilter</filter-class>

 <description>Performs pre-login and post-login operation</description>

 <init-param>

 <param-name>RevokedUsers</param-name>

 <param-value>c:\WebSphere\AppServer\installedApps\

 <app-name>\revokedUsers.lst</param-value>

 </init-param>

</filter-id>

Chapter 8. Developing extensions to the WebSphere security infrastructure 761

<filter-mapping>

 <filter-name>LoginFilter</filter-name>

 <url-pattern>/j_security_check</url-pattern>

</filter-mapping>

An example of a revoked user list file:

user1

cn=user1,o=ibm,c=us

user99

cn=user99,o=ibm,c=us

Configuring servlet filters

IBM Rational Application Developer or an assembly tool can configure the servlet filters. Two steps are

involved in configuring a servlet filter.

1. Name the servlet filter and assign the corresponding implementation class to the servlet filter.

Optionally, assign initialization parameters that get passed to the init method of the servlet filter.After

configuring the servlet filter, the web.xml application deployment descriptor contains a servlet filter

configuration similar to the following example:

<filter id="Filter_1">

 <filter-name>LoginFilter</filter-name>

 <filter-class>LoginFilter</filter-class>

 <description>Performs pre-login and post-login

 operation</description>

 <init-param>// optional

 <param-name>ParameterName</param-name>

 <param-value>ParameterValue</param-value>

 </init-param>

</filter>

2. Map the servlet filter to a URL or a servlet.

After mapping the servlet filter to a URL or a servlet, theweb.xml application deployment descriptor

contains servlet mapping similar to the following example:

<filter-mapping>

 <filter-name>LoginFilter</filter-name>

 <url-pattern>/j_security_check</url-pattern>

 // can be servlet <servlet>servletName</servlet>

</filter-mapping>

Example

You can use servlet filters to replace the CustomLoginServlet servlet, and to perform additional

authentication, auditing, and logging.

The WebSphere Application Server Samples Gallery provides a form login sample that demonstrates how

to use the WebSphere Application Server login facilities to implement and configure form login procedures.

The sample integrates the following technologies to demonstrate the WebSphere Application Server and

Java Platform, Enterprise Edition (Java EE) login functionality:

v Java EE form-based login

v Java EE servlet filter with login

v IBM extension: form-based login

The form login sample is part of the Technology Samples package. For more information on how to access

the form login sample, see Accessing the Samples (Samples Gallery).

762 Securing applications and their environment

Secure transports with JSSE and JCE programming interfaces

This topic provides detailed information about transport security using Java Secure Socket Extension

(JSSE) and Java Cryptography Extension (JCE) programming interfaces. Within this topic, there is a

description of the IBM version of the Java Cryptography Extension Federal Information Processing

Standard (IBMJCEFIPS).

Java Secure Socket Extension

Java Secure Socket Extension (JSSE) provides the transport security for WebSphere Application Server.

JSSE provides the application programming interface (API) framework and the implementation of the APIs

for Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols, including functionality for

data encryption, message integrity, and authentication.

JSSE APIs are integrated into the Java 2 SDK, Standard Edition (J2SDK), Version 5. The API package for

JSSE APIs is javax.net.ssl.*. Documentation for using JSSE APIs can be found in the J2SE 6 API

documentation that is located at http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/
JSSERefGuide.html.

Several JSSE providers ship with the Java 2 SDK Version 5 that comes with WebSphere Application

Server. The IBMJSSE provider is used in previous WebSphere Application Server releases. Associated

with the IBMJSSE provider is the IBMJSSEFIPS provider, which is used when FIPS is enabled on the

server. Both of these providers do not work with the Java Message Service (JMS) and HTTP transports in

WebSphere Application Server Version 7.0. These transports take advantage of the J2SDK Verison 5

network input/output (NIO) asynchronous channels.

For more information on the new IBMJSSE2 provider, please review the documentation located at

http://www.ibm.com/developerworks/java/jdk/security/60/.

Customizing Java Secure Socket Extension

You can customize a number of aspects of JSSE by plugging in different implementations of Cryptography

Package Provider, X509Certificate and HTTPS protocols, or specifying different default keystore files, key

manager factories, and trust manager factories. The following table summarizes which aspects can be

customized, what the defaults are, and which mechanisms are used to provide customization. You can

customize the following key aspects:

 Customizable item Default How to customize

X509Certificate X509Certificate

implementation from IBM

The cert.provider.x509v1 security property

HTTPS protocol Implementation from IBM The java.protocol.handler.pkgs system property

Cryptography Package Provider IBMJSSE2 A security.provider.n= line in security properties file.

See description.

Default keystore None The * javax.net.ssl.keyStore system property

Default truststore jssecacerts, if it exists.

Otherwise, cacerts

The * javax.net.ssl.trustStore system property

Default key manager factory IbmX509 The ssl.KeyManagerFactory.algorithm security

property

Default trust manager factory IbmX509 The ssl.TrustManagerFactory.algorithm security

property

For aspects that you can customize by setting a system property, statically set the system property by

using the -D option of the Java command. You can set the system property using the administrative

Chapter 8. Developing extensions to the WebSphere security infrastructure 763

console, or set the system property dynamically by calling the java.lang.System.setProperty method in

your code: System.setProperty(propertyName,″propertyValue″).

For aspects that you can customize by setting a Java security property, statically specify a security

property value in the java.security properties file. The security property is propertyName=propertyValue.

Dynamically set the Java security property by calling the java.security.Security.setProperty method in your

code.

The java.security properties file is located in the following directory:

profile_root/properties directory.

Application Programming Interface

The JSSE provides a standard application programming interface (API) that is available in packages of the

javax.net file, javax.net.ssl file, and the javax.security.cert file. The APIs cover:

v Sockets and SSL sockets

v Factories to create the sockets and SSL sockets

v Secure socket context that acts as a factory for secure socket factories

v Key and trust manager interfaces

v Secure HTTP URL connection classes

v Public key certificate API

You can find more information documented for the JSSE APIs if you access the following information:

Version 1.6

1. Access the http://www.ibm.com/developerworks/java/jdk/security/ Web site.

2. Click Java 1.6.

3. Click Javadoc HTML documentation in the Java Secure Socket Extension (JSSE) Guide

section.

Samples using Java Secure Socket Extension

The Java Secure Socket Extension (JSSE) also provides samples to demonstrate its functionality. The

Java Secure Socket Extension (JSSE) also provides samples to demonstrate its functionality. You can

access the samples in the following location:

Version 1.6

1. Access the http://www.ibm.com/developerworks/java/jdk/security/ Web site.

2. Click Java 1.6.

3. Click jssedocs_samples.zip in the Java Secure Socket Extension (JSSE) Guide section.

Look for the following files:

 Files Description

ClientJsse.java Demonstrates a simple client and server interaction using JSSE. All enabled

cipher suites are used.

OldServerJsse.java Back-level samples

ServerPKCS12Jsse.java Demonstrates a simple client and server interaction using JSSE with the

PKCS12 keystore file. All enabled cipher suites are used.

ClientPKCS12Jsse.java Demonstrates a simple client and server interaction using JSSE with the

PKCS12 keystore file. All enabled cipher suites are used.

764 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/

Files Description

UseHttps.java Demonstrates accessing an SSL or non-SSL Web server using the Java

protocol handler of the com.ibm.net.ssl.www.protocol class. The URL is

specified with the http or https prefix. The HTML that is returned from this

site is displayed.

See more instructions in the source code. Follow these instructions before you run the samples.

Permissions for Java 2 security

You might need the following permissions to run an application with JSSE: This list is for reference only.

v java.util.PropertyPermission ″java.protocol.handler.pkgs″, ″write″

v java.lang.RuntimePermission ″writeFileDescriptor″

v java.lang.RuntimePermission ″readFileDescriptor″

v java.lang.RuntimePermission ″accessClassInPackage.sun.security.x509″

v java.io.FilePermission ″${user.install.root}${/}etc${/}.keystore″, ″read″

v java.io.FilePermission ″${user.install.root}${/}etc${/}.truststore″, ″read″

For the IBMJSSE provider:

v java.security.SecurityPermission ″putProviderProperty.IBMJSSE″

v java.security.SecurityPermission ″insertProvider.IBMJSSE″

For the SUNJSSE provider:

v java.security.SecurityPermission ″putProviderProperty.SunJSSE″

v java.security.SecurityPermission ″insertProvider.SunJSSE″

Debugging

By configuring through the javax.net.debug system property, JSSE provides the following dynamic debug

tracing: -Djavax.net.debug=true.

A value of true turns on the trace facility, provided that the debug version of JSSE is installed.

Documentation

See the Security: Resources for learning topic for documentation references to JSSE.

JCE

Java Cryptography Extension (JCE) provides cryptographic, key and hash algorithms for WebSphere

Application Server. JCE provides a framework and implementations for encryption, key generation, key

agreement, and Message Authentication Code (MAC) algorithms. Support for encryption includes

symmetric, asymmetric, block and stream ciphers.

IBMJCE

The IBM version of the Java Cryptography Extension (IBMJCE) is an implementation of the JCE

cryptographic service provider that is used in WebSphere Application Server. The IBMJCE is similar to

SunJCE, except that the IBMJCE offers more algorithms:

v Cipher algorithm (AES, DES, TripleDES, PBEs, Blowfish, and so on)

v Signature algorithm (SHA1withRSA, MD5withRSA, SHA1withDSA)

v Message digest algorithm (MD5, MD2, SHA1, SHA-256, SHA-384, SHA-512)

v Message authentication code (HmacSHA1, HmacMD5)

v Key agreement algorithm (DiffieHellman)

v Random number generation algorithm (IBMSecureRandom, SHA1PRNG)

v Key store (JKS, JCEKS, PKCS12, JCERACFKS [z/OS only])

Chapter 8. Developing extensions to the WebSphere security infrastructure 765

The IBMJCE belongs to the com.ibm.crypto.provider.* packages.

For further information, see the information on JCE on the following web site: http://www.ibm.com/
developerworks/java/jdk/security/60/.

IBMJCEFIPS

The IBM version of the Java Cryptography Extension Federal Information Processing Standard

(IBMJCEFIPS) is an implementation of the JCE cryptographic service provider that is used in WebSphere

Application Server. The IBMJCEFIPS service provider implements the following:

v Signature algorithms (SHA1withDSA, SHA1withRSA)

v Cipher algorithms (AES, TripleDES, RSA)

v Key agreement algorithm (DiffieHellman)

v Key (pair) generator (DSA, AES, TripleDES, HmacSHA1, RSA, DiffieHellman)

v Message authentication code (MAC) (HmacSHA1)

v Message digest (MD5, SHA-1, SHA-256, SHA-384, SHA-512)

v Algorithm parameter generator (DiffieHellman, DSA)

v Algorithm parameter (AES, DiffieHellman, DES, TripleDES, DSA)

v Key factory (DiffieHellman, DSA, RSA)

v Secret key factory (AES, TripleDES)

v Certificate (X.509)

v Secure random (IBMSecureRandom)

Application Programming Interface

Java Cryptography Extension (JCE) has a provider-based architecture. Providers can be plugged into the

JCE framework by implementing the APIs that are defined by the JCE. The JCE APIs cover:

v Symmetric bulk encryption, such as DES, RC2, and IDEA

v Symmetric stream encryption, such as RC4

v Asymmetric encryption, such as RSA

v Password-based encryption (PBE)

v Key agreement

v Message authentication codes

There is more information documented for the JCE APIs on the http://www.ibm.com/developerworks/
java/jdk/security/ Web site.

Samples using Java Cryptography Extension

There are samples located on the http://www.ibm.com/developerworks/java/jdk/security/ Web site in

the jceDocs_samples.zip file. Unzip the file and locate the following samples in the jceDocs/samples

directory:

 File Description

SampleDSASignature.java Demonstrates how to generate a pair of DSA keys (a public key and a

private key) and use the key to digitally sign a message using the

SHA1withDSA algorithm

SampleMarsCrypto.java Demonstrates how to generate a Mars secret key, and how to do Mars

encryption and decryption

SampleMessageDigests.java Demonstrates how to use the message digest for MD2 and MD5

algorithms

766 Securing applications and their environment

File Description

SampleRSACrypto.java Demonstrates how to generate an RSA key pair, and how to do RSA

encryption and decryption

SampleRSASignatures.java Demonstrates how to generate a pair of RSA keys (a public key and a

private key) and use the key to digitally sign a message using the

SHA1withRSA algorithm

SampleX509Verification.java Demonstrates how to verify X509 certificates

Documentation

Refer to the Security: Resources for learning for documentation on JCE.

Configuring Federal Information Processing Standard Java Secure

Socket Extension files

Use this topic to configure Federal Information Processing Standard Java Secure Socket Extension files.

About this task

In WebSphere Application Server, the Java Secure Socket Extension (JSSE) provider used is the

IBMJSSE2 provider. This provider delegates encryption and signature functions to the Java Cryptography

Extension (JCE) provider. Consequently, IBMJSSE2 does not need to be Federal Information Processing

Standard (FIPS)-approved because it does not perform cryptography. However, the JCE provider requires

FIPS-approval.

WebSphere Application Server provides a FIPS-approved IBMJCEFIPS provider that IBMJSSE2 can

utilize. The IBMJCEFIPS provider that is shipped in WebSphere Application Server Version 7.0 supports

the following SSL ciphers:

v SSL_RSA_WITH_AES_128_CBC_SHA

v SSL_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_RSA_WITH_AES_128_CBC_SHA

v SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_DSS_WITH_AES_128_CBC_SHA

v SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

Even though the IBMJSSEFIPS provider is still present, the runtime does not use this provider. If

IBMJSSEFIPS is specified as a contextProvider, WebSphere Application Server automatically defaults to

the IBMJSSE2 provider (with the IBMJCEFIPS provider) for supporting FIPS. When enabling the Use the

United States Federal Information Processing Standard (FIPS) algorithms option on the server SSL

certificate and key management panel, the runtime always uses IBMJSSE2, despite the contextProvider

that you specify for SSL (IBMJSSE, IBMJSSE2 or IBMJSSEFIPS). Also, because FIPS requires the SSL

protocol be TLS, the runtime always uses TLS when FIPS is enabled, regardless of the SSL protocol

setting in the SSL repertoire. This simplifies the FIPS configuration in Version 7.0 because an administrator

needs to enable only the Use the United States Federal Information Processing Standard (FIPS)

algorithms option on the server SSL certificate and key management panel to enable all transports using

SSL.

1. Click Security > SSL certificate and key management.

2. Select the Use the United States Federal Information Processing Standard (FIPS) algorithms

option and click Apply. This option makes IBMJSSE2 and IBMJCEFIPS the active providers.

3. Accommodate Java clients that must access enterprise beans.

Chapter 8. Developing extensions to the WebSphere security infrastructure 767

Change the com.ibm.security.useFIPS property value from false to true in the profile_root/
properties/ssl.client.props file.

4. Ensure that the java.security includes the provider.

Edit the java.security file to insert the IBMJCEFIPS provider

(com.ibm.crypto.fips.provider.IBMJCEFIPS) before the IBMJCE provider, and also renumber the other

providers in the provider list. The IBMJCEFIPS provider must be in the java.security file provider list.

The java.security file is located in the profile_root/properties directory.

The IBM SDK java.security file looks like the following example after completing this step:

security.provider.1=com.ibm.crypto.fips.provider.IBMJCEFIPS

security.provider.2=com.ibm.crypto.provider.IBMJCE

security.provider.3=com.ibm.jsse.IBMJSSEProvider

security.provider.4=com.ibm.jsse2.IBMJSSEProvider2

security.provider.5=com.ibm.security.jgss.IBMJGSSProvider

security.provider.6=com.ibm.security.cert.IBMCertPath

security.provider.7=com.ibm.i5os.jsse.JSSEProvider

security.provider.8=com.ibm.crypto.pkcs11.provider.IBMPKCS11

security.provider.9=com.ibm.security.jgss.mech.spnego.IBMSPNEGO

security.provider.10=com.ibm.security.cmskeystore.CMSProvider

security.provider.11=com.ibm.security.sasl.IBMSASL

security.provider.12=com.ibm.xml.crypto.IBMXMLCryptoProvider

security.provider.13=com.ibm.xml.enc.IBMXMLEncProvider

security.provider.14=org.apache.harmony.security.provider.PolicyProvider

If you are using the Sun Java SE Development Kit, the java.security file looks like the following

example after completing this step:

security.provider.1=sun.security.provider.Sun

security.provider.2=com.ibm.crypto.fips.provider.IBMJCEFIPS

security.provider.3=com.ibm.crypto.provider.IBMJCE

security.provider.4=com.ibm.jsse.IBMJSSEProvider

security.provider.5=com.ibm.jsse2.IBMJSSEProvider2

security.provider.6=com.ibm.security.jgss.IBMJGSSProvider

security.provider.7=com.ibm.security.cert.IBMCertPath

security.provider.8=com.ibm.i5os.jsse.JSSEProvider

#security.provider.8=com.ibm.crypto.pkcs11.provider.IBMPKCS11

security.provider.9=com.ibm.security.jgss.mech.spnego.IBMSPNEGO

What to do next

After completing these steps, a FIPS-approved JSSE or JCE provider offers increased encryption

capabilities. However, when you use FIPS-approved providers:

v By default, Microsoft Internet Explorer might not have TLS enabled. To enable TLS, open the Internet

Explorer browser and click Tools > Internet Options. On the Advanced tab, select the Use TLS 1.0

option.

Note: Netscape Version 4.7.x and earlier versions might not support TLS.

v IBM Directory Server Version 5.1 (and earlier versions) do not support TLS.

v If you have an administrative client that uses a SOAP connector and you enable FIPS, add the following

line to the profile_root/properties/soap.client.props file:

com.ibm.ssl.contextProvider=IBMJSSEFIPS

v When you select the Use the Federal Information Processing Standard (FIPS) option on the SSL

certificate and key management panel, the Lightweight Third-Party Authentication (LTPA) token format is

not backwards-compatible with previous releases of WebSphere Application Server. However, you can

import the LTPA keys from a previous version of the application server.

Note: When enabling FIPS, you cannot configure cryptographic token devices in the SSL repertoires.

IBMJSSE2 must use IBMJCEFIPS when utilizing cryptographic services for FIPS.

768 Securing applications and their environment

The following FIPS 140-2 approved cryptographic providers that are the only devices that are supported

with the FIPS option:

v IBMJCEFIPS (certificate 376)

v IBM Cryptography for C (ICC) (certificate 384)

The relevant certificates are listed on the NIST Web site: Cryptographic Module Validation Program FIPS

140-1 and FIPS 140-2 Pre-validation List

To unconfigure the FIPS provider, reverse the changes that you made in the previous steps. After you

reverse the changes, verify that you have made the following changes to the sas.client.props,

soap.client.props, and java.security files:

v In the ssl.client.props file, you must change the com.ibm.security.useFIPS value to false.

v Edit the java.security file to remove the FIPS provider and renumber the providers as in the following

example:

security.provider.1=sun.security.provider.Sun

#security.provider.2=com.ibm.crypto.fips.provider.IBMJCEFIPS

security.provider.2=com.ibm.crypto.provider.IBMJCE

security.provider.3=com.ibm.jsse.IBMJSSEProvider

security.provider.4=com.ibm.jsse2.IBMJSSEProvider2

security.provider.5=com.ibm.security.jgss.IBMJGSSProvider

security.provider.6=com.ibm.security.cert.IBMCertPath

security.provider.7=com.ibm.i5os.jsse.JSSEProvider

#security.provider.8=com.ibm.crypto.pkcs11.provider.IBMPKCS11

security.provider.8=com.ibm.security.jgss.mech.spnego.IBMSPNEGO

Implementing tokens for security attribute propagation

As part of an extensible architecture, WebSphere Application Server enables you to implement your own

tokens in which to propagate security attributes.

About this task

The following topics are covered in this section:

v Implementing a custom propagation token

v Implementing a custom authorization token

v Implementing a custom a single sign-on token

v Implementing a custom authentication token

v Propagating a custom Java serializable object

Implementing a custom propagation token

This topic explains how you might create your own propagation token implementation, which is set on the

running thread and propagated downstream.

About this task

The default propagation token usually is sufficient for propagating attributes that are not user-specific.

Consider writing your own implementation if you want to accomplish one of the following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add

that information back on the thread by plugging in a custom login module into the inbound system login

configurations. This task also might include encryption and decryption.

To implement a custom propagation token, you must complete the following steps:

Chapter 8. Developing extensions to the WebSphere security infrastructure 769

http://csrc.nist.gov/cryptval/140-1/140val-all.htm
http://csrc.nist.gov/cryptval/140-1/140val-all.htm

1. Write a custom implementation of the PropagationToken interface. Many different methods are

available for implementing the PropagationToken interface. However, make sure that the methods that

are required by the PropagationToken interface and the token interface are fully implemented.

After you implement this interface, you can place it in the profile_root/classes directory. For more

information on classes, see “Creating a classes subdirectory in your profile for custom classes” on

page 712.

Note: All of the token types that are defined by the propagation framework have similar interfaces.

The token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token

interface. This interface defines most of the methods. If you plan to implement more than one

token type, consider creating an abstract class that implements the

com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

propagation token, might extend the abstract class and then most of the work is complete.

To see an implementation of the propagation token, see “Example:

com.ibm.wsspi.security.token.PropagationToken implementation.”

2. Add and receive the custom propagation token during WebSphere Application Server logins. This task

is typically accomplished by adding a custom login module to the various application and system login

configurations. You also can add the implementation from an application. However, to deserialize the

information, you need to plug in a custom login module, which is discussed in “Propagating a custom

Java serializable object” on page 805. The WSSecurityPropagationHelper class has APIs that are used

to set a propagation token on the thread and to retrieve the token from the thread to make updates.

The code sample in “Example: Custom propagation token login module” on page 775 shows how to

determine if the login is an initial login or a propagation login. The difference between these login types

is whether the WSTokenHolderCallback callback contains propagation data. If the callback does not

contain propagation data, initialize a new custom propagation token implementation and set it on the

thread. If the callback contains propagation data, look for your specific custom propagation token

TokenHolder instance, convert the byte array back into your custom PropagationToken object, and set

it back on the thread. The code sample shows both instances.

You can add attributes any time your custom propagation token is added to the thread. If you add

attributes between requests and the getUniqueId method changes, the Common Secure

Interoperability Version 2 (CSIv2) client session is invalidated so that it can send the new information

downstream. Adding attributes between requests can affect performance. In many cases, you want the

downstream requests to receive the new propagation token information.

To add the custom propagation token to the thread, call the

WSSecurityPropagationHelper.addPropagationToken method. This call requires the

WebSphereRuntimePerMission ″setPropagationToken″ Java 2 Security permission.

3. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module for

receiving serialized versions of your custom propagation token You can also add this login module to

any of the application logins where you might want to generate your custom propagation token on the

thread during the login. Alternatively, you can generate the custom PropagationToken implementation

from within your application. However, to deserialize it, you need to add the implementation to the

system login modules.

For information on how to add your custom login module to the existing login configurations, see

“Developing custom login modules for a system login configuration” on page 363.

Results

After completing these steps, you have implemented a custom PropagationToken.

Example: com.ibm.wsspi.security.token.PropagationToken implementation

Use this file to see an example of a propagation token implementation. The following sample code does

not extend an abstract class, but implements the com.ibm.wsspi.security.token.PropagationToken interface

770 Securing applications and their environment

directly. You can implement the interface directly, but it might cause you to write duplicate code. However,

you might choose to implement the interface directly if considerable differences exist between how you

handle the various token implementations.

For information on how to implement a custom propagation token, see “Implementing a custom

propagation token” on page 769.

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.OutputStream;

import java.io.InputStream;

import java.util.ArrayList;

public class CustomPropagationTokenImpl implements com.ibm.wsspi.security.

 token.PropagationToken

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

 private byte[] tokenBytes = null;

 // 2 hours in millis, by default

 private static long expire_period_in_millis = 2*60*60*1000;

 private long counter = 0;

/**

 * The constructor that is used to create initial PropagationToken instance

 */

 public CustomAbstractTokenImpl ()

 {

 // set the token version

 addAttribute("version", "1");

 // set the token expiration

 addAttribute("expiration", new Long(System.currentTimeMillis() +

 expire_period_in_millis).toString());

 }

/**

 * The constructor that is used to deserialize the token bytes received

 * during a propagation login.

 */

 public CustomAbstractTokenImpl (byte[] token_bytes)

 {

 try

 {

 hashtable = (java.util.Hashtable) com.ibm.wsspi.security.token.

 WSOpaqueTokenHelper.deserialize(token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

 * Validates the token including expiration, signature, and so on.

 * @return boolean

 */

Chapter 8. Developing extensions to the WebSphere security infrastructure 771

public boolean isValid ()

 {

 long expiration = getExpiration();

 // if you set the expiration to 0, it does not expire

 if (expiration != 0)

 {

 // return if this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println("isValid: returning " + valid);

 return valid;

 }

 else

 {

 System.out.println("isValid: returning true by default");

 return true;

 }

 }

/**

 * Gets the expiration as a long type.

 * @return long

 */

 public long getExpiration()

 {

 // get the expiration value from the hashtable

 String[] expiration = getAttributes("expiration");

 if (expiration != null && expiration[0] != null)

 {

 // expiration is the first element (should only be one)

 System.out.println("getExpiration: returning " + expiration[0]);

 return new Long(expiration[0]).longValue();

 }

 System.out.println("getExpiration: returning 0");

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

 {

 // You can choose whether your token gets propagated. In some cases

 // you might want the token to be local only.

 return true;

 }

/**

 * Gets the principal that this token belongs to. If this token is an

 * authorization token, this principal string must match the authentication

 * token principal string or the message is rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // It is not necessary for the PropagationToken to return a principal,

 // because it is not user-centric.

 return "";

 }

/**

 * Returns the unique identifier of the token based upon information that

772 Securing applications and their environment

* the provider considers makes it a unique token. This identifier is used

 * for caching purposes and might be used in combination with other token

 * unique IDs that are part of the same Subject.

 *

 * This method should return null if you want the accessID of the user to

 * represent its uniqueness. This is the typical scenario.

 *

 * @return String

 */

 public String getUniqueID()

 {

 // If you want to propagate the changes to this token, change the

 // value that this unique ID returns whenever the token is changed.

 // Otherwise, CSIv2 uses an existing session when everything else is

 // the same. This getUniqueID is checked by CSIv2 to determine the

 // session lookup.

 return counter;

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the Token object at the target server.

 * @return byte[]

 */

 public byte[] getBytes ()

 {

 if (hashtable != null)

 {

 try

 {

 // Do this if the object is set to read-only during login commit

 // because this guarantees that no new data is set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = com.ibm.wsspi.security.token.WSOpaqueTokenHelper.

 serialize(hashtable);

 // You can deserialize this in the downstream login module using

 // WSOpaqueTokenHelper.deserialize()

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 System.out.println("getBytes: returning null");

 return null;

 }

/**

 * Gets the name of the token, which is used to identify the byte[] in the

 * protocol message.

 * @return String

 */

 public String getName()

 {

 return this.getClass().getName();

 }

/**

 * Gets the version of the token as a short type. This code also is used

 * to identify the byte[] in the protocol message.

 * @return short

 */

 public short getVersion()

Chapter 8. Developing extensions to the WebSphere security infrastructure 773

{

 String[] version = getAttributes("version");

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println("getVersion: returning default of 1");

 return 1;

 }

/**

 * When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure that any setter methods check that this read-only flag has

 * been set.

 */

 public void setReadOnly()

 {

 addAttribute("readonly", "true");

 }

/**

 * Called internally to see if the token is readonly

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes("readonly");

 if (readonly != null && readonly[0] != null)

 return new Boolean(readonly[0]).booleanValue();

 System.out.println("isReadOnly: returning default of false");

 return false;

 }

/**

 * Gets the attribute value based on the named value.

 * @param String key

 * @return String[]

 */

 public String[] getAttributes(String key)

 {

 ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

 return null;

 }

/**

 * Sets the attribute name and value pair. Returns the previous values set

 * for the key, or returns null if the value is not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

 // Gets the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

 if (!isReadOnly())

 {

 // Increments the counter to change the uniqueID

 counter++;

774 Securing applications and their environment

// Copies the ArrayList to a String[] as it currently exists

 String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // Allocates a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // Adds the String to the current array list

 array.add(value);

 // Adds the current ArrayList to the Hashtable

 hashtable.put(key, array);

 // Returns the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

/**

 * Gets the list of all of the attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

 {

 return hashtable.keys();

 }

/**

 * Returns a deep clone of this token. This is typically used by the session

 * logic of the CSIv2 server to create a copy of the token as it exists in the

 * session.

 * @return Object

 */

 public Object clone()

 {

 com.ibm.websphere.security.token.CustomPropagationTokenImpl deep_clone =

 new com.ibm.websphere.security.token.CustomPropagationTokenImpl();

 java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

 for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

}

Example: Custom propagation token login module

This example shows how to determine if the login is an initial login or a propagation login.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

Chapter 8. Developing extensions to the WebSphere security infrastructure 775

{

 // (For more information on what to do during initialization, see

 // “Developing custom login modules for a system login configuration” on page 363.)

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // “Developing custom login modules for a system login configuration” on page 363.)

 // Handles the WSTokenHolderCallback to see if this is an initial

 // or propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // handle exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // Iterates through the list looking for your custom token

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom PropagationToken implementation

 if (tokenHolder.getName().equals("

 com.ibm.websphere.security.token.CustomPropagationTokenImpl") &&

 tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom PropagationToken constructor

 // to deserialize

 customPropToken = new

 com.ibm.websphere.security.token.CustomPropagationTokenImpl(tokenHolder.

 getBytes());

 }

 }

 }

 else // This is not a propagation login. Create a new instance of

 // your PropagationToken implementation

 {

 // Adds a new custom propagation token. This is an initial login

 customPropToken = new com.ibm.websphere.security.token.CustomPropagationTokenImpl();

 // Adds any initial attributes

 if (customPropToken != null)

 {

 customPropToken.addAttribute("key1", "value1");

 customPropToken.addAttribute("key1", "value2");

 customPropToken.addAttribute("key2", "value1");

 customPropToken.addAttribute("key3", "something different");

 }

 }

 // Note: You can add the token to the thread during commit in case

 // something happens during the login.

 }

776 Securing applications and their environment

public boolean commit() throws LoginException

 {

 // For more information on what to do during commit, see

 // “Developing custom login modules for a system login configuration” on page 363

 if (customPropToken != null)

 {

 // Sets the propagation token on the thread

 try

 {

 System.out.println(tc, "*** ADDED MY CUSTOM PROPAGATION TOKEN TO THE THREAD ***");

 // Prints out the values in the deserialized propagation token

 java.util.Enumeration keys = customPropToken.getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) customPropToken.getAttributes(key);

 for (int k=0; k<list.length; k++)

 System.out.println("Key/Value: " + key + "/" + list[k]);

 }

 // This sets it on the thread using getName() + getVersion() as the key

 com.ibm.wsspi.security.token.WSSecurityPropagationHelper.addPropagationToken(

 customPropToken);

 }

 catch (Exception e)

 {

 // Handles exception

 }

 // Now you can verify that you have set it properly by trying to get

 // it back from the thread and print the values.

 try

 {

 // This gets the PropagationToken from the thread using getName()

 // and getVersion() parameters.

 com.ibm.wsspi.security.token.PropagationToken tempPropagationToken =

 com.ibm.wsspi.security.token.WSSecurityPropagationHelper.getPropagationToken

 ("com.ibm.websphere.security.token.CustomPropagationTokenImpl", 1);

 if (tempPropagationToken != null)

 {

 System.out.println(tc, "*** RECEIVED MY CUSTOM PROPAGATION

 TOKEN FROM THE THREAD ***");

 // Prints out the values in the deserialized propagation token

 java.util.Enumeration keys = tempPropagationToken.getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) tempPropagationToken.getAttributes(key);

 for (int k=0; k<list.length; k++)

 System.out.println("Key/Value: " + key + "/" + list[k]);

 }

 }

 }

 catch (Exception e)

 {

 // Handles exception

 }

 }

 }

Chapter 8. Developing extensions to the WebSphere security infrastructure 777

// Defines your login module variables

 com.ibm.wsspi.security.token.PropagationToken customPropToken = null;

}

Implementing a custom authorization token

This task explains how you might create your own AuthorizationToken implementation, which is set in the

login Subject and propagated downstream.

About this task

The default AuthorizationToken usually is sufficient for propagating attributes that are user-specific.

Consider writing your own implementation if you want to accomplish one of the following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add

that information back on the thread. This task also might include encryption and decryption.

v Affect the overall uniqueness of the Subject using the getUniqueID() application programming interface

(API).

To implement a custom authorization token, you must complete the following steps:

1. Write a custom implementation of the AuthorizationToken interface. There are many different methods

for implementing the AuthorizationToken interface. However, make sure that the methods required by

the AuthorizationToken interface and the token interface are fully implemented.

After you implement this interface, place it in the profile_root/classes directory. For more information

on classes, see “Creating a classes subdirectory in your profile for custom classes” on page 712.

Note: All of the token types defined by the propagation framework have similar interfaces. Basically,

the token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token

interface. This interface defines most of the methods. If you plan to implement more than one

token type, consider creating an abstract class that implements the

com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

AuthorizationToken, might extend the abstract class and then most of the work is completed.

To see an implementation of AuthorizationToken, see “Example:

com.ibm.wsspi.security.token.AuthorizationToken implementation” on page 779

2. Add and receive the custom AuthorizationToken during WebSphere Application Server logins. This task

is typically accomplished by adding a custom login module to the various application and system login

configurations. However, in order to deserialize the information, you must plug in a custom login

module, which is discussed in “Propagating a custom Java serializable object” on page 805. After the

object is instantiated in the login module, you can add the object to the Subject during the commit()

method.

If you only want to add information to the Subject to get propagated, see “Propagating a custom Java

serializable object” on page 805. If you want to ensure that the information is propagated, want to do

you own custom serialization, or want to specify the uniqueness for Subject caching purposes, then

consider writing your own AuthorizationToken implementation.

The code sample in “Example: custom AuthorizationToken login module” on page 784 shows how to

determine if the login is an initial login or a propagation login. The difference between these login types

is whether the WSTokenHolderCallback contains propagation data. If the callback does not contain

propagation data, initialize a new custom AuthorizationToken implementation and set it into the Subject.

If the callback contains propagation data, look for your specific custom AuthorizationToken TokenHolder

instance, convert the byte[] back into your custom AuthorizationToken object, and set it back into the

Subject. The code sample shows both instances.

You can make your AuthorizationToken read-only in the commit phase of the login module. If you do

not make the token read-only, then attributes can be added within your applications.

778 Securing applications and their environment

3. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving

serialized versions of your custom authorization token.

Because this login module relies on information in the sharedState added by the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule, add this login module after

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule. For information on how to add your

custom login module to the existing login configurations, see “Developing custom login modules for a

system login configuration” on page 363.

Results

After completing these steps, you have implemented a custom AuthorizationToken.

Example: com.ibm.wsspi.security.token.AuthorizationToken implementation

Use this file to see an example of a AuthorizationToken implementation. The following sample code does

not extend an abstract class, but rather implements the com.ibm.wsspi.security.token.AuthorizationToken

interface directly. You can implement the interface directly, but it might cause you to write duplicate code.

However, you might choose to implement the interface directly if there are considerable differences

between how you handle the various token implementations.

For information on how to implement a custom AuthorizationToken, see “Implementing a custom

authorization token” on page 778.

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.OutputStream;

import java.io.InputStream;

import java.util.ArrayList;

public class CustomAuthorizationTokenImpl implements com.ibm.wsspi.security.

 token.AuthorizationToken

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

 private byte[] tokenBytes = null;

 private static long expire_period_in_millis = 2*60*60*1000;

 // 2 hours in millis, by default

/**

 * Constructor used to create initial AuthorizationToken instance

 */

 public CustomAuthorizationTokenImpl (String principal)

 {

 // Sets the principal in the token

 addAttribute("principal", principal);

 // Sets the token version

 addAttribute("version", "1");

 // Sets the token expiration

 addAttribute("expiration", new Long(System.currentTimeMillis() +

 expire_period_in_millis).toString());

 }

/**

Chapter 8. Developing extensions to the WebSphere security infrastructure 779

* Constructor used to deserialize the token bytes received during a

 * propagation login.

 */

 public CustomAuthorizationTokenImpl (byte[] token_bytes)

 {

 try

 {

 hashtable = (java.util.Hashtable) com.ibm.wsspi.security.token.

 WSOpaqueTokenHelper.deserialize(token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

 * Validates the token including expiration, signature, and so on.

 * @return boolean

 */

 public boolean isValid ()

 {

 long expiration = getExpiration();

 // if you set the expiration to 0, it does not expire

 if (expiration != 0)

 {

 // return if this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println("isValid: returning " + valid);

 return valid;

 }

 else

 {

 System.out.println("isValid: returning true by default");

 return true;

 }

 }

/**

 * Gets the expiration as a long.

 * @return long

 */

 public long getExpiration()

 {

 // Gets the expiration value from the hashtable

 String[] expiration = getAttributes("expiration");

 if (expiration != null && expiration[0] != null)

 {

 // The expiration is the first element. There should be only one expiration.

 System.out.println("getExpiration: returning " + expiration[0]);

 return new Long(expiration[0]).longValue();

 }

 System.out.println("getExpiration: returning 0");

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

780 Securing applications and their environment

{

 // You can choose whether your token gets propagated. In some cases,

 // you might want it to be local only.

 return true;

 }

/**

 * Gets the principal that this Token belongs to. If this is an authorization token,

 * this principal string must match the authentication token principal string or the

 * message will be rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // this might be any combination of attributes

 String[] principal = getAttributes("principal");

 if (principal != null && principal[0] != null)

 {

 return principal[0];

 }

 System.out.println("getExpiration: returning null");

 return null;

 }

/**

 * Returns a unique identifier of the token based upon the information that provider

 * considers makes this a unique token. This will be used for caching purposes

 * and might be used in combination with other token unique IDs that are part of

 * the same Subject.

 *

 * This method should return null if you want the accessID of the user to represent

 * uniqueness. This is the typical scenario.

 *

 * @return String

 */

 public String getUniqueID()

 {

 // if you don’t want to affect the cache lookup, just return NULL here.

 // return null;

 String cacheKeyForThisToken = "dynamic attributes";

 // if you do want to affect the cache lookup, return a string of

 // attributes that you want factored into the lookup.

 return cacheKeyForThisToken;

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the Token object at the target server.

 * @return byte[]

 */

 public byte[] getBytes ()

 {

 if (hashtable != null)

 {

 try

 {

 // Do this if the object is set to read-only during login commit,

 // because this makes sure that no new data gets set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = com.ibm.wsspi.security.token.WSOpaqueTokenHelper.

 serialize(hashtable);

 // You can deserialize this in the downstream login module using

Chapter 8. Developing extensions to the WebSphere security infrastructure 781

// WSOpaqueTokenHelper.deserialize()

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 System.out.println("getBytes: returning null");

 return null;

 }

/**

 * Gets the name of the token used to identify the byte[] in the protocol message.

 * @return String

 */

 public String getName()

 {

 return this.getClass().getName();

 }

/**

 * Gets the version of the token as an short. This also is used to identify the

 * byte[] in the protocol message.

 * @return short

 */

 public short getVersion()

 {

 String[] version = getAttributes("version");

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println("getVersion: returning default of 1");

 return 1;

 }

/**

 * When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure that any setter methods check that this flag has been set.

 */

 public void setReadOnly()

 {

 addAttribute("readonly", "true");

 }

/**

 * Called internally to see if the token is read-only

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes("readonly");

 if (readonly != null && readonly[0] != null)

 return new Boolean(readonly[0]).booleanValue();

 System.out.println("isReadOnly: returning default of false");

 return false;

 }

/**

 * Gets the attribute value based on the named value.

 * @param String key

 * @return String[]

 */

782 Securing applications and their environment

public String[] getAttributes(String key)

 {

 ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

 return null;

 }

/**

 * Sets the attribute name and value pair. Returns the previous values set for key,

 * or null if not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

 // Gets the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

 if (!isReadOnly())

 {

 // Copies the ArrayList to a String[] as it currently exists

 String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // Allocates a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // Adds the String to the current array list

 array.add(value);

 // Adds the current ArrayList to the Hashtable

 hashtable.put(key, array);

 // Returns the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

/**

 * Gets the list of all attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

 {

 return hashtable.keys();

 }

/**

 * Returns a deep copying of this token, if necessary.

 * @return Object

 */

 public Object clone()

 {

 com.ibm.websphere.security.token.CustomAuthorizationTokenImpl deep_clone =

 new com.ibm.websphere.security.token.CustomAuthorizationTokenImpl();

Chapter 8. Developing extensions to the WebSphere security infrastructure 783

java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

 for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

}

Example: custom AuthorizationToken login module

This file shows how to determine if the login is an initial login or a propagation login.

For information on what to do during initialization, login and commit, see “Developing custom login

modules for a system login configuration” on page 363.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // Iterates through the list looking for your custom token

 for (int i=0; i

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom AuthorizationToken

 // implementation

 if (tokenHolder.getName().equals("com.ibm.websphere.security.token.

 CustomAuthorizationTokenImpl") &&

 tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom AuthorizationToken constructor

 // to deserialize

 customAuthzToken = new

 com.ibm.websphere.security.token.CustomAuthorizationTokenImpl(

784 Securing applications and their environment

tokenHolder.getBytes());

 }

 }

 }

 else

 // This is not a propagation login. Create a new instance of your

 // AuthorizationToken implementation

 {

 // Gets the prinicpal from the default AuthenticationToken. This must match

 // all tokens.

 defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)

 sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

 String principal = defaultAuthToken.getPrincipal();

 // Adds a new custom authorization token. This is an initial login. Pass the

 // principal into the constructor

 customAuthzToken = new com.ibm.websphere.security.token.

 CustomAuthorizationTokenImpl(principal);

 // Adds any initial attributes

 if (customAuthzToken != null)

 {

 customAuthzToken.addAttribute("key1", "value1");

 customAuthzToken.addAttribute("key1", "value2");

 customAuthzToken.addAttribute("key2", "value1");

 customAuthzToken.addAttribute("key3", "something different");

 }

 }

 // Note: You can add the token to the Subject during commit in case something

 // happens during the login.

 }

 public boolean commit() throws LoginException

 {

 if (customAut // (hzToken != null)

 {

 // sSets the customAuthzToken token into the Subject

 try

 {

 public final AuthorizationToken customAuthzTokenPriv = customAuthzToken;

 // Do this in a doPrivileged code block so that application code does not

 // need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Adds the custom authorization token if it is not null

 // and not already in the Subject

 if ((customAuthzTokenPriv != null) &&

 (!subject.getPrivateCredentials().contains(customAuthzTokenPriv)))

 {

 subject.getPrivateCredentials().add(customAuthzTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

Chapter 8. Developing extensions to the WebSphere security infrastructure 785

catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.AuthorizationToken customAuthzToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Implementing a custom single sign-on token

You can create your own single sign-on token implementation. The single sign-on token implementation is

set in the login Subject and added to the HTTP response as an HTTP cookie.

About this task

The cookie name is the concatenation of the SingleSignonToken.getName application programming

interface (API) and the SingleSignonToken.getVersion API. There is no delimiter. When you add a single

sign-on token to the Subject, it also gets propagated horizontally and downstream in case the Subject is

used for other Web requests. You must deserialize your custom single sign-on token when you receive it

from a propagation login. Consider writing your own implementation if you want to accomplish one of the

following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. Encrypt the information because it is out to the

HTTP response and is available on the Internet. You must deserialize or decrypt the bytes at the target

and add that information back into the Subject.

v Affect the overall uniqueness of the Subject using the getUniqueID API.

To implement a custom single sign-on token, complete the following steps:

1. Write a custom implementation of the SingleSignonToken interface.

Many different methods are available for implementing the SingleSignonToken interface. However,

make sure the methods that are required by the SingleSignonToken interface and the token interface

are fully implemented.

After you implement this interface, you can place it in the profile_root/classes directory. For more

information on classes, see “Creating a classes subdirectory in your profile for custom classes” on

page 712.

Note: All of the token types that are defined by the propagation framework have similar interfaces.

Basically, the token types are marker interfaces that implement the

com.ibm.wsspi.security.token.Token interface. This interface defines most of the methods. If you

plan to implement more than one token type, consider creating an abstract class that

implements the com.ibm.wsspi.security.token.Token interface. All of your token implementations,

including the single sign-on token, might extend the abstract class and then most of the work is

complete.

To see an implementation of the single sign-on token, see “Example: A

com.ibm.wsspi.security.token.SingleSignonToken implementation” on page 787

2. Add and receive the custom single sign-on token during WebSphere Application Server logins. This

task is typically accomplished by adding a custom login module to the various application and system

login configurations. However, to deserialize the information, you need to plug in a custom login

module, which is discussed in a subsequent step. After the object is instantiated in the login module,

you can add it to the Subject during the commit method.

786 Securing applications and their environment

The code sample in “Example: A custom single sign-on token login module” on page 792, shows how

to determine if the login is an initial login or a propagation login. The difference is whether the

WSTokenHolderCallback callback contains propagation data. If the callback does not contain

propagation data, initialize a new custom single sign-on token implementation and set it into the

Subject. Also, look for the HTTP cookie from the HTTP request if the HTTP request object is available

in the callback. You can get your custom single sign-on token both from a horizontal propagation login

and from the HTTP request. However, it is recommended that you make the token available in both

places because then the information arrives at any front-end application server, even if that server

does not support propagation.

You can make your single sign-on token read-only in the commit phase of the login module. If you

make the token read-only, additional attributes cannot be added within your applications.

Note:

v HTTP cookies have a size limitation. Size restrictions should be included in the

documentation for your specific browser.

v The WebSphere Application Server runtime does not handle cookies that it does not

generate, so this cookie is not used by the runtime.

v The SingleSignonToken object, when in the Subject, does affect the cache lookup of the

Subject if you return something in the getUniqueID method.

3. Get the HTTP cookie from the HTTP request object during login or from an application. The sample

code that is found in “Example: An HTTP cookie retrieval” on page 794 shows how you can retrieve

the HTTP cookie from the HTTP request, decode the cookie so that it is back to your original bytes,

and create your custom SingleSignonToken object from the bytes.

4. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving

serialized versions of your custom propagation token. Because this login module relies on information

in the sharedState state that is added by the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module, add this login module

after the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module.

For information on adding your custom login module into the existing login configurations, see

“Developing custom login modules for a system login configuration” on page 363.

Results

After completing these steps, you have implemented a custom single sign-on token.

Example: A com.ibm.wsspi.security.token.SingleSignonToken implementation

Use this file to see an example of a single sign-on implementation. The following sample code does not

extend an abstract class, but implements the com.ibm.wsspi.security.token.SingleSignonToken interface

directly. You can implement the interface directly, but it might cause you to write duplicate code. However,

you might choose to implement the interface directly if considerable differences exist between how you

handle the various token implementations.

For information on how to implement a custom single sign-on token, see “Implementing a custom single

sign-on token” on page 786.

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

Chapter 8. Developing extensions to the WebSphere security infrastructure 787

import java.io.ObjectInputStream;

import java.io.OutputStream;

import java.io.InputStream;

import java.util.ArrayList;

public class CustomSingleSignonTokenImpl implements com.ibm.wsspi.security.

 token.SingleSignonToken

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

 private byte[] tokenBytes = null;

 // 2 hours in millis, by default

 private static long expire_period_in_millis = 2*60*60*1000;

/**

 * Constructor used to create initial SingleSignonToken instance

 */

 public CustomSingleSignonTokenImpl (String principal)

 {

 // set the principal in the token

 addAttribute("principal", principal);

 // set the token version

 addAttribute("version", "1");

 // set the token expiration

 addAttribute("expiration", new Long(System.currentTimeMillis() +

 expire_period_in_millis).toString());

 }

/**

 * Constructor used to deserialize the token bytes received during a propagation login.

 */

 public CustomSingleSignonTokenImpl (byte[] token_bytes)

 {

 try

 {

 // you should implement a decryption algorithm to decrypt the cookie bytes

 hashtable = (java.util.Hashtable) some_decryption_algorithm (token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

 * Validates the token including expiration, signature, and so on.

 * @return boolean

 */

 public boolean isValid ()

 {

 long expiration = getExpiration();

 // if you set the expiration to 0, it does not expire

 if (expiration != 0)

 {

 // return if this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println("isValid: returning " + valid);

 return valid;

 }

 else

 {

 System.out.println("isValid: returning true by default");

 return true;

788 Securing applications and their environment

}

 }

/**

 * Gets the expiration as a long.

 * @return long

 */

 public long getExpiration()

 {

 // get the expiration value from the hashtable

 String[] expiration = getAttributes("expiration");

 if (expiration != null && expiration[0] != null)

 {

 // expiration will always be the first element (should only be one)

 System.out.println("getExpiration: returning " + expiration[0]);

 return new Long(expiration[0]).longValue();

 }

 System.out.println("getExpiration: returning 0");

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

 {

 // You can choose whether your token gets propagated or not, in some cases

 // you might want it to be local only.

 return true;

 }

/**

 * Gets the principal that this Token belongs to. If this is an authorization token,

 * this principal string must match the authentication token principal string or the

 * message will be rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // this could be any combination of attributes

 String[] principal = getAttributes("principal");

 if (principal != null && principal[0] != null)

 {

 return principal[0];

 }

 System.out.println("getExpiration: returning null");

 return null;

 }

/**

 * Returns a unique identifier of the token based upon information the provider

 * considers makes this a unique token. This will be used for caching purposes

 * and may be used in combination with other token unique IDs that are part of

 * the same Subject.

 *

 * This method should return null if you want the access ID of the user to represent

 * uniqueness. This is the typical scenario.

 *

 * @return String

 */

 public String getUniqueID()

 {

Chapter 8. Developing extensions to the WebSphere security infrastructure 789

// this could be any combination of attributes

 return getPrincipal();

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the Token object at the target server.

 * @return byte[]

 */

 public byte[] getBytes ()

 {

 if (hashtable != null)

 {

 try

 {

 // do this if the object is set read-only during login commit,

 // since this guarantees no new data gets set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = some_encryption_algorithm (hashtable);

 // you can deserialize the tokenBytes using a similiar decryption algorithm.

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 System.out.println("getBytes: returning null");

 return null;

 }

/**

 * Gets the name of the token, used to identify the byte[] in the protocol message.

 * @return String

 */

 public String getName()

 {

 return "myCookieName";

 }

/**

 * Gets the version of the token as a short. This is also used to identify the

 * byte[] in the protocol message.

 * @return short

 */

 public short getVersion()

 {

 String[] version = getAttributes("version");

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println("getVersion: returning default of 1");

 return 1;

 }

/**

 * When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure any setter methods check that this has been set.

 */

 public void setReadOnly()

 {

 addAttribute("readonly", "true");

 }

790 Securing applications and their environment

/**

 * Called internally to see if the token is readonly

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes("readonly");

 if (readonly != null && readonly[0] != null)

 return new Boolean(readonly[0]).booleanValue();

 System.out.println("isReadOnly: returning default of false");

 return false;

 }

/**

 * Gets the attribute value based on the named value.

 * @param String key

 * @return String[]

 */

 public String[] getAttributes(String key)

 {

 ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

 return null;

 }

/**

 * Sets the attribute name/value pair. Returns the previous values set for key,

 * or null if not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

 // get the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

 if (!isReadOnly())

 {

 // copy the ArrayList to a String[] as it currently exists

 String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // allocate a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // add the String to the current array list

 array.add(value);

 // add the current ArrayList to the Hashtable

 hashtable.put(key, array);

 // return the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

Chapter 8. Developing extensions to the WebSphere security infrastructure 791

/**

 * Gets the List of all attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

 {

 return hashtable.keys();

 }

/**

 * Returns a deep copying of this token, if necessary.

 * @return Object

 */

 public Object clone()

 {

 com.ibm.websphere.security.token.CustomSingleSignonImpl deep_clone =

 new com.ibm.websphere.security.token.CustomSingleSignonTokenImpl();

 java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

 for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

}

Example: A custom single sign-on token login module

This file shows how to determine if the login is an initial login or a propagation login.

For information on initialization and on what to do during login and commit, see “Developing custom login

modules for a system login configuration” on page 363.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // handle exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

792 Securing applications and their environment

List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // iterate through the list looking for your custom token

 for (int i=0; i

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom SingleSignonToken

 // implementation

 if (tokenHolder.getName().equals("myCookieName")

 && tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom SingleSignonToken constructor

 // to deserialize

 customSSOToken = new

 com.ibm.websphere.security.token.CustomSingleSignonTokenImpl

 (tokenHolder.getBytes());

 }

 }

 }

 else

 // This is not a propagation login. Create a new instance of your

 // SingleSignonToken implementation

 {

 // Gets the principal from the default SingleSignonToken. This principal

 // must match all tokens.

 defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)

 sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

 String principal = defaultAuthToken.getPrincipal();

 // Adds a new custom single sign-on (SSO) token. This is an initial login.

 // Pass the principal into the constructor

 customSSOToken = new com.ibm.websphere.security.token.

 CustomSingleSignonTokenImpl(principal);

 // add any initial attributes

 if (customSSOToken != null)

 {

 customSSOToken.addAttribute("key1", "value1");

 customSSOToken.addAttribute("key1", "value2");

 customSSOToken.addAttribute("key2", "value1");

 customSSOToken.addAttribute("key3", "something different");

 }

 }

 // Note: You can add the token to the Subject during commit in case something

 // happens during the login.

 }

 public boolean commit() throws LoginException

 {

 if (customSSOToken != null)

 {

 // Sets the customSSOToken token into the Subject

 try

 {

 public final SingleSignonToken customSSOTokenPriv = customSSOToken;

 // Do this in a doPrivileged code block so that application code does not

 // need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

Chapter 8. Developing extensions to the WebSphere security infrastructure 793

try

 {

 // Adds the custom SSO token if it is not null and

 // not already in the Subject

 if ((customSSOTokenPriv != null) &&

 (!subject.getPrivateCredentials().

 contains(customSSOTokenPriv)))

 {

 subject.getPrivateCredentials().

 add(customSSOTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.SingleSignonToken customSSOToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Example: An HTTP cookie retrieval

The following example shows you how to retrieve a cookie from an HTTP request, decode the cookie so

that it is back to your original bytes, and create your custom SingleSignonToken object from the bytes.

This example shows how to complete these steps from a login module. However, you also can complete

these steps using a servlet.

For information on what to do during initialization, login and commit, see “Developing custom login

modules for a system login configuration” on page 363.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // Handles the WSTokenHolderCallback to see if this is an

 // initial or propagation login.

 Callback callbacks[] = new Callback[2];

 callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

 callbacks[1] = new WSServletRequestCallback("HttpServletRequest: ");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles the exception

794 Securing applications and their environment

}

 // receive the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 javax.servlet.http.HttpServletRequest request =

 ((WSServletRequestCallback) callbacks[1]).getHttpServletRequest();

 if (request != null)

 {

 // Checks if the cookie is present

 javax.servlet.http.Cookie[] cookies = request.getCookies();

 String[] cookieStrings = getCookieValues (cookies, "myCookeName1");

 if (cookieStrings != null)

 {

 String cookieVal = null;

 for (int n=0;n<cookieStrings.length;n++)

 {

 cookieVal = cookieStrings[n];

 if (cookieVal.length()>0)

 {

 // Removes the cookie encoding from the cookie to get

 // your custom bytes

 byte[] cookieBytes =

 com.ibm.websphere.security.WSSecurityHelper.

 convertCookieStringToBytes(cookieVal);

 customSSOToken =

 new com.ibm.websphere.security.token.

 CustomSingleSignonTokenImpl(cookieBytes);

 // Now that you have your cookie from the request,

 // you can do something with it here, or add it

 // to the Subject in the commit() method for use later.

 if (debug || tc.isDebugEnabled())

 {

 System.out.println("*** GOT MY CUSTOM SSO TOKEN FROM

 THE REQUEST ***");

 }

 }

 }

 }

 }

 }

 public boolean commit() throws LoginException

 {

 if (customSSOToken != null)

 {

 // Sets the customSSOToken token into the Subject

 try

 {

 public final SingleSignonToken customSSOTokenPriv = customSSOToken;

 // Do this in a doPrivileged code block so that application code does not

 // need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Add the custom SSO token if it is not null and not

 // already in the Subject

 if ((customSSOTokenPriv != null) &&

 (!subject.getPrivateCredentials().

 contains(customSSOTokenPriv)))

Chapter 8. Developing extensions to the WebSphere security infrastructure 795

{

 subject.getPrivateCredentials().add(customSSOTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Private method to get the specific cookie from the request

 private String[] getCookieValues (Cookie[] cookies, String hdrName)

 {

 Vector retValues = new Vector();

 int numMatches=0;

 if (cookies != null)

 {

 for (int i = 0; i < cookies.length; ++i)

 {

 if (hdrName.equals(cookies[i].getName()))

 {

 retValues.add(cookies[i].getValue());

 numMatches++;

 System.out.println(cookies[i].getValue());

 }

 }

 }

 if (retValues.size()>0)

 return (String[]) retValues.toArray(new String[numMatches]);

 else

 return null;

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.SingleSignonToken customSSOToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Implementing a custom authentication token

This topic explains how you might create your own authentication token implementation, which is set in the

login Subject and propagated downstream.

About this task

With this implementation you can specify an authentication token that can be used by a custom login

module or application. Consider writing your own implementation if you want to accomplish one of the

following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add

that information back on the thread. This task also might include encryption and decryption.

796 Securing applications and their environment

v Affect the overall uniqueness of the Subject using the getUniqueID application programming interface

(API).

Note: Custom authentication token implementations are not used by the security runtime in WebSphere

Application Server to enforce authentication. WebSphere Application Security runtime uses this

token in the following situations only:

v Call the getBytes method for serialization

v Call the getForwardable method to determine whether to serialize the authentication token.

v Call the getUniqueId method for uniqueness

v Call the getName and the getVersion methods for adding serialized bytes to the token holder that

is sent downstream

All of the other uses are custom implementations.

To implement a custom authentication token, you must complete the following steps:

1. Write a custom implementation of the AuthenticationToken interface. Many different methods are

available for implementing the AuthenticationToken interface. However, make sure the methods that

are required by the AuthenticationToken interface and the token interface are fully implemented. After

you implement this interface, you can place it in the install_dir/classes directory. Alternatively, you

can place the class in any private directory. However, make sure that the WebSphere Application

Server class loader can locate the class and that it is granted the appropriate permissions. You can

add the Java archive (JAR) file or directory that contains this class into the server.policy file so the

class has the necessary permissions required by the server code.

Note: All of the token types that are defined by the propagation framework have similar interfaces.

The token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token

interface. This interface defines most of the methods. If you plan to implement more than one

token type, consider creating an abstract class that implements the

com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

authentication token, might extend the abstract class and then most of the work is complete.

To see an implementation of the AuthenticationToken interface, see “Example: A

com.ibm.wsspi.security.token.AuthenticationToken implementation” on page 798.

2. Add and receive the custom authentication token during WebSphere Application Server logins. This

task is typically accomplished by adding a custom login module to the various application and system

login configurations. However, to deserialize the information you must plug in a custom login module.

After the object is instantiated in the login module, you can add the object to the Subject during the

commit method.

If you only want to add information to the Subject to get propagated, see “Propagating a custom Java

serializable object” on page 805. If you want to ensure that the information is propagated, do your own

custom serialization, or specify the uniqueness for Subject caching purposes, consider writing your

own authentication token implementation.

The code sample in “Example: A custom authentication token login module” on page 803, shows how

to determine if the login is an initial login or a propagation login. The difference between these login

types is whether the WSTokenHolderCallback callback contains propagation data. If the callback does

not contain propagation data, initialize a new custom authentication token implementation and set it

into the Subject. If the callback contains propagation data, look for your specific custom authentication

token TokenHolder instance, convert the byte array back into your custom AuthenticationToken object,

and set it back into the Subject. The code sample shows both instances.

You can make your authentication token read-only in the commit phase of the login module. If you do

not make the token read-only, attributes can be added within your applications.

3. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module for

receiving serialized versions of your custom authorization token.

Chapter 8. Developing extensions to the WebSphere security infrastructure 797

Because this login module relies on information in the shared state that is added by the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module, add this login module

after the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module. For

information on how to add your custom login module to the existing login configurations, see

“Developing custom login modules for a system login configuration” on page 363.

Results

After completing these steps, you have implemented a custom authentication token.

Example: A com.ibm.wsspi.security.token.AuthenticationToken implementation

The following example illustrates an authentication token implementation. The following sample code does

not extend an abstract class, but rather implements the com.ibm.wsspi.security.token.AuthenticationToken

interface directly. You can implement the interface directly, but it might cause you to write duplicate code.

However, you might choose to implement the interface directly if considerable differences exist between

how you handle the various token implementations.

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.OutputStream;

import java.io.InputStream;

import java.util.ArrayList;

public class CustomAuthenticationTokenImpl implements com.ibm.wsspi.security.

 token.AuthenticationToken

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

 private byte[] tokenBytes = null;

 // 2 hours in millis, by default

 private static long expire_period_in_millis = 2*60*60*1000;

 private String oidName = "your_oid_name";

 // This string can really be anything if you do not want to use an OID.

/**

 * Constructor used to create initial AuthenticationToken instance

 */

 public CustomAuthenticationTokenImpl (String principal)

 {

 // Sets the principal in the token

 addAttribute("principal", principal);

 // Sets the token version

 addAttribute("version", "1");

 // Sets the token expiration

 addAttribute("expiration", new Long(System.currentTimeMillis()

 + expire_period_in_millis).toString());

 }

/**

 * Constructor used to deserialize the token bytes received during a

 * propagation login.

 */

 public CustomAuthenticationTokenImpl (byte[] token_bytes)

 {

 try

 {

798 Securing applications and their environment

// The data in token_bytes should be signed and encrypted if the

 // hashtable is acting as an authentication token.

 hashtable = (java.util.Hashtable) custom_decryption_algorithm (token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

 * Validates the token including expiration, signature, and so on.

 * @return boolean

 */

 public boolean isValid ()

 {

 long expiration = getExpiration();

 // If you set the expiration to 0, the token does not expire

 if (expiration != 0)

 {

 // Returns a response that identifies whether this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println("isValid: returning " + valid);

 return valid;

 }

 else

 {

 System.out.println("isValid: returning true by default");

 return true;

 }

 }

/**

 * Gets the expiration as a long type.

 * @return long

 */

 public long getExpiration()

 {

 // Gets the expiration value from the hashtable

 String[] expiration = getAttributes("expiration");

 if (expiration != null && expiration[0] != null)

 {

 // The expiration is the first element and there should only be one expiration

 System.out.println("getExpiration: returning " + expiration[0]);

 return new Long(expiration[0]).longValue();

 }

 System.out.println("getExpiration: returning 0");

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

 {

 // You can choose whether your token gets propagated. In some cases

 // you might want it to be local only.

 return true;

 }

Chapter 8. Developing extensions to the WebSphere security infrastructure 799

/**

 * Gets the principal to which this token belongs. If this is an

 * authorization token, this principal string must match the

 * authentication token principal string or the message is rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // This value might be any combination of attributes

 String[] principal = getAttributes("principal");

 if (principal != null && principal[0] != null)

 {

 return principal[0];

 }

 System.out.println("getExpiration: returning null");

 return null;

 }

/**

 * Returns a unique identifier of the token based upon information the provider

 * considers makes this a unique token. This identifier is used for caching purposes

 * and can be used in combination with other token unique IDs that are part of

 * the same Subject.

 *

 * This method should return null if you want the accessID of the user to represent

 * uniqueness. This is the typical scenario.

 *

 * @return String

 */

 public String getUniqueID()

 {

 // If you do not want to affect the cache lookup, just return NULL here.

 return null;

 String cacheKeyForThisToken = "dynamic attributes";

 // If you do want to affect the cache lookup, return a string of

 // attributes that you want factored into the lookup.

 return cacheKeyForThisToken;

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the token object at the target server.

 * @return byte[]

 */

 public byte[] getBytes ()

 {

 if (hashtable != null)

 {

 try

 {

 // Do this if the object is set read-only during login commit

 // because this ensures that new data is not set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = custom_encryption_algorithm (hashtable);

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

800 Securing applications and their environment

System.out.println("getBytes: returning null");

 return null;

 }

/**

 * Gets the name of the token, which is used to identify the byte[] in the

 * protocol message.

 * @return String

 */

 public String getName()

 {

 return oidName;

 }

/**

 * Gets the version of the token as a short type. This also is used

 * to identify the byte[] in the protocol message.

 * @return short

 */

 public short getVersion()

 {

 String[] version = getAttributes("version");

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println("getVersion: returning default of 1");

 return 1;

 }

/**

 * When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure that any set methods check that this state has been set.

 */

 public void setReadOnly()

 {

 addAttribute("readonly", "true");

 }

/**

 * Called internally to see if the token is read-only

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes("readonly");

 if (readonly != null && readonly[0] != null)

 return new Boolean(readonly[0]).booleanValue();

 System.out.println("isReadOnly: returning default of false");

 return false;

 }

/**

 * Gets the attribute value based on the named value.

 * @param String key

 * @return String[]

 */

 public String[] getAttributes(String key)

 {

 ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

Chapter 8. Developing extensions to the WebSphere security infrastructure 801

return null;

 }

/**

 * Sets the attribute name/value pair. Returns the previous values set for key,

 * or null if not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

 // Gets the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

 if (!isReadOnly())

 {

 // Copies the ArrayList to a String[] as it currently exists

 String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // Allocates a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // Adds the String to the current array list

 array.add(value);

 // Adds the current ArrayList to the Hashtable

 hashtable.put(key, array);

 // Returns the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

/**

 * Gets the list of all attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

 {

 return hashtable.keys();

 }

/**

 * Returns a deep copying of this token, if necessary.

 * @return Object

 */

 public Object clone()

 {

 com.ibm.wsspi.security.token.AuthenticationToken deep_clone =

 new com.ibm.websphere.security.token.CustomAuthenticationTokenImpl();

 java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

802 Securing applications and their environment

for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

/**

 * This method returns true if this token is storing a user ID and password

 * instead of a token.

 * @return boolean

 */

 public boolean isBasicAuth()

 {

 return false;

 }

}

Example: A custom authentication token login module

This examples shows how to determine if the login is an initial login or a propagation login.

For information on what to do during initialization, login and commit, see “Developing custom login

modules for a system login configuration” on page 363.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // Iterates through the list looking for your custom token

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom AuthenticationToken

 // implementation

 if (tokenHolder.getName().equals("your_oid_name") && tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom AuthenticationToken constructor

 // to deserialize

 customAuthzToken = new

 com.ibm.websphere.security.token.

 CustomAuthenticationTokenImpl(tokenHolder.getBytes());

Chapter 8. Developing extensions to the WebSphere security infrastructure 803

}

 }

 }

 else

 // This is not a propagation login. Create a new instance of your

 // AuthenticationToken implementation

 {

 // Gets the principal from the default AuthenticationToken. This principal

 // should match all default tokens.

 // Note: WebSphere Application Server runtime only enforces this for

 // default tokens. Thus, you can choose

 // to do this for custom tokens, but it is not required.

 defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)

 sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

 String principal = defaultAuthToken.getPrincipal();

 // Adds a new custom authentication token. This is an initial login. Pass

 // the principal into the constructor

 customAuthToken = new com.ibm.websphere.security.token.

 CustomAuthenticationTokenImpl(principal);

 // Adds any initial attributes

 if (customAuthToken != null)

 {

 customAuthToken.addAttribute("key1", "value1");

 customAuthToken.addAttribute("key1", "value2");

 customAuthToken.addAttribute("key2", "value1");

 customAuthToken.addAttribute("key3", "something different");

 }

 }

 // Note: You can add the token to the Subject during commit in case

 // something happens during the login.

 }

 public boolean commit() throws LoginException

 {

 if (customAuthToken != null)

 {

 // Sets the customAuthToken token into the Subject

 try

 {

 private final AuthenticationToken customAuthTokenPriv = customAuthToken;

 // Do this in a doPrivileged code block so that application code does

 // not need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Adds the custom Authentication token if it is not

 // null and not already in the Subject

 if ((customAuthTokenPriv != null) &&

 (!subject.getPrivateCredentials().

 contains(customAuthTokenPriv)))

 {

 subject.getPrivateCredentials().add(customAuthTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

804 Securing applications and their environment

}

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.AuthenticationToken customAuthToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Propagating a custom Java serializable object

This document describes how to add an object into the Subject from a login module and describes other

infrastructure considerations to make sure that the Java object gets propagated.

Before you begin

Prior to completing this task, verify that security propagation is enabled in the administrative console.

About this task

With security attribute propagation enabled, you can propagate data either horizontally with single sign-on

(SSO) enabled or downstream using Common Secure Interoperability Version 2 (CSIv2). When a login

occurs, either through an application login configuration or a system login configuration, a custom login

module can be plugged in to add Java serialized objects into the Subject during login. This document

describes how to add an object into the Subject from a login module and describes other infrastructure

considerations to make sure that the Java object gets propagated.

1. Add your custom Java object into the Subject from a custom login module. A two-phase process exists

for each Java Authentication and Authorization Service (JAAS) login module. WebSphere Application

Server completes the following processes for each login module present in the configuration:

login method

In this step, the login configuration callbacks are analyzed, if necessary, and the new objects

or credentials are created.

commit method

In this step, the objects or credentials that are created during login are added into the Subject.

After a custom Java object is added into the Subject, WebSphere Application Server serializes the

object on the sending server, deserializes the object on the receiving server, and adds the object back

into the Subject downstream. However, some requirements exist for this process to occur successfully.

For more information on the JAAS programming model, see the JAAS information provided in Security:

Resources for learning.

Note: Whenever you plug a custom login module into the login infrastructure of WebSphere

Application Server, make sure that the code is trusted. When you add the login module into the

profile_root/classes directory, the login module has Java 2 Security AllPermissions

permissions. For more information, see “Creating a classes subdirectory in your profile for

custom classes” on page 712. However, because the login module might be run after the

application code on the call stack, you might add doPrivileged code so that you do not need to

add additional properties to your applications.

The following code sample shows how to add doPrivileged code. For information on what to do during

initialization, login and commit, see “Developing custom login modules for a system login configuration”

on page 363.

Chapter 8. Developing extensions to the WebSphere security infrastructure 805

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 }

 public boolean login() throws LoginException

 {

 // Construct callback for the WSTokenHolderCallback so that you

 // can determine if

 // your custom object has propagated

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

 try

 {

 _callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 throw new LoginException (e.getLocalizedMessage());

 }

 // Checks to see if any information is propagated into this login

 List authzTokenList = ((WSTokenHolderCallback) callbacks[1]).

 getTokenHolderList();

 if (authzTokenList != null)

 {

 for (int i = 0; i< authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Look for your custom object. Make sure you use

 // "startsWith"because there is some data appended

 // to the end of the name indicating in which Subject

 // Set it belongs. Example from getName():

 // "com.acme.CustomObject (1)". The class name is

 // generated at the sending side by calling the

 // object.getClass().getName() method. If this object

 // is deserialized by WebSphere Application Server,

 // then return it and you do not need to add it here.

 // Otherwise, you can add it below.

 // Note: If your class appears in this list and does

 // not use custom serialization (for example, an

 // implementation of the Token interface described in

 // the Propagation Token Framework), then WebSphere

 // Application Server automatically deserializes the

 // Java object for you. You might just return here if

 // it is found in the list.

 if (tokenHolder.getName().startsWith("com.acme.CustomObject"))

 return true;

 }

 }

 // If you get to this point, then your custom object has not propagated

 myCustomObject = new com.acme.CustomObject();

 myCustomObject.put("mykey", "mydata");

 }

 public boolean commit() throws LoginException

 {

 try

 {

 // Assigns a reference to a final variable so it can be used in

806 Securing applications and their environment

// the doPrivileged block

 final com.acme.CustomObject myCustomObjectFinal = myCustomObject;

 // Prevents your applications from needing a JAAS getPrivateCredential

 // permission.

 java.security.AccessController.doPrivileged(new java.security.

 PrivilegedExceptionAction()

 {

 public Object run() throws java.lang.Exception

 {

 // Try not to add a null object to the Subject or an object

 // that already exists.

 if (myCustomObjectFinal != null && !subject.getPrivateCredentials().

 contains(myCustomObjectFinal))

 {

 // This call requires a special Java 2 Security permission,

 // see the JAAS application programming interface (API)

 // documentation.

 subject.getPrivateCredentials().add(myCustomObjectFinal);

 }

 return null;

 }

 });

 }

 catch (java.security.PrivilegedActionException e)

 {

 // Wraps the exception in a WSLoginFailedException

 java.lang.Throwable myException = e.getException();

 throw new WSLoginFailedException (myException.getMessage(), myException);

 }

 }

 // Defines your login module variables

 com.acme.CustomObject myCustomObject = null;

}

2. Verify that your custom Java class implements the java.io.Serializable interface. An object that is added

to the Subject must be serialized if you want the object to propagate. For example, the object must

implement the java.io.Serializable interface. If the object is not serialized, the request does not fail, but

the object does not propagate. To make sure an object that is added to the Subject is propagated,

implement one of the token interfaces that is defined in “Security attribute propagation” on page 436 or

add attributes to one of the following existing default token implementations:

AuthorizationToken

Add attributes if they are user-specific. For more information, see “Using the default

authorization token” on page 443.

PropagationToken

Add attributes that are specific to an invocation. For more information, see “Using the default

propagation token” on page 447.

If you are careful adding custom objects and follow all the steps to make sure that WebSphere

Application Server can serialize and deserialize the object at each hop, then it is sufficient to use

custom Java objects only.

3. Verify that your custom Java class exists on all of the systems that might receive the request.

When you add a custom object into the Subject and expect WebSphere Application Server to

propagate the object, make sure that the class definition for that custom object exists in the

profile_root/classes directory on all of the nodes where serialization or deserialization might occur.

Also, verify that the Java class versions are the same.

4. Verify that your custom login module is configured in all of the login configurations used in your

environment where you need to add your custom object during a login. Any login configuration that

interacts with WebSphere Application Server generates a Subject that might be propagated outbound

for an Enterprise JavaBeans (EJB) request. If you want WebSphere Application Server to propagate a

custom object in all cases, make sure that the custom login module is added to every login

Chapter 8. Developing extensions to the WebSphere security infrastructure 807

configuration that is used in your environment. For more information, see “Developing custom login

modules for a system login configuration” on page 363.

5. Verify that security attribute propagation is enabled on all of the downstream servers that receive the

propagated information. When an EJB request is sent to a downstream server and security attribute

propagation is disabled on that server, only the authentication token is sent for backwards compatibility.

Therefore, you must review the configuration to verify that propagation is enabled in all of the cells that

might receive requests. You must check several places in the administrative console to make sure

propagation is fully enabled. For more information, see “Propagating security attributes among

application servers” on page 440.

6. Add any custom objects to the propagation exclude list that you do not want to propagate. You can

configure a property to exclude the propagation of objects that match specific class names, package

names, or both. For example, you can have a custom object that is related to a specific process. If the

object is propagated, it does not contain valid information. You must tell WebSphere Application Server

not to propagate this object. Complete the following steps to specify the object in the propagation

exclude list, using the administrative console:

a. Click Security > Global security > Custom properties > New.

b. Add com.ibm.ws.security.propagationExcludeList in the Name field.

c. Add the name of the custom object in the Value field. You can add a list of custom objects to the

propagation exclude list, separated by a colon (:). For example, you might enter

com.acme.CustomLocalObject:com.acme.private.*. You can enter a class name such as

com.acme.CustomLocalObject or a package name such as com.acme.private.*. In this example,

WebSphere Application Server does not propagate any class that equals

com.acme.CustomLocalObject or begins with com.acme.private.

Although you can add custom objects to the propagation exclude list, you must be aware of a side

effect. WebSphere Application Server stores the opaque token, or the serialized Subject contents,

in a local cache for the life of the single sign-on (SSO) token. The life of the SSO token, which has

a default of two hours, is configured in the SSO properties on the administrative console. The

information that is added to the opaque token includes only the objects not in the exclude list.

If your authentication cache does not match your SSO token timeout, configure the authentication

cache properties. See “Configuring the authentication cache” on page 453. It is recommended that

you make your authentication cache timeout value equal to the SSO token timeout.

Results

As a result of this task, custom Java serializable objects are propagated horizontally or downstream. For

more information on the differences between horizontal and downstream propagation, see “Security

attribute propagation” on page 436.

Enabling a plugpoint for custom password encryption

Two properties govern the protection of passwords. By configuring these two properties, you can enable a

plugpoint for custom password encryption.

Before you begin

To view an example code sample that illustrates the

com.ibm.wsspi.security.crypto.CustomPasswordEncryption interface, see “Plug point for custom password

encryption” on page 809.

About this task

The encryption method is called for password processing whenever the custom class is configured and

custom encryption is enabled. The decryption method is called whenever the custom class is configured

and the password contains the {custom:alias} tag. The custom:alias tag is stripped prior to decryption.

808 Securing applications and their environment

1. To enable custom password encryption, you must configure two properties:

v com.ibm.wsspi.security.crypto.customPasswordEncryptionClass - Defines the custom class

that implements the com.ibm.wsspi.security.crypto.CustomPasswordEncryption password encryption

interface.

v com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled - Defines when the custom

class is used for default password processing. When the passwordEncryptionEnabled option is not

specified or set to false, and the passwordEncryptionClass class is specified, the decryption

method is called whenever a {custom:alias} tag still exists in the configuration repository.

2. To configure custom password encryption, configure both of these properties in the security.xml file.

The custom encryption class (com.acme.myPasswordEncryptionClass) must be placed in a Java

archive (JAR) file in the ${APP_SERVER_ROOT}/classes directory in all WebSphere Application Server

processes. Every configuration document that contains a password (security.xml and any application

bindings that contain RunAs passwords), must be saved before all of the passwords become

encrypted with the custom encryption class . For client side property files such as sas.client.props

and soap.client.props, use the PropFilePasswordEncoder.bat or PropFilePasswordEncode.sh script to

enable custom processing. This script must have the two properties configured as system properties

on the Java command line of the script. The same tools that are used for encoding and decoding can

be used for encryption and decryption when custom password encryption is enabled.

3. If the custom implementation class defaults to the

com.ibm.wsspi.security.crypto.CustomPasswordEncryptionImpl interface, and this class is present in

the class path, then encryption is enabled by default. This simplifies the enablement process for all

nodes. It is not necessary to define any other properties except for those that the custom

implementation requires. To disable encryption, but still use this class for decryption, specify the

following class.

v com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false

What to do next

Whenever a custom encryption class encryption operation is called, and it creates a run-time exception or

a defined PasswordEncryptException exception, the WebSphere Application Server runtime uses the {xor}

algorithm to encode the password. This encoding prevents the storage of the password in plain text. After

the problem with the custom class has been resolved, it automatically encrypts the password the next time

the configuration document is saved.

When a RunAs role is assigned a user ID and password, it currently is encoded using the WebSphere

Application Server encoding function. Therefore, after the custom plug point is configured to encrypt the

passwords, it encrypts the passwords for the RunAs bindings as well. If the deployed application is moved

to a cell that does not have the same encryption keys, or the custom encryption is not yet enabled, a login

failure results because the password is not readable.

One of the responsibilities of the custom password encryption implementation is to manage the encryption

keys. This class must decrypt any password that it encrypted. Any failure to decrypt a password renders

that password to be unusable, and the password must be changed in the configuration. All encryption keys

must be available for decryption there and no passwords are left using those keys. The master secret

must be maintained by the custom password encryption class to protect the encryption keys.

You can manage the master secret by using a stash file for the keystore, or by using a password locator

that enables the custom encryption class to locate the password so that it can be locked down.

Plug point for custom password encryption

A plug point for custom password encryption can be created to encrypt and decrypt all passwords in

WebSphere Application Server that are currently encoded or decoded using Base64-encoding.

Chapter 8. Developing extensions to the WebSphere security infrastructure 809

The implementation class of this plug point has the responsibility for managing keys, determining the

encryption algorithm to use, and for protecting the master secret. The WebSphere Application Server

runtime stores the encrypted passwords in their existing locations, preceded with {custom:alias} tags

instead of {xor} tags. The custom part of the tag indicates that it is a custom algorithm. The alias part of

the tag is specified by the custom implementation, which helps to indicate how the password is encrypted.

The implementation can include the key alias, encryption algorithm, encryption mode, or encryption

padding.

A custom provider of this plug point must implement an interface that is designed to encrypt and decrypt

passwords. The interface is called by the WebSphere Application Server runtime whenever the custom

plug point is enabled. The custom algorithm becomes one of the supported algorithms when the plug point

is enabled. Other supported algorithms include {xor} (standard base64 encoding) and {os400} which is

used on the iSeries platform.

The following example illustrates the com.ibm.wsspi.security.crypto.CustomPasswordEncryption interface:

package com.ibm.wsspi.security.crypto;

public interface CustomPasswordEncryption

{

 /**

 * The encrypt operation takes a UTF-8 encoded String in the form of a byte[].

 * The byte[] is generated from String.getBytes("UTF-8").

 * An encrypted byte[] is returned from the implementation in the EncryptedInfo

 * object. Additionally, a logical key alias is returned in the EncryptedInfo

 * objectwhich is passed back into the decrypt method to determine which key was

 * used to encrypt this password. The WebSphere Application Server runtime has

 * no knowledge of the algorithm or the key used to encrypt the data.

 *

 * @param byte[]

 * @return com.ibm.wsspi.security.crypto.EncryptedInfo

 * @throws com.ibm.wsspi.security.crypto.PasswordEncryptException

 **/

 public EncryptedInfo encrypt (byte[] decrypted_bytes) throws PasswordEncryptException;

 /**

 * The decrypt operation takes the EncryptedInfo object containing a byte[]

 * and the logical key alias and converts it to the decrypted byte[]. The

 * WebSphere Application Server runtime converts the byte[] to a String

 * using new String (byte[], "UTF-8");

 *

 * @param com.ibm.wsspi.security.crypto.EncryptedInfo

 * @return byte[]

 * @throws com.ibm.wsspi.security.crypto.PasswordDecryptException

 **/

 public byte[] decrypt (EncryptedInfo info) throws PasswordDecryptException;

 /**

 * The following is reserved for future use and is currently not

 * called by the WebSphere Application Server runtime.

 *

 * @param java.util.HashMap

 **/

 public void initialize (java.util.HashMap initialization_data);

}

The com.ibm.wsspi.security.crypto.EncryptedInfo class contains the encrypted bytes with the user-defined

alias that is associated with the encrypted bytes. This information is passed back into the encryption

method to help determine how the password was originally encrypted.

package com.ibm.wsspi.security.crypto;

public class EncryptedInfo

{

 private byte[] bytes;

 private String alias;

810 Securing applications and their environment

/**

 * This constructor takes the encrypted bytes and a keyAlias as parameters.

 * This constructor is used to pass to or from the WebSphere Application Server

 * runtime to enable the runtime to associate the bytes with a specific key that

 * is used to encrypt the bytes.

 */

 public EncryptedInfo (byte[] encryptedBytes, String keyAlias)

 {

 bytes = encryptedBytes;

 alias = keyAlias;

 }

/**

 * This command returns the encrypted bytes.

 *

 * @return byte[]

 */

 public byte[] getEncryptedBytes()

 {

 return bytes;

 }

/**

 * This command returns the key alias. The key alias is a logical string that is

 * associated with the encrypted password in the model. The format is

 * {custom:keyAlias}encrypted_password. Typically, just the key alias is placed

 * here, but algorithm information can also be returned.

 *

 * @return String

 */

 public String getKeyAlias()

 {

 return alias;

 }

}

The encryption method is called for password processing whenever the custom class is configured and

custom encryption is enabled. The decryption method is called whenever the custom class is configured

and the password contains the {custom:alias} tag . The custom:alias tag is stripped prior to decryption.

For more information, see Enabling custom password encryption.

Chapter 8. Developing extensions to the WebSphere security infrastructure 811

812 Securing applications and their environment

Chapter 9. Auditing the security infrastructure

You can use the Auditing Facility to track and archive auditable events to ensure the integrity of your

system.

Before you begin

Before enabling the security auditing subsystem, you must enable global security in your environment.

About this task

Note: The security auditing subsystem has been introduced as part of the security infrastructure. The

primary responsibility of the security infrastructure is to prevent unauthorized access and usage of

resources. Utilizing security auditing has two primary goals:

v Confirming the effectiveness and integrity of the existing security configuration.

v Identifying areas where improvement to the security configuration might be needed.

Security auditing achieves these goals by providing the infrastructure that allows you to implement

your code to capture and store supported auditable security events. During run time, all code other

than the Java EE 5 application code is considered to be trusted. Each time a Java EE 5 application

accesses a secured resource, any internal application server process with an audit point included

can be recorded as an auditable event.

The security auditing subsystem has the ability to capture the following types of auditable events:

v Authentication

v Authorization

v Principal/Credential Mapping

v Audit policy management

v Administrative configuration management

v User registry and identity management

v Delegation

Note: Audit instrumentation has not been included in the Web services client run time.

These types of events can be recorded into audit log files. Each audit log has the option to be signed and

encrypted to ensure data integrity. These audit log files can be analyzed to discover breaches over the

existing security mechanisms and to discover potential weaknesses in the current security infrastructure.

Security event audit records are also useful for providing evidence of accountability and nonrepudiation as

well as vulnerability analysis. The security auditing configuration provides four default filters, a default audit

service provider, and a default event factory. The default implementation write to a binary text-file based

log. Use this topic to customize your security auditing subsystem.

1. “Enabling the security auditing subsystem” on page 814

Security auditing will not be performed unless the audit security subsystem has been enabled. Global

security must be enabled for the security audit subsystem to function, as no security auditing occurs if

global security is not also enabled.

2. “Administrative roles” on page 504

A user with the auditor role is required to enable and configure the security auditing subsystem. It is

important to require strict access control for security policy management. The auditor role has been

created providing granularity to allow for separation of the auditing role from the authority of the

administrator. When Security Auditing is initially enabled, the cell administrator has auditor privileges. If

the environment requires separation of privileges, then changes will need to be made to the default

role assignments.

© IBM Corporation 2007 813

3. “Creating security auditing event type filters” on page 820

You can configure event type filters to only record a specific subset of auditable event types in your

audit logs. Filtering the event types that are recorded makes for easier analysis of your audit records

by ensuring only those records important to your environment are archived.

4. Configuring the audit service provider.

The audit service provider is used to format the audit data object that was passed to it before

outputting the data to a repository. A default audit service provider implementation is in included. See

“Configuring the default audit service providers for security auditing” on page 830 for more details on

the default implementation. A third party implementation can also be coded and used. See “Configuring

a third party audit service providers for security auditing” on page 832 for more details on this

implementation.

5. “Configuring audit event factories for security auditing” on page 834

The audit event factory gathers the data associated with the auditable events and creates an audit

data object. The audit data object is then sent to the audit service provider to be formatted and

recorded to the repository.

6. “Protecting your security audit data” on page 837

It is important to secure and ensure the data integrity of the recorded audit data. To ensure that access

to the data is restricted and tamper proof, you can encrypt and sign your audit data.

7. “Configuring security audit subsystem failure notifications” on page 827

Notifications can be enabled to generate alerts when the security auditing subsystem experiences a

failure. Notifications can be configured to record an alert in the System logs or can be configured to

send an alert via e-mail to a specified list of recipients.

Results

After successfully completing this task, you audit data will be recorded for the selected auditable events

that were specified in the configuration.

What to do next

After configuring security auditing, you can analyze your audit data for potential weaknesses in the current

security infrastructure and to discover security breaches that may have occurred over the existing security

mechanisms. You can also use the security auditing subsystem to provide data for problem determination.

If the default audit service provider was selected, the resulting binary audit log file can be read using the

Audit Reader.

Related tasks

“Configuring security auditing using scripting” on page 1032
Security auditing provides tracking and archiving of auditable events. This topic uses the wsadmin tool to

enable and administer your security auditing configurations.

Enabling the security auditing subsystem

Security auditing will not be performed unless the audit security subsystem has been enabled. Global

security must be enabled for the security audit subsystem to function, as no security auditing occurs if

global security is not also enabled.

Before you begin

Before enabling security auditing subsystem, enable global security in your environment.

814 Securing applications and their environment

About this task

The recording of auditable security events is achieved by enabled the security auditing subsystem. Follow

these steps to enable the security auditing subsystem.

1. Click Security > Security auditing.

2. Select Enable security auditing. The Enable security auditing check box is not selected by default. This

check box must be selected to allow security auditing to be performed with the configurations that have

been specified in the audit.xml file.

Note: The audit.xml file is used to store the audit subsystem configurations. Changes to the security

auditing subsystem should be made with the user interface or the wsadmin utility. This file

should not be edited manually.

3. Select the action from the Audit subsystem failure action dropdown menu to be perform when an audit

subsystem failure occurs. Notifications configured to warn of a security auditing subsystem failure will

not be posted if the No Warning option is selected for this field. If you select either the Log warning or

the Terminate server option, then you must also configure a notification for the action to be performed.

4. Select the Auditor ID from the dropdown menu. The auditor role is needed to make changed to the

security auditing configurations. By default, when auditing is first enabled, the primary administrator is

also given the auditor role. The primary administrator can then add the auditor role to other users. After

the auditor role is added to other users, the auditor role can be removed from the administrator to

create a separation of authority between the auditor and the administrator. The Auditor ID is the user

considered to be the primary auditor.

5. Optional: Select Enable verbose auditing. When an auditable event is recorded, a default set of audit

data is included in the audit data object and recorded to the repository. An additional set of audit data

is made available by enabling verbose auditing.

6. Click Apply.

7. Restart the application server. The application server must be restarted before the changes go into

effect.

Results

The successful competition of these steps results in the security auditing subsystem being enabled.

What to do next

After enabling the security auditing subsystem, refinements can be made to the configuration. You might

want to modify the access control of the audit subsystem to separate the authority of the administrator

from the authority of the auditor. If no changes to your access control are needed, then you can configure

the types of auditable security events should be recorded. To configure the types of events that are

recorded, click Event type filters.

Chapter 9. Auditing the security infrastructure 815

Related tasks

“Enabling security auditing using scripting” on page 1037
Use this task to enable and configure security auditing in your environment with the wsadmin tool. Security

auditing provides tracking and archiving of auditable events.

“Configuring security audit subsystem failure notifications” on page 827
Notifications can be generated by a failure of the security audit subsystem. The security audit subsystem

notifications can alert auditors that the security audit system is no longer recording auditable security

events. Notifications are generated by a failure of the auditing subsystem, they are not related to any

auditable security events or event outcome that has occurred. Notifications triggered by an event or an

event outcome are not supported.

Security Auditing detail

The Security auditing subsystem can be enabled and configured from this panel, by users assigned the

auditor role.

To view this administrative console page, click Security > Security Auditing. If Enable security auditing is

not selected, then all of the other fields on this panel will be disabled.

Enable security auditing

The Enable security auditing check box allows users to enable or disable Security Auditing. By default,

Security Auditing will not be enabled. This field corresponds with the auditEnabled field in the audit.xml file.

Audit subsystem failure action

The Audit subsystem failure action setting describes the behavior of the application server in the event of a

failure in the auditing subsystem. Audit Notifications must be configured in order for notifications of a

failure in the audit subsystem to be logged. If security auditing is not enabled, then these actions will not

be performed. Failures can include an error in the interface or in the event processing. By default, the

audit subsystem failure action setting is set to No warning.

The Audit subsystem failure action dropdown menu has the following options:

v No warning

The No warning action specifies that the auditor will not be notified of a failure in the audit subsystem.

The product will continue processing but audit reporting will be disabled.

v Log warning

The Log warning action specifies that the auditor will be notified of a failure in the audit subsystem. The

product will continue processing but audit reporting will be disabled.

v Terminate server

The Terminate server action specifies the application server to gracefully quiesce when an

unrecoverable error occurs in the auditing subsystem. If e-mail notifications are configured, the auditor

will be sent a notification that an error has occurred. If logging to the system log is configured, the

notification of the failure will be logged to the system file.

Primary auditor user name

The Primary auditor user name dropdown menu defines a valid user which exists in the current user

registry and for whom the auditor role has been given. By default, this field is blank and is a required field.

Enable verbose auditing

The Enable verbose auditing option determines the amount of audit data that is reported in an audit

record. Verbose mode captures all the auditable data points, whereas not enabling verbose mode captures

only a subset of the available data. This option is disabled by default.

816 Securing applications and their environment

Context object fields

Each auditable event has an associated set of information that is available for logging. This information is

grouped into specific context objects. The context objects that are available for logging a specific event are

specified by the event type. This topic details the information that exists for each context object and

specifies whether the information is logged by default or is only logged when the verbose logging option is

enabled.

The SessionContextObj object

 Table 24. SessionContextObj fields

Field Type Description Default or Verbose logging

sessionId String An identifier for the user session Default

remoteAddr String The IP address for the remote host Default

remotePort String The port of the remote host Default

remoteHost String The host name of the remote host Default

The PropagationContextObj object

 Table 25. PropagationContextObj fields

Field Type Description Default or Verbose logging

firstCaller String The identity of the first user in the

caller list

Default

callerList String array A list of names representing the

identities of the users

Verbose

The RegistryContextObj object

 Table 26. RegistryContextObj fields

Field Type Description Default or Verbose logging

type String The type of user registry being

used, such as LDAP or AIX

Default

The ProcessContextObj object

 Table 27. ProcessContextObj fields

Field Type Description Default or Verbose logging

domain String The domain to which the user

belongs

Verbose

realm String The registry partition to which the

user belongs

Default

The EventContextObj object

 Table 28. EventContextObj fields

Field Type Description Default or Verbose logging

lastEventTrailId String The last ID associated with a given

transaction

Verbose

eventTrailId String array An array of IDs that allow events

that belong to a given transaction to

be correlated

Default

creationTime Date The date an event was created Default

globalInstanceId Long The unique identifier of this event Default

Chapter 9. Auditing the security infrastructure 817

The DelegationContextObj object

 Table 29. DelegationContextObj fields

Field Type Description Default or Verbose logging

delegationType String no delegation, simple delegation,

method delegation or switch user

delegation

Default

roleName String The Run as role being used:

runAsClient, runAsSpecified,

runAsSystem, own ID

Default

identityName String Information about the mapped user Default

The AuthnContextObj object

 Table 30. AuthnContextObj fields

Field Type Description Default or Verbose logging

authnType String The type of authentication used Default

The ProviderContextObj object

 Table 31. ProviderContextObj fields

Field Type Description Default or Verbose logging

provider String The provider of the authentication

or authorization service

Default

providerStatus String Status of whether the authentication

or authorization event processed

successfully by the provider

Default

The AuthnMappingContextObj object

 Table 32. AuthnMappingContextObj fields

Field Type Description Default or Verbose logging

mappedSecurityDomain String The security domain after mapping

has occurred

Default

mappedRealm String The realm after mapping has

occurred

Default

mappedUserName String The user name after mapping has

occurred

Default

The AuthnTermContextObj object

 Table 33. AuthnTermContextObj fields

Field Type Description Default or Verbose logging

terminateReason String The reason authentication ended Default

The AccessContextObj object

 Table 34. AccessContextObj fields

Field Type Description Default or Verbose logging

progName String The name of the program that was

involved in the event

Default

action String The action being performed. Default

registryUserName String The name of the user in the registry Default

appUserName String The name of the user within an

application

Default

accessDecision String The decision of the authorization

call

Default

818 Securing applications and their environment

Table 34. AccessContextObj fields (continued)

Field Type Description Default or Verbose logging

resourceName String The name of the resource in the

context of the application

Default

resourceType String The type of resource Default

resourceUniqueId Long The unique identifier of the resource Default

permissionsChecked String array The permissions that were checked

during the authorization call

Default

permissionsGranted String array The permissions that were granted

during the authorization call

Default

rolesChecked String array The roles that were checked during

the authorization call

Default

rolesGranted String array The roles that were granted during

the authorization call

Default

The PolicyContextObj object

 Table 35. PolicyContextObj fields

Field Type Description Default or Verbose logging

policyName String The name of the policy Default

policyType String The type of policy Default

The KeyContextObj object

 Table 36. KeyContextObj fields

Field Type Description Default or Verbose logging

keyLabel String The key or certificate label Default

keyLocation String The physical location of the key

database

Default

certLifetime Date The date when a certificate expires Default

The CipherContextObj object

 Table 37. CipherContextObj fields

Field Type Description Default or Verbose logging

cipherData Byte array The cipher data that is captured Verbose

The MgmtContextObj object

 Table 38. MgmtContextObj fields

Field Type Description Default or Verbose logging

mgmtType String The type of management operation Default

mgmtCommand String The application-specific command

that was performed

Default

targetInfoAttributes Target Atrribute array Information about one or more

secondary objects involved in this

operation

Verbose

The ResponseContextObj object

 Table 39. ResponseContextObj fields

Field Type Description Default or Verbose logging

url String The URL of the HTTP request Default

httpRequestHeaders Attributes array The HTTP request headers

provided by the client

Verbose

Chapter 9. Auditing the security infrastructure 819

Table 39. ResponseContextObj fields (continued)

Field Type Description Default or Verbose logging

httpResponseHeaders Attributes array The HTTP response headers

returned by the server

Verbose

The CustomPropertyContextObj object

 Table 40. CustomPropertyContextObj fields

Field Type Description Default or Verbose logging

key String The label representing the custom

property key name

Verbose

value Object The object value of the custom

property

Verbose

Creating security auditing event type filters

Event type filters are used to specify the types of auditable security events that are audited. Default event

type filters are included with the product, but you can also configure new event type filters to specify a

subset of auditable event types to be recorded by the security auditing subsystem.

Before you begin

Before configuring security auditing filters and the rest of the security auditing subsystem, enable global

security in your environment. You must be assigned the auditor role to complete this task. Event type

filters are used to specify what events are audited. The amount of data that is recorded for each event is

specified with the Enable verbose auditing check box on the same panel used to enable the auditing

subsystem. Navigate to Security → Security auditing to enable security auditing and determine the data

recorded for each event.

About this task

The application server provides the following commonly used event type filters by default in the audit.xml

template file:

 Name Event name Outcome of event

DefaultAuditSpecification_1 SECURITY_AUTHN SUCCESS

DefaultAuditSpecification_2 SECURITY_AUTHN DENIED

DefaultAuditSpecification_3 SECURITY_RESOURCE_ACCESS SUCCESS

DefaultAuditSpecification_4 SECURITY_AUTHN REDIRECT

New event type filters can be created, or the existing default filters can be extended, to capture more

event types and outcomes. Use this task to create new event type filters.

.

1. Click Security > Security Auditing > Event type filters> New.

2. Enter the unique name that should be associated with this event type filter configuration in the Name

field.

3. Specify the events that should be recorded when this filter is applied:

a. Select the events that you want to be audited from the Selectable events list.

b. Click Add >> to add the selected events to the Enabled events list.

c. Select the outcomes that you want to be audited from the Selectable event outcomes list.

d. Click Add >> to add the selected outcomes to the Enabled event outcomes lists.

4. Click OK.

820 Securing applications and their environment

Results

The successful completion of this task results in the creation of an event type filter than can be selected

by the audit service providers and audit event factories to gather and record a specific set of auditable

security events.

What to do next

After creating an event type filter, the filter must be specified in the audit service provider and the audit

event factory to be used to gather or report audit data. The next step in configuring the security auditing

subsystem is you should configure an audit service provider to define where the audit data will be

archived.

Auditable security events

Auditable security events are security events that have audit instrumentation added to the security run time

code to enable them to be recorded. Event filters are configured to specify which auditable security events

are recorded to the audit log files.

The following list describes each valid auditable event that you can specify as an enabled event type when

creating an event filter:

 Event name Description

SECURITY_AUTHN Audits all authentication events.

SECURITY_AUTHN_MAPPING Audits events that record mapping of credentials where there are two user identities involved.

SECURITY_AUTHZ Audits events related to authorization checks when the system enforces access control policies.

SECURITY_MGMT_AUDIT Audits events that record operations related to the audit subsystem such as starting audit, stopping

audit, turning audit on or off, changing configuration of audit filters or level, archiving audit data,

purging audit data.

SECURITY_RESOURCE_ACCESS Audits events that record all accesses to a resource. Examples are all accesses to a file, all HTTP

requests and responses to a given Web page, and all accesses to a critical database table.

SECURITY_AUTHN_DELEGATION Audits events that record delegation, including Identity Assertion, RunAs, and Low Assertion. Used

when the client identity is propagated or when delegation involves the use of a special identity. This

event type will also be used when switching user identities within a given session.

For each audit event type, you must specify an outcome. Valid outcomes include SUCCESS, FAILURE,

REDIRECT, ERROR, DENIED, WARNING, and INFO. Not all outcomes are applicable with all event

types.

Event type filter settings

The Event type filter settings panel is used by an auditor to manage and create event type filters. Default

event type filters have been included, this panel allows additional event type filters to be added. Existing

event type filters are also managed using this panel.

To view this administrative console page, click one of the following paths:

v Security > Security Auditing > Event type filters > event_type_filter_name.

v Security > Security Auditing > Event type filters > New .

Name

The Name field specifies the unique name of the event type filter.

Enabled

The state of enablement of the filter is defined by the Enable check box. This field is represented as a

boolean value. A value of true specifies that the enable field associated with the audit specification in the

audit.xml is set to true. It does not imply that all configured event factories and service providers will be

using this filter.

Chapter 9. Auditing the security infrastructure 821

Filters still need to be configured for each event factory and service provider. Filters are enabled by default

during configuration. However, if a filter has the enabled checkbox set to false, the filter will not gather or

report data for the events and outcomes defined in that filter.

Events to associate with an audit filter

The Events to associate with an audit filter field specifies the auditable security events to be associated

with this filter.

v Selectable events:

The Selectable events list displays the available auditable security events. To enable an event for this

filter, select the event from the Selectable event outcomes list and then click Add.

v Enabled events:

The Enabled events list displays the audit security events that are currently enabled for this filter. To

disable an event for this filter, select the event from the Enabled events list and then click Remove.

Event outcomes to associate with an audit filter

The Event outcomes to associate with an audit filter field specifies the auditable security event outcomes

to be associated with this filter.

v Selectable event outcomes:

The Selectable event outcomes list displays the available auditable security event outcomes. To enable

an event outcome for this filter, select the event outcome from the Selectable event outcomes list and

then click Add.

v Enabled event outcomes:

The Enabled event outcomes list displays the audit security event outcomes that are currently enabled

for this filter. To disable an event outcome for this filter, select the event outcome from the Enabled

event outcomes list and then click Remove.

Event type filters collection

The Event type filters panel displays a listing of all configured audit specifications with their unique names,

the state of their enablement, and the event types and event outcomes that are specified for each

configuration.

To view this administrative console page, click Security > Security Auditing > Event type filters.

Name

The Name field displays the unique name of the event type filter that is being represented.

Enable

The Enable check box species the state of enablement for the filter. This field is represented as a boolean

value. A value of true specifies that the enable field associated with the audit specification in the audit.xml

is set to true. It does not imply that all configured event factories and service providers will be using this

filter. Filters are enabled by default when they are created. Even though it is enabled by default when it is

created, the event type filter must be specified for the event factory and the audit service provider before it

is actually used,

Filters still need to be configured for each event factory and service provider. A filter that is configured for

an event factory or a service provider that has Enabled set to false, will not gather or report data for the

events and outcomes defined in that filter.

Events and outcomes

The event types and the event outcomes that are specified by this filter. The specifications are listed in the

form event_type:event_outcome and separated by commas if multiple combinations are specified by the

event type filter.

822 Securing applications and their environment

Example: Generic Event Interface

This interface is used for processing generic audit events. Other interfaces can be defined which extend

this interface to process specific audit event groupings, such as security events, transaction events, or

other custom groupings. For WebSphere Application Server version 7.0, only security types of events are

supported.

Generic Event Interface

Specific implementations might be developed to handle the data in a particular internal format. When the

buildEvent() method is called, the implementation must then build the specified base event type using the

internal information it has stored. After the information has been stored into a GenericEvent instance, the

GenericEvent interface provides a generic way of handling the event.

public interface GenericEvent {

 /** * Property name used to specify the base event type to the

 * {@link GenericEvent#buildEvent} method.

 */

public static final String BASE_EVENT_TYPE = GenericEvent.class.getName() + ".baseEventType";

/**

* Returns the eventType of the event. The eventType distinguishes between these

* related events.

* The eventType depends on the particular implementation

* of the GenericEvent. For example, the Security Event implmentation has

* eventTypes such as SECURITY_AUTHN and SECURITY_AUTHZ.

* @return eventType - the eventType of the event

*/

public String getEventType();

/**

* Returns the creationTime, the creation time of the event.

* @return creationTime - the creation time of the event

*/ public Date getCreationTime(); /** * Returns the version, the version of the event.

* @return version - the version of the event

*/

public String getVersion (Properties props) throws GenericEventConfigurationException;

/**

* Returns the globalInstanceId, which is a globally unique instance

* identifier for the event.

* @return globalInstanceId - a globally unique instance identifier for the event

*/

public Long getGlobalInstanceId();

/**

* Verifies whether the event is valid; which depends on the particular

* implementation of the GenericEvent. If the event is not valid, an

* GenericEventValidationException error occurs.

*/

public void validate() throws GenericEventValidationException;

 /**

* Returns the internally wrapped base event instance after

* completing and validating the current instance of the GenericEvent.

* An GenericEvent implementation can maintain its information

* in any undisclosed internal format. The buildEvent()

* method that specifies that a specific base event type be built

* using the internal information. This allows GenericEvent implementations

* to support multiple base event formats. Thus the GenericEvent implmentation

* provides a layer of abstraction higher than the base event type.

* @param properties The value of the property BASE_EVENT_TYPE

* defines the type of the base event * @return the internally wrapped base event instance

* @throws GenericEventConfigurationException if the base event type is invalid

* or the JAR files to support that event type are not available.

* @throws GenericEventCompletionException if event completion has failed.

* @throws GenericEventValidationException if the validation has failed. This is

* validation as is performed by the validate() method.

*/

public Object buildEvent(Properties properties)

 throws GenericEventConfigurationException,

 GenericEventValidationException,

 GenericEventCompletionException;

/**

* Returns the wrapped base event instance as a string after

* completing and validating the current instance of the GenericEvent.

* An GenericEvent implementation can maintain its information

* in any undisclosed internal format. It is the buildEventString()

* method that specifies that a specific base event type be built

* using the internal information. This allows GenericEvent implementations

* to support multiple base event formats. Thus the GenericEvent implmentation

Chapter 9. Auditing the security infrastructure 823

* provides a layer of abstraction higher than the base event type.

* @param properties The value of the property BASE_EVENT_TYPE

* defines the type of the base event

* @return the wrapped base event instance as a String

* @throws GenericEventConfigurationException if the base event type is invalid

* or the JAR files to support that event type are not available.

* @throws GenericEventCompletionException if event completion has failed.

* @throws GenericEventValidationException if the validation has failed. This is

* validation as is performed by the validate() method.

*/

public String buildEventString(Properties properties)

 throws GenericEventConfigurationException,

 GenericEventValidationException,

 GenericEventCompletionException;

}

Context objects for security auditing

Each event has an associated set of information that is available for logging. This information is grouped

into specific context objects. The context objects that are available for logging a specific event are

specified by the event type. All event types have the sessionContextObj, eventContextObj,

accessContextObj, propogationContextObj, processContextObj and registryContextObj objects. This topic

specifies which additional context objects are available for each event type.

 Table 41.

Event Type Additional Context Objects

SECURITY_AUTHN authnContextObj, providerContextObj

SECURITY_AUTHN_DELEGATION delegationContextObj

SECURITY_AUTHN_MAPPING authnMappingContextObj, providerContextObj

SECURITY_AUTHZ providerContextObj, policyContextObj

SECURITY_ENCRYPTION keyContextObj

SECURITY_MGMT_AUDIT mgmtContextObj

SECURITY_RESOURCE_ACCESS responseContextObj

For more details on the auditable data that is gather for each of these context objects, see the information

for context object fields.

Context object fields

Each auditable event has an associated set of information that is available for logging. This information is

grouped into specific context objects. The context objects that are available for logging a specific event are

specified by the event type. This topic details the information that exists for each context object and

specifies whether the information is logged by default or is only logged when the verbose logging option is

enabled.

The SessionContextObj object

 Table 42. SessionContextObj fields

Field Type Description Default or Verbose logging

sessionId String An identifier for the user session Default

remoteAddr String The IP address for the remote host Default

remotePort String The port of the remote host Default

remoteHost String The host name of the remote host Default

The PropagationContextObj object

 Table 43. PropagationContextObj fields

Field Type Description Default or Verbose logging

firstCaller String The identity of the first user in the

caller list

Default

callerList String array A list of names representing the

identities of the users

Verbose

824 Securing applications and their environment

The RegistryContextObj object

 Table 44. RegistryContextObj fields

Field Type Description Default or Verbose logging

type String The type of user registry being

used, such as LDAP or AIX

Default

The ProcessContextObj object

 Table 45. ProcessContextObj fields

Field Type Description Default or Verbose logging

domain String The domain to which the user

belongs

Verbose

realm String The registry partition to which the

user belongs

Default

The EventContextObj object

 Table 46. EventContextObj fields

Field Type Description Default or Verbose logging

lastEventTrailId String The last ID associated with a given

transaction

Verbose

eventTrailId String array An array of IDs that allow events

that belong to a given transaction to

be correlated

Default

creationTime Date The date an event was created Default

globalInstanceId Long The unique identifier of this event Default

The DelegationContextObj object

 Table 47. DelegationContextObj fields

Field Type Description Default or Verbose logging

delegationType String no delegation, simple delegation,

method delegation or switch user

delegation

Default

roleName String The Run as role being used:

runAsClient, runAsSpecified,

runAsSystem, own ID

Default

identityName String Information about the mapped user Default

The AuthnContextObj object

 Table 48. AuthnContextObj fields

Field Type Description Default or Verbose logging

authnType String The type of authentication used Default

The ProviderContextObj object

 Table 49. ProviderContextObj fields

Field Type Description Default or Verbose logging

provider String The provider of the authentication

or authorization service

Default

providerStatus String Status of whether the authentication

or authorization event processed

successfully by the provider

Default

Chapter 9. Auditing the security infrastructure 825

The AuthnMappingContextObj object

 Table 50. AuthnMappingContextObj fields

Field Type Description Default or Verbose logging

mappedSecurityDomain String The security domain after mapping

has occurred

Default

mappedRealm String The realm after mapping has

occurred

Default

mappedUserName String The user name after mapping has

occurred

Default

The AuthnTermContextObj object

 Table 51. AuthnTermContextObj fields

Field Type Description Default or Verbose logging

terminateReason String The reason authentication ended Default

The AccessContextObj object

 Table 52. AccessContextObj fields

Field Type Description Default or Verbose logging

progName String The name of the program that was

involved in the event

Default

action String The action being performed. Default

registryUserName String The name of the user in the registry Default

appUserName String The name of the user within an

application

Default

accessDecision String The decision of the authorization

call

Default

resourceName String The name of the resource in the

context of the application

Default

resourceType String The type of resource Default

resourceUniqueId Long The unique identifier of the resource Default

permissionsChecked String array The permissions that were checked

during the authorization call

Default

permissionsGranted String array The permissions that were granted

during the authorization call

Default

rolesChecked String array The roles that were checked during

the authorization call

Default

rolesGranted String array The roles that were granted during

the authorization call

Default

The PolicyContextObj object

 Table 53. PolicyContextObj fields

Field Type Description Default or Verbose logging

policyName String The name of the policy Default

policyType String The type of policy Default

The KeyContextObj object

 Table 54. KeyContextObj fields

Field Type Description Default or Verbose logging

keyLabel String The key or certificate label Default

keyLocation String The physical location of the key

database

Default

certLifetime Date The date when a certificate expires Default

826 Securing applications and their environment

The CipherContextObj object

 Table 55. CipherContextObj fields

Field Type Description Default or Verbose logging

cipherData Byte array The cipher data that is captured Verbose

The MgmtContextObj object

 Table 56. MgmtContextObj fields

Field Type Description Default or Verbose logging

mgmtType String The type of management operation Default

mgmtCommand String The application-specific command

that was performed

Default

targetInfoAttributes Target Atrribute array Information about one or more

secondary objects involved in this

operation

Verbose

The ResponseContextObj object

 Table 57. ResponseContextObj fields

Field Type Description Default or Verbose logging

url String The URL of the HTTP request Default

httpRequestHeaders Attributes array The HTTP request headers

provided by the client

Verbose

httpResponseHeaders Attributes array The HTTP response headers

returned by the server

Verbose

The CustomPropertyContextObj object

 Table 58. CustomPropertyContextObj fields

Field Type Description Default or Verbose logging

key String The label representing the custom

property key name

Verbose

value Object The object value of the custom

property

Verbose

Configuring security audit subsystem failure notifications

Notifications can be generated by a failure of the security audit subsystem. The security audit subsystem

notifications can alert auditors that the security audit system is no longer recording auditable security

events. Notifications are generated by a failure of the auditing subsystem, they are not related to any

auditable security events or event outcome that has occurred. Notifications triggered by an event or an

event outcome are not supported.

Before you begin

Before configuring notifications, enable global security and the security audit subsystem in your

environment. You must be assigned the auditor role to complete this task.

About this task

If a problem is experienced with the security audit subsystem, then a notification can be generated. This is

an alert that security events are no longer being audited. Notification can be written to the system log file

or can be sent to a specified group of users as an e-mail. You are able to configure notifications to alert

Chapter 9. Auditing the security infrastructure 827

the auditor of a problem using both of these methods simultaneously. Notifications are only generated

when the Audit subsystem failure action field is set to Log warning or Terminate server.

 1. Optional: Click Security → Security Auditing.

 2. Optional: Confirm the Audit subsystem failure action field is set to Log warning or Terminate server. If

the Audit subsystem failure action field is set to No warning, then notifications will not be generated.

 3. Click Security → Security Auditing → Audit monitor .

 4. Under Notifications, Click New

 5. Enter the name that should be associated with this notification configuration in the Notification name

field.

 6. Select the Message log check box to specify the failure notifications are recorded in the audit log.

 7. Select the e-mail sent to notification list check box to specify that failure notification e-mail should be

sent to the addresses listed in the notification list.

 8. Enter an e-mail address in the E-mail address to add field This step is not needed if e-mail

notifications are not going to be sent.

 9. Enter the mail server address in the Outgoing mail (STMP) server address. This step is not needed if

e-mail notifications are not going to be sent.

10. Click Add >> to add the e-mail address and associated mail server to the e-mail notification list.

11. Repeat steps 5 through 7 for each e-mail address you want to specify in the e-mail notification list.

12. Click OK.

13. Select the Enable monitoring check box to turn on audit failure notifications.

14. Select the notification configuration to be used from the Monitor notification dropdown menu.

15. Click OK.

Results

After completing this task, a notification will be generated if the security auditing subsystem experiences

an unrecoverable error resulting in security events no longer being audited.

What to do next

After configuring notifications, you can analyze your audit data for potential weaknesses in the current

security infrastructure and to discover possible security breaches that might have occurred.

Audit notifications cannot be removed using the administrative console. To remove an audit notification you

first must run the deleteAuditNotificationMonitorByRef or the deleteAuditNotificationMonitorByName

command. After running one of those commands, remove the audit notification by running the

deleteAuditNotification command.

Audit monitor collection

Use this page to configure audit subsystem failure notifications. The Auditor monitor panel lists the existing

notification configurations and is the gateway for creating new notification configurations and for managing

the existing notification configurations.

To view this administrative console page, click Security → Security Auditing → Audit monitor.

828 Securing applications and their environment

Related reference

“Security Auditing detail” on page 816
The Security auditing subsystem can be enabled and configured from this panel, by users assigned the

auditor role.

“Audit notification settings”
Use this page to create and manage notification configurations that define how auditors are made aware

of audit subsystem failures.

Enable monitoring

Specifies whether to enable or disable notifications. If the check box is selected, then monitoring is

enabled. If the check box is not selected, then monitoring is disabled. This check box is disabled by

default.

Monitor notification

Specifies the notification configuration that will be used for reporting audit subsystem failures.

Notification name

Specifies a string that uniquely identifies a notification configuration.

Message log

Specifies if the configuration will send failure notifications to the message log file. If the value is true, then

failure notifications will be sent to the message log file. If the value is false, then failure notifications will be

not be sent to the message log file. When creating a notification, this field is in the form of a check box

and is not selected by default.

Send E-mail

Specifies whether an e-mail notification is sent to the addresses listed in the List of e-mail addresses

column.

List of e-mail addresses

Specifies the e-mail addresses listed as recipients for e-mail notification in the event of an audit subsystem

failure. No e-mail addresses are listed by default. E-mail addresses will appear in this column if they are

listed in the notification list in the notification, this applies even when the E-mail sent to notification list

check box is not selected in the notification.

Audit notification settings

Use this page to create and manage notification configurations that define how auditors are made aware

of audit subsystem failures.

To view this administrative console page, click Security → Security Auditing → Audit monitor → New.

Notification name

Specifies a string that uniquely identifies a notification configuration.

Message log

Specifies if the configuration will send failure notifications to the message log file. If the check box is

selected, then failure notifications will be sent to the message log file. If the check box is not selected,

then failure notifications will be not be sent to the message log file. This check box is not selected by

default.

Send secure e-mails

E-mail sent to the notification list

Specifies whether the configuration will send a failure notification to the recipients listed in the notification

list. If the check box is selected, then failure notifications will be sent to the recipients in the notification list.

Chapter 9. Auditing the security infrastructure 829

If the check box is not selected, then failure notifications will be not be sent to the recipients in the

notification list. This check box is not selected by default.

E-mail address to add

Specifies the e-mail address to be added to the notification list to received failure notification e-mails. To

add a recipient to the notification list, this field and the Outgoing mail (SMTP) server field must both be

completed before you click the Add.

Outgoing mail (SMTP) server

Specifies the SMTP server to be used with this e-mail address. If no server is specified, then the e-mail

realm will be used.

Configuring the default audit service providers for security auditing

The audit service provider is used to format the audit data object that was sent by the audit event factory.

After being formatted, the audit data is recorded to the repository defined in the audit service provider

configuration.

Before you begin

Before configuring the audit service provider, enable global security in your environment.

About this task

This task configures the audit service provider used to record generated audit records.

1. Click Security → Security Auditing → Audit service provider.

2. Click New and then select Binary file based emitter.

3. Enter the unique name that should be associated with this audit service provider in the Name field.

4. Enter the file location of the binary log file in the Audit log file location field.

5. Optional: Enter the maximum size allowed for a single binary log file in the Audit log file size field.

This field is specified in megabytes. After the maximum audit file size is reached, a new audit file will

be created or an existing audit file will be overwritten. If the maximum number of audit log files has not

been set, the default maximum file value used is 10 megabytes. There is no audit archiving utility

included with the product. You are responsible for the archiving of your audit data.

6. Optional: In the Maximum number of audit log files field, enter the maximum number of audit logs to be

stored before the oldest is overwritten.

The default value for this field is 100. The value of 100 is also used if the field is empty.

7. Select the filters to be used by this audit service provider. The Selectable filter list consists of a list of

the configured filters that have been configured and are currently enabled.

a. Select the filters that should be audited from the Selectable filter list.

b. Click Add >> to add the selected filters to the Enabled filter list.

8. Click Apply.

Results

After completing these steps, your audit data will be sent to the specified repository in the format required

by that repository.

What to do next

After creating an audit service provider, the audit service provider must be associated with an audit event

factory provide the audit data objects to the audit service provider. Next you should configure an audit

event factory.

830 Securing applications and their environment

Audit service provider collection

The Audit service provider panel displays a listing of all configured audit service provider implementations.

Using this panel, a user can define a new audit service provider implementation, delete an existing

implementation, and display or modify the fields associated with an existing implementation.

To view this administrative console page, click Security > Security Auditing > Audit service provider.

By default, the audit.xml will contain the IBM audit service provider implementation which emits audit

records to a binary filed-based text file. This implementation is used for Binary file- based audit service

provider configurations. For each existing audit service provider in the list on this panel, the unique name,

type and event formatting class associated with the audit service provider will be displayed.

Name

The Name field is the unique name associated with the audit service provider implementation.

Type

The Type field specifies if the implementation is a binary file-based implementation, SMF implementation

or a third party implementation.

Event formatting module class name

The event formatting class is a class used to format the generic event data object into a format that is

specific to the audit service provider implementation. For example, a third party audit service provider

implementation might have an event formatting class that takes the generic event and translates it into

XML data. There is no Event formatting module class for binary file-based implementations nor for SMF

implementations.

Audit service provider settings

Use this page to define the implementation details of the audit service provider. There are three types of

audit service providers: binary file-based, third party and SMF.

To view this administrative console page, click on of the following paths:

v Security > Security auditing > Audit service provider > audit_service_provider_name.

v Security > Security auditing > Audit service provider > New > Binary File-based emitter.

v Security > Security auditing > Audit service provider > New > Third party emitter.

Name

Specifies the unique name associated with the audit service provider.

Third party emitter class name

Specifies the name of the class for this implementation. This field is only present for Third party emitter

implementations.

Audit file location

Specifies the path to the binary log file.

Audit file size

Specifies the maximum size of a single binary log file. This value is defined in megabytes.

Maximum number of audit log files

Specifies the maximum number of binary log file to create before the oldest is replaced.

Event formatting module class name

Specifies a class used to format the generic event into a format that is specific to the audit service

provider implementation. For example, a third party audit service provider implementation might have an

event formatting class that takes the generic event and translates it into XML data.

Chapter 9. Auditing the security infrastructure 831

Selectable filters

Specifies the available event filters. To enable a filter for an implementation, select the filter from the

Selectable event filters list and then click >.

Enabled filters

Specifies the event filters that are currently enabled for an implementation. To disable a filter for an

implementation, select the filter from the Enabled filters list and then click <.

Custom properties

Specifies any custom properties that might be used to add properties to a third party implementation.

Custom properties are not available for binary file-based implementations or SMF implementations.

v Name

v Value

Example: Base Generic Emitter Interface

The Base Generic Emitter interface defines how audit events are emitted. Other interfaces can exist to

extend this interface and to process specific audit events groupings, such as security events, transactional

events, or some other custom grouping. Use this interface to create a custom implementation of the

emitter.

Base Generic Emitter Interface

/**

* This is the interface for the event emitter. Event sources use this interface

* to send events to an event service.

*

*/

public interface BaseGenericEmitter {

/**

* Sends an event to the configured GenericEmitter implementation.

*

* @param event The event to be sent to the event service.

* This value cannot be null.

* @return The global instance ID of the event that was built.

* @exception GenericEmitterException If an error occurs during emitter processing.

* @exception IllegalArgumentException If the event parameter is null.

*/

public String sendEvent(GenericEvent event) throws

 GenericEventException;

/** * Sends an array of events to the configured GenericEmitter implementation.

* @param events The event array to be sent to the event service.

* This value cannot be null.

* @return The global instance IDs of the events that were built.

* @exception GenericEmitterException If an error occurs during emitter processing.

* @exception IllegalArgumentException If the events parameter is null.

*/

public String[] sendEvents(GenericEvent events[]) throws

 GenericEventException;

/**

* Causes the emitter to release all resources that are owned by this

* object and its dependents.

* Subsequent calls to this method have no effect.

*

* @throws GenericEmitterException If the emitter does release the

* held resources.

* resources.

* @throws GenericEventException If any other error occurs when releasing resources.

*/

public void close() throws

 GenericEventException;

}

Configuring a third party audit service providers for security auditing

The audit service provider is used to format the audit data object that was sent by the audit event factory.

In addition to the default audit service provider, you may use a third party implementation as your audit

service provider.

832 Securing applications and their environment

Before you begin

Before configuring the audit service provider, enable global security in your environment.

About this task

This task configures the audit service provider used to record generated audit records.

1. Click Security → Security Auditing → Audit service provider.

2. Click New and then select Third party emitter.

3. Enter the unique name that should be associated with this audit service provider in the Name field.

4. Enter the Third party emitter class name.

5. Enter the Event formatting module class name. This field specifies the class used to format the generic

event into a format that is specific to the audit service provider implementation. For example, your

implementation might have an event formatting class that takes the generic event and translates it into

XML data.

6. Select the filters to be used by this audit service provider. The Selectable filter list consists of a list of

the configured filters that have been configured and are currently enabled.

a. Select the filters that should be audited from the Selectable filter list.

b. Click Add >> to add the selected filters to the Enabled filter list.

7. Optional: Enter any custom properties that you included in your third party emitter code.

8. Click Apply.

Results

After completing these steps, your audit data will be sent to the specified repository in the format required

by that repository.

What to do next

After creating an audit service provider, the audit service provider must be associated with an audit event

factory provide the audit data objects to the audit service provider. Next you should configure an audit

event factory.

Example: Base Generic Emitter Interface

The Base Generic Emitter interface defines how audit events are emitted. Other interfaces can exist to

extend this interface and to process specific audit events groupings, such as security events, transactional

events, or some other custom grouping. Use this interface to create a custom implementation of the

emitter.

Base Generic Emitter Interface

/**

* This is the interface for the event emitter. Event sources use this interface

* to send events to an event service.

*

*/

public interface BaseGenericEmitter {

/**

* Sends an event to the configured GenericEmitter implementation.

*

* @param event The event to be sent to the event service.

* This value cannot be null.

* @return The global instance ID of the event that was built.

* @exception GenericEmitterException If an error occurs during emitter processing.

* @exception IllegalArgumentException If the event parameter is null.

*/

public String sendEvent(GenericEvent event) throws

 GenericEventException;

/** * Sends an array of events to the configured GenericEmitter implementation.

* @param events The event array to be sent to the event service.

* This value cannot be null.

Chapter 9. Auditing the security infrastructure 833

* @return The global instance IDs of the events that were built.

* @exception GenericEmitterException If an error occurs during emitter processing.

* @exception IllegalArgumentException If the events parameter is null.

*/

public String[] sendEvents(GenericEvent events[]) throws

 GenericEventException;

/**

* Causes the emitter to release all resources that are owned by this

* object and its dependents.

* Subsequent calls to this method have no effect.

*

* @throws GenericEmitterException If the emitter does release the

* held resources.

* resources.

* @throws GenericEventException If any other error occurs when releasing resources.

*/

public void close() throws

 GenericEventException;

}

Configuring audit event factories for security auditing

The audit event factory collects the data associated with the auditable security events and builds the audit

data object. The object is then sent to the audit service provider to be formatted and recorded to a

specified repository.

Before you begin

Before configuring an event factory, enable global security in your environment. An event type filter and an

audit service provider need to be created before completing these steps

About this task

1. Click Security → Security Auditing → Audit event factory configurations → New.

2. Enter the unique name that should be associated with this Audit event factory configuration in the

Name field.

3. Select either IBM audit event factory or Third party event factory.

a. Enter the Third party audit event factory class name. This step is only required if a Third party

event factory is being created.

4. Select the appropriate audit service provider implementation from the Audit service provider dropdown

menu,

5. Select the event type filter configuration to be used by this audit event factory. The Filters list consists

of a list of the event type filter configurations that have been created and are currently enabled.

a. Select the event type filters that should be used from the Selectable filter list.

b. Click Add >> to add the selected event type filter configurations to the Enabled filter lists.

6. Enter any Custom properties that need to be included with this audit event factory configuration.

Custom properties are only available for Third party event factory implementations.

7. Click Apply.

Results

After successful completion of these steps, you will have an event factory that can be used to gather

auditable event data.

What to do next

After configuring an audit event factory, you can optionally protect your data by configuring the security

auditing subsystem to sign and encrypt your audit logs.

834 Securing applications and their environment

Audit event factory configuration collection

The Audit event factory configuration panel displays a list of all currently configured audit event factory

implementations. This panel allows a user with the auditor role to manage their configured audit event

factories. This includes the ability to configure a new implementation, which is done using the New button

on this panel.

To view this administrative console page, click Security > Security Auditing > Audit event factory

configuration.

Name

The Name field specifies the unique name associated with the audit event factory configuration.

Type

The Type field specifies this audit event factory configuration as either an IBM audit event factory or a

Third party audit event factory.

Class name

The Class name field specifies the class that is being implemented in an audit event factory configuration.

The class name is com.ibm.ws.security.audit.AuditEventFactoryImpl for an IBM event factory. For a

Third party audit event factory, the class name is the class specified in the Third party audit event factory

class name field.

Audit event factory settings

The Audit event factory settings panel displays the details of a specific audit event factory. The auditor

uses this panel to manage and create audit event factory configurations.

To view this administrative console page, click on of the following paths:

v Security → Security Auditing → Audit event factory configuration →

audit_event_factory_configuration_name.

v Security → Security Auditing → Audit event factory configuration → New.

Name

Specifies the unique name associated with the audit event factory configuration.

Type

Specifies this audit event factory configuration as either an IBM audit event factory or a Third party audit

event factory. This field does not appear on the panel during the creation of a new audit event factory. It is

included when viewing or modifying an existing audit event factory.

IBM audit event factory

Specifies that the Type field of this audit event factory is IBM audit event factory. This check box only

appears on the panel during the creation of a new audit event factory. This check box is selected by

default when creating a new audit event factory.

Third party audit event factory

Specifies that the Type field of this audit event factory is Third party audit event factory. This check box

only appears on the panel during the creation of a new audit event factory. This check box is not selected

by default when creating a new audit event factory.

v The Third party audit event factory class name field is active when the Third party audit event factory

check box is selected. This field represents the class name of the third-party implementation of the Audit

Event Factory interface

Class name

Specifies the class that is being implemented in a audit event factory configuration.

Chapter 9. Auditing the security infrastructure 835

Although not specified during creation, the class name is

com.ibm.ws.security.audit.AuditEventFactoryImp for an IBM event factory.

Audit service provider

Specifies where the audit data objects gathered by this audit event factory will be sent.

Selectable filters

Specifies the filters that are currently available to be used for an implementation. To enable a filter for an

implementation, select the filter from the Selectable filter list and then click >.

Enabled filters

Specifies the filters that are currently enabled for an implementation. To disable a filter for an

implementation, select the filter from the Enabled filter list and then click <.

Custom properties

Specifies properties that the auditor can define to configure the Audit Event Factory implementation. This

might be used by third party implementation of the audit event factory interface. Custom properties are not

used for the IBM audit event factory implementation.

Each custom property has the following fields:

v Name

v Value

Example: Generic Event Factory Interface

This interface is used for processing generic audit events. Other interfaces can be defined which extend

this interface to process specific audit event groupings, such as security events, transaction events, or

some other custom grouping.

Generic Event Factory Interface

/**

* GenericEventFactory is the interface that is used to generate audit events.

* This interface may be extended to generate application specific audit events.

*

* One or more GenericEventFactory implementations each with a unique name can be defined in the

* security configuration and be used by WebSphere Application Server security auditing service.

* @author IBM Corporation

* @version WAS 7.0

* @since WAS 7.0

*/

public interface GenericEventFactory {

/**

* The init method allows a GenericEventFactory implementation to

* initialize its internal auditing configuration using the properties and context object.

*

* The properties and context objects are treated as read-only and must not be modified by the

* GenericEventFactory implementation.

*

* @param A String object represents the name of this GenericEventFactory.

* @param A Map properties object that contains the custom properties that can be defined in the

* the admin console or by using wsadmin scripting tool.

* @param A Map object that contains the context that includes cell name, node name, and server name.

* @exception ProviderFailureException might occur if the audit factory does not initialize

*/

public void init(String name, Map properties, Map context) throws ProviderFailureException;

/**

*

* The terminate method gracefully quiesces the event factory implementation.

*/

public void terminate();

/**

*

* The refresh method allows a GenericEventFactory implementation to

* update its internal auditing configuration using the properties object.

*

* The properties object is treated as read-only and must not be modified by the

* GenericEventFactory implementation.

*

* @param A Map object that contains the custom properties

* @exception ProviderFailureException might occur if the factory does not refresh

*/

public void refresh(java.util.Map properties) throws ProviderFailureException;

836 Securing applications and their environment

/**

*

* The getName method returns the name of this GenericEventFactory.

*

* @param None

* @return a String object represents the name of the GenericEventFactory.

*/

public String getName();

/**

*

* The sendEvent method determines whether the specified audit event is generated by this

* GenericEventFactory.

*

* @param a String object represents an audit event

* @param a OutcomeType object represents the audit outcome value

* @exception ProviderFailureException might occur if the audit factory does not initialize

* @return a boolean success/failure

* @exception ProviderFailureException might occur if the audit factory does not send the event.

*/

public boolean sendEvent(String auditEventType, OutcomeType auditOutcome) throws

ProviderFailureException;

*

}

Protecting your security audit data

The security auditing subsystem allows for protection of your security audit data by increasing the

assurance that the audit data has not been tampered or modified outside of the auditing facility. This

option also protects the confidentiality of the data. The audit data is protected by encrypting and signing

the recording data.

Before you begin

Note: Signing and encrypting your audit data is only available for data created using the default binary log

audit service provider. If you are using the SMF emitter or a 3rd party emitter you will not be able to

sign or encrypt your data.

Before configuring protection for your security audit data, enable global security and security auditing in

your environment. You must be assigned the auditor role to complete the task of protecting your audit

data. You will also need the administrator role to configure your audit data to be signed.

About this task

The practice of auditing requires assurances that your audit data is accurate and uncompromised. Your

audit data has the option to be encrypted, signed, or encrypted and signed. You can protect your audit

data using these options to provide assurances that you data is only viewed by authorized users and can

not untraceably be modified . To protect the validity of your security auditing functionality, complete the

following steps:

1. “Encrypting your security audit records” on page 838 Audit logs can be encrypted to ensure your audit

data is protected. The audit logs will be encrypted using a certificate that is saved to a keystore in the

audit.xml file. By encrypting your audit records, only users with the password to the keystore will be

able to view or update the audit logs.

2. “Signing your security audit records” on page 839 Audit logs can be signed to ensure the integrity of

your audit data. By signing your audit records, you ensure any modifications of the audit logs can be

traced.

Results

After completing these steps your data will be signed, encrypted or signed and encrypted to provide

assurances that the data is accurate and confidential.

Chapter 9. Auditing the security infrastructure 837

What to do next

After protecting your data, you can configure notifications to ensure you are notified if a problem with the

security auditing subsystems occurs that prevents security events from being recorded.

Encrypting your security audit records

Audit logs can be encrypted to ensure your audit data is protected. By encrypting your audit records, only

users with access to the encrypting certificate will be able to view the audit logs.

Before you begin

Note: Encrypting audit data is only available for data created using the default audit service provider. If

you are using the SMF emitter or a 3rd party emitter you will not be able to encrypt your data.

Before configuring your security audit records to be encrypted, enable global security and security auditing

in your environment. You must be assigned the auditor role to encrypt your security auditing records. If you

are using a certificate stored in the security.xml file, you also require the administrator role to complete this

task.

About this task

1. Click Security → Security Auditing → Audit record encryption configuration.

2. Select the Enable encryption check box to specify that your audit records should be encrypted. All

other fields on this panel will be unavailable until this check box has been selected.

3. Select the keystore that contains the encrypting certificate from the dropdown menu or click New to

create a new certificate in an existing keystore. Use the following steps if you are creating a new

certificate:

a. Enter the name of the keystore in the Name field.

b. Enter the path to the keystore file in the Path field.

c. Enter the password to be associated with the keystore in the Password field.

d. Confirm the password associated with the keystore by retyping the password in the Confirm

password field.

e. Select the keystore type from the Type dropdown list. The default value of the Type dropdown list

is PKCS12.

4. If you are using an existing certificate to encrypt your audit records, ensure Certificate in keystore is

selected and specify the intended certificate in the Certificate alias dropdown menu.

5. If you are generating a new certificate to encrypt your audit records, select Create a new certificate in

the selected keystore and follow these steps:

a. Enter the name of your new certificate in the Certificate alias field.

b. Select either Automatically generate certificate or Import a certificate. The certificate used to

encrypt the data in the audit log files can either be created or imported. If you selected to generate

a certificate, then skip to the last step on this page. If you selected to import a certificate, then

continue on with step c.

c. Enter the name of the keystore file in the Key file name field.

d. Enter the path to the keystore file in the Path field.

e. Select the keystore type from the Type dropdown list. The default value of the Type dropdown list

is PKCS12.

f. Enter the password associated with the keystore in the Key File password field.

g. Click Get key file aliases to populate the Certificate alias to import dropdown menu.

h. Select the certificate to be imported from the Certificate alias to import dropdown menu.

6. Click OK.

838 Securing applications and their environment

Results

After completing these steps, your audit logs will be encrypted to ensure only authorized users can view

the content of your audit log files.

What to do next

After you have finished configuring your audit logs to be encrypted, you can ensure the data integrity of

your audit logs by configuring the audit subsystem to sign your audit records.

Signing your security audit records

Audit logs can be signed to ensure the integrity of your audit data. By signing your audit records,

modifications of the audit logs can be traced.

Before you begin

Note: Signing audit data is only available for data created using the default audit service provider. If you

are using the SMF emitter or a 3rd party emitter you will not be able to sign your data.

Before configuring your security audit records to be signed, enable global security and security auditing in

your environment. You must be assigned the auditor role and the administrator role to configure audit

record signing.

About this task

1. Click Security → Security Auditing → Audit record signing configuration.

2. Select the Enable signing check box to specify that your audit records should be signed. All other fields

on this panel will be unavailable until this check box has been selected.

3. Select the keystore that contains the signing certificate from the Managed keystore containing the

signing certificate dropdown menu.

4. If you are using an existing certificate to sign your audit records, ensure Certificate in keystore is

selected and specify the intended certificate in the Certificate alias dropdown menu.

5. If you are generating a new certificate to sign your audit records, select Create a new certificate in the

selected keystore and follow these steps:

a. Enter the name of your new certificate in the Certificate alias field.

b. Select on of the following options: Import the encryption certificate, Automatically generate

certificate or Import a certificate. The certificate used to encrypt the data in the audit log files can

either be created or imported.

v If you selected Import the encryption certificate, then you will use the encryption certificate to

also sign your audit records. Skip to the last step on this page to complete this configuration.

v If you selected to generate a certificate, then skip to the last step on this page to complete this

configuration.

v If you selected to import a certificate from an existing keystore, then continue on with step c.

c. Enter the name of the keystore file in the Key file name field.

d. Enter the path to the keystore file in the Path field.

e. Select the keystore type from the Type dropdown list. The default value of the Type dropdown list

is PKCS12.

f. Enter the password associated with the keystore in the Key File password field.

g. Click Get key file aliases to populate the Certificate alias to import dropdown menu.

h. Select the certificate to be imported from the Certificate alias to import dropdown menu.

6. Click OK.

Chapter 9. Auditing the security infrastructure 839

Results

After you have completed these steps, your audit logs will be digitally signed to ensure the integrity of the

data.

What to do next

After you have finished configuring your audit logs to be signed, you can ensure the confidentiality of your

audit logs by configuring the audit subsystem to encrypt your audit records.

Audit encryption keystores and certificates collection

The Audit encryption keystores and certificates panel allows the auditor to manage the keystores and

certificates used for audit encryption.

To view this administrative console page, click Security → Security Auditing → Audit encryption

keystores and certificates.

Name

Specifies the unique name of the keystores used for storing the encryption certificate.

Path

Specifies the path to the listed keystore file.

The path to the keystore file can be listed using environment variables, ${PROFILE_ROOT}, or with a fully

qualified path.

Audit record encryption configuration settings

Use this page to enable encryption for your audit records. Encrypting your audit records ensures only a

user given access to the certificate used for encryption is allowed to view the audit records.

To view this administrative console page, click Security > Security auditing > Audit record encryption

configuration. If Enable encryption is not selected, then all of the other fields on this panel will be

disabled. Encryption is not enabled by default.

Enable encryption

Specifies whether your audit records will be encrypted. This check box is not selected by default.

Audit keystore containing the encryption certificate

Specifies the audit keystore specified to store the encryption certificate.

A new keystore can be created by clicking on the New... button.

Certificate in keystore

Specifies an existing certificate will be used from the keystore specified in the Audit keystore containing

the encryption certificate field. This field is selected by default. If a keystore in the security.xml file is used,

the administrator role is required.

v Certificate alias

When the Certificate in keystore field is selected, the certificate alias dropdown menu displays a list of

certificate aliases contained in the keystore defined by the Audit keystore containing the encryption

certificate field. Select the certificate from the dropdown menu to be used to encrypt your audit records.

Create a new certificate in the selected keystore

Specifies that a new certificate will be created in the keystore defined by the Audit keystore containing

the encryption certificate field.

v Certificate alias

840 Securing applications and their environment

When the Create a new certificate in the selected keystore is selected, the Certificate alias field is

used to define the name of the certificate to be created in the keystore defined by the Audit keystore

containing the encryption certificate field.

v Automatically generate certificate

When selected, the Automatically generate certificate field specifies that the application server will

automatically generate the certificate. This field is selected by default when the Create a new

certificate in the selected keystore field is selected.

v Import a certificate

When selected, the Import a certificate field specifies that an existing self-signed certificate will be

imported by the auditor into the keystore and used to encrypt your audit records. This field is not

selected by default when the Create a new certificate in the selected keystore field is selected. The

following fields need to be defined to import an existing certificate.

– The Key file name field specifies the keystore filename that contains the certificate to be imported.

– The Path field specifies the path to the keystore file that contains the certificate to be imported.

– The Type field specifies the type of the keystore file that contains the certificate to be imported.

– The Key file password field specifies the password used to access the keystore file that contains

the certificate to be imported.

– Certificate alias to import field specifies the alias of the certificate to be imported.

Audit record signing configuration settings

Use this page to enable signing for your audit records. Signing audit records ensures tamper-proof

recording of the auditable events. Both the auditor and administrator roles are required to configure the

signing of your audit data.

To view this administrative console page, click Security → Security auditing → Audit record signing

configuration. If Enable signing is not selected, then all of the other fields on this panel will be disabled.

Related reference

“Audit record keystore settings” on page 842
The Audit record keystore panel is used by an auditor to define the keystores used for storing the

encryption certificate used to encrypt the audit records. Keystores used for auditing are managed outside

of other keystores being used on the system to facilitate separation of the authority of the auditor for the

authority of the administrator.

“Security Auditing detail” on page 816
The Security auditing subsystem can be enabled and configured from this panel, by users assigned the

auditor role.

“Audit record encryption configuration settings” on page 840
Use this page to enable encryption for your audit records. Encrypting your audit records ensures only a

user given access to the certificate used for encryption is allowed to view the audit records.

“Audit encryption keystores and certificates collection” on page 840
The Audit encryption keystores and certificates panel allows the auditor to manage the keystores and

certificates used for audit encryption.

Enable signing

Specifies whether your audit records will be encrypted. This check box is not selected by default.

Managed keystore containing the signing certificate

Specifies the keystore used to store the signing certificate.

Certificate in keystore

Specifies an existing certificate will be used from the keystore specified in the Managed keystore

containing the signing certificate field. This field is selected by default.

v Certificate alias

Chapter 9. Auditing the security infrastructure 841

When the Certificate in keystore field is selected, the Certificate alias dropdown menu displays a list

of certificate aliases contained in the keystore defined by the Managed keystore containing the

signing certificate field. Select the certificate from the dropdown menu to be used to sign your audit

records.

Create a new certificate in the selected keystore

Specifies that a new certificate will be created in the keystore defined by the Managed keystore

containing the signing certificate field.

v Certificate alias

When the Create a new certificate in the selected keystore is selected, the Certificate alias field is

used to define the name of the certificate to be created in the keystore defined by the Audit keystore

containing the encryption certificate field.

v Import the encryption certificate

Specifies the certificate used for encryption will be imported into the signing keystore file and used for

signing.

v Automatically generate certificate

Specifies the application server will automatically generate the certificate. This field is selected by

default when the Create a new certificate in the selected keystore field is selected.

v Import a certificate

Specifies an existing self-signed certificate will be imported by the auditor into the keystore and used to

encrypt your audit records. This field is not selected by default when the Create a new certificate in

the selected keystore field is selected. The following fields need to be defined to import an existing

certificate.

– The Key file name field specifies the keystore filename that contains the certificate to be imported.

– The Path field specifies the path to the keystore file that contains the certificate to be imported.

– The Type field specifies the type of the keystore file that contains the certificate to be imported.

– The Key file password field specifies the password used to access the keystore file that contains

the certificate to be imported.

– Certificate alias to import field specifies the alias of the certificate to be imported.

Audit record keystore settings

The Audit record keystore panel is used by an auditor to define the keystores used for storing the

encryption certificate used to encrypt the audit records. Keystores used for auditing are managed outside

of other keystores being used on the system to facilitate separation of the authority of the auditor for the

authority of the administrator.

To view this administrative console page, click one of the following paths:

v Security > Security Auditing > Audit encryption keystores and certificates > keystore_name.

v Security > Security Auditing > Audit encryption keystores and certificates > New.

v Security > Security Auditing > Audit record encryption configuration > New

842 Securing applications and their environment

Related reference

“Security Auditing detail” on page 816
The Security auditing subsystem can be enabled and configured from this panel, by users assigned the

auditor role.

“Audit record signing configuration settings” on page 841
Use this page to enable signing for your audit records. Signing audit records ensures tamper-proof

recording of the auditable events. Both the auditor and administrator roles are required to configure the

signing of your audit data.

“Audit record encryption configuration settings” on page 840
Use this page to enable encryption for your audit records. Encrypting your audit records ensures only a

user given access to the certificate used for encryption is allowed to view the audit records.

“Audit encryption keystores and certificates collection” on page 840
The Audit encryption keystores and certificates panel allows the auditor to manage the keystores and

certificates used for audit encryption.

Name

The Name field specifies the unique name for the keystore. This is a required field.

Path

Specifies the path where the keystore file is located. This is a required field.

Password

Specifies the password to be used for this keystore. This is a required field.

Confirm Password

Specifies confirmation of the value provided in the Password field. This is a required field.

Type

The Type field specifies the type of the keystore. The Type dropdown menu has the following options for

defining the keystore type:

v JCEKS

v CMSKS

v PKCS12 - The default value for the Type field is PKCS12.

v Cryptographic Token Device (PKCS11)

v JKS

v PKCS12JarSigner

Using the audit reader

The audit reader is a utility that can be used to read the binary audit logs generated by the default binary

emitter implementation. The audit reader parses the audit log to generate an HTML report. The audit

reader is invoked using wsadmin commands and is not accessible using the administrative console.

Before you begin

The audit reader can only be used to parse log files that are created by the default audit service provider.

Logs created by a third-party emitter can not be parsed by the audit reader.

About this task

Your audit logs might be encrypted, signed, encrypted and signed or neither encrypted nor signed. The

audit reader is able to parse any of these combinations to generate an HTML report. If the audit log file is

Chapter 9. Auditing the security infrastructure 843

encrypted, the password of the keystore storing the certificate used to encrypt the log must be provided.

The showAuditLogEncryptionInfo wsadmin command can be used to get information to determine which

keystore was used to sign the audit log.

Depending on the selections you made in your audit service provider configuration, the size of the audit

logs can become large enough to make them cumbersome to review. What data has been recorded into

your log is dependant on the event type filers you are using and whether you specified to use verbose

logging. Options are provided for you to further limit the data included in the HTML report that is generated

by the audit reader to a subset that you specify. The audit reader can be used to parse the same data

multiple times to generate separate reports for your different requirements.

By default, all event types, outcome types, timestamps, and sequence numbers will be gathered from the

Binary Audit log and generated into a report. The ability to specify only specific event types, only specific

sequence numbers, only records with specific timestamps, as well as specific outcome types is provided. A

sequence number is a unique identifier assigned to each audit record. Options exist to limit which events,

outcomes, and sequence numbers are included in the report.

The report type controls what data is reported for each audit record in the log file. The default report type

includes the follow data for each audit record:

v creationTime

v action

v progName

v registryType

v domain

v realm

v remoteAddr

v remotePort

v remoteHost

v resourceName

v resourceType

v resourceUniqueId

The complete report type generates a report based on all the data that was logged for the selected audit

records. The complete report type includes all the data that is included by the default report type and all

the additional datapoints that were logged for these audit records. The additional available datapoints for

an audit record varies depending on the event type it represents.

A custom report type is also included. Use the custom report type to specify only the datapoints that you

want generated in the report. A report may be generated based on the following criteria:

v all or specific event types

v all or specific outcome types

v all or a specific sequence number range

v all or a specific timestamp range

Run the binaryAuditLogReader wsadmin command to use the audit reader to generate a log report. See

“AuditReaderCommands command group for the AdminTask object” on page 1124

Results

After you complete these steps, you will generated an HTML report containing the data specific to your

requirement.

844 Securing applications and their environment

Example: Audit Event Outcome Codes

In a binary audit log or the output of the audit reader tool, audit event outcomes are expressed with a

numeric code. Use this table to associate the audit event outcome code in the binary audit logs to a

generic error messages.

Event Outcome Codes

 Outcome Reason Code Description

0 An error occurred while parsing the certificate.

1 The security context does not exist for the thread.

2 There is conflicting session evidence.

3 The session has been rejected.

4 The token has expired.

5 Successful authentication has occurred.

6 Successful authentication for accessing a resource has occurred.

7 Successful authentication occurred while mapping a user.

8 Successful authorization has occurred.

9 Login termination was successful.

10 Invalid evidence exists.

11 There was a GSS formatting error.

12 Credentials were unauthenticated.

13 Authentication failed.

14 An invalid resource was accessed.

15 Authentication was denied.

16 Authorization was denied.

17 Access was denied because of an authentication failure.

18 Authorization was excluded.

19 Authorization was excluded because of access without proper security role.

20 An unsupported authentication mechanism was used.

21 An authentication redirect occurred.

22 The context does not exist.

23 A TAI challenge occurred.

24 A TAI validation was not successful.

25 A TAI mapping was not successful.

26 A provider failure occurred.

27 A SSO token validation was not successful.

28 An invalid user id or password was provided.

29 A send login form

30 An invalid configuration exists.

31 An user id or password is missing.

32 Failure occurred for an unknown reason.

33 The account was disabled because of retry violations.

34 The account was locked out because of retry violations.

35 The account was locked out because the maximum number of unsuccessful login attempts has

occurred.

36 The account is disabled.

37 The account has expired.

38 The account is unlocked.

39 The maximum inactive time permitted for the account has elapsed.

40 The password has expired.

41 The minimum interval for a password change has unexpired.

42 The maximum interval permitted before a password must be changes has elapsed.

43 An authentication failure has occurred.

Chapter 9. Auditing the security infrastructure 845

44 An invalid user name was provided.

45 A pin is required.

46 This outcome code is not used in this release.

47 A user mapping did not occur successfully.

48 A certificate failure occurred.

49 A policy violation has occurred.

50 A policy violation has occurred because of the time of day.

51 The policy allows access.

52 A policy violation has occurred because the maximum number of unsuccessful login attempts

has been reached.

53 A user name mismatch has occurred.

54 An invalid user password was provided.

55 A token signature violation has occurred.

56 The token is not yet valid.

57 The token is not supported.

58 The token is not in a valid format.

59 A credential mapping failure occurred.

60 The delegate is not authorized.

61 Access to a resource is unauthorized because of an authorization.

62 Access to a resource is unauthorized because of a time of day policy.

63 Access to a resource is unauthorized.

64 Access to a resource is unauthorized because of quality of protection.

65 Access to a resource is unauthorized because of an authorization level.

66 Access to a resource is unauthorized because reauthentication is required.

67 A password error has occurred because it does not meet password standards: minimum

alphabetic characters required.

68 A password error has occurred because it does not meet password standards: minimum

alphanumeric characters required.

69 A password error has occurred because it does not meet password standards: minimum

numeric characters required.

70 A password error has occurred because it does not meet password standards: minimum

alphabetic low case characters required.

71 A password error has occurred because it does not meet password standards: minimum

alphabetic upper case characters required.

72 A password error has occurred because it does not meet password standards: minimum special

characters required.

73 A password error has occurred because it does not meet password standards: maximum

repeated characters exceeded.

74 A password error has occurred because it does not meet password standards: contains user

name

75 A password error has occurred because it does not meet password standards: reused

password.

76 A password error has occurred because it does not meet password standards: contains

previous password.

77 A password error has occurred because it does not meet password standards: violations in

number of characters.

78 A password error has occurred because it does not meet password standards: first or last

characters are numeric.

79 An illegal form login configuration exists.

80 Access is denied because of a incorrect URI.

81 Start was successful

82 Stop was successful.

83 The audit subsystem has been stopped.

84 The audit subsystem has successfully been enabled.

85 The audit subsystem has had a successful policy change.

86 Delegation was successful.

846 Securing applications and their environment

87 Delegation was not successful.

88 The audit subsystem has successfully been disabled.

89 An audit subsystem has occurred because a security header is missing.

90 An audit timestamp has been confirmed.

91 A bad audit timestamp has occurred.

92 Audit confidentially has been confirmed

93 Audit confidentially cannot be confirmed.

94 An audit decryption error has occurred.

Chapter 9. Auditing the security infrastructure 847

848 Securing applications and their environment

Chapter 10. Configuring security with scripting

You can configure security with scripting and the wsadmin tool.

Before you begin

Before starting this task, the wsadmin tool must be running. Read about Starting the wsadmin scripting

client article for more information.

About this task

If you enable security for an application server cell, supply authentication information to communicate with

servers. The sas.client.props and the soap.client.props files are located in the following properties

directory for each application server profile:

v profile_root/properties

v The nature of the properties file updates required for running in secure mode depend on whether you

connect with a Remote Method Invocation (RMI) connector, a JSR160RMI connector, an Inter-Process

Communications (IPC) or a SOAP connector:

– If you use a Remote Method Invocation (RMI) connector or a JSR160RMI connector, set the

following properties in the sas.client.props file with the appropriate values:

com.ibm.CORBA.loginUserid=

com.ibm.CORBA.loginPassword=

Also, set the following property:

com.ibm.CORBA.loginSource=properties

The default value for this property is prompt in the sas.client.props file. If you leave the default

value, then a dialog box is displayed with a password prompt. If the script is running unattended,

then the system stops.

– If you use a SOAP connector, set the following properties in the soap.client.props file with the

appropriate values:

com.ibm.SOAP.securityEnabled=true

com.ibm.SOAP.loginUserid=

com.ibm.SOAP.loginPassword=

– If you use an IPC connector, set the following properties in the ipc.client.props file with the

appropriate values:

com.ibm.IPC.loginUserid=

com.ibm.IPC.loginPassword=

v Specify user and password information. Choose one of the following methods:

– Specify user name and password on a command line, using the -user and -password commands,

as the following examples demonstrate:

wsadmin -conntype JSR160RMI -port 2809 -user u1 -password secret1

– Specify user name and password in the sas.client.props file for an RMI connector, the

ipc.client.props file for the IPC connector, or the soap.client.props file for a SOAP connector.

If you specify user and password information on a command line and in the sas.client.props file or the

soap.client.props file, the command line information overrides the information in the props file.

Enabling and disabling security using scripting

You can use scripting to enable or disable application security, global security, administrative security

based on the LocalOS registry, and authentication mechanisms.

© Copyright IBM Corp. 2008 849

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

The default profile sets up procedures so that you can enable and disable administrative security based on

LocalOS registry.

v Use the isAppEnabled command to determine if application security is enabled or disabled, as the

following example demonstrates:

– Using Jacl:

$AdminTask isAppSecurityEnabled {}

– Using Jython:

AdminTask.isAppSecurityEnabled()

This command returns a value of true if appEnabled is set to true. Otherwise, returns a value of false.

v Use the isGlobalSecurityEnabled command to determine if administrative security is enabled or

disabled, as the following example demonstrates:

– Using Jacl:

$AdminTask isGlobalSecurityEnabled{}

– Using Jython:

AdminTask.isGlobalSecurityEnabled()

Returns a value of true if enabled is set to true. Otherwise, returns a value of false.

v Use the setGlobalSecurity command to set administrative security based on the passed in value, as the

following example demonstrates:

– Using Jacl:

$AdminTask setGlobalSecurity {-enabled true}

– Using Jython:

AdminTask.setGlobalSecurity (’[-enabled true]’)

Returns a value of true if the enabled field in the WCCM security model is successfully updated.

Otherwise, returns a value of false.

v Use the help command to find out the arguments that you need to provide with this call, as the

following example demonstrates:

– Using Jacl:

securityon help

Example output:

Syntax: securityon user password

– Using Jython:

securityon()

Example output:

Syntax: securityon(user, password)

v Enable administrative security based on the LocalOS registry, as the following example demonstrates:

– Using Jacl:

securityon user1 password1

– Using Jython:

securityon(’user1’, ’password1’)

v Disable administrative security based on the LocalOS registry, as the following example demonstrates:

– Using Jacl:

850 Securing applications and their environment

securityoff

– Using Jython:

securityoff()

v Enable and disable LTPA and Kerberos authentication.

Use the setActiveAuthMechanism command to set Kerberos as the authentication mechanism in the

security configuration, as the following example demonstrates:

AdminTask.setActiveAuthMechanism(’-authMechanismType KRB5’)

Use the setActiveAuthMechanism command to set LTPA as the authentication mechanism in the

security configuration, as the following example demonstrates:

AdminTask.setActiveAuthMechanism(’-authMechanismType LTPA’)

Additionally, there are sample scripts located in the <WAS_ROOT>/bin directory on how to enable and

disable LTPA authentication. The scripts are:

– LTPA_LDAPSecurityProcs.py (python script)

– LTPA_LDAPSecurityProcs.jacl (jacl script)

Note: The scripts hard code the type of LDAP server and base distinguished name (baseDN). The

LDAP server type is hardcoded as IBM_DIRECTORY_SERVER and the baseDN is hardcoded

as o=ibm,cn=us.

Enabling and disabling Java 2 security using scripting

You can enable or disable Java 2 security with scripting and the wsadmin tool.

About this task

There are two ways to enable or disable Java 2 security. You can use the commands for the AdminConfig

object, or you can use the setAdminActiveSecuritySettings command for the AdminTask object.

1. Use the setAdminActiveSecuritySettings command for the AdminTask object to enable or disable Java

2 security.

a. Launch the wsadmin scripting tool using the Jython scripting language.

b. Use the getActiveSecuritySettings command to display the current security settings, including

custom properties for global security, as the following example demonstrates:

v

– Using Jacl:

$AdminTask getActiveSecuritySettings

– Using Jython:

AdminTask.getActiveSecuritySettings()

c. Use the setActiveSecuritySettings command to enable or disable Java 2 security.

The following examples enable Java 2 security:

v

– Using Jacl:

$AdminTask setAdminActiveSecuritySettings {-enforceJava2Security true}

– Using Jython:

AdminTask.setAdminActiveSecuritySettings(’-enforceJava2Security true’)

The following examples disable Java 2 security:

v

– Using Jacl:

$AdminTask setAdminActiveSecuritySettings {-enforceJava2Security false}

– Using Jython:

Chapter 10. Configuring security with scripting 851

AdminTask.setAdminActiveSecuritySettings(’-enforceJava2Security false’)

d. Save the configuration changes.

2. Use the AdminConfig object to enable Java 2 security.

a. Launch the wsadmin scripting tool using the Jython scripting language.

b. Identify the security configuration object and assign it to the security variable, as the following

example demonstrates:

v Using Jacl:

set security [$AdminConfig list Security]

v Using Jython:

security = AdminConfig.list(’Security’)

print security

Example output:

(cells/mycell|security.xml#Security_1)

c. Modify the enforceJava2Security attribute to enable or disable Java 2 security, as the following

examples demonstrates:

v To enable Java 2 security:

– Using Jacl:

$AdminConfig modify $security {{enforceJava2Security true}}

– Using Jython:

AdminConfig.modify(security, [[’enforceJava2Security’, ’true’]])

v To disable Java 2 security:

– Using Jacl:

$AdminConfig modify $security {{enforceJava2Security false}}

– Using Jython:

AdminConfig.modify(security, [[’enforceJava2Security’, ’false’]])

d. Save the configuration changes.

Configuring multiple security domains using scripting

You can customize your security configuration at the cell, sever, or cluster level by configuring multiple

security domains.

Before you begin

Users assigned to the administrator role can configure security domains. Verify that you have the

appropriate administrative role before configuring security domains. Also, enable global security in your

environment before configuring multiple security domains.

About this task

You can create multiple security domains to customize your security configuration. Use multiple security

domains to achieve the following goals:

v Configure different security attributes for administrative and user applications within a cell

v Consolidate server configurations by managing different security configurations within a cell

v Restrict access between applications with different user registries, or configure trust relationships

between applications to support communication across registries

1. Create a security domain. Create multiple security domains in your configuration. By creating multiple

security domains, you can configure different security attributes for administrative and user applications

within a cell environment.

852 Securing applications and their environment

2. Assign the security domain to one or a set of resources or scopes. Assign management resources to

security domains. Set management resources to your security domains to customize your security

configuration for a cell, server, or cluster.

3. Customize your security configuration by specifying attributes for your security domain. See the

following examples of security attributes:

v User registries to validate user credentials

v Authorization for validating access to resources

v Trust association interceptor (TAI) to authenticate a Web user using a reverse proxy server

v Application and system JAAS login configurations

v LTPA timeout settings

v Application security enablement to provide application isolation and requirements for authenticating

application users

v Java 2 Security to increase overall system integrity by checking for permissions before allowing

access to certain protected system resources

v Remote Method Invocation over Internet Inter-ORB Protocol (RMI/IIOP) to invoke Web services

through remote procedure calls

v Custom properties

Configuring security domains using scripting

Use this topic to create multiple security domains in your configuration. By creating multiple security

domains, you can configure different security attributes for administrative and user applications within a

cell environment.

Before you begin

You must have the administrator role to configure security domains. Also, enable global security in your

environment before configuring multiple security domains.

About this task

You can create multiple security domains to customize your security configuration. Use multiple security

domains to achieve the following goals:

v Configure different security attributes for administrative and user applications within a cell

v Consolidate server configurations by managing different security configurations within a cell

v Restrict access between applications with different user registries, or configure trust relationships

between applications to support communication across registries

Use the following steps to create a new security domain with the wsadmin tool:

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Create a security domain.

To create a security domain, you can create a new security domain, copy an existing security domain,

or copy the existing global security configuration.

v Use the createSecurityDomain command to create the domain-security.xml and

domain-security-map.xml security files in the profile_root/config/waspolicies/default/
security_configuration_name directory. No configuration data is added to the domain-security.xml

file. Use the following Jython command example to create a security domain:

AdminTask.createSecurityDomain(’-securityDomainName securityDomain1 -securityDomainDescription "handles user applications"’)

The command returns the object name of the security domain that was created, as the following

example output demonstrates:

’waspolicies/default/securitydomains/mydomain:domain-security.xml#AppSecurity_1183132319126’

Chapter 10. Configuring security with scripting 853

v Use the copySecurityDomain command to create a new security domain with the attributes of an

existing security domain. If the security configuration of the existing domain has an active user

registry defined, then a new realm name for that registry must be used in the new security

configuration. If a realm name is not specified with the copySecurityDomain command, then the

command assigns a name. Specify the following parameters to copy an existing security domain:

 Parameter Description

-securityDomainName Specifies the name of the new security domain to create (String, required)

-copyFromSecurityDomainName Specifies the name of the existing security domain to copy (String, required)

-realmName Specifies the name of the realm in the security domain to create. The system assigns the realm

name to the active user registry in the security domain (String, optional)

-securityDomainDescription Specifies a description for the security domain to create (String, optional)

Use the following Jython command to copy an existing security domain:

AdminTask.copySecurityDomain(’-securityDomainName copyOfDomain1 -copyFromSecurityDomainName securityDomain1’)

The command returns the object name of the new security domain, as the following example output

demonstrates:

’waspolicies/default/securitydomains/copyOfDomain1:domain-security.xml#AppSecurity_1183132319186’

v Use the copySecurityDomainFromGlobalSecurity command to create a security domain by copying

the global security configuration. If the global security configuration has an active user registry

defined, then a new realm name for that registry must be used for the security domain to create. If

you do not specify a realm name, then the command assigns a name. Specify the following

parameters to copy the global security configuration:

 Parameter Description

-securityDomainName Specifies the name of the new security domain to create (String, required)

-realmName Specifies the name of the realm in the security domain to create. The system assigns the realm

name to the active user registry in the security domain (String, optional)

-securityDomainDescription Specifies a description for the security domain to create (String, optional)

Use the following Jython command to copy the global security configuration:

AdminTask.copySecurityDomainFromGlobalSecurity(’-securityDomainName GScopy’)

The command returns the object name of the new security domain, as the following example output

demonstrates:

’waspolicies/default/securitydomains/copyOfDomain1:domain-security.xml#AppSecurity_1183132319186’

3. Save your configuration changes.

What to do next

Use the wsadmin tool to map a scope to your security domain. Additionally, you can configure security

artifacts in the newly created domain, by:

v configuring user registries.

v enabling application and Java EE security.

v setting Lightweight Third-Party Authentication (LTPA) timeout.

v configuring System and Application Java™ Authentication and Authorization Service (JAAS) login.

v configuring Java 2 Connector (J2C) authorization data.

v configuring Remote Method Invocation over Internet Inter-ORB Protocol (RMI/IIOP) security.

Configuring local operating system user registries using scripting

Use this topic to configure user registries for global security and security domain configurations using the

wsadmin tool. You can define user registries at the global level and for multiple security domains.

854 Securing applications and their environment

Before you begin

You must meet the following requirements before configuring local operating system user registries:

v You must have the administrator or new admin role.

v Enable global security in your environment.

v To configure local operating system user registries for multiple security domains, you must configure at

least one security domain.

About this task

Configure local operating system user registries to support use of the authentication mechanism with the

user accounts database of the local operating system. You can specify local operating system user

registries at the global level and at the security domain.

When you configure a user registry in the global security configuration, the administrator does not specify

a realm name for the user registry. The system determines the realm name from the security runtime. The

system typically specifies the hostname for local operating system registries.

In security domains, you can configure a different realm for a user registry configuration. For example, you

can configure two registries that use the same LDAP server listening on the same port, but use different

base distinguished names (baseDN). This allows the configuration to serve different sets of users and

groups. To use this type of scenario, you must specify a realm name for each user registry configured for

a domain. Because there can be multiple realms in your configuration, you can also specify a list of trusted

realms. This allows communication between applications that use different realms.

Use the following steps to configure local operating system user registries for your global security

configuration and for multiple security domains:

v Configure local operating system registries for global security configurations.

1. Use the configureAdminLocalOSUserRegistry command and the following optional parameters to

configure a local operating system user registry in your global security configuration:

 Parameter Description Data type

-autoGenerateServerId Specifies whether to automatically generate the

server identity to use for internal process

communication. To set a specific server identity,

specify the -serverId parameter.

Boolean

-serverId Specifies the user identity in the repository to

use for internal process communication.

String

-serverIdPassword Specifies the password that corresponds to the

user identity.

String

-primaryAdminId Specifies the name of the user with

administrative privileges as defined in the

registry. This parameter does not apply to

security configurations. The user name must

exist in the user registry repository.

String

-customProperties Specifies a list of attribute and value pairs to

store as custom properties on the user registry.

Separate each attribute and value pair with a

comma character (,), as the following syntax

displays:

″attribute1=value1″,″attribute2=value2″

String

-verifyRegistry Specifies whether to verify the user registry. The

default value is true and verification is

automatically performed.

Boolean

-ignoreCase Specifies whether to perform the case-sensitive

authorization check. This only applies to the

z/OS local operating system user registry.

Boolean

Use the following Jython example command to configure the local operating system registry for

global security:

Chapter 10. Configuring security with scripting 855

AdminTask.configureAdminLocalOSUserRegistry(’-autoGenerateServerId true -primaryAdminId gsAdmin’)

2. Configure the user registry to be the active user registry for the server.

For example, the following Jython command sets the active user registry as the

LocalOSUserRegistry registry for your global security configuration:

AdminTask.setAdminActiveSecuritySettings(’-activeUserRegistry LocalOSUserRegistry’)

3. Save your configuration changes.

v Configure local operating system registries for security domains.

1. Determine the name of the security domain to configure.

Use the listSecurityDomains command to list all security domains on the server, as the following

Jython example demonstrates:

AdminTask.listSecurityDomains()

If you want to configure the local operating system registry for a specific server, cluster, or cell, use

the getSecurityDomainForResource command to display the security domain name for the

management scope of interest. The following Jython example displays the name of the security

domain configured at the cell-level:

AdminTask.getSecurityDomainForResource(’-resourceName Cell=:Node=myNode:Server=myServer’)

For this example, the command returns the following output:

domain2

2. Configure a local operating system user registry for a security domain.

Use the configureAppLocalOSUserRegistry command and the following optional parameters to

configure a local operating system user registry:

 Parameter Description Data type

-securityDomainName Specifies the unique name that identifies the

security domain of interest.

String

-realmName Specifies the name of the realm of the user

registry.

String

-customProperties Specifies a list of attribute and value pairs to

store as custom properties on the user registry

object. Separate each attribute and value pair

with a comma character (,).

String

-verifyRegistry Specifies whether to verify the user registry. The

default value is true, and verification is

automatically performed.

Boolean

-ignoreCase Specifies whether to perform the case-sensitive

authorization check. This only applies to the

z/OS local operating system user registry.

Boolean

Use the following Jython command to configure the local operating system user registry for the

domain2 security domain:

AdminTask.configureAppLocalOSUserRegistry(’-securityDomainName domain2 -realmName domain2Realm’)

3. Configure the user registry to be the active user registry for the server.

For example, the following Jython command sets the active user registry as the

LocalOSUserRegistry registry for your security domain configuration:

AdminTask.setAppActiveSecuritySettings(’-securityDomainName domain2 -activeUserRegistry LocalOSUserRegistry’)

4. Save your configuration changes.

What to do next

Configuring custom user registries using scripting

Use this topic to configure custom user registries for global security and security domain configurations

using the wsadmin tool. You can define custom user registries at the global level and for multiple security

domains.

856 Securing applications and their environment

Before you begin

You must meet the following requirements before configuring custom user registries:

v You must have the administrator or new admin role.

v Enable global security in your environment.

v Implement and build the UserRegistry interface and configure a custom registry.

v To configure custom user registries for multiple security domains, you must configure at least one

security domain.

About this task

WebSphere Application Server security supports stand-alone custom registries in addition to the local

operating system registry, standalone Lightweight Directory Access Protocol (LDAP) registries, and

federated repositories for authentication and authorization. A stand-alone custom-implemented registry

uses the UserRegistry Java interface as provided by the product. A stand-alone custom registry can

support any type of account repository from a relational database, flat file, and so on. You can specify

custom user registries at the global level and at the security domain.

When you configure a user registry in the global security configuration, the administrator does not specify

a realm name for the user registry. The system determines the realm name from the security run time. The

realm name for custom registries is set by the custom registry.

Use the following Jython command to make the user registry the active user registry in the global security

configuration:

AdminTask.setAdminActiveSecuritySettings(’-activeUserRegistry CustomUserRegistry’)

Use the following Jython command to make the user registry the active user registry in the application

security configuration:

AdminTask.setAppActiveSecuritySettings(’-securityDomainName domain2 -activeUserRegistry CustomUserRegistry’)

In security domains, you can configure a different realm for a user registry configuration. For example, you

can configure two registries that use the same LDAP server listening on the same port, but use different

base distinguished names (baseDN). This method supports the configuration to serve different sets of

users and groups. To use this type of scenario, you must specify a realm name for each user registry

configured for a domain. Multiple realms can exist in your configuration, and you can also specify a list of

trusted realms. Communications between applications that use different realms is supported.

Use the following steps to configure custom user registries for your global security configuration and for

multiple security domains:

v Configure custom user registries for global security configurations.

Use the configureAdminCustomUserRegistry command and the following optional parameters to

configure a custom user registry in your global security configuration:

 Parameter Description Data Type

-autoGenerateServerId Specifies whether to automatically generate the

server identity to use for internal process

communication. To set a specific server identity,

specify the -serverId parameter.

Boolean

-serverId Specifies the user identity in the repository to

use for internal process communication.

String

-serverIdPassword Specifies the password that corresponds to the

user identity.

String

-primaryAdminId Specifies the name of the user with

administrative privileges as defined in the

registry. This parameter does not apply to

security configurations. The user name must

exist in the user registry repository.

String

Chapter 10. Configuring security with scripting 857

Parameter Description Data Type

-customRegClass Specifies the class name that implements the

UserRegistry interface in the

com.ibm.websphere.security class.

String

-ignoreCase Specifies whether to require case sensitive

authorization. Specify true to ignore case during

authorization.

Boolean

-customProperties Specifies a list of attribute and value pairs to

store as custom properties on the user registry

object. Separate each attribute and value pair

with a comma character (,) as the following

syntax displays:

″attribute1=value1″,″attribute2=value2″

String

-verifyRegistry Specifies whether to verify the user registry. The

default value is true and verification is

automatically performed.

Boolean

Use the following Jython example command to configure the local operating system registry for global

security:

AdminTask.configureAdminCustomUserRegistry(’-autoGenerateServerId true -primaryAdminId gsAdmin’)

v Configure custom user registries for security domains.

1. Determine the name of the security domain to configure.

Use the listSecurityDomains command to list all security domains on the server, as the following

Jython example demonstrates:

AdminTask.listSecurityDomains()

2. Configure a custom user registry for a security domain.

Use the configureAppCustomUserRegistry command and the following optional parameters to

configure a local custom user registry:

 Parameter Description Data type

-securityDomainName Specifies the unique name that identifies the

security domain of interest.

String

-realmName Specifies the name of the realm of the user

registry.

String

-customRegClass Specifies the class name that implements the

UserRegistry interface in the

com.ibm.websphere.security class.

String

-ignoreCase Specifies whether to require case sensitive

authorization. Specify true to ignore case during

authorization.

Boolean

-customProperties Specifies a list of attribute and value pairs to

store as custom properties on the user registry

object. Separate each attribute and value pair

with a comma character (,) as the following

syntax displays:

″attribute1=value1″,″attribute2=value2″

String

-verifyRegistry Specifies whether to verify the user registry. The

default value is true and verification is

automatically performed.

Boolean

Use the following Jython example command to configure the local operating system user registry for

the domain2 security domain:

AdminTask.configureAppCustomUserRegistry(’-securityDomainName domain2 -realmName domain2Realm’)

What to do next

Configuring JAAS login modules using scripting

Use this topic to use the wsadmin tool to configure and manage Java Authentication and Authorization

Service (JAAS) login entries to allow communication between realms in a multiple security domain

environment.

858 Securing applications and their environment

Before you begin

You must meet the following requirements before configuring local operating system user registries:

v You must have the administrator or new admin role.

v Enable global security in your environment.

v Configure multiple realms using security domains in your environment.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Configure a JAAS login module.

Use the configureJAASLoginEntry command to configure a Java Authentication and Authorization

Service (JAAS) login entry in a security domain or in the global security configuration. You can use this

command to modify existing JAAS login entries or to create new login entries.

Specify the following parameters to configure the JAAS login module:

 Parameter Description

-loginEntryAlias Specifies an alias that identifies the JAAS login entry in the configuration.

(String, required)

-loginType Specifies the type of JAAS login entry of interest. Specify system for the

system login type or application for the application login type. (String,

required)

-securityDomainName Specifies the name of the security configuration. If you do not specify a

security domain name, the system updates the global security

configuration. (String, optional)

-loginModules Specifies a comma (,) separated list of login module class names. Specify

the list in the order that the system calls them. (String, optional)

-authStrategies Optionally specifies the authentication behavior as authentication proceeds

down the list of login modules. (String, optional)

Specify one or many of the following values in a comma (,) separated list:

v REQUIRED

Specifies that the LoginModule module is required to succeed. Whether

authentication succeeds or fails, the process still continues down the

LoginModule list for each realm.

v REQUISITE

Specifies that the LoginModule module is required to succeed. If

authentication is successful, the process continues down the

LoginModule list in the realm entry. If authentication fails, control

immediately returns to the application. Authentication does not proceed

down the LoginModule list.

v SUFFICIENT

Specifies that the LoginModule module is not required to succeed. If

authentication succeeds, control immediately returns to the application.

Authentication does not proceed down the LoginModule list. If

authentication fails, the process continues down the list.

v OPTIONAL

Specifies that the LoginModule module is not required to succeed.

Whether authentication succeeds or fails, the process still continues

down the LoginModule list.

Use the configureJAASLoginEntry command to configure the JAAS login module, as the following

Jython example demonstrates:

AdminTask.configureJAASLoginEntry(’[-securityDomainName testDomain

-loginType application -loginEntryAlias testLoginEntry -loginModules

"com.ibm.ws.security.common.auth.module.WSLoginModuleImpl" -authStrategies "REQUIRED"]’)

3. Set custom properties for the JAAS login module.

Use the configureLoginModule command to specify custom properties, modify the authentication

strategy, or set the module to use a login module proxy. The following Jython command sets the debug

and delegate custom properties for the testLoginEntry JAAS login entry:

AdminTask.configureLoginModule(’[-securityDomainName testDomain -loginType application

-loginEntryAlias testLoginEntry -loginModule com.ibm.ws.security.common.auth.module.WSLoginModuleImpl

-customProperties ["debug=true","delegate=WSLogin"]]’)

Chapter 10. Configuring security with scripting 859

4. Save your configuration changes.

Configuring Common Secure Interoperability authentication using

scripting

Use this topic to use the wsadmin tool to configure inbound and outbound communications using the

Common Secure Interoperability protocol. Common Secure Interoperability Version 2 (CSIv2) supports

increased vendor interoperability and additional features.

Before you begin

You must meet the following requirements before configuring local operating system user registries:

v You must have the administrator or new admin role.

v Enable global security in your environment.

v Configure multiple realms using security domains in your environment.

v Configure CSI inbound communication authentication.

Inbound authentication refers to the configuration that determines the type of accepted authentication for

inbound requests. This authentication is advertised in the interoperable object reference (IOR) that the

client retrieves from the name server.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the settings to specify for CSI inbound communication.

The configureCSIInbound command configures various settings for CSI inbound communication.

Review the following list of optional parameters to determine the attributes to set in your

configuration:

 Parameter Description

-securityDomainName Specifies the name of the security configuration. If you do not specify a security domain name, the

command modifies the global security configuration. (String)

-messageLevelAuth Specifies whether clients connecting to this server must specify a user ID and password. Specify Never to

disable the user ID and password requirement. Specify Supported to accept a user ID and password.

Specify Required to require a user ID and password. (String)

-supportedAuthMechList Specifies the authentication mechanism to use. Specify KRB5 for Kerberos authentication, LTPA for

Lightweight Third-Party Authentication, BasicAuth for basic authentication, and custom to use your own

authentication token implementation. You can specify more than one, separated by the pipe character (|).

(String)

-clientCertAuth Specifies whether a client that connects to the server must connect using an SSL certificate. Specify

Never to allow clients to connect without SSL certificates. Specify Supported to accept clients connecting

with and without SSL certificates. Specify Required to require clients to use SSL certificate. (String)

-transportLayer Specifies the transport layer support level. Specify Never to disable transport layer support. Specify

Supported to enable transport layer support. Specify Required to require transport layer support. (String)

-sslConfiguration Specifies the SSL configuration alias to use for inbound transport. (String)

-enableIdentityAssertion Specifies whether to enable identity assertion. When using the identity assertion authentication method,

the security token generated is a <wsse:UsernameToken> element that contains a <wsse:Username>

element. Specify true for the -enableIdentityAssertion parameter to enable identity assertion. (Boolean)

-trustedIdentities Specifies a list of trusted server identities, separated by the pipe character (|). To specify a null value, set

the value of the -trustedIdentities parameter as an empty string (″″). (String)

-statefulSession Specifies whether to enable a stateful session. Specify true to enable a stateful session. (Boolean)

-enableAttributePropagation Specifies whether to enable security attribute propagation. Security attribute propagation allows the

application server to transport authenticated subject contents and security context information from one

server to another in your configuration. Specify true to enable security attribute propagation. (Boolean)

3. Configure CSI inbound communication authentication.

The configureCSIInbound command configures the CSIv2 Inbound authentication on a security

domain or on the global security configuration. When configuring CSI Inbound in a security domain

for the first time, the CSI objects are copied from global security. Then, the changes are applied to

configuration.

860 Securing applications and their environment

Use the configureCSIInbound command to configure CSI inbound authentication for a security

domain or the global security configuration, as the following Jython example demonstrates:

AdminTask.configureCSIInbound(’-securityDomainName testDomain -messageLevelAuth Supported

-supportedAuthMechList KRB5|LTPA -clientCertAuth Supported -statefulSession true’)

4. Save your configuration changes.

v Configure CSI outbound communication authentication.

Outbound authentication refers to the configuration that determines the type of authentication that is

performed for outbound requests to downstream servers.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the settings to specify for CSI outbound communication.

The configureCSIOutbound command configures various settings for CSI outbound communication.

Review the following list of optional parameters to determine the attributes to set in your

configuration:

 Parameter Description

-securityDomainName Specifies the name of the security configuration. If you do not specify a security domain name, the

command modifies the global security configuration. (String)

-enableAttributePropagation Specifies whether to enable security attribute propagation. Security attribute propagation allows the

application server to transport authenticated subject contents and security context information from one

server to another in your configuration. Specify true to enable security attribute propagation. (Boolean)

-enableIdentityAssertion Specifies whether to enable identity assertion. When using the identity assertion authentication method,

the security token generated is a <wsse:UsernameToken> element that contains a <wsse:Username>

element. Specify true for the -enableIdentityAssertion parameter to enable identity assertion. (Boolean)

-useServerIdentity Specifies whether to use the server identity to establish trust with the target server. Specify true to use

the server identity. (Boolean)

-trustedId Specifies the trusted identity that the application server uses to establish trust with the target server.

(String)

-trustedIdentityPassword Specifies the password of the trusted server identity. (String)

-messageLevelAuth Specifies whether clients connecting to this server must specify a user ID and password. Specify Never to

disable the user ID and password requirement. Specify Supported to accept a user ID and password.

Specify Required to require a user ID and password. (String)

-supportedAuthMechList Specifies the authentication mechanism to use. Specify KRB5 for Kerberos authentication, LTPA for

Lightweight Third-Party Authentication, BasicAuth for basic authentication, and custom to use your own

authentication token implementation. You can specify more than one, separated by the pipe character (|).

(String)

-clientCertAuth Specifies whether a client that connects to the server must connect using an SSL certificate. Specify

Never to allow clients to connect without SSL certificates. Specify Supported to accept clients connecting

with and without SSL certificates. Specify Required to require clients to use SSL certificate. (String)

-transportLayer Specifies the transport layer support level. Specify Never to disable transport layer support. Specify

Supported to enable transport layer support. Specify Required to require transport layer support. (String)

-sslConfiguration Specifies the SSL configuration alias to use for inbound transport. (String)

-statefulSession Specifies whether to enable a stateful session. Specify true to enable a stateful session. (Boolean)

-enableOutboundMapping Specifies whether to enable custom outbound identity mapping. Specify true to enable custom outbound

identity mapping. (Boolean)

-trustedTargetRealms Specifies a list of target realms to trust. Separate each realm name with the pipe character (|). (String)

3. Configure CSI outbound communication authentication.

The configureCSIOutbound command configures the CSIv2 outbound authentication in a security

domain or in the global security configuration. When configuring CSI outbound authentication in a

security domain for the first time, the application server copies the CSI objects from global security.

Then, the application server applies the changes to that configuration.

Use the configureCSIOutbound command to configure CSI outbound authentication for a security

domain or the global security configuration, as the following Jython example demonstrates:

AdminTask.configureCSIOutbound(’-securityDomainName testDomain -enableIdentityAssertion true

-trustedId myID -trustedIdentityPassword myPassword123 -messageLevelAuth Required

-trustedTargetRealms realm1|realm2|realm3’)

4. Save your configuration changes.

Chapter 10. Configuring security with scripting 861

Configuring trust association using scripting

Use the wsadmin tool to configure and manage trust association configurations in a multiple security

domain environment. Trust association enables the integration of the application server security and

third-party security servers. More specifically, a reverse proxy server can act as a front-end authentication

server while the product applies its own authorization policy onto the resulting credentials that are passed

by the proxy server.

Before you begin

You must meet the following requirements before configuring a trust association:

v You must have the administrator or new admin role.

v Enable global security in your environment.

v Configure multiple realms using security domains in your environment.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Configure a trust association.

Use the configureTrustAssociation command to enable the trust association. You can also use this

command to create or modify a trust association interceptor.

The following Jython command creates a trust association for the testDomain security domain and

configures the trust association to act as a reverse proxy server:

AdminTask.configureTrustAssociation(’-securityDomainName testDomain -enable true’)

3. Configure the trust association interceptor.

Use the configureInterceptor command to modify an existing interceptor. The following Jython

command uses a WebSEAL interceptor to configure single sign-on for the testDomain security domain:

AdminTask.configureInterceptor(’[-interceptor com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus

-securityDomainName testDomain -customProperties ["com.ibm.websphere.security.trustassociation.types=webseal",

"com.ibm.websphere.security.webseal.loginId=websealLoginID","com.ibm.websphere.security.webseal.id=iv-user"]]’)

4. Save your configuration changes.

Mapping resources to security domains using scripting

Use this topic to assign management resources to security domains. Set management resources to your

security domains to customize your security configuration for a cell, server, or cluster.

Before you begin

Users assigned to the administrator role can configure security domains. Verify that you have the

appropriate administrative role before configuring security domains. Also, create a security domain, or copy

an existing security domain before assigning resources to a security domain.

About this task

After creating a security domain, you can map management resources to the security domain. You can

assign resources to a security domain at the server, cell, and cluster level. Use the following steps to

assign a resource to a security domain:

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine which security domain to map a resource.

Use the listSecurityDomains command to view a list of security domains in your configuration. Specify

true for the optional -listDescription parameter to list the description for each security domain, as the

following Jython example demonstrates:

print AdminTask.listSecurityDomains(’-listDescription true’)

The command returns the following example attribute list output:

862 Securing applications and their environment

{{name myDomain}

{description {security domain for administrative applications}}}

{{name domain2}

{description {new domain for cell123}}}

3. Assign a resource to a security domain.

Use the mapResourceToSecurityDomain command to assign a management resource to the security

domain. For example, use the following Jython command to secure all applications on the server1 cell

with the security attributes in the domain2 security domain:

AdminTask.mapResourceToSecurityDomain(’-securityDomainName domain2 -resourceName Cell=myCell:Node=myNode:Server=server1’)

4. Save your configuration changes.

Results

Your security domain is updated in your configuration. All applications in the specified resource use the

security attributes specified by the security domain. If the security domain does not contain all security

attributes, then the missing attributes are obtained from the global security configuration.

What to do next

Restart each resource that you assigned to a security domain.

Removing resources from security domains using scripting

Use this topic to remove management resources from security domains. Remove all resources from a

security domain before deleting the security domain from your configuration.

Before you begin

Users assigned to the administrator role can configure security domains. Verify that you have the

appropriate administrative role before configuring security domains.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the security domain to edit.

Use the listSecurityDomains command to view a list of security domains in your configuration. Specify

true for the optional -listDescription parameter to list the description for each security domain, as the

following Jython example demonstrates:

print AdminTask.listSecurityDomains(’-listDescription true’)

The command returns the following example output:

myDomain - security domain for administrative applications

domain2 - new domain for cell123

3. Verify the management resources that are assigned to the security domain.

Use the listResourcesInSecurityDomain command to view a list of resources that are mapped to the

security domain of interest, as the following Jython example demonstrates:

print AdminTask.listResourcesInSecurityDomain(’-securityDomainName domain2’)

The command returns the following example output:

"Cell=myhostCell01"

4. Remove the resource from the security domain.

Use the removeResourceFromSecurityDomain command to remove a management resource from the

security domain. For example, use the following Jython command to remove the Cell01 cell resource

from the domain2 security domain:

AdminTask.removeResourceFromSecurityDomain(’-securityDomainName domain2 -resourceName Cell=myhostCell01’)

5. Save your configuration changes.

What to do next

Restart each management resource that you removed from a security domain.

Chapter 10. Configuring security with scripting 863

Removing security domains using scripting

Use this topic to delete security domains from your configuration using the wsadmin tool. Remove security

domains that are not needed in your security configuration.

Before you begin

Users assigned to the administrator role can configure security domains. Verify that you have the

appropriate administrative role before configuring security domains. A security domain must exist in your

configuration.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the security domain to delete.

Use the listSecurityDomains to view a list of security domains in your configuration. Specify true for

the optional -listDescription parameter to list the description for each security domain, as the following

Jython example demonstrates:

print AdminTask.listSecurityDomains(’-listDescription true’)

The command returns the following example output:

{{name myDomain}

{description {security domain for administrative applications}}}

{{name domain2}

{description {new domain for cell123}}}

3. Verify that no resources are assigned to the security domain to delete.

You can use this step to manually remove resources from the security domain of interest. You do not

need to complete this step if you want to delete the security domain and each assigned resource. Use

the listResourcesInSecurityDomain command to view a list of resources that are mapped to the

security domain of interest, as the following Jython example demonstrates:

print AdminTask.listResourcesInSecurityDomain(’-securityDomainName domain2’)

If the command returns the name of a resource, use the removeResourceFromSecurityDomain

command to remove a resource from the security domain. For example, use the following Jython

command to remove the Cell01 cell resource from the domain2 security domain:

"AdminTask.removeResourceFromSecurityDomain(’-securityDomainName domain2 -resourceName Cell=myhostCell01’)"

4. Delete the security domain from your configuration.

Use the deleteSecurityDomain command to delete the security domain. If a resource associated with

the domain was deleted from the system but the mapping was not removed form the domain, specify

the optional -force parameter to remove the domain, as the following Jython example demonstrates:

AdminTask.deleteSecurityDomain(’-securityDomainName domain2 -force true’)

5. Save your configuration changes.

Removing user registries using scripting

You can use the wsadmin tool to remove user registries from global security or security domain

configurations. Use the steps in this topic to remove Lightweight Directory Access Protocol (LDAP), local

operating system, custom, or federated repository user registries from your global security or security

domain configurations.

Before you begin

You must meet the following requirements before configuring local operating system user registries:

v You must have the administrator or new admin role.

v Enable global security in your environment.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the registry to remove.

Use the getUserRegistryInfo command to display information about a user registry from the global

security configuration or in a security domain. You must specify the type of user registry of interest.

864 Securing applications and their environment

Valid values are LDAPUserRegistry, WIMUserRegistry, CustomUserRegistry, and LocalOSUserRegistry.

The following command returns a list of values in the local operating system user registry object for the

domain2 security domain, as the following example Jython demonstrates:

AdminTask.getUserRegistryInfo(’-securityDomainName domain2 -userRegistryType LocalOSUserRegistry’)

3. Determine whether the registry of interest is the active user registry.

You cannot remove the active user registry. Use the getActiveSecuritySettings command to see check

if the user registry is the active user registry before removing it.

4. Remove the registry of interest.

Use the unconfigureUserRegistry command to remove the registry of interest. If you remove the user

registry from the global security configuration, then the command reduces the registry object to the

minimum values for the configuration. If you remove the user registry from a security domain, then the

command removes the configuration object from the security domain. The following Jython example

removes the local operating system user registry configuration from the domain2 security domain:

AdminTask.unconfigureUserRegistry(’-securityDomainName domain2 -userRegistryType LocalOSUserRegistry’)

5. Save your configuration changes.

SecurityDomainCommands command group for the AdminTask object

You can use the Jython scripting language to configure and administer security domains with the wsadmin

tool. Use the commands and parameters in the SecurityDomainCommands group to create and manage

security domains, assign servers and clusters to security domains as resources, and to query the security

domain configuration.

Use the following commands to administer the security domain configuration:

v copySecurityDomain

v copySecurityDomainFromGlobalSecurity

v createSecurityDomain

v deleteSecurityDomain

v getSecurityDomainForResource

v listResourcesInSecurityDomain

v listSecurityDomains

v “listSecurityDomainsForResources” on page 870

v mapResourceToSecurityDomain

v modifySecurityDomain

v removeResourceFromSecurityDomain

copySecurityDomain

The copySecurityDomain command creates a new security domain by copying an existing security domain.

If the security configuration defines an active user registry, provide a realm name for the newly create

security domain. If you do not specify a realm name, the system creates a realm name.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the new security domain that the system creates by copying another security

domain. (String)

Chapter 10. Configuring security with scripting 865

-copyFromSecurityDomainName

Specifies the name of the existing security domain that the system uses to create the new security

domain. (String)

Optional parameters

-securityDomainDescription

Specifies a description for the new security domain. (String)

-realmName

Specifies the name of the realm in the new security domain. The system creates a name for the realm

if you do not specify a value for this parameter. (String)

Return value

The command returns the configuration ID of the new security domain.

Batch mode example usage

v Using Jython string:

AdminTask.copySecurityDomain(’-securityDomainName copyOfDomain2 -copyFromSecurityDomainName Domain2’)

v Using Jython list:

AdminTask.copySecurityDomain(’-securityDomainName’, ’copyOfDomain2’, ’-copyFromSecurityDomainName’, ’Domain2’)

Interactive mode example usage

v Using Jython:

AdminTask.copySecurityDomain(’-interactive’)

copySecurityDomainFromGlobalSecurity

The copySecurityDomainFromGlobalSecurity command creates a security domain by copying the global

security configuration. If an active user registry exists for the global security configuration, provide a realm

name for the newly created security domain. If you do not specify a realm name, then the system creates

a realm name.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the new security domain that the system copies from the global security

configuration. (String)

Optional parameters

-securityDomainDescription

Specifies a description for the new security domain. (String)

-realmName

Specifies the name of the realm in the new security configuration. The system creates a name for the

realm if you do not specify a value for the -realmName parameter. (String)

Return value

The command returns the configuration ID of the new security domain.

Batch mode example usage

866 Securing applications and their environment

v Using Jython string:

AdminTask.copySecurityDomainFromGlobalSecurity(’-securityDomainName GSCopy -securityDomainDescription

"copy of global security" -realmName myRealm’)

v Using Jython list:

AdminTask.copySecurityDomainFromGlobalSecurity(’-securityDomainName’, ’GSCopy’, ’-securityDomainDescription’,

’"copy of global security"’, ’-realmName myRealm’)

Interactive mode example usage

v Using Jython:

AdminTask.copySecurityDomainFromGlobalSecurity(’-interactive’)

createSecurityDomain

The createSecurityDomain command creates the security domain-security.xml and domain-security-
map.xml files under the profile_root/config/cells/cellName/securityDomain/configurationName directory. The

system creates an empty domain-security.xml file.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the new security domain to create. (String)

Optional parameters

-securityDomainDescription

Specifies a description of the new security domain. (String)

Return value

The command returns the configuration ID of the new security domain.

Batch mode example usage

v Using Jython string:

AdminTask.createSecurityDomain(’-securityDomainName newDomain -securityDomainDescription "new security domain"’)

v Using Jython list:

AdminTask.createSecurityDomain(’-securityDomainName’, ’newDomain’, ’-securityDomainDescription’,

’"new security domain"’)

Interactive mode example usage

v Using Jython:

AdminTask.createSecurityDomain(’-interactive’)

deleteSecurityDomain

The deleteSecurityDomain command removes the domain-security.xml and domain-security-map.xml files

from the security domain directory. The command returns an error if resources are mapped to the security

domain of interest. To delete the security domain when resources are mapped to the security domain of

interest, specify the value for the -force parameter as true.

Target object

None.

Chapter 10. Configuring security with scripting 867

Required parameters

-securityDomainName

Specifies the name of the security domain to delete. (String)

Optional parameters

-force

Specifies that the system deletes the security domain without checking for resources that are

associated with the domain. Use this option when the resources in the security domains are not valid

resources. The default value for the -force parameter is false. (Boolean)

Return value

The command does not return output if the system successfully removes the security domain

configuration.

Batch mode example usage

v Using Jython string:

AdminTask.deleteSecurityDomain(’-securityDomainName mySecurityDomain -force true’)

v Using Jython list:

AdminTask.deleteSecurityDomain(’-securityDomainName’, ’mySecurityDomain’, ’-force’, ’true’)

Interactive mode example usage

v Using Jython:

AdminTask.deleteSecurityDomain(’-interactive’)

getSecurityDomainForResource

The getSecurityDomainForResource command displays the security domain for a specific resource. If the

resource is not mapped to a domain, the command does not return output.

Target object

None.

Required parameters

-resourceName

Specifies the name of the resource of interest. Specify the value in the following format:

Cell=:Node=myNode:Server=myServer (String)

Optional parameters

-getEffectiveDomain

Specifies whether the command returns the effective domain of the resource if the resource is not

directly mapped to a domain. The default value is true. Specify false if you do not want to display the

effective domain if the resource is not directly mapped to a domain. (Boolean)

Return value

The command returns the security domain name as a string.

Batch mode example usage

v Using Jython string:

AdminTask.getSecurityDomainForResource(’-resourceName Cell=:Node=myNode:Server=myServer’)

v Using Jython list:

868 Securing applications and their environment

AdminTask.getSecurityDomainForResource(’-resourceName’, ’Cell=:Node=myNode:Server=myServer’)

Interactive mode example usage

v Using Jython:

AdminTask.getSecurityDomainForResource(’-interactive’)

listResourcesInSecurityDomain

The listResourcesInSecurityDomain command displays the servers or clusters that are associated with a

specific security domain.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the security domain of interest. (String)

-expandCell

Specifies whether to display the servers in the cell. Specify true to display the specific servers, or

specify false to list the cell information only. (Boolean)

Return value

The command returns an array that contains the names of the resources that are mapped to the security

domain of interest in the format: Cell=<cell name>:Node=<node name>:Server=<server name>.

Batch mode example usage

v Using Jython string:

AdminTask.listResourcesInSecurityDomain(’-securityDomainName myDomain’)

v Using Jython list:

AdminTask.listResourcesInSecurityDomain(’-securityDomainName’, ’myDomain’)

Interactive mode example usage

v Using Jython:

AdminTask.listResourcesInSecurityDomain(’-interactive’)

listSecurityDomains

The listSecurityDomains command lists each security domain configured for the server.

Target object

None.

Optional parameters

-listDescription

Specifies whether to display the description of the security domains. Specify true to display the

descriptions of the security domains. (Boolean)

-doNotDisplaySpecialDomains

Specifies whether to exclude special domains. Specify true to exclude the special domains in the

command output, or false to display the special domains. (Boolean)

Chapter 10. Configuring security with scripting 869

Return value

The command returns an array that contains the names of security domains that are configured for the

server. The command returns an array of attribute lists that contain the name and description for each

security domain if the -listDescription parameter is specified.

Batch mode example usage

v Using Jython string:

AdminTask.listSecurityDomains(’-listDescription true’)

v Using Jython list:

AdminTask.listSecurityDomains(’-listDescription’, ’true’)

Interactive mode example usage

v Using Jython:

AdminTask.listSecurityDomains(’-interactive’)

listSecurityDomainsForResources

The listSecurityDomainsForResources command lists the security domains that are associated with the

resources of interest.

Target object

None.

Required parameters

-resourceNames

Specifies one or more resources for which the command returns the associated security domains.

Specify each resource separated by the plus sign character (+). (String)

Return value

The command returns the list of resources specified by the -resourceNames parameter and the security

domains to which each resource is mapped.

Batch mode example usage

v Using Jython string:

AdminTask.listSecurityDomainsForResources(’-resourceNames resource1+resource2+resource3’)

v Using Jython list:

AdminTask.listSecurityDomainsForResources(’-resourceNames’, ’resource1+resource2+resource3’)

Interactive mode example usage

v Using Jython:

AdminTask.listSecurityDomainsForResources(’-interactive’)

mapResourceToSecurityDomain

The mapResourceToSecurityDomain command maps a resource to a security domain. The system adds

an entry for each resource to the domain-security-map.xml file.

Target object

None.

870 Securing applications and their environment

Required parameters

-securityDomainName

Specifies the name of the security domain of interest. (String)

-resourceName

Specifies the name of the resource to which the system maps the security domain of interest. Specify

the value in the following format: Cell=:Node=myNode:Server=myServer (String)

Return value

The command does not return output if the system successfully assigns the resource to the security

domain of interest.

Batch mode example usage

v Using Jython string:

AdminTask.mapResourceToSecurityDomain(’-securityDomainName mySecurityDomain -resourceName

-resourceName Cell=:Node=myNode:Server=myServer’)

v Using Jython list:

AdminTask.mapResourceToSecurityDomain(’-securityDomainName’, ’mySecurityDomain’, ’-resourceName’,

’-resourceName Cell=:Node=myNode:Server=myServer’)

Interactive mode example usage

v Using Jython:

AdminTask.mapResourceToSecurityDomain(’-interactive’)

modifySecurityDomain

The modifySecurityDomain command changes the description of a security domain.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the security domain to edit. (String)

Optional parameters

-securityDomainDescription

Specifies the new description for the security domain of interest. (String)

Return value

The command does not return output if the system successfully modifies the security domain.

Batch mode example usage

v Using Jython string:

AdminTask.modifySecurityDomain(’-securityDomainName myDomain -securityDomainDescription

"my new description"’)

v Using Jython list:

AdminTask.modifySecurityDomain(’-securityDomainName’, ’myDomain’, ’-securityDomainDescription’,=

’"my new description"’)

Interactive mode example usage

v Using Jython:

Chapter 10. Configuring security with scripting 871

AdminTask.modifySecurityDomain(’-interactive’)

removeResourceFromSecurityDomain

The removeResourceFromSecurityDomain command removes a resource from a security domain

mapping. The command removes the resource entry from the domain-security-map.xml file.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the security domain from which to remove the resource. (String)

-resourceName

Specifies the name of the resource to remove. Specify the value in the following format:

Cell=:Node=myNode:Server=myServer (String)

Return value

The command does not return output if the system successfully removes the resource from the security

domain.

Batch mode example usage

v Using Jython string:

AdminTask.removeResourceFromSecurityDomain(’-securityDomainName myDomain -resourceName

Cell=:Node=myNode:Server=myServer’)

v Using Jython list:

AdminTask.removeResourceFromSecurityDomain(’-securityDomainName’, ’myDomain’, ’-resourceName’,

’Cell=:Node=myNode:Server=myServer’)

Interactive mode example usage

v Using Jython:

AdminTask.removeResourceFromSecurityDomain(’-interactive’)

SecurityConfigurationCommands command group for the AdminTask

object

You can use the Jython scripting language to configure security with the wsadmin tool. Use the commands

and parameters in the SecurityConfigurationCommands group to configure and manage user registries,

single sign-on, data entries, trust association, login modules, and interceptors.

Use the following command to administer user registry configurations:

v configureAdminCustomUserRegistry

v configureAdminLDAPUserRegistry

v configureAdminLocalOSUserRegistry

v configureAdminWIMUserRegistry

v configureAppCustomUserRegistry

v configureAppLDAPUserRegistry

v configureAppLocalOSUserRegistry

v configureAppWIMUserRegistry

v getLTPATimeout

v setLTPATimeout

872 Securing applications and their environment

v getUserRegistryInfo

v unconfigureUserRegistry

Use the following commands to administer Java Authentication and Authorization Service (JAAS) login

configurations:

v configureLoginEntry

v configureLoginModule

v getJAASLoginEntryInfo

v listJAASLoginEntries

v listLoginModules

v unconfigureJAASLoginEntry

v unconfigureLoginModule

Use the following commands to administer data entry configurations:

v createAuthDataEntry

v deleteAuthDataEntry

v getAuthDataEntry

v listAuthDataEntries

v modifyAuthDataEntry

Use the following commands to administer Common Secure Interoperability Version 2 (CSIv2)

configurations:

v configureCSIInbound

v configureCSIOutbound

v getCSIInboundInfo

v getCSIOutboundInfo

v unconfigureCSIInbound

v unconfigureCSIOutbound

Use the following commands to administer trust association configurations:

v configureInterceptor

v configureTrustAssociation

v getTrustAssociationInfo

v listInterceptors

v unconfigureInterceptor

v unconfigureTrustAssociation

Use the following commands to manage your security configuration:

v configureAuthzConfig

v configureSingleSignon

v getActiveSecuritySettings

v “getAuthzConfigInfo” on page 907

v “getSingleSignon” on page 908

v setAdminActiveSecuritySettings

v setAppActiveSecuritySettings

v unconfigureAuthzConfig

v unsetAppActiveSecuritySettings

Chapter 10. Configuring security with scripting 873

configureAdminCustomUserRegistry

The configureAdminCustomUserRegistry command configures a custom user registry in the global security

configuration.

Target object

None.

Optional parameters

-autoGenerateServerId

Specifies whether the command automatically generates the server identity that the system uses for

internal process communication. Specify true to automatically generate the server identity. (Boolean)

-serverId

Specifies the server identity in the repository that the system uses for internal process communication.

(String)

-serverIdPassword

Specifies the password that corresponds to the server identity. (String)

-primaryAdminId

Specifies the name of the user with administrative privileges that is defined in the registry. This

parameter does not apply to security configurations. (String)

-customRegClass

Specifies the class name that implements the UserRegistry interface in com.ibm.websphere.security

property. (String)

-verifyRegistry

Specifies whether to verify that the user registry configuration is correct. If you set this parameter to

true, then the system verifies the registry by making a call to the user registry to verify the admin ID.

If you specify a server ID and password, then the system verifies the user and password with the user

registry. Set the parameter to false to store the attributes in the configuration without validation. The

command verifies the registry configuration by default. (Boolean)

-customProperties

Specifies a comma separated list of quoted attribute and value pairs that the system stores as custom

properties on the user registry object. For example, use the format: ″attr1=value1″,″attr2=value2″

(String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureAdminCustomUserRegistry(’-autoGenerateServerId true -serverIdPassword password4server

-primaryAdminId serverAdmin’)

v Using Jython list:

AdminTask.configureAdminCustomUserRegistry([’autoGenerateServerId’, ’true’, ’-serverIdPassword’, ’password4server’,

’-primaryAdminId’, ’serverAdmin’])

Interactive mode example usage

v Using Jython:

AdminTask.configureAdminCustomUserRegistry(’-interactive’)

874 Securing applications and their environment

configureAdminLDAPUserRegistry

The configureAdminLDAPUserRegistry command configures a Lightweight Directory Access Protocol

(LDAP) user registry in the global security configuration.

Target object

None.

Optional parameters

-autoGenerateServerId

Specifies whether the command automatically generates the server identity used for internal process

communication. Specify true to automatically generate the server identity. (Boolean)

-serverId

Specifies the server identity in the repository that the system uses for internal process communication.

(String)

-serverIdPassword

Specifies the password that corresponds to the server identity. (String)

-primaryAdminId

Specifies the name of the user with administrative privileges that is defined in the registry. This

parameter does not apply to security configurations. (String)

-verifyRegistry

Specifies whether to verify that the user registry configuration is correct. If you set this parameter to

true, then the system verifies the registry by making a call to the user registry to verify the admin ID.

If you specify a server ID and password, then the system verifies the user and password with the user

registry. Set the parameter to false to store the attributes in the configuration without validation. The

command verifies the registry configuration by default. (Boolean)

-ldapServerType

Specifies the type of LDAP server. The default type is IBM_DIRECTORY_SERVER. (String)

 Specify one of the following valid values:

v IBM_DIRECTORY_SERVER

v IPLANET

v NETSCAPE

v NDS

v DOMINO502

v SECUREWAY

v ACTIVE_DIRECTORY

v CUSTOM

-ldapHost

Specifies the host name of the LDAP server. (String)

-ldapPort

Specifies the port that the system uses to access the LDAP server. The default value is 389. (String)

-baseDN

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point

for LDAP searches of the directory service. In most cases, bind DN and bind password are needed.

However, when anonymous bind can satisfy all of the required functions, bind DN and bind password

are not needed. (String)

Chapter 10. Configuring security with scripting 875

-bindDN

Specifies the distinguished name for the application server, which is used to bind to the directory

service. (String)

-bindPassword

Specifies the binding DN password for the LDAP server. (String)

-searchTimeout

Specifies the timeout value in seconds for an LDAP server to respond before stopping a request. The

default value is 120 seconds. (Long)

-reuseConnection

Specifies whether the server reuses the LDAP connection. By default, this option is enabled. Specify

false for this parameter only in rare situations where a router is used to distribute requests to multiple

LDAP servers and when the router does not support affinity. (Boolean)

Note: When you disable the reuse of the LDAP connection, the application server creates a new

LDAP connection for every LDAP search request. This situation impacts system performance if

your environment requires extensive LDAP calls. This option is provided because the router is

not sending the request to the same LDAP server. The option is also used when the idle

connection timeout value or firewall timeout value between the application server and LDAP is

too small.

-userFilter

Specifies the LDAP filter clause that the system uses to search the user registry for users. The default

value is the default user filter for the LDAP server type. (String)

-groupFilter

Specifies the LDAP filter clause that the system uses to search the user registry for groups. The

default value is the default group filter for the LDAP server type. (String)

-userIdMap

Specifies the LDAP filter that maps the short name of a user to an LDAP entry. The default value is

the default user filter for the LDAP server type. (String)

-groupIdMap

Specifies the LDAP filter that maps the short name of a group to an LDAP entry. The default value is

the default group filter for the LDAP server type. (String)

-groupMemberIdMap

Specifies the LDAP filter that identifies users to group memberships. (String)

-certificateMapMode

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or

CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the mapping.

(String)

-certificateFilter

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in

the client certificate to entries in the LDAP registry. (String)

 The syntax or structure of this filter is: (&(uid=${SubjectCN})(objectclass=inetOrgPerson)). The left

side of the filter specification is an LDAP attribute that depends on the schema that your LDAP server

is configured to use. The right side of the filter specification is one of the public attributes in your client

certificate. The right side must begin with a dollar sign ($) and open bracket ({) and end with a close

bracket (}). You can use the following certificate attribute values on the right side of the filter

specification. The case of the strings is important:

v ${UniqueKey}

v ${PublicKey}

v ${Issuer}

876 Securing applications and their environment

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectCN}

v ${Version}

-krbUserFilter

Specifies the default value is the default user filter for the LDAP server type. (String)

-nestedGroupSearch

Specifies whether to perform a recursive nested group search. Specify true to perform a recursive

nested group search, or specify false to disable recursive nested group searching. (Boolean)

-sslEnabled

Specifies whether to enable Secure Sockets Layer (SSL). Specify true to enable an SSL connection

to the LDAP server. (Boolean)

-sslConfig

Specifies the SSL configuration alias to use for the secure LDAP connection. (String)

-customProperties

Specifies a comma separated list of quoted attribute and value pairs that the system stores as custom

properties on the user registry object. For example, use the format: ″attr1=value1″,″attr2=value2″

(String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureAdminCustomUserRegistry(’-autoGenerateServerId true -serverIdPassword password4server

-primaryAdminId serverAdmin -ldapServerType NETSCAPE -ldapHost 195.168.1.1’)

v Using Jython list:

AdminTask.configureAdminCustomUserRegistry([’-autoGenerateServerId’, ’true’, ’-serverIdPassword’, ’password4server’,

’-primaryAdminId’, ’serverAdmin’, ’-ldapServerType’, ’NETSCAPE’, ’-ldapHost’, ’195.168.1.1’])

Interactive mode example usage

v Using Jython:

AdminTask.configureAdminLDAPUserRegistry(’-interactive’)

configureAdminLocalOSUserRegistry

The configureAdminLocalOSUserRegistry command configures a local operating system user registry in

the global security configuration.

Target object

None.

Optional parameters

Chapter 10. Configuring security with scripting 877

-autoGenerateServerId

Specifies whether the command automatically generates the server identity used for internal process

communication. Specify true to automatically generate the server identity. (Boolean)

-serverId

Specifies the server identity in the repository that the system uses for internal process communication.

(String)

-serverIdPassword

Specifies the password that corresponds to the server identity. (String)

-primaryAdminId

Specifies the name of the user with administrative privileges that is defined in the registry. This

parameter does not apply to security configurations. (String)

-verifyRegistry

Specifies whether to verify that the user registry configuration is correct. If you set this parameter to

true, then the system verifies the registry by making a call to the user registry to verify the admin ID.

If you specify a server ID and password, then the system verifies the user and password with the user

registry. Set the parameter to false to store the attributes in the configuration without validation. The

command verifies the registry configuration by default. (Boolean)

-customProperties

Specifies a comma separated list of quoted attribute and value pairs that the system stores as custom

properties on the user registry object. For example, use the format: ″attr1=value1″,″attr2=value2″

(String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureAdminLocalOSUserRegistry(’-autoGenerateServerId true -serverIdPassword password4server

-primaryAdminId serverAdmin’)

v Using Jython list:

AdminTask.configureAdminLocalOSUserRegistry([’autoGenerateServerId’, ’true’, ’-serverIdPassword’, ’password4server’,

’-primaryAdminId’, ’serverAdmin’])

Interactive mode example usage

v Using Jython:

AdminTask.configureAdminLocalOSUserRegistry(’-interactive’)

configureAdminWIMUserRegistry

The configureAdminWIMUserRegistry command configures a federated repository user registry in the

administrative security configuration.

Target object

None.

Optional parameters

-autoGenerateServerId

Specifies whether the command automatically generates the server identity used for internal process

communication. Specify true to automatically generate the server identity. (Boolean)

878 Securing applications and their environment

-serverId

Specifies the server identity in the repository that the system uses for internal process communication.

(String)

-serverIdPassword

Specifies the password that corresponds to the server identity. (String)

-primaryAdminId

Specifies the name of the user with administrative privileges that is defined in the registry. This

parameter does not apply to security configurations. (String)

-realmName

Specifies the realm of the user registry. The system automatically generates a realm name if you do

not specify a value for the -realmName parameter. (String)

-verifyRegistry

Specifies whether to verify that the user registry configuration is correct. If you set this parameter to

true, then the system verifies the registry by making a call to the user registry to verify the admin ID.

If you specify a server ID and password, then the system verifies the user and password with the user

registry. Set the parameter to false to store the attributes in the configuration without validation. The

command verifies the registry configuration by default. (Boolean)

-customProperties

Specifies a comma separated list of quoted attribute and value pairs that the system stores as custom

properties on the user registry object. For example, use the format: ″attr1=value1″,″attr2=value2″

(String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureAdminWIMUserRegistry(’-autoGenerateServerId true -serverIdPassword password4server

-primaryAdminId serverAdmin’)

v Using Jython list:

AdminTask.configureAdminWIMUserRegistry([’autoGenerateServerId’, ’true’, ’-serverIdPassword’, ’password4server’,

’-primaryAdminId’, ’serverAdmin’])

Interactive mode example usage

v Using Jython:

AdminTask.configureAdminWIMUserRegistry(’-interactive’)

configureAppCustomUserRegistry

The configureAppCustomUserRegistry command configures a custom user registry in an application

security domain.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the security configuration. (String)

Optional parameters

Chapter 10. Configuring security with scripting 879

-realmName

Specifies the realm of the user registry. The system automatically generates a realm name if you do

not specify a value for the -realmName parameter. (String)

-customRegClass

Specifies the class name that implements the UserRegistry interface in com.ibm.websphere.security

property. (String)

-verifyRegistry

Specifies whether to verify that the user registry configuration is correct. If you set this parameter to

true, then the system verifies the registry by making a call to the user registry to verify the admin ID.

If you specify a server ID and password, then the system verifies the user and password with the user

registry. Set the parameter to false to store the attributes in the configuration without validation. The

command verifies the registry configuration by default. (Boolean)

-customProperties

Specifies a comma separated list of quoted attribute and value pairs that the system stores as custom

properties on the user registry object. For example, use the format: ″attr1=value1″,″attr2=value2″

(String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureAppCustomUserRegistry(’-securityDomainName testDomain -realmName server_name.domain:port_number’)

v Using Jython list:

AdminTask.configureAppCustomUserRegistry([’-securityDomainName’, ’testDomain’, ’-realmName’,

’server_name.domain:port_number’])

Interactive mode example usage

v Using Jython:

AdminTask.configureAppCustomUserRegistry(’-interactive’)

configureAppLDAPUserRegistry

The configureAppLDAPUserRegistry command configures LDAP user registries in a security configuration

or a global security configuration.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the security configuration. (String)

Optional parameters

-realmName

Specifies the realm of the user registry. The system automatically generates a realm name if you do

not specify a value for the -realmName parameter. (String)

-verifyRegistry

Specifies whether to verify that the user registry configuration is correct. If you set this parameter to

true, then the system verifies the registry by making a call to the user registry to verify the admin ID.

880 Securing applications and their environment

If you specify a server ID and password, then the system verifies the user and password with the user

registry. Set the parameter to false to store the attributes in the configuration without validation. The

command verifies the registry configuration by default. (Boolean)

-ldapServerType

Specifies the type of LDAP server. The default type is IBM_DIRECTORY_SERVER. (String)

 Specify one of the following valid values:

v IBM_DIRECTORY_SERVER

v IPLANET

v NETSCAPE

v NDS

v DOMINO502

v SECUREWAY

v ACTIVE_DIRECTORY

v CUSTOM

-ldapHost

Specifies the host name of the LDAP server. (String)

-ldapPort

Specifies the port that the system uses to access the LDAP server. The default value is 389. (String)

-baseDN

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point

for LDAP searches of the directory service. In most cases, bind DN and bind password are needed.

However, when anonymous bind can satisfy all of the required functions, bind DN and bind password

are not needed. (String)

-bindDN

Specifies the distinguished name for the application server, which is used to bind to the directory

service. (String)

-bindPassword

Specifies the binding DN password for the LDAP server. (String)

-searchTimeout

Specifies the timeout value in seconds for an LDAP server to respond before stopping a request. The

default value is 120 seconds. (Long Integer)

-reuseConnection

Specifies whether the server reuses the LDAP connection. By default, this option is enabled. Specify

false for this parameter only in rare situations where a router is used to distribute requests to multiple

LDAP servers and when the router does not support affinity. (Boolean)

Note: When you disable the reuse of the LDAP connection, the application server creates a new

LDAP connection for every LDAP search request. This situation impacts system performance if

your environment requires extensive LDAP calls. This option is provided because the router is

not sending the request to the same LDAP server. The option is also used when the idle

connection timeout value or firewall timeout value between the application server and LDAP is

too small.

-userFilter

Specifies the LDAP filter clause that the system uses to search the user registry for users. The default

value is the default user filter for the LDAP server type. (String)

-groupFilter

Specifies the LDAP filter clause that the system uses to search the user registry for groups. The

default value is the default group filter for the LDAP server type. (String)

Chapter 10. Configuring security with scripting 881

-userIdMap

Specifies the LDAP filter that maps the short name of a user to an LDAP entry. The default value is

the default user filter for the LDAP server type. (String)

-groupIdMap

Specifies the LDAP filter that maps the short name of a group to an LDAP entry. The default value is

the default group filter for the LDAP server type. (String)

-groupMemberIdMap

Specifies the LDAP filter that identifies users to group memberships. (String)

-certificateMapMode

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or

CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the mapping.

(String)

-certificateFilter

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in

the client certificate to entries in the LDAP registry. (String)

 The syntax or structure of this filter is: (&(uid=${SubjectCN})(objectclass=inetOrgPerson)). The left

side of the filter specification is an LDAP attribute that depends on the schema that your LDAP server

is configured to use. The right side of the filter specification is one of the public attributes in your client

certificate. The right side must begin with a dollar sign ($) and open bracket ({) and end with a close

bracket (}). You can use the following certificate attribute values on the right side of the filter

specification. The case of the strings is important:

v ${UniqueKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectCN}

v ${Version}

-krbUserFilter

Specifies the default value is the default user filter for the LDAP server type. (String)

-nestedGroupSearch

Specifies whether to perform a recursive nested group search. Specify true to perform a recursive

nested group search, or specify false to disable recursive nested group searching. (Boolean)

-sslEnabled

Specifies whether to enable Secure Sockets Layer (SSL). Specify true to enable an SSL connection

to the LDAP server. (Boolean)

-sslConfig

Specifies the SSL configuration alias to use for the secure LDAP connection. (String)

-customProperties

Specifies a comma separated list of quoted attribute and value pairs that the system stores as custom

properties on the user registry object. For example, use the format: ″attr1=value1″,″attr2=value2″

(String)

Return value

882 Securing applications and their environment

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureAppLDAPUserRegistry(’-securityDomainName testDomain -ldapServerType NETSCAPE -ldapHost

195.168.1.1 -searchTimeout 300’)

v Using Jython list:

AdminTask.configureAppLDAPUserRegistry([’-securityDomainName’, ’testDomain’, ’-ldapServerType’,

’NETSCAPE’, ’-ldapHost’, ’195.168.1.1’, ’-searchTimeout’, ’300’])

Interactive mode example usage

v Using Jython:

AdminTask.configureAppLDAPUserRegistry(’-interactive’)

configureAppLocalOSUserRegistry

The configureAppLocalOSUserRegistry command configures a local operating system user registry in a

security domain.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the security configuration. (String)

Optional parameters

-realmName

Specifies the realm of the user registry. The system automatically generates a realm name if you do

not specify a value for the -realmName parameter. (String)

-verifyRegistry

Specifies whether to verify that the user registry configuration is correct. If you set this parameter to

true, then the system verifies the registry by making a call to the user registry to verify the admin ID.

If you specify a server ID and password, then the system verifies the user and password with the user

registry. Set the parameter to false to store the attributes in the configuration without validation. The

command verifies the registry configuration by default. (Boolean)

-customProperties

Specifies a comma separated list of quoted attribute and value pairs that the system stores as custom

properties on the user registry object. For example, use the format: ″attr1=value1″,″attr2=value2″

(String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureAppLocalOSUserRegistry(’-securityDomainName testDomain’)

v Using Jython list:

AdminTask.configureAppLocalOSUserRegistry([’securityDomainName’, ’testDomain’])

Interactive mode example usage

Chapter 10. Configuring security with scripting 883

v Using Jython:

AdminTask.configureAppLocalOSUserRegistry(’-interactive’)

configureAppWIMUserRegistry

The configureAppWIMUserRegistry command configures federated repository user registries in a security

domain.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the security configuration. (String)

Optional parameters

-realmName

Specifies the realm of the user registry. The system automatically generates a realm name if you do

not specify a value for the -realmName parameter. (String)

-verifyRegistry

Specifies whether to verify that the user registry configuration is correct. If you set this parameter to

true, then the system verifies the registry by making a call to the user registry to verify the admin ID.

If you specify a server ID and password, then the system verifies the user and password with the user

registry. Set the parameter to false to store the attributes in the configuration without validation. The

command verifies the registry configuration by default. (Boolean)

-customProperties

Specifies a comma separated list of quoted attribute and value pairs that the system stores as custom

properties on the user registry object. For example, use the format: ″attr1=value1″,″attr2=value2″

(String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureAppWIMUserRegistry(’-securityDomainName testDomain -realmName testRealm’)

v Using Jython list:

AdminTask.configureAppWIMUserRegistry([’securityDomainName’, ’testDomain’, ’-realmName’, ’testRealm’])

Interactive mode example usage

v Using Jython:

AdminTask.configureAppWIMUserRegistry(’-interactive’)

getLTPATimeout

The getLTPATimeout command displays the number of seconds that the system waits before the LTPA

request reaches timeout.

Target object

None.

884 Securing applications and their environment

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command returns the number of seconds that the server waits before the LTPA request is cancelled.

Batch mode example usage

v Using Jython string:

AdminTask.getLTPATimeout(’-securityDomainName testDomain’)

v Using Jython list:

AdminTask.getLTPATimeout([’securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.getLTPATimeout(’-interactive’)

setLTPATimeout

The setLTPATimeout command sets the amount of time that the system waits before the LTPA request

becomes invalid.

Target object

None.

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

-timeout

Specifies the amount of time, in seconds, before the request times out. (String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.setLTPATimeout(’-timeout 120’)

v Using Jython list:

AdminTask.setLTPATimeout([’timeout’, ’120’])

Interactive mode example usage

v Using Jython:

AdminTask.setLTPATimeout(’-interactive’)

Chapter 10. Configuring security with scripting 885

getUserRegistryInfo

The getUserRegistryInfo command displays information about a user registry in a security domain or in the

global security configuration. If you do not specify a value for the -userRegistryType parameter, the

command returns the active user registry information.

Target object

None.

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

-userRegistryType

Specifies the type of user registry. Specify LDAPUserRegistry for LDAP user registries. Specify

WIMUserRegistry for federated repository user registries. Specify CustomUserRegistry for custom user

registries. Specify LocalOSUserRegisty for local operating system user registries. (String)

Return value

The command returns configuration information in the form of attribute and value pairs for the user registry

object of interest.

Batch mode example usage

v Using Jython string:

AdminTask.getUserRegistryInfo(’-securityDomainName testDomain -userRegistryType LDAPUserRegistry’)

v Using Jython list:

AdminTask.getUserRegistryInfo([’securityDomainName’, ’testDomain’, ’-userRegistryType’, ’LDAPUserRegistry’])

Interactive mode example usage

v Using Jython:

AdminTask.getUserRegistryInfo(’-interactive’)

unconfigureUserRegistry

The unconfigureUserRegistry command modifies the user registry. For a global security configuration, the

command reduces the user registry to the minimum registry values. For application-level security, the

command removes the user registry from the security domain of interest.

Target object

None.

Required parameters

-userRegistryType

Specifies the type of user registry. Specify LDAPUserRegistry for LDAP user registries. Specify

WIMUserRegistry for federated repository user registries. Specify CustomUserRegistry for custom user

registries. Specify LocalOSUserRegisty for local operating system user registries. (String)

Optional parameters

886 Securing applications and their environment

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.unconfigureUserRegistry(’-userRegistryType WIMUserRegistry -securityDomainName testDomain’)

v Using Jython list:

AdminTask.unconfigureUserRegistry([’userRegistryType’, ’WIMUserRegistry’, ’-securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.unconfigureUserRegistry(’-interactive’)

configureLoginEntry

The configureLoginEntry command configures a Java Authentication and Authorization Service (JAAS)

login entry in a security domain or in the global security configuration. You can use this command to

modify existing JAAS login entries or to create new login entries.

Target object

None.

Required parameters

-loginType

Specifies the type of JAAS login entry of interest. Specify system for the system login type or

application for the application login type. (String)

-loginEntryAlias

Specifies an alias that identifies the JAAS login entry in the configuration. (String)

Optional parameters

-securityDomainName

Specifies the name of the security configuration. If you do not specify a security domain name, the

system updates the global security configuration. (String)

-loginModules

Specifies a comma (,) separated list of login module class names. Specify the list in the order that the

system calls them. (String)

-authStrategies

Specifies a comma-separated list of authentication strategies that sets the authentication behavior as

authentication proceeds down the list of login modules. You must specify one authentication strategy

for each login module. (String)

 Specify one or many of the following values in a comma (,) separated list:

v REQUIRED

Specifies that the LoginModule module is required to succeed. Whether authentication succeeds or

fails, the process still continues down the LoginModule list for each realm.

v REQUISITE

Chapter 10. Configuring security with scripting 887

Specifies that the LoginModule module is required to succeed. If authentication is successful, the

process continues down the LoginModule list in the realm entry. If authentication fails, control

immediately returns to the application. Authentication does not proceed down the LoginModule list.

v SUFFICIENT

Specifies that the LoginModule module is not required to succeed. If authentication succeeds,

control immediately returns to the application. Authentication does not proceed down the

LoginModule list. If authentication fails, the process continues down the list.

v OPTIONAL

Specifies that the LoginModule module is not required to succeed. Whether authentication succeeds

or fails, the process still continues down the LoginModule list.

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureLoginEntry(’[-loginType application -loginEntryAlias JAASLoginEntry1 -authStrategies "

REQUIRED,REQUISITE"]’)

v Using Jython list:

AdminTask.configureLoginEntry([’loginType’, ’application’, ’-loginEntryAlias’, ’JAASLoginEntry1’, ’-authStrategies’,

’REQUIRED,REQUISITE’])

Interactive mode example usage

v Using Jython:

AdminTask.configureLoginEntry(’-interactive’)

configureLoginModule

The configureLoginModule command modifies an existing login module or creates a new login module on

an existing JAAS login entry in the global security configuration or in a security domain.

Target object

None.

Required parameters

-loginType

Specifies the type of JAAS login entry of interest. Specify system for the system login type or

application for the application login type. (String)

-loginEntryAlias

Specifies an alias that identifies the JAAS login entry in the configuration. (String)

-loginModule

Specifies the name of the login module. (String)

Optional parameters

-securityDomainName

Specifies the name of the security configuration. (String)

-useLoginModuleProxy

Specifies that the JAAS loads the login module proxy class. JAAS then delegates calls to the login

module classes that are defined in the Module class name field. Specify true to use the login module

proxy. (Boolean)

888 Securing applications and their environment

-authStrategy

Specifies the authentication behavior as authentication proceeds down the list of login modules.

(String)

 Specify one of the following values:

v REQUIRED

Specifies that the LoginModule module is required to succeed. Whether authentication succeeds or

fails, the process still continues down the LoginModule list for each realm.

v REQUISITE

Specifies that the LoginModule module is required to succeed. If authentication is successful, the

process continues down the LoginModule list in the realm entry. If authentication fails, control

immediately returns to the application. Authentication does not proceed down the LoginModule list.

v SUFFICIENT

Specifies that the LoginModule module is not required to succeed. If authentication succeeds,

control immediately returns to the application. Authentication does not proceed down the

LoginModule list. If authentication fails, the process continues down the list.

v OPTIONAL

Specifies that the LoginModule module is not required to succeed. Whether authentication succeeds

or fails, the process still continues down the LoginModule list.

-customProperties

Specifies a comma separated list of quoted attribute and value pairs that the system stores as custom

properties on the user registry object. For example, use the format: [″attr1=value1″,″attr2=value2″]

(String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureLoginModule(’-loginType application -loginEntryAlias JAASLoginEntry1 -loginModule class1’)

v Using Jython list:

AdminTask.configureLoginModule([’loginType’, ’application’, ’-loginEntryAlias’, ’JAASLoginEntry1’, ’-loginModule’,

’class1’])

Interactive mode example usage

v Using Jython:

AdminTask.configureLoginModule(’-interactive’)

getJAASLoginEntryInfo

The getJAASLoginEntryInfo command displays configuration for a specific JAAS login entry.

Target object

None.

Required parameters

-loginType

Specifies the type of JAAS login entry of interest. Specify system for the system login type or

application for the application login type. (String)

Chapter 10. Configuring security with scripting 889

-loginEntryAlias

Specifies an alias that identifies the JAAS login entry in the configuration. (String)

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command returns an attribute list that contains configuration information for the JAAS login entry of

interest.

Batch mode example usage

v Using Jython string:

AdminTask.getJAASLoginEntryInfo(’-loginType application -loginEntryAlias JAASLoginEntry -securityDomainName

testDomain’)

v Using Jython list:

AdminTask.getJAASLoginEntryInfo([’loginType’, ’application’, ’-loginEntryAlias’, ’JAASLoginEntry’, ’-securityDomainName’,

’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.getJAASLoginEntryInfo(’-interactive’)

listJAASLoginEntries

The listJAASLoginEntries command displays each defined JAAS login modules for given type in a security

domain or the global security configuration.

Target object

None.

Required parameters

-loginType

Specifies the type of JAAS login entry of interest. Specify system for the system login type or

application for the application login type. (String)

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command returns an array of attribute lists that contain the login entries for the login type of interest.

Batch mode example usage

v Using Jython string:

AdminTask.listJAASLoginEntries(’-loginType application -securityDomainName testDomain’)

v Using Jython list:

AdminTask.listJAASLoginEntries([’loginType’, ’application’,’-securityDomainName’, ’testDomain’])

890 Securing applications and their environment

Interactive mode example usage

v Using Jython:

AdminTask.listJAASLoginEntries(’-interactive’)

listLoginModules

The listLoginModules command displays the class names and associated options for a specific JAAS login

module in a security domain or in the global security configuration.

Target object

None.

Required parameters

-loginType

Specifies the type of JAAS login entry of interest. Specify system for the system login type or

application for the application login type. (String)

-loginEntryAlias

Specifies an alias that identifies the JAAS login entry in the configuration. (String)

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command returns an array that contains the login modules in a specific login entry.

Batch mode example usage

v Using Jython string:

AdminTask.listLoginModules(’-loginType system -loginEntryAlias JAASLoginEntry’)

v Using Jython list:

AdminTask.listLoginModules([’loginType’, ’system’, ’-loginEntryAlias’, ’JAASLoginEntry’])

Interactive mode example usage

v Using Jython:

AdminTask.listLoginModules(’-interactive’)

unconfigureJAASLoginEntry

The unconfigureJAASLoginEntry command removes a JAAS login entry from the global security

configuration or a security domain. You cannot remove all login entries. The command returns an error if it

cannot remove the login entry of interest.

Target object

None.

Required parameters

-loginType

Specifies the type of JAAS login entry of interest. Specify system for the system login type or

application for the application login type. (String)

Chapter 10. Configuring security with scripting 891

-loginEntryAlias

Specifies an alias that identifies the JAAS login entry in the configuration. (String)

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.unconfigureJAASLoginEntry(’-loginType application -loginEntryAlias myLoginEntry’)

v Using Jython list:

AdminTask.unconfigureJAASLoginEntry([’loginType’, ’application’, ’-loginEntryAlias’, ’myLoginEntry’])

Interactive mode example usage

v Using Jython:

AdminTask.unconfigureJAASLoginEntry(’-interactive’)

unconfigureLoginModule

The unconfigureLoginModule command removes a login module class from a login module entry.

Target object

None.

Required parameters

-loginType

Specifies the type of JAAS login entry of interest. Specify system for the system login type or

application for the application login type. (String)

-loginEntryAlias

Specifies an alias that identifies the JAAS login entry in the configuration. (String)

-loginModule

Specifies the name of the login module class to remove from the configuration. (String)

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.unconfigureLoginModule(’-loginType system -loginEntryAlias systemLoginEntry -loginModule moduleClass’)

v Using Jython list:

892 Securing applications and their environment

AdminTask.unconfigureLoginModule([’loginType’, ’system’, ’-loginEntryAlias’, ’systemLoginEntry’, ’-loginModule’,

’moduleClass’])

Interactive mode example usage

v Using Jython:

AdminTask.unconfigureLoginModule(’-interactive’)

createAuthDataEntry

The createAuthDataEntry command creates an authentication data entry for a J2EE Connector

architecture (J2C) connector in the global security or security domain configuration.

Target object

None.

Required parameters

-alias

Specifies the name that uniquely identifies the authentication data entry. (String)

-user

Specifies the J2C authentication data user ID. (String)

-password

Specifies the password to use for the target enterprise information system (EIS). (String)

Optional parameters

-securityDomainName

Specifies the name of the security domain configuration. The application server uses the global

security configuration if you do not specify a value for the -securityDomainName parameter. (String)

-description

Specifies a description of the authentication data entry. (String)

Return value

The command returns the object name of the new authentication data entry object.

Batch mode example usage

v Using Jython string:

AdminTask.createAuthDataEntry(’-alias dataEntry1 -user userID -password userIDpw’)

v Using Jython list:

AdminTask.createAuthDataEntry([’alias’, ’dataEntry1’, ’-user’, ’userID’, ’-password’, ’userIDpw’])

Interactive mode example usage

v Using Jython:

AdminTask.createAuthDataEntry(’-interactive’)

deleteAuthDataEntry

The deleteAuthDataEntry command removes an authentication data entry for a J2C connector in a global

security or security domain configuration.

Target object

None.

Chapter 10. Configuring security with scripting 893

Required parameters

-alias

Specifies the name that uniquely identifies the authentication data entry. (String)

Optional parameters

-securityDomainName

Specifies the name of the security domain configuration. The application server uses the global

security configuration if you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.deleteAuthDataEntry(’-alias dataEntry1’)

v Using Jython list:

AdminTask.deleteAuthDataEntry([’alias’, ’dataEntry1’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteAuthDataEntry(’-interactive’)

getAuthDataEntry

The getAuthDataEntry command displays information about an authentication data entry for the J2C

connector in the global security configuration or for a specific security domain.

Target object

None.

Required parameters

-alias

Specifies the name that uniquely identifies the authentication data entry. (String)

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command returns an attribute list that contains the authentication data entry attributes and values.

Batch mode example usage

v Using Jython string:

AdminTask.getAuthDataEntry(’-alias authDataEntry1 -securityDomainName testDomain’)

v Using Jython list:

AdminTask.getAuthDataEntry([’alias’, ’authDataEntry1’, ’-securityDomainName’, ’testDomain’])

Interactive mode example usage

894 Securing applications and their environment

v Using Jython:

AdminTask.getAuthDataEntry(’-interactive’)

listAuthDataEntries

The listAuthDataEntries command displays each authentication data entry in the global security

configuration or in a security domain.

Target object

None.

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command returns an array of attribute lists for each authentication data entry.

Batch mode example usage

v Using Jython string:

AdminTask.listAuthDataEntries(’-securityDomainName testDomain’)

v Using Jython list:

AdminTask.listAuthDataEntries([’securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.listAuthDataEntries(’-interactive’)

modifyAuthDataEntry

The modifyAuthDataEntry command modifies an authentication data entry for a J2C connector in the

global security or security domain configuration.

Target object

None.

Required parameters

-alias

Specifies the name that uniquely identifies the authentication data entry. (String)

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

-user

Specifies the J2C authentication data user ID. (String)

-password

Specifies the password to use for the target enterprise information system (EIS). (String)

Chapter 10. Configuring security with scripting 895

-description

Specifies a description for the authentication data entry. (String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.modifyAuthDataEntry(’-alias dataEntry1 -user userID1 -password newPassword’)

v Using Jython list:

AdminTask.modifyAuthDataEntry([’alias’, ’dataEntry1’, ’-user’, ’userID1’, ’-password’, ’newPassword’])

Interactive mode example usage

v Using Jython:

AdminTask.modifyAuthDataEntry(’-interactive’)

configureCSIInbound

The configureCSIInbound command configures CSIv2 inbound authentication on a security domain or on

the global security configuration. When configuring CSI inbound authentication in a security domain for the

first time that the CSI objects are copied from global security so thatany changes to that configuration are

applied.

Target object

None.

Optional parameters

-securityDomainName

Specifies the name of the security configuration. If one is not provided the task will work on the global

security user registry configuration. (String)

-messageLevelAuth

Specifies whether clients connecting to this server must specify a user ID and password. Specify

Never to disable the user ID and password requirement. Specify Supported to accept a user ID and

password. Specify Required to require a user ID and password. (String)

-supportedAuthMechList

Specifies the authentication mechanism to use. Specify KRB5 for Kerberos authentication, LTPA for

Lightweight Third-Party Authentication, BasicAuth for BasicAuth authentication, and custom to use your

own authentication token implementation. You can specify more then one in a space-separated list.

(String)

-clientCertAuth

Specifies whether a client that connects to the server must connect using an SSL certificate. Specify

Never to allow clients to connect without SSL certificates. Specify Supported to accept clients

connecting with and without SSL certificates. Specify Required to require clients to use SSL certificate.

(String)

-transportLayer

Specifies the transport layer support level. Specify Never to disable transport layer support. Specify

Supported to enable transport layer support. Specify Required to require transport layer support.

(String)

-sslConfiguration

Specifies the SSL configuration alias to use for inbound transport. (String)

896 Securing applications and their environment

-enableIdentityAssertion

Specifies whether to enable identity assertion. When using the identity assertion authentication

method, the security token generated is a <wsse:UsernameToken> element that contains a

<wsse:Username> element. Specify true for the -enableIdentityAssertion parameter to enable identity

assertion. (Boolean)

-trustedIdentities

Specifies a list of trusted server identities, separated by the pipe character (|). To specify a null value,

set the value of the -trustedIdentities parameter as an empty string (″″). (String)

-statefulSession

Specifies whether to enable a stateful session. Specify true to enable a stateful session. (Boolean)

-enableAttributePropagation

Specifies whether to enable security attribute propagation. Security attribute propagation allows the

application server to transport authenticated Subject contents and security context information from

one server to another in your configuration. Specify true to enable security attribute propagation.

(Boolean)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureCSIInbound(’[-securityDomainName testDomain -messageLevelAuth Required

-supportedAuthMechList "KRB5 LTPA"]’)

v Using Jython list:

AdminTask.configureCSIInbound([’-securityDomainName’, ’testDomain’, ’-messageLevelAuth’, ’Required’,

’-supportedAuthMechList’, ’KRB5 LTPA’])

Interactive mode example usage

v Using Jython:

AdminTask.configureCSIInbound(’-interactive’)

configureCSIOutbound

The configureCSIOutbound command configures the CSIv2 outbound authentication in a security domain

or in the global security configuration. When configuring CSI Outbound in a security domain for the first

time, the application server copies the CSI objects from global security. Then, the application server

applies the changes to that configuration from the command.

Target object

None.

Optional parameters

-securityDomainName

Specifies the name of the security configuration. (String)

-enableAttributePropagation

Specifies whether to enable security attribute propagation. Security attribute propagation allows the

application server to transport authenticated Subject contents and security context information from

one server to another in your configuration. Specify true to enable security attribute propagation.

(Boolean)

-enableIdentityAssertion

Specifies whether to enable identity assertion. When using the identity assertion authentication

Chapter 10. Configuring security with scripting 897

method, the security token generated is a <wsse:UsernameToken> element that contains a

<wsse:Username> element. Specify true for the -enableIdentityAssertion parameter to enable identity

assertion. (Boolean)

-useServerIdentity

Specifies whether to use the server identity to establish trust with the target server. Specify true to

use the server identity. (Boolean)

-trustedId

Specifies the trusted identity that the application server uses to establish trust with the target server.

(String)

-trustedIdentityPassword

Specifies the password of the trusted server identity. (String)

-messageLevelAuth

Specifies whether clients connecting to this server must specify a user ID and password. Specify

includeNever to disable the user ID and password requirement. Specify Supported to accept a user ID

and password. Specify Required to require a user ID and password. (String)

-supportedAuthMechList

Specifies the authentication mechanism to use. Specify KRB5 for Kerberos authentication, LTPA for

Lightweight Third-Party Authentication, BasicAuth for BasicAuth authentication, and custom to use your

own authentication token implementation. You can specify more then one in a space-separated list.

(String)

-clientCertAuth

Specifies whether a client that connects to the server must connect using an SSL certificate. Specify

Never to allow clients to connect without SSL certificates. Specify Supported to accept clients

connecting with and without SSL certificates. Specify Required to require clients to use SSL certificate.

(String)

-transportLayer

Specifies the transport layer support level. Specify Never to disable transport layer support. Specify

Supported to enable transport layer support. Specify Required to require transport layer support.

(String)

-sslConfiguration

Specifies the SSL configuration alias to use for inbound transport. (String)

-statefulSession

Specifies whether to enable a stateful session. Specify true to enable a stateful session. (Boolean)

-enableOutboundMapping

Specifies whether to enable custom outbound identity mapping. Specify true to enable custom

outbound identity mapping. (Boolean)

-trustedTargetRealms

Specifies a list of target realms to trust. Separate each realm name with the pipe character (|). (String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureCSIOutbound(’-securityDomainName testDomain -useServerIdentity true -messageAuthLevel

Supported’)

v Using Jython list:

AdminTask.configureCSIOutbound([’securityDomainName’, ’testDomain’, ’-useServerIdentity’, ’true’,

’-messageAuthLevel’, ’Supported’])

898 Securing applications and their environment

Interactive mode example usage

v Using Jython:

AdminTask.configureCSIOutbound(’-interactive’)

getCSIInboundInfo

The getCSIInboundInfo command displays information about the Common Secure Interoperability (CSI)

inbound settings for the global security configuration or for a security domain.

Target object

None.

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

-displayModel

Specifies the output format of the configuration information. Specify true to return an attribute list of

the model. Specify false to display an attribute of the value used to create the object. (Boolean)

Return value

The command returns an attribute list of the attributes and values of the CSI inbound object.

Batch mode example usage

v Using Jython string:

AdminTask.getCSIInboundInfo(’-securityDomainName testDomain’)

v Using Jython list:

AdminTask.getCSIInboundInfo([’securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.getCSIInboundInfo(’-interactive’)

getCSIOutboundInfo

The getCSIOutboundInfo command displays information for the CSI outbound settings for the global

security configuration or for a security domain.

Target object

None.

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

-displayModel

Specifies the output format of the configuration information. Specify true to return an attribute list of

the model. Specify false to display an attribute of the value used to create the object. (Boolean)

Return value

Chapter 10. Configuring security with scripting 899

The command returns an attribute list that contains the attributes and values of the CSI outbound

configuration.

Batch mode example usage

v Using Jython string:

AdminTask.getCSIOutboundInfo(’-securityDomainName testDomain’)

v Using Jython list:

AdminTask.getCSIOutboundInfo([’securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.getCSIOutboundInfo(’-interactive’)

unconfigureCSIInbound

The unconfigureCSIInbound command removes the CSI inbound information from a security domain.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the security configuration. (String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.unconfigureCSIInbound(’-securityDomainName testDomain’)

v Using Jython list:

AdminTask.unconfigureCSIInbound([’securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.unconfigureCSIInbound(’-interactive’)

unconfigureCSIOutbound

The unconfigureCSIOutbound command removes the CSI outbound information from a security domain.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the security configuration. (String)

Return value

900 Securing applications and their environment

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.unconfigureCSIOutbound(’-securityDomainName testDomain’)

v Using Jython list:

AdminTask.unconfigureCSIOutbound([’securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.unconfigureCSIOutbound(’-interactive’)

configureInterceptor

The configureInterceptor command modifies an existing interceptor or creates an interceptor if one does

not exist.

Target object

None.

Required parameters

-interceptor

Specifies the trust association interceptor class name. (String)

Optional parameters

-securityDomainName

Specifies the name of the security domain. If you do not specify a security domain, the command

assigns the global security configuration. (String)

-customProperties

Specifies a comma separated list of quoted attribute and value pairs that the system stores as custom

properties on the user registry object. For example, use the format: ″attr1=value1″,″attr2=value2″

(String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureInterceptor(’-interceptor com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus

-securityDomainName testDomain’)

v Using Jython list:

AdminTask.configureInterceptor([’interceptor’, ’com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus’,

’-securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.configureInterceptor(’-interactive’)

Chapter 10. Configuring security with scripting 901

configureTrustAssociation

The configureTrustAssociation command enables or disable the trust association. If the security domain

does not have a trust association defined, the application server copies each trust association and its

interceptors from the global security configuration.

Target object

None.

Optional parameters

-securityDomainName

Specifies the name of the security configuration. (String)

-enable

Specifies whether to enable trust association to act as a reverse proxy server. (Boolean)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureTrustAssociation(’-securityDomainName testDomain -enable true’)

v Using Jython list:

AdminTask.configureTrustAssociation([’securityDomainName’, ’testDomain’, ’-enable’, ’true’])

Interactive mode example usage

v Using Jython:

AdminTask.configureTrustAssociation(’-interactive’)

getTrustAssociationInfo

The getTrustAssociationInfo command displays configuration information for trust association.

Target object

None.

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command returns an attribute list that contains attributes and values for trust association.

Batch mode example usage

v Using Jython string:

AdminTask.getTrustAssociationInfo(’-securityDomainName testDomain’)

v Using Jython list:

AdminTask.getTrustAssociationInfo([’securityDomainName’, ’testDomain’])

902 Securing applications and their environment

Interactive mode example usage

v Using Jython:

AdminTask.getTrustAssociationInfo(’-interactive’)

listInterceptors

The listInterceptors command displays the trust association interceptors that are configured in the global

security or security domain configuration.

Target object

None.

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command returns an array list of each interceptor and the associated custom properties.

Batch mode example usage

v Using Jython string:

AdminTask.listInterceptors(’-securityDomainName testDomain’)

v Using Jython list:

AdminTask.listInterceptors([’securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.listInterceptors(’-interactive’)

unconfigureInterceptor

The unconfigureInterceptor command removes a trust association interceptor from the global security

configuration or from a security domain.

Target object

None.

Required parameters

-interceptor

Specifies the trust association interceptor class name. (String)

Optional parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command does not return output.

Chapter 10. Configuring security with scripting 903

Batch mode example usage

v Using Jython string:

AdminTask.unconfigureInterceptor(’-interceptor com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus

-securityDomainName testDomain’)

v Using Jython list:

AdminTask.unconfigureInterceptor([’interceptor’, ’com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus’,

’-securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.unconfigureInterceptor(’-interactive’)

unconfigureTrustAssociation

The unconfigureTrustAssociation command removes the trust association object from a security domain.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the security configuration. (String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.unconfigureTrustAssociation(’-securityDomainName testDomain’)

v Using Jython list:

AdminTask.unconfigureTrustAssociation([’securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.unconfigureTrustAssociation(’

configureAuthzConfig

The configureAuthzConfig command configures an external Java Authorization Contract for Containers

(JACC) authorization provider in a security domain or the global security configuration.

Target object

None.

Optional parameters

-securityDomainName

Specifies the name of the security configuration. (String)

-useJACCProvider

Specifies whether to use a JACC provider. Specify true to use a JACC provider. (Boolean)

904 Securing applications and their environment

-name

Specifies the name of the JACC provider to use. (String)

-description

Specifies a description of the JACC provider. (String)

-j2eePolicyImplClassName

Specifies the class name of an implementation class that represents the

javax.security.jacc.policy.provider property according to the specification. (String)

-policyConfigurationFactoryImplClassName

Specifies the class name of an implementation class that represents the

javax.security.jacc.PolicyConfigurationFactory.provider property. (String)

-roleConfigurationFactoryImplClassName

Specifies the class name of an implementation class that implements the

com.ibm.wsspi.security.authorization.RoleConfigurationFactory interface. (String)

-requiresEJBArgumentsPolicyContextHandler

Specifies whether policy providers require the Enterprise JavaBeans arguments policy context handler

to make access decisions. Specify true to enable this option. (Boolean)

-initializeJACCProviderClassName

Specifies the class name of an implementation class that implements the

com.ibm.wsspi.security.authorization.IntializeJACCProvider interface.(String)

-supportsDynamicModuleUpdates

Specifies whether the provider supports dynamic changes to the Web modules. Specify true to enable

this option. (Boolean)

-customProperties

Specifies a comma separated list of quoted attribute and value pairs that the system stores as custom

properties on the user registry object. For example, use the format: ″attr1=value1″,″attr2=value2″

(String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureAuthzConfig(’[-securityDomainName testDomain -useJACCProvider true -name

testProvider -description "JACC provider for testing"]’)

v Using Jython list:

AdminTask.configureAuthzConfig([’securityDomainName’, ’testDomain’, ’-useJACCProvider’, ’true’, ’-name’,

’testProvider’, ’-description’, ’JACC provider for testing’])

Interactive mode example usage

v Using Jython:

AdminTask.configureAuthzConfig(’-interactive’)

configureSingleSignon

The configureSingleSignon command configures a single sign-on object in global security.

Target object

None.

Optional parameters

Chapter 10. Configuring security with scripting 905

-enable

Specifies whether to enable single sign-on. Specify true to enable single sign-on, or false to disable

single sign-on. (Boolean)

-requiresSSL

Specifies whether single sign-on requests send through HTTPS. Specify true to enable this option.

(Boolean)

-domainName

Specifies the domain name that contains a set of hosts to which the single sign-on applies. (String)

-interoperable

Specifies interoperability options. Specify true to send an interoperable cookie to the browser to

support back-level servers. Specify false disable the sending of interoperable cookies. (Boolean)

-attributePropagation

Specifies whether to enable inbound security attribute propagation. Specify true to enable Web

inbound security attribution propagation. Specify false to use the single sign-on token to log in and

recreate the Subject from the user registry. (Boolean)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureSingleSignon(’-enable true -domainName mycompany.com’)

v Using Jython list:

AdminTask.configureSingleSignon([’enable’, ’true’, ’-domainName’, ’mycompany.com’])

Interactive mode example usage

v Using Jython:

AdminTask.configureSingleSignon(’-interactive’)

getActiveSecuritySettings

The getActiveSecuritySettings command displays the active security settings for global security or a

specific security domain.

Target object

None.

Optional parameters

-securityDomainName

Specifies the name of the security domain configuration. The command uses the global security

configuration if you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command returns the active security settings for the security domain of interest or the global security

configuration, which includes the following settings:

v cacheTimeout

v issuePermissionWarning

v activeAuthMechanism

v enforceJava2Security

906 Securing applications and their environment

v appSecurityEnabled

v enableGlobalSecurity (global security only)

v adminPreferredAuthMech (global security only)

v activeAuthMechanism (global security only)

v activeUserRegistry

v enforceFineGrainedJCASecurity

v dynUpdateSSLConfig (global security only)

v useDomainQualifiedUserNames

v customProperties

Batch mode example usage

v Using Jython string:

AdminTask.getActiveSecuritySettings(’-securityDomainName testDomain’)

v Using Jython list:

AdminTask.getActiveSecuritySettings([’securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.getActiveSecuritySettings(’-interactive’)

getAuthzConfigInfo

The getAuthzConfigInfo command displays information about an external JACC authorization provider in a

security domain or the global security configuration.

Target object

None.

Optional parameters

-securityDomainName

Specifies the name of the security domain configuration. The command uses the global security

configuration if you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command returns an attribute list that contains the attributes and values that are associated with the

JACC authorization provider.

Batch mode example usage

v Using Jython string:

AdminTask.getAuthzConfigInfo(’-securityDomainName testDomain’)

v Using Jython list:

AdminTask.getAuthzConfigInfo([’securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.getAuthzConfigInfo(’-interactive’)

Chapter 10. Configuring security with scripting 907

getSingleSignon

The getSingleSignon command displays configuration information about the single sign-on object as

defined in the global security configuration.

Target object

None.

Optional parameters

None.

Return value

The command returns an attribute list that contains the attributes and values of the single sign-on

configuration.

Batch mode example usage

v Using Jython:

AdminTask.getSingleSignon()

Interactive mode example usage

v Using Jython:

AdminTask.getSingleSignon(’-interactive’)

setAdminActiveSecuritySettings

The setAdminActiveSecuritySettings command sets the active security settings on the global security

object.

Target object

None.

Optional parameters

-enableGlobalSecurity

Specifies whether to enable global security. Specify true to enable global security, or specify false to

disable global security. (Boolean)

-cacheTimeout

Specifies the amount of time, in seconds, before authentication data becomes invalid. (Integer)

-issuePermissionWarning

Specifies whether to issue a warning during application installation if the application requires security

permissions. Specify true to enable the warning notification, or specify false to disable the warning

notification. (Boolean)

-enforceJava2Security

Specifies whether to enable Java Platform, Enterprise Edition (Java EE) security. Specify true to

enable Java EE security permissions checking, or specify false to disable Java EE security. (Boolean)

-enforceFineGrainedJCASecurity

Specifies whether to restrict application access. Specify true to restrict application access to sensitive

Java EE Connector Architecture (JCA) mapping authentication data. (Boolean)

908 Securing applications and their environment

-appSecurityEnabled

Specifies whether to enable application-level security. Specify true to enable application level security,

or specify false to disable application-level security. (Boolean)

-dynUpdateSSLConfig

Specifies whether to dynamically update SSL configuration changes. Specify true to update SSL

configuration changes dynamically, or specify false to update the SSL configuration when the server

starts. (Boolean)

-activeAuthMechanism

Specifies the active authentication mechanism. Specify LTPA for LTPA authentication, KRB5 for Kerberos

authentication, or RSAToken for RSA token authorization. (String)

-adminPreferredAuthMech

Specifies the preferred authentication mechanism. Specify LTPA for LTPA authentication, KRB5 for

Kerberos authentication, or RSAToken for RSA token authorization. (String)

-activeUserRegistry

Specifies the active user registry for the server. (String)

-useDomainQualifiedUserNames

Specifies the type of user name to use. Specify true to use domain qualified user names, or specify

false to use the short name. (Boolean)

-customProperties

Specifies a comma separated list of quoted attribute and value pairs that the system stores as custom

properties on the user registry object. For example, use the format: ″attr1=value1″,″attr2=value2″

(String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.setAdminActiveSecuritySettings(’-enableGlobalSecurity true -cacheTimeout 300

-enforceJava2Security true -appSecurityEnabled true’)

v Using Jython list:

AdminTask.setAdminActiveSecuritySettings([’enableGlobalSecurity’, ’true’, ’-cacheTimeout’,

’300’, ’-enforceJava2Security’, ’true’, ’-appSecurityEnabled’, ’true’])

Interactive mode example usage

v Using Jython:

AdminTask.setAdminActiveSecuritySettings(’-interactive’)

setAppActiveSecuritySettings

The setAppActiveSecuritySettings command sets the active security settings on a security domain.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Chapter 10. Configuring security with scripting 909

Optional parameters

-cacheTimeout

Specifies the amount of time, in seconds, before authentication data becomes invalid. (Integer)

-issuePermissionWarning

Specifies whether to issue a warning during application installation if the application requires security

permissions. Specify true to enable the warning notification, or specify false to disable the warning

notification. (Boolean)

-enforceJava2Security

Specifies whether to enable Java Platform, Enterprise Edition (Java EE) security. Specify true to

enable Java EE security permissions checking, or specify false to disable Java EE security. (Boolean)

-enforceFineGrainedJCASecurity

Specifies whether to restrict application access. Specify true to restrict application access to sensitive

Java EE Connector Architecture (JCA) mapping authentication data. (Boolean)

-appSecurityEnabled

Specifies whether to enable application-level security. Specify true to enable application level security,

or specify false to disable application-level security. (Boolean)

-activeUserRegistry

Specifies the active user registry for the server. (String)

-useDomainQualifiedUserNames

Specifies the type of user name to use. Specify true to use domain qualified user names, or specify

false to use the short name. (Boolean)

-customProperties

Specifies a comma separated list of quoted attribute and value pairs that the system stores as custom

properties on the user registry object. For example, use the format: ″attr1=value1″,″attr2=value2″

(String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.setAppActiveSecuritySettings(’-securityDomainName testDomain -issuePermissionWarning false

-enforceFineGrainedJCASecurity true’)

v Using Jython list:

AdminTask.setAppActiveSecuritySettings([’securityDomainName’, ’testDomain’, ’-issuePermissionWarning’,

’false’, ’-enforceFineGrainedJCASecurity’, ’true’])

Interactive mode example usage

v Using Jython:

AdminTask.setAppActiveSecuritySettings(’-interactive’)

unconfigureAuthzConfig

The unconfigureAuthzConfig command removes an external JACC authorization provider from the global

security configuration or a security domain.

Target object

None.

Required parameters

910 Securing applications and their environment

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.unconfigureAuthzConfig(’-securityDomainName testDomain’)

v Using Jython list:

AdminTask.unconfigureAuthzConfig([’securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.unconfigureAuthzConfig(’-interactive’)

unsetAppActiveSecuritySettings

The unsetAppActiveSecuritySettings command removes an attribute from the global security configuration

or a security domain.

Target object

None.

Required parameters

-securityDomainName

Specifies the name of the security configuration. The command uses the global security configuration if

you do not specify a value for the -securityDomainName parameter. (String)

Optional parameters

-unsetAppSecurityEnabled

Specifies whether to remove the attribute that enables application security. Specify true to remove the

attribute. (Boolean)

-unsetActiveUserRegistry

Specifies whether to remove the active user registry attribute. Specify true to remove the attribute.

(Boolean)

-unsetUseDomainQualifiedUserNames

Specifies whether to remove the user domain qualified user names attribute. Specify true to remove

the attribute. (Boolean)

-unsetEnforceJava2Security

Specifies whether to remove the Java EE security attribute. Specify true to remove the attribute.

(Boolean)

-unsetEnforceFineGrainedJCASecurity

Specifies whether to remove the fine-grained JCA security attribute. Specify true to remove the

attribute. (Boolean)

-unsetIssuePermissionWarning

Specifies whether to remove the attribute that issues user permission warnings. Specify true to

remove the attribute. (Boolean)

Chapter 10. Configuring security with scripting 911

-unsetCacheTimeout

Specifies whether to remove the cache timeout attribute. Specify true to remove the attribute.

(Boolean)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.unsetAppActiveSecuritySettings(’-securityDomainName testDomain -unsetAppSecurityEnabled true

-unsetPermissionWarning true’)

v Using Jython list:

AdminTask.unsetAppActiveSecuritySettings([’securityDomainName’, ’testDomain’, ’-unsetAppSecurityEnabled’,

’true’, ’-unsetPermissionWarning’, ’true’])

Interactive mode example usage

v Using Jython:

AdminTask.unsetAppActiveSecuritySettings(’-interactive’)

SecurityRealmInfoCommands command group for the AdminTask

object

You can use the Jython scripting language to manage security realm configurations with the wsadmin tool.

Use the commands and parameters in the SecurityRealmInfoCommands group to query and manage

trusted realms.

Use the following commands to manage trusted realms in your security configuration:

v “addTrustedRealms”

v “configureTrustedRealms” on page 913

v “listRegistryGroups” on page 914

v “listRegistryUsers” on page 915

v “listSecurityRealms” on page 916

v “listTrustedRealms” on page 916

v “removeTrustedRealms” on page 917

v “unconfigureTrustedRealms” on page 918

addTrustedRealms

The addTrustedRealms command adds a realm or list of realms to the list of trusted realms for global

security or in a security domain.

Target object

None.

Required parameters

-communicationType

Specifies whether to trusted realms to inbound or outbound communication. Specify inbound to

configure inbound communication. Specify outbound to configure outbound communication. (String)

Optional parameters

912 Securing applications and their environment

-securityDomainName

Specifies the name of the security domain of interest. If you do not specify a value for this parameter,

the command uses the global security configuration. (String)

-realmList

Specifies a realm or list of realms to configure as trusted realms. (String)

 Separate each realm in the list with the pipe character (|) as the following example demonstrates:

realm1|realm2|realm3

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.addTrustedRealms(’-communicationType inbound -securityDomainName testDomain’)

v Using Jython list:

AdminTask.addTrustedRealms([’-communicationType’, ’inbound’, ’-securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython:

AdminTask.addTrustedRealms(’-interactive’)

configureTrustedRealms

The configureTrustedRealms command configures trusted realms. Use this command to replace the list of

trusted realms and to clear each realm from the list. To add realms to the trusted realm list, use the

addInboundTrustedRealm command.

Target object

None.

Required parameters

-communicationType

Specifies whether to configure the security domains, realms, or global security configuration for

inbound or outbound communication. Specify inbound to configure inbound communication. Specify

outbound to configure outbound communication. (String)

Optional parameters

-securityDomainName

Specifies the name of the security domain of interest. If you do not specify a value for this parameter,

the command uses the global security configuration. (String)

-realmList

Specifies a list of realms to configure as trusted realms. (String)

 Separate each realm in the list with the pipe character (|) as the following example demonstrates:

realm1|realm2|realm3

-trustAllRealms

Specifies whether to trust all realms. Specify true to trust all realms. If you specify true for this

parameter, the command does not use the -realmList parameter. (Boolean)

Return value

Chapter 10. Configuring security with scripting 913

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.configureTrustedRealms(’-communicationType inbound -realmList realm1|realm2|realm3’)

v Using Jython list:

AdminTask.configureTrustedRealms([’-communicationType’, ’inbound’, ’-realmList’, ’realm1|realm2|realm3’])

Interactive mode example usage

v Using Jython string:

AdminTask.configureTrustedRealms(’-interactive’)

v Using Jython list:

listRegistryGroups

The listRegistryGroups command displays the groups in the user registry that belong to the security realm,

security domain, or resource name of interest.

Target object

None.

Optional parameters

-securityRealmName

Specifies name of the security realm of interest. The securityDomainName, resourceName, and

securityRealmName parameters are mutually exclusive. Do not specify more than one of these

parameters. (String)

-resourceName

Specifies the name of the resource of interest. The securityDomainName, resourceName, and

securityRealmName parameters are mutually exclusive. Do not specify more than one of these

parameters. (String)

-securityDomainName

Specifies the name of the security domain of interest. The securityDomainName, resourceName, and

securityRealmName parameters are mutually exclusive. Do not specify more than one of these

parameters.(String)

-displayAccessIds

Specifies whether to display the access IDs for each group. Specify true to display the access ID and

group name for each group that the command returns. (Boolean)

-groupFilter

Specifies a filter that the command uses to query for groups. For example, specify test* to return

groups that begin with the test string. By default, the command returns all groups. (String)

-numberOfGroups

Specifies the number of groups to return. The default number of groups that the command displays is

20. (Integer)

Return value

The command returns an array of group names. If you specified the -displayAccessId parameter, the

command returns an array of attribute lists which contain the group name and group access ID.

Batch mode example usage

v Using Jython string:

914 Securing applications and their environment

AdminTask.listRegistryGroups(’-securityDomainName myTestDomain -groupFilter test* -numberOfGroups 10’)

v Using Jython list:

AdminTask.listRegistryGroups([’-securityDomainName’, ’myTestDomain’, ’-groupFilter’, ’test*’, ’-numberOfGroups’, ’10’])

Interactive mode example usage

v Using Jython:

AdminTask.listRegistryGroups(’-interactive’)

listRegistryUsers

The listRegistryUsers command displays the users in the user registry for a specific security realm,

resource name, or domain name.

Target object

None.

Optional parameters

-securityDomainName

Specifies the name of the security domain of interest. The securityDomainName, resourceName, and

securityRealmName parameters are mutually exclusive. Do not specify more than one of these

parameters. If you do not specify the securityDomainName, resourceName, or securityRealmName

parameter, the system uses the active user registry from the global security configuration. (String)

-resourceName

Specifies the name of the resource of interest. The securityDomainName, resourceName, and

securityRealmName parameters are mutually exclusive. Do not specify more than one of these

parameters. If you do not specify the securityDomainName, resourceName, or securityRealmName

parameter, the system uses the active user registry from the global security configuration. (String)

-securityRealmName

Specifies the name of the security realm of interest. The securityDomainName, resourceName, and

securityRealmName parameters are mutually exclusive. Do not specify more than one of these

parameters. If you do not specify the securityDomainName, resourceName, or securityRealmName

parameter, the system uses the active user registry from the global security configuration. (String)

-displayAccessIds

Specifies whether to display the access IDs for each group. Specify true to display the access ID and

group name for each group that the command returns. (Boolean)

-userFilter

Specifies the filter that the command uses to query for users. For example, specify test* to display

each user name that starts with the test string. By default, the command returns all users. (String)

-numberOfUsers

Specifies the number of users to return. The default number of groups that the command displays is

20. (Integer)

Return value

The command returns an array of user names. If you specify the -displayAccessId parameter, the

command returns an array of attribute lists that contain the user ID and user access IDs.

Batch mode example usage

v Using Jython string:

AdminTask.listRegistryUsers(’-securityRealmName defaultWIMFileBasedRealm -displayAccessIds true’)

v Using Jython list:

Chapter 10. Configuring security with scripting 915

AdminTask.listRegistryUsers([’-securityRealmName’, ’defaultWIMFileBasedRealm’, ’-displayAccessIds’, ’true’])

Interactive mode example usage

v Using Jython:

AdminTask.listRegistryUsers(’-interactive’)

listSecurityRealms

The listSecurityRealms command displays each security realm from global security configuration and the

security domains.

Target object

None.

Return value

The command returns an array of realm names.

Batch mode example usage

v Using Jython string:

AdminTask.listSecurityRealms()

v Using Jython list:

AdminTask.listSecurityRealms()

Interactive mode example usage

v Using Jython:

AdminTask.listSecurityRealms(’-interactive’)

listTrustedRealms

The listTrustedRealms command displays a list of trusted realms for a security domain, resource, or realm.

If you do not specify a security domain, resource name, or realm name, then the command returns a list of

trusted realms from the global security configuration. The securityRealmName, resourceName, and

securityDomainName parameters are mutually exclusive.

Target object

None.

Required parameters

-communicationType

Specifies whether to list the trusted realms for inbound or outbound communication. Specify inbound to

configure inbound communication. Specify outbound to configure outbound communication. (String)

Optional parameters

-securityRealmName

Specifies name of the security realm of interest. If you use this parameter, do not use the

resourceName or securityDomainName parameters. (String)

-resourceName

Specifies the name of the resource of interest. If you use this parameter, do not use the

securityRealmName or securityDomainName parameters. (String)

916 Securing applications and their environment

-securityDomainName

Specifies the name of the security domain of interest. If you use this parameter, do not use the

resourceName or securityRealmName parameters. (String)

-expandRealmList

Specifies whether to return each realm name when the trustAllRealms property is enabled. Specify

true to return each realm name. Specify false to return the trustAllRealms property. (Boolean)

-includeCurrentRealm

Specifies whether to include the current realm in the list of trusted realms. Specify true to include the

current realm, or specify false to exclude the current realm from the list of trusted realms. (Boolean)

Return value

The command returns an array of trusted realm names. If the realm, resource, or security domain of

interest is configured to trust all realms, the command returns the trustAllRealms string.

Batch mode example usage

v Using Jython string:

AdminTask.listTrustedRealms(’-communicationType inbound -resourceName myApplication’)

v Using Jython list:

AdminTask.listTrustedRealms([’-communicationType’, ’inbound’, ’-resourceName’, ’myApplication’])

Interactive mode example usage

v Using Jython:

AdminTask.listTrustedRealms(’-interactive’)

removeTrustedRealms

The removeTrustedRealms command removes realms from a trusted realm list in a security domain or in

the global security configuration.

Target object

None.

Required parameters

-communicationType

Specifies whether to remove trusted realms from inbound or outbound communication. Specify

inbound to configure inbound communication. Specify outbound to configure outbound communication.

(String)

-realmList

Specifies a list of realms to remove from trusted realms. (String)

 Separate each realm in the list with the pipe character (|) as the following example demonstrates:

realm1|realm2|realm3

Optional parameters

-securityDomainName

Specifies the name of the security domain of interest. If you do not specify a security domain, the

command uses the global security configuration. (String)

Return value

The command does not return output.

Chapter 10. Configuring security with scripting 917

Batch mode example usage

v Using Jython string:

AdminTask.removeTrustedRealms(’-communicationType inbound -realmList realm1|realm2|realm3’)

v Using Jython list:

AdminTask.removeTrustedRealms([’-communicationType inbound -realmList realm1|realm2|realm3’])

Interactive mode example usage

v Using Jython:

AdminTask.removeTrustedRealms(’-interactive’)

unconfigureTrustedRealms

The unconfigureTrustedRealms command removes the trusted realm object from the configuration.

Target object

None.

Required parameters

-communicationType

Specifies whether to unconfigure the trusted realms for inbound or outbound communication. Specify

inbound to remove inbound communication configurations. Specify outbound to remove outbound

communication configurations. (String)

Optional parameters

-securityDomainName

Specifies the name of the security domain of interest. If you do not specify a security domain, the

command uses the global security configuration. (String)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.unconfigureTrustedRealms(’-communicationType inbound -securityDomainName testDomain’)

v Using Jython list:

AdminTask.unconfigureTrustedRealms([’-communicationType’, ’inbound’, ’-securityDomainName’, ’testDomain’])

Interactive mode example usage

v Using Jython string:

AdminTask.unconfigureTrustedRealms(’-interactive’)

NamingAuthzCommands command group for the AdminTask object

You can use the Jython scripting language to configure naming roles for groups and users with the

wsadmin tool. Use the commands and parameters in the NamingAuthzCommands group to assign,

remove, and query naming role configuration. CosNaming security offers increased granularity of security

control over CosNaming functions.

A number of naming roles are defined to provide the degrees of authority that are needed to perform

certain application server naming service functions. The authorization policy is only enforced when global

security is enabled.

918 Securing applications and their environment

Use the following commands to manage the naming service functions:

v listGroupsForNamingRoles

v listUsersForNamingRoles

v mapGroupsToNamingRole

v mapUsersToNamingRole

v removeGroupsFromNamingRole

v removeUsersFromNamingRole

listGroupsForNamingRoles

The listGroupsForNamingRoles command displays the groups and special subjects that are mapped to the

naming roles.

Target object

None.

Return value

The command returns a list of the groups and special subjects associated with each naming role.

Batch mode example usage

v Using Jython:

AdminTask.listGroupsForNamingRoles()

Interactive mode example usage

v Using Jython:

AdminTask.listGroupsForNamingRoles(’-interactive’)

listUsersForNamingRoles

The listUsersForNamingRoles command displays the users that are mapped to the naming roles.

Target object

None.

Return value

The command returns a list of the users associated with each naming role.

Batch mode example usage

v Using Jython:

AdminTask.listUsersForNamingRoles()

Interactive mode example usage

v Using Jython:

AdminTask.listUsersForNamingRoles(’-interactive’)

mapGroupsToNamingRole

The mapGroupsToNamingRole command maps groups, special subjects, or groups and special subjects to

the naming roles.

Chapter 10. Configuring security with scripting 919

Target object

None.

Required parameters

-roleName

Specifies the name of the naming role. (String)

 Four name space security roles are available: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete. The roles have authority levels from low to high, as the following table defines:

 Role name Description

CosNamingRead You can query the application server name space using, for example, the

Java Naming and Directory Interface (JNDI) lookup method. The EVERYONE

special-subject is the default policy for this role.

CosNamingWrite You can perform write operations such as JNDI bind, rebind, or unbind,

and CosNamingRead operations.

CosNamingCreate You can create new objects in the name space through operations such

as JNDI createSubcontext and CosNamingWrite operations.

CosNamingDelete You can destroy objects in the name space, for example using the JNDI

destroySubcontext method and CosNamingCreate operations.

Optional parameters

-groupids

Specifies the names of the groups to map to the naming roles. (String[])

-accessids

Specifies the access IDs of the users in the format <group:realmName/uniqueID>. (String[])

-specialSubjects

Specifies the special subjects to map. (String[])

 The special subjects include EVERYONE, ALLAUTHENTICATED, ALLAUTHENTICATEDINTRUSTEDREALMS, as the

following table defines:

 Header Header

EVERYONE Maps everyone to a specified role. When you map everyone to a role, anyone can access the

resources that are protected by this role and, essentially, there is no security.

ALLAUTHENTICATED Maps each authenticated user to a specified role. When you map each authenticated user to a

specified role, each valid user in the current registry who has been authenticated can access

resources that are protected by this role.

ALLAUTHENTICATEDINTRUSTEDREALMS Maps each authenticated user to a specified role. When you map each authenticated user to a

specified role, each valid user in the current registry who has been authenticated can access

resources that are protected by this role in the trusted realm.

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.mapGroupsToNamingRole(’[-roleName CosNamingCreate -groupids [group1, group2]]’)

v Using Jython list:

AdminTask.mapGroupsToNamingRole([’-roleName’, ’CosNamingCreate’, ’-groupids’, ’[group1, group2]’])

Interactive mode example usage

v Using Jython:

AdminTask.mapGroupsToNamingRole(’-interactive’)

920 Securing applications and their environment

mapUsersToNamingRole

The mapUsersToNamingRole command maps users to the naming roles.

Target object

None.

Required parameters

-roleName

Specifies the name of the naming role. (String)

 Four name space security roles are available: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete. The roles have authority levels from low to high, as the following table defines:

 Role name Description

CosNamingRead You can query the application server name space using, for example, the

Java Naming and Directory Interface (JNDI) lookup method. The EVERYONE

special-subject is the default policy for this role.

CosNamingWrite You can perform write operations such as JNDI bind, rebind, or unbind,

and CosNamingRead operations.

CosNamingCreate You can create new objects in the name space through operations such

as JNDI createSubcontext and CosNamingWrite operations.

CosNamingDelete You can destroy objects in the name space, for example using the JNDI

destroySubcontext method and CosNamingCreate operations.

Optional parameters

-userids

Specifies the user IDs to map to the naming roles of interest. (String[])

-accessids

Specifies the access IDs of the users in the format <user:realmName/uniqueID>. (String[])

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.mapUsersToNamingRole([-roleName CosNamingDelete -userids [user1, user2, user3]]’)

v Using Jython list:

AdminTask.mapUsersToNamingRole([’-roleName’, ’CosNamingDelete’, ’-userids’, ’[user1, user2, user3]’])

Interactive mode example usage

v Using Jython:

AdminTask.mapUsersToNamingRole(’-interactive’]

removeGroupsFromNamingRole

The removeGroupsFromNamingRole command removes groups, special subjects, or groups and special

subjects from a naming role.

Target object

None.

Chapter 10. Configuring security with scripting 921

Required parameters

-roleName

Specifies the name of the naming role. (String)

 Four name space security roles are available: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete. The roles have authority levels from low to high, as the following table defines:

 Role name Description

CosNamingRead You can query the application server name space using, for example, the

Java Naming and Directory Interface (JNDI) lookup method. The EVERYONE

special-subject is the default policy for this role.

CosNamingWrite You can perform write operations such as JNDI bind, rebind, or unbind,

and CosNamingRead operations.

CosNamingCreate You can create new objects in the name space through operations such

as JNDI createSubcontext and CosNamingWrite operations.

CosNamingDelete You can destroy objects in the name space, for example using the JNDI

destroySubcontext method and CosNamingCreate operations.

Optional parameters

-groupids

Specifies the names of the groups to remove from the naming roles of interest. (String[])

-specialSubjects

Specifies the special subjects to remove. (String[])

 The special subjects include EVERYONE, ALLAUTHENTICATED, ALLAUTHENTICATEDINTRUSTEDREALMS, as the

following table defines:

 Header Header

EVERYONE Maps everyone to a specified role. When you map everyone to a role, anyone can access the

resources that are protected by this role and, essentially, there is no security.

ALLAUTHENTICATED Maps each authenticated user to a specified role. When you map each authenticated user to a

specified role, each valid user in the current registry who has been authenticated can access

resources that are protected by this role.

ALLAUTHENTICATEDINTRUSTEDREALMS Maps each authenticated user to a specified role. When you map each authenticated user to a

specified role, each valid user in the current registry who has been authenticated can access

resources that are protected by this role in the trusted realm.

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.removeGroupsFromNamingRole(’-roleName CosNamingRead -groupids [group1, group2] -specialSubjects EVERYONE’)

v Using Jython list:

AdminTask.removeGroupsFromNamingRole([’-roleName’, ’CosNamingRead’, ’-groupids’, ’[group1, group2]’, ’-specialSubjects’, ’EVERYONE’])

Interactive mode example usage

v Using Jython:

AdminTask.removeGroupsFromNamingRole(’-interactive’)

removeUsersFromNamingRole

The removeUsersFromNamingRole command removes users from a naming role.

Target object

922 Securing applications and their environment

None.

Required parameters

-roleName

Specifies the name of the naming role. (String)

 Four name space security roles are available: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete. The roles have authority levels from low to high, as the following table defines:

 Role name Description

CosNamingRead You can query the application server name space using, for example, the

Java Naming and Directory Interface (JNDI) lookup method. The EVERYONE

special-subject is the default policy for this role.

CosNamingWrite You can perform write operations such as JNDI bind, rebind, or unbind,

and CosNamingRead operations.

CosNamingCreate You can create new objects in the name space through operations such

as JNDI createSubcontext and CosNamingWrite operations.

CosNamingDelete You can destroy objects in the name space, for example using the JNDI

destroySubcontext method and CosNamingCreate operations.

Optional parameters

-userids

Specifies the user IDs to remove from the naming roles of interest. (String[])

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.removeUsersFromNamingRole(’-roleName CosNamingRead’)

v Using Jython list:

AdminTask.removeUsersFromNamingRole([’-roleName’, ’CosNamingRead’])

Interactive mode example usage

v Using Jython:

AdminTask.removeUsersFromNamingRole(’-interactive’)

Utility scripts

The scripting library provides multiple script procedures to automate your application configurations. This

topic provides usage information for scripts that set notification options, save configuration changes, and

display scripting library information.

Each utility script procedure is located in the app_server_root/scriptLibraries/utilities/V70 directory. Use the

following script procedures to perform utility functions:

v “convertToList” on page 924

v “debugNotice” on page 924

v “getExceptionText” on page 924

v “fail” on page 925

v “fileSearch” on page 925

v “getResourceBundle” on page 925

v “getScriptLibraryFiles” on page 926

v “getScriptLibraryList” on page 926

Chapter 10. Configuring security with scripting 923

v “getScriptLibraryPath” on page 926

v “help” on page 926

v “infoNotice” on page 927

v “save” on page 927

v “setDebugNotices” on page 927

v “setFailOnErrorDefault” on page 927

v “sleepDelay” on page 928

v “warningNotice” on page 928

convertToList

This script converts a string to a list. For example, the AdminApp.list() command returns a string of

application names. Use the convertToList script to change the output to a list format, such as

[’DefaultApplication’, ’a1’, ’a2’, ’ivtApp’, ’query’].

To run the script, run a command that returns a string output and set the output to a variable, as defined in

the following table:

 Argument Description

variable Specifies the name of the variable that contains the string to convert to a list.

Syntax

AdminUtilities.convertToList(variable)

Example usage

apps=AdminApp.list()

AdminUtilities.convertToList(apps)

debugNotice

This script sets the debug notice text.

To run the script, specify the message argument, as defined in the following table:

 Argument Description

message Specifies the message text for the debug notice.

Syntax

AdminUtilities.debugNotice(message)

Example usage

AdminUtilities.debugNotice("Server is started")

getExceptionText

This script displays the exception message for a specific exception type, exception value, or traceback

information.

To run the script, specify the type, value, or traceback arguments, as defined in the following table:

 Argument Description

type Specifies the exception type of interest. The exception type represents the class object of the

exception.

924 Securing applications and their environment

Argument Description

value Specifies the exception value of interest. The value represents the instance object that is the

argument of the exception or the second argument of the raise statement.

traceback Specifies the traceback information of interest. The traceback object contains special

attributes, including the line number where the error occurred. Do not assign traceback to a

local variable in the function that handles the exception, as this assignment creates a circular

reference.

Syntax

AdminUtilities.getExceptionText(type, value, traceback)

Example usage

AdminUtilities.getExceptionText("com.ibm.ws.scripting.ScriptingException

", "com.ibm.ws.scripting.ScriptingException: AdminControl service not available"

, "")

fail

This script sets the failure message.

To run the script, specify the message argument, as defined in the following table:

 Argument Description

message Specifies the message text for the failure notice.

Syntax

AdminUtilities.fail(message)

Example usage

AdminUtilities.fail("The script failed")

fileSearch

This script searches the file system based on a specific path or directory.

To run the script, specify the path or directory arguments, as defined in the following table:

 Argument Description

path Specifies the file path to search for a specific file.

directory Specifies the directory to search for a specific file.

Syntax

AdminUtilities.fileSearch(path, directory)

Example usage

Paths = []

Directory = java.io.File("//WebSphere//AppServer//scriptLibraries")

AdminUtilities.fileSearch(directory, paths)

getResourceBundle

This script displays an instance for the resource bundle of interest.

To run the script, specify the bundle name argument, as defined in the following table:

Chapter 10. Configuring security with scripting 925

Argument Description

bundleName Specifies the name of the bundle of interest. For example, to get a message object from the

ScriptingLibraryMessage resource bundle, specify

com.ibm.ws.scripting.resources.scriptLibraryMessage.

Syntax

AdminUtilities.getResourceBundle(bundleName)

Example usage

AdminUtilities.getResourceBundle("com.ibm.ws.scripting.resources.scriptLibraryMessage")

getScriptLibraryFiles

This script displays the file path and file names for each script library file.

Syntax

AdminUtilities.getScriptLibraryFiles()

Example usage

AdminUtilities.getScriptLibraryFiles()

getScriptLibraryList

This script displays each script name in the script library.

Syntax

AdminUtilities.getScriptLibraryList()

Example usage

AdminUtilities.getScriptLibraryList()

getScriptLibraryPath

This script displays the file path to get to the script library files on your file system.

Syntax

AdminUtilities.getScriptLibraryPath()

Example usage

AdminUtilities.getScriptLibraryPath()

help

This script displays help information for the AdminUtilities script library, including general library

information, script names, and script descriptions.

To run the script, optionally specify the name of the script of interest, as defined in the following table:

 Argument Description

scriptName Optionally specifies the name of the AdminUtilities script of interest.

Syntax

AdminUtilities.help(scriptName)

Example usage

926 Securing applications and their environment

AdminUtilities.help("sleepDelay")

infoNotice

This script sets the text for the information notice of a command or script.

To run the script, specify the message argument, as defined in the following table:

 Argument Description

message Specifies the message text or a message ID such as ″Application is installed″ or

resourceBundle.getString(″WASX7115I″).

Syntax

AdminUtilities.infoNotice(message)

Example usage

AdminUtilities.infoNotice(resourceBundle.getString("WASX7115I"))

save

This script saves the configuration changes to your system.

Syntax

AdminUtilities.save()

Example usage

AdminUtilities.save()

setDebugNotices

This script enables and disables debug notices.

To run the script, specify the debug argument, as defined in the following table:

 Argument Description

debug Specifies whether to enable or disable debug notices. Specify true to enable debug notices,

or false to disable debug notices.

Syntax

AdminUtilities.setDebugNotices(debug)

Example usage

AdminUtilities.setDebugNotices("true")

setFailOnErrorDefault

This script enables or disables the fail on error behavior.

To run the script, specify the fail on error argument, as defined in the following table:

 Argument Description

failOnError Specifies whether to enable or disable the fail on error behavior. Specify true to enable the

fail on error behavior, or false to disable the behavior.

Syntax

AdminUtilities.setFailOnErrorDefault(failOnError)

Chapter 10. Configuring security with scripting 927

Example usage

AdminUtilities.setFailOnErrorDefault("false")

sleepDelay

This script sets the number of seconds that the system waits for completion during two operations.

To run the script, specify the delay seconds argument, as defined in the following table:

 Argument Description

delaySeconds Specifies the number of seconds to wait for completion.

Syntax

AdminUtilities.sleepDelay(delaySeconds)

Example usage

AdminUtilities.sleepDelay("10")

warningNotice

This script sets the text to display as the warning message.

To run the script, specify the message argument, as defined in the following table:

 Argument Description

message Specifies the non-translated text for the warning notice or a message ID such as

resourceBundle.getString(″WASX7411W″).

Syntax

AdminUtilities.warningNotice(message)

Example usage

AdminUtilities.warningNotice(resourceBundle.getString("WASX7411W"))

Configuring the JACC provider for Tivoli Access Manager using the

wsadmin utility

You can use the wsadmin utility to configure Tivoli Access Manager security for WebSphere Application

Server.

1. Start WebSphere Application Server.

2. At the wsadmin prompt, enter the following command:

$AdminTask configureTAM -interactive

You are prompted to enter the following information:

 Option Description

WebSphere Application Server node name Specify a single node.

Tivoli Access Manager Policy Server Enter the name of the Tivoli Access Manager policy

server and the connection port. Use the format,

policy_server : port. The policy server communication port

is set at the time of Tivoli Access Manager configuration.

The default port is 7135.

928 Securing applications and their environment

Option Description

Tivoli Access Manager Authorization Server Enter the name of the Tivoli Access Manager

authorization server. Use the format auth_server : port :

priority. The authorization server communication port is

set at the time of Tivoli Access Manager configuration.

The default port is 7136. More than one authorization

server can be specified by separating the entries with

commas. Having more than one authorization server

configured is useful for failover and performance. The

priority value is the order of authorization server use. For

example: auth_server1:7136:1,auth_server2:7137:2. A

priority of 1 is still required when configuring against a

single authorization server.

WebSphere Application Server administrator’s

distinguished name

Enter the full distinguished name of the WebSphere

Application Server security administrator ID, as created in

the ″Creating the security administrative user″ topic in the

Securing applications and their environment PDF. For

example: cn=wasadmin,o=organization,c=country

Tivoli Access Manager user registry distinguished

name suffix

For example: o=organization,c=country

Tivoli Access Manager administrator’s user name Enter the Tivoli Access Manager administration user ID,

as created at the time of Tivoli Access Manager

configuration. This ID is usually, sec_master.

Tivoli Access Manager administrator’s user password Enter the password for the Tivoli Access Manager

administrator.

Tivoli Access Manager security domain Enter the name of the Tivoli Access Manager security

domain that is used to store users and groups. If a

security domain is not already established at the time of

Tivoli Access Manager configuration, click Return to

accept the default.

Embedded Tivoli Access Manager listening port set WebSphere Application Server needs to listen on a

TCP/IP port for authorization database updates from the

policy server. More than one process can run on a

particular node and machine so a list of ports is required

for the processes. Enter the ports that are used as

listening ports by Tivoli Access Manager clients,

separated by a comma. If you specify a range of ports,

separate the lower and higher values by a colon. For

example, 7999, 9990:9999.

Defer Set to yes, this option defers the configuration of the

management server until the next restart. Set to no,

configuration of the management server occurs

immediately. Managed servers are configured on their

next restart.

3. When all information is entered, select F to save the configuration properties or C to cancel from the

configuration process and discard entered information.

What to do next

Now enable the JACC provider for Tivoli Access Manager - see Enabling the JACC provider for Tivoli

Access Manager topic in the Securing applications and their environment PDF.

Chapter 10. Configuring security with scripting 929

Securing communications using the wsadmin tool

The application server provides several methods to secure communication between a server and a client.

Use this topic to configure Secure Sockets Layer (SSL), keystores, certificate authorities, key sets and

groups, and certificates.

v Configure secure communications using SSL.

Use the SSLConfigCommands, SSLConfigGroupCommands, DynamicSSLConfigSelections and

SSLTransport command groups for the AdminTask object, and complete the following tasks to create

and administer SSL configurations:

– Create an SSL configuration at the node scope using scripting.

– Automate SSL configurations using scripting.

v Create a keystore configuration.

Use the KeyStoreCommands command group for the AdminTask object, and complete the following

tasks to create and administer keystore configurations.

– Update default key store passwords using scripting

v Create a certificate authority (CA) client configuration.

A CA client object contains all of the configuration information necessary to connect to a third-party CA

server. Use the CAClientCommands command group for the AdminTask object, and complete the

following tasks to create and administer CA client objects in your configuration:

– Configure CA clients using scripting

– Administer CA clients using scripting

v Administer certificate configurations.

Use the CertificateRequestCommands, PersonalCertificateCommands, and SignerCertificateCommands

command groups for the AdminTask object, and complete the following tasks to administer personal

certificates, CA certificates, and self-signed certificates:

– Create self-signed certificates using scripting

– Configure CA certificates using scripting

v Create key sets and key groups.

Use the KeySetCommands, KeySetGroupCommands, and KeyReferenceCommands command groups

for the AdminTask object to create and administer key set and group configurations.

Creating an SSL configuration at the node scope using scripting

An Secure Socket Layer (SSL) configuration references many other configuration objects. To help you

make valid selections for the new SSL configuration before you create it, view information about existing

configuration objects. Information about existing objects is also useful when you create a node scoped

SSL configuration using the createSSLConfig command of the AdminTask object.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

To use the information in this task effectively, familiarize yourself with the instructions in the Creating a

Secure Sockets Layer configuration topic in the Securing applications and their environment PDF. Perform

the following task to create an Secure Socket Layer (SSL) configuration at the node scope:

1. List the existing configuration objects. Perform any of the following:

v List some of the configuration objects that you may need when you create a new SSL configuration.

930 Securing applications and their environment

For example, you want to see which management scopes have already been defined. If the one you

need does not exist you will need to create it.

– Using Jacl:

$AdminTask listManagementScopes {-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02}

– Using Jython:

AdminTask.listManagementScopes (’[-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02]’)

This shows an existing cell scope and existing node scope that you can use. If you want to create a

different scope, use the createManagementScope command of the AdminTask object to define a

different one. The valid scope parameters are cell, nodegroup, node, server, cluster, and endpoint.

See the Central management of Secure Sockets Layer configurations topic in the Securing

applications and their environment PDF for more information on scope definitions.

v List the key stores that exist in the configuration including key stores and trust stores.

– Using Jacl:

$AdminTask listKeyStores -all true

– Using Jython:

AdminTask.listKeyStores(’-all true’)

Example output:

CellDefaultKeyStore(cells/BIRKT40Cell02|security.xml#KeyStore_1)

CellDefaultTrustStore(cells/BIRKT40Cell02|security.xml#KeyStore_2)

CellLTPAKeys(cells/BIRKT40Cell02|security.xml#KeyStore_3)

The previous example only lists the key stores for the default management scope which is also

known as the cell scope. To obtain key stores for other scopes, specify the scopeName parameter, for

example:

– Using Jacl:

$AdminTask listKeyStores {-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 }

– Using Jython:

$AdminTask listKeyStores (’[-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02]’)

Example output:

CellDefaultKeyStore(cells/BIRKT40Cell02|security.xml#KeyStore_1)

CellDefaultTrustStore(cells/BIRKT40Cell02|security.xml#KeyStore_2)

CellLTPAKeys(cells/BIRKT40Cell02|security.xml#KeyStore_3)

NodeDefaultKeyStore(cells/BIRKT40Cell02|security.xml#KeyStore_1134610924357)

NodeDefaultTrustStore(cells/BIRKT40Cell02|security.xml#KeyStore_1134610924377)

v List specific trust or key managers. Be sure to display the object name for the trust managers. You

will need the object name for the SSL configuration because you can specify multiple trust manager

instances.

– Using Jacl:

$AdminTask listTrustManagers {-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 -displayObjectName true }

– Using Jython:

AdminTask.listTrustManagers (’[-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 -displayObjectName true]’)

Example output:

IbmX509(cells/BIRKT40Cell02|security.xml#TrustManager_1)

IbmPKIX(cells/BIRKT40Cell02|security.xml#TrustManager_2)

IbmX509(cells/BIRKT40Cell02|security.xml#TrustManager_1134610924357)

IbmPKIX(cells/BIRKT40Cell02|security.xml#TrustManager_1134610924377)

2. Create the node-scoped SSL configuration in interactive mode. Now that we have the information we

need to choose from, we need to decide if these objects are sufficient or if we need to create new

ones. For now, we will reuse what we’ve already got in the configuration and save creating new

instances to task documents specific to those objects.

v Using Jacl:

Chapter 10. Configuring security with scripting 931

$AdminTask createSSLConfig -interactive

v Using Jython:

AdminTask.createSSLConfig (’[-interactive]’)

Example output:

Create a SSL Configuration.

*SSL Configuration Alias (alias): BIRKT40Node02SSLConfig

Management Scope Name (scopeName): (cell):BIRKT40Cell02:(node):BIRKT40Node02

Client Key Alias (clientKeyAlias): default

Server Key Alias (serverKeyAlias): default

SSL Type (type): [JSSE]

Client Authentication (clientAuthentication): [false]

Security Level of the SSL Configuration (securityLevel): [HIGH]

Enabled Ciphers SSL Configuration (enabledCiphers):

JSSE Provider (jsseProvider): [IBMJSSE2]

Client Authentication Support (clientAuthenticationSupported): [false]

SSL Protocol (sslProtocol): [SSL_TLS]

Trust Manager Object Names (trustManagerObjectNames): (cells/BIRKT40Cell02|security.xml#TrustManager_1)

*Trust Store Name (trustStoreName): NodeDefaultTrustStore

Trust Store Scope (trustStoreScopeName): (cell):BIRKT40Cell02:(node):BIRKT40Node02

*Key Store Name (keyStoreName): NodeDefaultKeyStore

Key Store Scope Name (keyStoreScopeName): (cell):BIRKT40Cell02:(node):BIRKT40Node02

Key Manager Name (keyManagerName): IbmX509

Key Manager Scope Name (keyManagerScopeName): (cell):BIRKT40Cell02:(node):BIRKT40Node02

Create SSL Configuration

F (Finish)

C (Cancel)

Select [F, C]: [F] F

WASX7278I: Generated command line: $AdminTask createSSLConfig {-alias BIRKT40Node02SSLConfig -scopeName

(cell):BIRKT40Cell02:(node):BIRKT40Node02 -clientKeyAlias default -serverKeyAlias default

-trustManagerObjectNames (cells/BIRKT40Cell02|security.xml#TrustManager_1) -trustStoreName

NodeDefaultTrustStore -trustStoreScopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 -keyStoreName

NodeDefaultKeyStore -keyStoreScopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 -keyManagerName

IbmX509 -keyManagerScopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 }

3. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

Results

The name of the SSL configuration object that you created, for example, (cells/
BIRKT40Cell02|security.xml#SSLConfig_1136652770753), appears in the security.xml file.

Example security.xml file output:

<repertoire xmi:id="SSLConfig_1136652770753" alias="BIRKT40Node02SSLConfig" type="JSSE"

managementScope="ManagementScope_1134610924357">

<setting xmi:id="SecureSocketLayer_1136652770924" clientKeyAlias="default" serverKeyAlias="default"

clientAuthentication="false" securityLevel="HIGH" jsseProvider="IBMJSSE2" sslProtocol="SSL_TLS"

keyStore="KeyStore_1134610924357" trustStore="KeyStore_1134610924377" trustManager="TrustManager_1"

keyManager="KeyManager_1134610924357"/>

</repertoire>

What to do next

Once you create the SSL configuration object, the next step is to use it. There are several different ways

that you can associate SSL configurations with protocols, for example:

v Set the SSL configuration on the thread programmatically.

v Associate the SSL configuration with an outbound protocol or a target host and port.

932 Securing applications and their environment

v Directly associating the SSL configuration using the alias.

v Centrally managing the SSL configurations by associating them with SSL configuration groups or zones

so that they are used based upon the group from where the end point exists.

Automating SSL configurations using scripting

SSL configuration is needed for WebSphere to perform SSL connections with other servers. A SSL

configuration can be configured through the Admin Console. But if an automated way to create a SSL

configuration is desired then AdminTask should be used.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

AdminTask can be used in a interactive mode and batch mode. For automation the batch mode options

should be used. AdminTask batch mode can be called in a JACL or Python script. Interactive mode will

step through all the parameter the task needs, requires ones are marked with a ’*’. Before the interactive

task executes the task it echoes the batch mode syntax of the task to the screen. This can be helpful

when writing batch mode scripts.

There attributes needed to create an ssl configurations:

v A key store

v Default client certificate alias

v Default server certificate alias

v Trust store

v The handshake protocol

v The ciphers needed during handshake

v Supporting client authentication or not

If automating the creation of a SSL Configuration it may be needed to create some of the attribute values

needed like the key store, trust store, key manager, and trust managers.

v To create a SSL configuration the createSSLConfig AdminTask can be used. To make changes to the

SSL configurations use the modifySSLConfig AdminTask.

– Interactive mode:

Interactive mode steps you through all attributes and tell you the default value of the attribute if there

is one. The default value is in ’[]’ on the prompt line. The actual flag used in batch mode is in ’()’ on

each prompt line. If you are using the default value then the flag will not show up on the batch

command line.

Using Jacl:

$AdminTask createSSLConfig -interactive

– Using Jython:

AdminTask.createSSLConfig (’[interactive]’)

Example output:

*SSL Configuration Alias (alias): testSSLConfig

Management Scope Name (scopeName): (cell):HOSTNode01Cell:(node):HOSTNode01

Client Key Alias (clientKeyAlias): clientCert

Server Key Alias (serverKeyAlias): serverCert

SSL Type (type): [JSSE]

Client Authentication (clientAuthentication): [false]

Security Level of the SSL Configuration (securityLevel): [HIGH] HIGH

Enabled Ciphers SSL Configuration (enabledCiphers):

Chapter 10. Configuring security with scripting 933

JSSE Provider (jsseProvider): [IBMJSSE2]

Client Authentication Support (clientAuthenticationSupported): [false]

SSL Protocol (sslProtocol): [SSL_TLS] SSL_TLS

Trust Manager Object Names (trustManagerObjectNames):

*Trust Store Name (trustStoreName): testTrustStore

Trust Store Scope (trustStoreScopeName): (cell):HOSTNode01Cell:(node):HOSTNode01

*Key Store Name (keyStoreName): testKeyStore

Key Store Scope Name (keyStoreScopeName): (cell):HOSTNode01Cell:(node):HOSTNode01

Key Manager Name (keyManagerName): IbmX509

Key Manager Scope Name (keyManagerScopeName): (cell):HOSTNode01Cell:(node):HOSTNode01

Create SSL Configuration

F (Finish)

C (Cancel)

Select [F, C]: [F]

WASX7278I: Generated command line: $AdminTask createSSLConfig {-alias testSSLConfig

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01 -clientKeyAlias clientCert

-serverKeyAlias serverCert -trustStoreName testTrustStore

-trustStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyStoreName testKeyStore -keyStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyManagerName IbmX509 -keyManagerScopeName (cell):HOSTNode01Cell:(node):HOSTNode01 }

(cells/HOSTNode01Cell|security.xml#SSLConfig_1137687301834)

At the end of the output, the batch mode parameters are provided.

– Batch mode:

Using Jacl:

$AdminTask createSSLConfig {-alias testSSLConfig

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01 -clientKeyAlias clientCert

-serverKeyAlias serverCert -trustStoreName testTrustStore

-trustStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyStoreName testKeyStore -keyStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyManagerName IbmX509 -keyManagerScopeName (cell):HOSTNode01Cell:(node):HOSTNode01}

– Using Jython:

AdminTask.createSSLConfig (’[-alias testSSLConfig

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01 -clientKeyAlias clientCert

-serverKeyAlias serverCert -trustStoreName testTrustStore

-trustStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyStoreName testKeyStore -keyStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyManagerName IbmX509 -keyManagerScopeName (cell):HOSTNode01Cell:(node):HOSTNode01]’)

Example output:

(cells/HOSTNode01Cell|security.xml#SSLConfig_1137687301834)

v Key Stores and Trust Stores The key store and trust store may already exist or a new one may need to

be created. To create a new key store or trust store use the createKeyStore AdminTask. It will create a

key store file and store the configuration object in the system configuration. A trust store is just a key

store that usually only has signer certificates in it. To create a key store enter:

– Using Jacl:

$AdminTask createKeyStore {-keyStoreName testKeyStore -keyStoreType PKCS12

-keyStoreLocation $(USER_INSTALL_ROOT)\testKeyStore.p12 -keyStorePassword abcd

-keyStorePasswordVerify abcd -keyStoreIsFileBased true -keyStoreReadOnly false}

– Using Jython:

AdminTask.createKeyStore (’[-keyStoreName testKeyStore -keyStoreType PKCS12

-keyStoreLocation $(USER_INSTALL_ROOT)\testKeyStore.p12 -keyStorePassword abcd

-keyStorePasswordVerify abcd -keyStoreIsFileBased true -keyStoreReadOnly false]’)

To populate the key store with certificates see “Managing Certificates using AdminConsole and Admin

Task” The key store and trust store are required to create a SSL configuration. Use the ’-keyStoreName’

and ’-trustStoreName’ flags on the createSSLConfig. There scopes can be added with the

’-keyStoreScope’ flag and ’-trustStoreScope’ flags.

934 Securing applications and their environment

v Key Manager Key manager are used to determine how a certificate is selected. The IbmX509 key

manager is in the security configuration by default. If a different key manager is needed then use

createKeyManager AdminTask to create it. To create a key manager enter:

– Using Jacl:

$AdminTask createKeyManager {-name testKeyManager

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-provider IBMJSSE2 -algorithm specialAlgorithm }

– Using Jython:

AdminTask.createKeyManager (’[-name testKeyManager

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-provider IBMJSSE2 -algorithm specialAlgorithm]’)

To supply a key manager on the createSSLConfig AdminTask use the ’-keyManagerName’ along with

the ’-keyManagerScope’ flag.

v Trust Manager Trust managers are use to determine how trust is established during ssl communication.

The IbmX509 and IbmPKIX are trust managers are in the security configuration by default. If a different

or additional trust manager is needed then use the createTrustManger AdminTask to create it. To create

a trust manager enter:

– Using Jacl:

$AdminTask createTrustManager {-name testTrustManager

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-provider IBMJSSE2 -algorithm specialAlgorithm }

– Using Jython:

AdminTask.createTrustManager (’[-name testTrustManager

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-provider IBMJSSE2 -algorithm specialAlgorithm]’)

The SSL Configuration can have multiple trust managers. To supply multiple trust managers give a

comma separated list of the trust managers configuration IDs with the -trustManagerObjectNames flag.

When you create a trust manager the configuration object ID is returned. To get a list of trust managers

object IDs use the listTrustManagers command of the AdminTask object with the -displayObjectName

true flag. For example:

wsadmin>$AdminTask listTrustManagers -interactive

List Trust Managers

List trust managers.

Management Scope Name (scopeName):

Display list in ObjectName Format (displayObjectName): [false] true

List Trust Managers

F (Finish)

C (Cancel)

Select [F, C]: [F]

Inside generate script command

WASX7278I: Generated command line: $AdminTask listTrustManagers {-displayObjectName true }

IbmX509(cells/IBM-0AF8DABCF16Node01Cell|security.xml#TrustManager_IBM-0AF8DABCF16Node01_1)

IbmPKIX(cells/IBM-0AF8DABCF16Node01Cell|security.xml#TrustManager_IBM-0AF8DABCF16Node01_2)

Updating default key store passwords using scripting

Use the Jython or Jacl scripting language to change the default key store passwords. A key store file is

created with a default password when you install the application server. Change this password to protect

your security configuration.

Chapter 10. Configuring security with scripting 935

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

When you install the application server, each server creates a key store and trust store for the default SSL

configuration with the default password WebAS. To protect the security of the key store files and the SSL

configuration, you must change the password. The following examples update the default password:

v Change multiple key stores passwords. The changeMultipleKeyStorePasswords command updates

all of the key stores that have the same password. For example:

– Using Jacl:

$AdminTask changeMultipleKeyStorePasswords {-keyStorePassword WebAS

-newKeyStorePassword secretPwd -newKeyStorePasswordVerify secretPwd}

– Using Jython:

AdminTask.changeMultipleKeyStorePasswords [’(-keyStorePassword WebAS

-newKeyStorePassword secretPwd -newKeyStorePasswordVerify secretPwd]’)

v Change the password of a single key store. The changeKeyStorePassword command updates the

password of an individual key store. For example:

– Using Jacl:

$AdminTask changeKeyStorePassword {-keyStoreName testKS

-keyStoreScope (cell):localhost:(server):server1

-keyStorePassword WebAS -newKeyStorePassword secretPwd

-newKeyStorePasswordVerify secretPwd}

– Using Jython:

AdminTask.changeKeyStorePassword (’[-keyStoreName testKS

-keyStoreScope (cell):localhost:(server):server1

-keyStorePassword WebAS -newKeyStorePassword secretPwd

-newKeyStorePasswordVerify secretPwd]’)

Configuring certificate authority client objects using the wsadmin tool

Use this topic to create a certificate authority (CA) client object. The client object contains all of the

configuration information necessary to connect to your third-party CA server. A CA client must exist in your

configuration before you can issue a request to the CA to create personal certificates with the

requestCACertificate command.

Before you begin

A CA client object contains information that the system uses to connect to a certificate authority. Implement

the com.ibm.ws.WSPKIClient interface to connect to the certificate authority and provide the

com.ibm.ws.WSPKIClient class when creating the CA client object.

About this task

If a CA client does not exist in your configuration, use the steps in this topic to create a new CA client.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine if a CA client exists in your configuration.

Use the following listCAClients command to list all certificate authority clients in your configuration:

print AdminTask.listCAClients()

3. If no CA clients exist, then create a new CA client.

936 Securing applications and their environment

Use the createCAClient command to create a new CA client object. The application server connects to

a CA server through the WSPKIClient() implementation, which handles all connections and

communications with the CA server. You must specify the following configuration information for a new

CA client object:

 Parameter Description Data Type

-CAClientName Specify a name to uniquely identify the CA client

object.

String

You can specify additional configuration information using the following parameters:

 Parameter Description Data Type

-scopeName Specify the management scope of the CA client.

For a deployment manager profile, the system

uses the cell scope as the default value. For an

application server profile, the system uses the

node scope as the default value.

String

-pkiClientImplClass Specify the class path that implements the

WSPKIClient interface. The system uses this

path to connect to the CA and to issue requests

to the CA. The default value is

com.ibm.wsspi.ssl.WSPKIClient.

String

-host Specify the host name in your system where the

CA resides.

String

-port Specify the port on the server where the CA

listens.

String

-userName Specify the user name to use to authenticate to

the CA.

String

-password Specify the password for the user name that

authenticates to the CA.

String

-frequencyCheck Specify how often, in minutes, the system

checks with the CA to determine if a certificate

has been created.

String

-retryCheck Specify the number of times to check with the

CA to determine if a certificate has been

created.

String

-customProperties Specifies a comma separated list of attribute and

value (attribute=value) custom property pairs to

add to the CA client object.

String

Use the following example command to create a new CA client object:

AdminTask.createCAClient(’[-caClientName clientObj01 -pkiClientImplClass com.ibm.wsspi.ssl.WSPKIClient

-host machine011 -port 9022 -userName admin -password pw4admin]’)

The command returns the object name of the CA client that has been created.

4. Save your configuration changes.

What to do next

If the CA client object was successfully created, then you can configure the application server to use a

personal certificate created by an external CA.

Administering certificate authority clients using the wsadmin tool

Use this topic to modify certificate authority (CA) client objects. The client object contains all of the

configuration information necessary to connect to your third-party CA server.

Before you begin

You must configure a CA client object in your environment.

Chapter 10. Configuring security with scripting 937

About this task

For existing CA client objects, use the steps in this topic to view, modify, or delete existing CA client object

configurations.

v View existing CA client objects and configuration data. Use the listCAClients and getCAClient

commands to query your environment for your existing CA clients.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. List all CA client objects in your configuration.

Use the listCAClients command to list all certificate authority clients in your configuration. If you do

not provide a value for the -scopeName parameter, then the command queries the cell if you use a

deployment manager profile or queries the node if you use an application server profile. Use the -all

parameter to query your environment without using a specific scope, as the following example

demonstrates:

print AdminTask.listCAClients(’-all true’)

The command returns an array of attribute lists, displaying one attribute list for each CA client, as

the following example output displays:

’[[backupCAs] [managementScope (cells/myCell01|security.xml#ManagementScope_1)

] [scopeName (cell):myCell01] [name jenCAClient] [baseDn] [_Websphere_Config_Da

ta_Id cells/myCell01|security.xml#CAClient_1181834566881] [port 2950] [CACertifi

cate] [pkiClientImplClass com.ibm.wsspi.ssl.WSPKIClient] [userId] [_Webspher

e_Config_Data_Type CAClient] [retryCheck 0] [properties] [frequencyCheck 0] [pa

ssword] [host]]’

’[[backupCAs] [managementScope (cells/myCell01|security.xml#ManagementScope_1)

] [scopeName (cell):myCell01] [name myCAClient] [baseDn] [_Websphere_Config_Dat

a_Id cells/myCell01|security.xml#CAClient_1181834566882] [port 2951] [CACertific

ate] [pkiClientImplClass com.ibm.wsspi.ssl.WSPKIClient] [userId] [_Websphere

_Config_Data_Type CAClient] [retryCheck 0] [properties] [frequencyCheck 0] [pas

sword] [host]]’

3. List the configuration attributes for a specific CA client.

Use the getCAClient command to view the list of attributes for a specific CA client, as the following

example demonstrates:

print AdminTask.getCAClient(’-caClientName myCAClient’)

The command returns an attribute list that contains the attribute and value pairs for the specific CA

client, as the following example demonstrates:

’[[backupCAs] [managementScope (cells/myCell01|security.xml#ManagementSc

ope_1)] [scopeName (cell):myCell01] [name myCAClient] [baseDn] [_Websphe

re_Config_Data_Id cells/myCell01|security.xml#CAClient_1181834566882] [por

t 2951] [CACertificate] [pkiClientImplClass com.ibm.wsspi.ssl.WSPKIClient] [u

serId] [_Websphere_Config_Data_Type CAClient] [retryCheck 0] [properties] [fre

quencyCheck 0] [password] [host]]’

v Modify your existing CA client object configuration data. Use the modifyCAClient command to change

one or more configuration attributes for a specific CA client.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine which configuration attributes to edit.

The modifyCAClient modifies all attributes that you specify with the command parameters. If you do

not specify a parameter, then its corresponding attribute does not change. You can edit the following

configuration data with the modifyCAClient command:

 Parameter Description Data Type

-scopeName Specify the management scope of the CA client.

For a deployment manager profile, the system

uses the cell scope as the default. For an

application server profile, the system uses the

node scope as the default.

String

-pkiClientImplClass Specify the class path that implements the

WSPKIClient interface. The system uses this

path to connect to the CA and to issue requests

to the CA.

String

-host Specify the host name in your system where the

CA resides.

String

938 Securing applications and their environment

Parameter Description Data Type

-port Specify the port on the server where the CA

listens.

String

-userName Specify the user name to use to authenticate to

the CA.

String

-password Specify the password for the user name that

authenticates to the CA.

String

-frequencyCheck Specify how often, in minutes, the system should

check with the CA to determine if a certificate

has been created.

String

-retryCheck Specify the number of times to check with the

CA to determine if a certificate has been

created.

String

-customProperties Specifies a comma separated list of attribute and

value (attribute=value) custom property pairs to

modify on the CA Client object. You can create,

modify, or remove properties. To remove a

property specify attribute= attribute as equal to

no value.

String

3. Modify specific configuration attributes for a CA client object.

Use the following example command to modify the port number of the CA, the user name, and

password attributes for the myCAClient CA client object:

AdminTask.modifyCAClient(’[-caClientName myCAClient -port 4060 -userName admin -password password4admin -pkiClientImplClass com.ibm.wsspi.ssl.WSPKIClient]’)

4. Save your configuration changes.

v Remove a CA client object from your configuration. Use the deleteCAClient command to delete a CA

client object from your configuration. The command does not delete the CA client object if the CA client

to delete is referenced by a certificate object.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the CA client object to delete.

Use the listCAClients command to list all certificate authority clients in your configuration. If you do

not provide a value for the -scopeName parameter, then the command queries the cell if you use a

deployment manager profile or queries the node if you use an application server profile. Use the -all

parameter to query your environment without using a specific scope, as the following example

demonstrates:

print AdminTask.listCAClients(’-all true’)

3. Delete the CA client object of interest.

Use the deleteCAClient command to delete the CA client object from your configuration. Use the

-caClientName parameter to specify the CA client to delete. You can optionally specify the

management scope of the CA client object with the scopeName parameter. The following example

command removes the myCAClient CA client object:

AdminTask.deleteCAClient(’[-caClientName myCAClient]’)

If you receive an error message, then verify that the CA client object of interest exists in your

configuration and that it is not referenced by a certificate object in your security configuration.

4. Save your configuration changes.

Setting a certificate authority certificate as the default certificate using

the wsadmin tool

Use this topic to make a request to an external certificate authority (CA) to create a personal certificate.

After the CA returns the certificate and the certificate is saved in the keystore, then you can use it as the

server default personal certificate.

Chapter 10. Configuring security with scripting 939

Before you begin

You must configure a CA client object in your environment. The client object contains all of the

configuration information necessary to connect to your third-party CA server.

About this task

After profile creation, the system is assigned a default chained personal certificate. Use the following steps

to modify the application server to use a default personal certificate created by an external CA.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Verify that a certificate authority client exists in your configuration. Use the listCAClients command to

query your environment for all existing certificate authority clients and configuration attributes, or the

getCAClient command to return the configuration attributes for a specific certificate authority client. If

the listCAClients or getCAClient commands do not return any attributes, then you must create a

certificate authority client object before you can complete the remaining steps.

v List all certificate authority client objects in your configuration.

Use the listCAClients command to list all certificate authority clients in your configuration. If you do

not provide a value for the -scopeName parameter, then the command queries the cell if you use a

deployment manager profile or queries the node if you use an application server profile. Use the -all

parameter to query your environment without using a specific scope, as the following example

demonstrates:

print AdminTask.listCAClients(’-all true’)

The command returns an array of attribute lists, displaying one attribute list for each CA client, as

the following example output displays:

’[[backupCAs] [managementScope (cells/myCell01|security.xml#ManagementScope_1)

] [scopeName (cell):myCell01] [name jenCAClient] [baseDn] [_Websphere_Config_Da

ta_Id cells/myCell01|security.xml#CAClient_1181834566881] [port 2950] [CACertifi

cate] [pkiClientImplClass com.ibm.wsspi.ssl.WSPKIClient] [userId] [_Webspher

e_Config_Data_Type CAClient] [retryCheck 0] [properties] [frequencyCheck 0] [pa

ssword] [host]]’

’[[backupCAs] [managementScope (cells/myCell01|security.xml#ManagementScope_1)

] [scopeName (cell):myCell01] [name myCAClient] [baseDn] [_Websphere_Config_Dat

a_Id cells/myCell01|security.xml#CAClient_1181834566882] [port 2951] [CACertific

ate] [pkiClientImplClass com.ibm.wsspi.ssl.WSPKIClient] [userId] [_Websphere

_Config_Data_Type CAClient] [retryCheck 0] [properties] [frequencyCheck 0] [pas

sword] [host]]’

v List the configuration attributes for a specific certificate authority client.

Use the getCAClient command to view the list of attributes for a specific certificate authority client,

as the following example demonstrates:

print AdminTask.getCAClient(’-caClientName myCAClient’)

The command returns an attribute list that contains the attribute and value pairs for the specific

certificate authority client, as the following example demonstrates:

’[[backupCAs] [managementScope (cells/myCell01|security.xml#ManagementSc

ope_1)] [scopeName (cell):myCell01] [name myCAClient] [baseDn] [_Websphe

re_Config_Data_Id cells/myCell01|security.xml#CAClient_1181834566882] [por

t 2951] [CACertificate] [pkiClientImplClass com.ibm.wsspi.ssl.WSPKIClient] [u

serId] [_Websphere_Config_Data_Type CAClient] [retryCheck 0] [properties] [fre

quencyCheck 0] [password] [host]]’

3. Optional: If a certificate authority client does not exist in your environment, then configure a CA client

object.

4. Optional: View the current default personal certificate.

Use the following listPersonalCertificates command to display the current default personal certificate to

replace:

AdminTask.listPersonalCertificates(’[-keyStoreName CellDefaultKeyStore -keyStoreScope (cell):myCell01]’)

5. Request a certificate from a certificate authority.

Before the current default personal certificate can be replaced, you must request a certificate from a

certificate authority. You can create a new certificate request or use the createCertificateRequest

command to use a predefined certificate request. The system uses the certificate request and the

certificate authority configuration information from the CA client object to request the certificate from

940 Securing applications and their environment

the certificate authority. If the certificate authority returns a certificate, then the requestCAcertificate

command stores the certificate in the specified key store and returns a message of COMPLETE. Use the

requestCACertificate command and the following required parameters to request a certificate from a

certificate authority:

 Parameter Description Data Type

-certificateAlias Specifies the alias of the certificate. You can

specify a predefined certificate request.

String

-keyStoreName Specifies the name of the keystore object that

stores the CA certificate. Use the listKeyStores

command to display a list of available keystores.

String

-caClientName Specifies the name of the CA client that was

used to create the CA certificate.

String

-revocationPassword Specifies the password to use to revoke the

certificate at a later date.

String

You can also use the following parameters to specify additional certificate request options. If you do

not specify an optional parameter, then the command uses the default value.

 Parameter Description Data Type

-keyStoreScope Specifies the management scope of the

keystore. For a deployment manager profile, the

default value is the cell scope. For an application

server profile, the default value is the node

scope.

String

-caClientScope Specifies the management scope of the CA

client. For a deployment manager profile, the

default value is the cell scope. For an application

server profile, the default value is the node

scope.

String

-certificateCommonName Specifies the common name (CN) part of the full

distinguished name (DN) of the certificate. This

common name can represent a person,

company, or machine. For Web sites, the

common name is frequently the DNS host name

where the server resides.

String

-certificateSize Specifies the size of the certificate key. The valid

values are 512, 1024, and 2048. The default

value is 1024.

String

-certificateOrganization Specifies the organization portion of the

distinguished name.

String

-certificateOrganizationalUnit Specifies the organizational unit portion of the

distinguished name.

String

-certificateLocality Specifies the locality portion of the distinguished

name.

String

-certificateState Specifies the state portion of the distinguished

name.

String

-certificateZip Specifies the zip code portion of the

distinguished name.

String

-certificateCountry Specifies the country portion of the distinguished

name.

String

Use the following example command syntax to request a certificate from a certificate authority:

AdminTask.requestCACertificate(’-certificateAlias newCertificate -keyStoreName

CellDefaultKeyStore -caClientName myCAClient -revocationPassword revokeCApw

-pkiClientImplClass com.ibm.wsspi.ssl.WSPKIClient’)

The command returns one of two values: Certificate COMPLETE or certificate PENDING. If the

command returns the Certificate COMPLETE message, the certificate authority returned the requested

certificate and the default personal certificate is replaced. If the command returns the certificate

PENDING message, the certificate authority did not yet return a certificate. Use the queryCACertificate

command to view the current status of the certificate request, as the following example demonstrates:

AdminTask.queryCACertificate(’-certificateAlias newCertificate -keyStoreName

CellDefaultKeyStore -pkiClientImplClass com.ibm.wsspi.ssl.WSPKIClient’)

6. Replace the server default personal certificate.

Chapter 10. Configuring security with scripting 941

Use the following replaceCertificate command example to replace the existing default personal

certificate with the newly created CA personal certificate:

AdminTask.replaceCertificate(’-keyStoreName CellDefaultKeyStore -certificateAlias

defaultPersonalCertificate -replacementCertificateAlias newCertificate’)

7. Save your configuration changes.

Results

The default personal certificate for the server is a certificate that is created by an external CA.

What to do next

If the CA client object was successfully created, then you can configure the application server to use a

personal certificate created by an external CA.

Creating certificate authority (CA) personal certificates using the

wsadmin tool

Use this topic to create CA certificates from a certificate authority (CA).

Before you begin

You must configure a CA client object in your environment. The client object contains all of the

configuration information necessary to connect to your third-party CA server.

About this task

Use the following information to create a CA personal certificate using a CA client.

1. Optional: Query your configuration for keystores to determine where system stores the new CA

certificate.

Use the listKeyStores command to list all keystores for a specific management scope. Specify the

-scopeName parameter to display keystores within a specific management scope, or set the -all

parameter to true to display all keystores regardless of scope. The following example lists all

keystores in your configuration:

AdminTask.listKeystores(’-all true’)

The command returns the following sample output:

CellDefaultKeyStore(cells/myCell|security.xml#KeyStore_1)

CellDefaultTrustStore(cells/myCell|security.xml#KeyStore_2)

CellLTPAKeys(cells/myCell|security.xml#KeyStore_3)

NodeDefaultKeyStore(cells/myCell|security.xml#KeyStore_1598745926544)

NodeDefaultTrustStore(cells/myCell|security.xml#KeyStore_1476529854789)

Use the getKeyStoreInfo command and specify the -keyStoreName parameter to return additional

information about the keystore of interest, as the following example displays:

AdminTask.getKeyStoreInfo(’[-keyStoreName CellDefaultKeyStore]’)

The command returns the following configuration information for the keystore of interest:

[[location ${CONFIG_ROOT}/cells/myCell/key.p12] [password *****] [_Webspher

e_Config_Data_Id cells/myCell|security.xml#KeyStore_1] [_Websphere_Config_Da

ta_Version] [useForAcceleration false] [slot 0] [type PKCS12] [additionalKeySto

reAttrs] [fileBased true] [_Websphere_Config_Data_Type KeyStore] [customProvide

rClass] [hostList] [createStashFileForCMS false] [description [Default key sto

re for JenbCell01]] [readOnly false] [initializeAtStartup false] [managementScop

e (cells/JenbCell01|security.xml#ManagementScope_1)] [usage SSLKeys] [provider I

BMJCE] [name CellDefaultKeyStore]]

2. Optional: Determine which CA client to use.

942 Securing applications and their environment

Use the listCAClients command to list the CA clients that exist in your configuration. Specify the

-scopeName parameter to display CA clients within a specific management scope, or set the -all

parameter to true to display all CA clients regardless of scope. The following example lists all CA

clients in your configuration:

AdminTask.listCAClients(’-all true’)

3. Create a CA personal certificate.

Use the requestCACertificate command to create a new CA personal certificate in your environment.

The system uses the certificate request and the certificate authority configuration information from the

CA client object to request the certificate from the certificate authority. If the certificate authority returns

a certificate, the requestCAcertificate command stores the certificate in the specified key store and

returns a message of COMPLETE. Use the requestCACertificate command and the following required

parameters to request a certificate from a certificate authority:

 Parameter Description Data type

-certificateAlias Specifies the alias of the certificate. You can

specify a predefined certificate request.

String

-keyStoreName Specifies the name of the keystore object that

stores the CA certificate. Use the listKeyStores

command to display a list of available keystores.

String

-caClientName Specifies the name of the CA client that was

used to create the CA certificate.

String

-revocationPassword Specifies the password to use to revoke the

certificate at a later date.

String

You can also use the following parameters to specify additional certificate request options. If you do

not specify an optional parameter, the command uses the default value.

 Parameter Description Data type

-keyStoreScope Specifies the management scope of the

keystore. For a deployment manager profile, the

default value is the cell scope. For an application

server profile, the default value is the node

scope.

String

-caClientScope Specifies the management scope of the CA

client. For a deployment manager profile, the

default value is the cell scope. For an application

server profile, the default value is the node

scope.

String

-certificateCommonName Specifies the common name (CN) part of the full

distinguished name (DN) of the certificate. This

common name can represent a person,

company, or machine. For Web sites, the

common name is frequently the DNS host name

where the server resides.

String

-certificateSize Specifies the size of the certificate key. The valid

values are 512, 1024, and 2048. The default

value is 1024.

String

-certificateOrganization Specifies the organization portion of the

distinguished name.

String

-certificateOrganizationalUnit Specifies the organizational unit portion of the

distinguished name.

String

-certificateLocality Specifies the locality portion of the distinguished

name.

String

-certificateState Specifies the state portion of the distinguished

name.

String

-certificateZip Specifies the zip code portion of the

distinguished name.

String

-certificateCountry Specifies the country portion of the distinguished

name.

String

Use the following example command syntax to request a certificate from a certificate authority:

AdminTask.requestCACertificate(’-certificateAlias newCertificate -keyStoreName CellDefaultKeyStore -CAClientName myCAClient -revocationPassword revokeCApw’)

Chapter 10. Configuring security with scripting 943

The command returns one of two values: Certificate COMPLETE or certificate PENDING. If the

command returns the Certificate COMPLETE message, the certificate authority returned the requested

certificate and the default personal certificate is replaced. If the command returns the certificate

PENDING message, the certificate authority did not yet return a certificate. Use the queryCACertificate

command to view the current status of the certificate request, as the following example displays:

AdminTask.queryCACertificate(’-certificateAlias newCertificate -keyStoreName CellDefaultKeyStore’)

4. Save your configuration changes.

Results

The default personal certificate for the server is a certificate that is created by an external CA.

Revoking certificate authority personal certificates using the wsadmin

tool

You can revoke CA certificates from a certificate authority (CA). Revoke personal certificates that are no

longer being used in your configuration.

Before you begin

Use the requestCACertificate command to create a personal certificate with the requestCACertificate task

before you can request that the certificate authority revoke the certificate. Certificates created with the

requestCACertificate command have an associated reference object in the configuration that you can use

to submit the certificate revocation request to the certificate authority.

About this task

This topic uses the revokeCACertificate command to submit a request to revoke a certificate on the

certificate authority. You can only revoke a certificate that was created with the requestCACertificate

command. You must specify the revocation password that was provided when the certificate was created.

Use the same password to revoke the certificate on the certificate authority.

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Determine the CA personal certificate to revoke.

Use the listPersonalCertificates command to view a list of all personal certificates and associated

attributes for a specific keystore, as the following example demonstrates:

AdminTask.listPersonalCertificates(’-keyStoreName CellDefaultKeyStore’)

The command returns an attribute list for each personal certificate, including CA personal certificates.

CA personal certificates only return the status attribute. You can revoke each CA personal certificates

that returns a COMPLETE status. Determine which CA personal certificate to revoke.

3. Revoke a CA personal certificate.

Use the revokeCACertificate command to revoke the CA personal certificate of interest. You must

specify the name of the keystore, certificate alias, and revocation password using the following

parameters:

 Parameter Description Data Type

-keyStoreName Specifies the name of the keystore where the

CA personal certificate is stored.

String

-certificateAlias Specifies the unique name that identifies the CA

personal certificate object and the alias name of

the certificate in the keystore.

String

-revocationPassword Specifies the password needed to revoke the

certificate. This is the same password that was

provided when the certificate was created.

String

You can specify additional information with the following optional parameters:

944 Securing applications and their environment

Parameter Description Data Type

-keyStoreScope Specifies the management scope of the

keystore. For a deployment manager profile, the

system uses the cell scope as the default value.

For an application server profile, the system

uses the node scope as the default value.

String

-revocationReason Specifies the reason for revoking the certificate

of interest. The default value for this parameter

is unspecified.

String

The following example revokes a CA personal certificate:

AdminTask.revokeCACertificate(’[-keyStoreName CellDefaultKeyStore -certificateAlias myCertificate -revocationPassword pw4revoke]’)

4. Save your configuration changes.

CAClientCommands command group for the AdminTask object

You can use the Jython scripting language to manage your certificate authority (CA) client configurations

with the wsadmin tool. Use the commands and parameters in the CAClientCommands group to create,

modify, query, and remove connections to a third-party CA server.

Use the following commands to manage your certificate authority (CA) client configurations:

v “createCAClient”

v “modifyCAClient” on page 946

v “getCAClient” on page 947

v “deleteCAClient” on page 948

v “listCAClients” on page 949

createCAClient

The createCAClient command creates a new CA client object in your configuration. The application server

connects to a CA server through the WSPKIClient() implementation, which handles all connections and

communications with the CA server.

Target object

None.

Required parameters

-caClientName

Specifies a name to uniquely identify the CA client object. (String, required)

-pkiClientImplClass

Specifies the class path that implements the WSPKIClient interface. The system uses this path to

connect to the CA and to issue requests to the CA. (String, required)

Optional parameters

-scopeName

Specifies the management scope of the CA client. For a deployment manager profile, the system uses

the cell scope as the default value. For an application server profile, the system uses the node scope

as the default value. (String, optional)

-host

Specifies the host name in your system where the CA resides. (String, optional)

-port

Specifies the port on the server where the CA listens. (String, optional)

Chapter 10. Configuring security with scripting 945

-userName

Specifies the user name to use to authenticate to the CA. (String, optional)

-password

Specifies the password for the user name that authenticates to the CA. (String, optional)

-frequencyCheck

Specifies how often, in minutes, the system communicates with the CA to determine if a certificate has

been created. (String, optional)

-retryCheck

Specifies the number of times to communicate with the CA to determine if a certificate has been

created. (String, optional)

-customProperties

Specifies a comma-separated list of attribute and value custom property pairs to add to the CA client

object, using the following format: attribute=value,attribute=value. (String, optional)

Return value

The command returns the object name of the CA client that the system creates.

Batch mode example usage

v Using Jython string:

AdminTask.createCAClient(’[-caClientName clientObj01 -pkiClientImplClass

com.ibm.wsspi.ssl.WSPKIClient -host machine011 -port 9022

-userName admin -password pw4admin]’)

v Using Jython list:

AdminTask.createCAClient([’-caClientName’, ’clientObj01’, ’-pkiClientImplClass’,

’com.ibm.wsspi.ssl.WSPKIClient’, ’-host’, ’machine011’, ’-port’, ’9022’,

’-userName’, ’admin’, ’-password’, ’pw4admin’])

Interactive mode example usage

v Using Jython:

AdminTask.createCAClient(’-interactive’)

modifyCAClient

The modifyCAClient command modifies your existing CA client object configuration data. You can modify

one or multiple configuration attributes for a specific CA client.

Target object

None.

Required parameters

-caClientName

Specifies the name of the CA client of interest. (String, required)

Optional parameters

-scopeName

Specifies the management scope of the CA client. For a deployment manager profile, the system uses

the cell scope as the default. For an application server profile, the system uses the node scope as the

default. (String, optional)

-pkiClientImplClass

Specifies the class path that implements the WSPKIClient interface. The system uses this path to

connect to the CA and to issue requests to the CA. (String, optional)

946 Securing applications and their environment

-host

Specifies the host name in your system where the CA resides. (String, optional)

-port

Specifies the port on the server where the CA listens. (String, optional)

-userName

Specifies the user name to use to authenticate to the CA. (String, optional)

-password

Specifies the password for the user name that authenticates to the CA. (String, optional)

-frequencyCheck

Specifies how often, in minutes, the system should check with the CA to determine if a certificate has

been created. (String, optional)

-retryCheck

Specifies the number of times to check with the CA to determine if a certificate has been created.

(String, optional)

-customProperties

Specifies a comma separated list of attribute and value (attribute=value) custom property pairs to

modify on the CA Client object. You can create, modify, or remove properties. To remove a property

specify the attribute and value as attribute=. (String, optional)

Return value

Batch mode example usage

v Using Jython string:

AdminTask.modifyCAClient(’[-caClientName myCAClient -port 4060

-userName admin -password password4admin]’)

v Using Jython list:

AdminTask.modifyCAClient([’-caClientName’, ’myCAClient’, ’-port’, ’4060’,

’-userName’, ’admin’, ’-password’, ’password4admin’])

Interactive mode example usage

v Using Jython:

AdminTask.modifyCAClient(’-interactive’)

getCAClient

The getCAClient command displays a list of attributes for a specific CA client.

Target object

None.

Required parameters

-caClientName

Specifies the CA client name of interest. (String, required)

Optional parameters

-scopeName

Specifies the management scope of CA client of interest. (String, optional)

Return value

Chapter 10. Configuring security with scripting 947

The command returns an attribute list that contains the attribute and value pairs for the specific CA client,

as the following example displays:

’[[backupCAs] [managementScope (cells/myCell01|security.xml#ManagementSc

ope_1)] [scopeName (cell):myCell01] [name myCAClient] [baseDn] [_Websphe

re_Config_Data_Id cells/myCell01|security.xml#CAClient_1181834566882] [por

t 2951] [CACertificate] [pkiClientImplClass com.ibm.wsspi.ssl.WSPKIClient] [u

serId] [_Websphere_Config_Data_Type CAClient] [retryCheck 0] [properties] [fre

quencyCheck 0] [password] [host]]’

Batch mode example usage

v Using Jython string:

print AdminTask.getCAClient(’-caClientName myCAClient’)

v Using Jython list:

print AdminTask.getCAClient(’-caClientName’, ’myCAClient’)

Interactive mode example usage

v Using Jython string:

print AdminTask.getCAClient(’-interactive’)

deleteCAClient

The deleteCAClient command removes the CA client object of interest from your configuration. Use the

-caClientName parameter to specify the CA client to delete. You can optionally specify the management

scope of the CA client object with the scopeName parameter.

Target object

None.

Required parameters

-caClientName

Specifies the name of the CA client of interest. (String, required)

Optional parameters

-scopeName

Specifies the management scope of the CA client of interest. (String, optional)

Return value

The command does not return output if the system successfully removes the CA client of interest. If you

receive an error message, verify that the CA client object of interest exists in your configuration and that it

is not referenced by a certificate object in your security configuration.

Batch mode example usage

v Using Jython string:

AdminTask.deleteCAClient(’[-caClientName myCAClient]’)

v Using Jython list:

AdminTask.deleteCAClient([’-caClientName’, ’myCAClient’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteCAClient(’-interactive’)

948 Securing applications and their environment

listCAClients

The listCAClients command lists all CA clients in your configuration or within a specific scope. If you do

not provide a value for the -scopeName parameter, the command queries the cell if you use a deployment

manager profile or queries the node if you use an application server profile. Use the -all parameter to

query your environment without using a specific scope.

Target object

None.

Optional parameters

-scopeName

Specifies the management scope to search for CA clients. (String, optional)

-all

Specifies whether the system queries for CA clients without a specific scope. (Boolean, optional)

Return value

The command returns an array of attribute lists, displaying one attribute list for each CA client, as the

following example output displays:

’[[backupCAs] [managementScope (cells/myCell01|security.xml#ManagementScope_1)

] [scopeName (cell):myCell01] [name jenCAClient] [baseDn] [_Websphere_Config_Da

ta_Id cells/myCell01|security.xml#CAClient_1181834566881] [port 2950] [CACertifi

cate] [pkiClientImplClass com.ibm.wsspi.ssl.WSPKIClient] [userId] [_Webspher

e_Config_Data_Type CAClient] [retryCheck 0] [properties] [frequencyCheck 0] [pa

ssword] [host]]’

’[[backupCAs] [managementScope (cells/myCell01|security.xml#ManagementScope_1)

] [scopeName (cell):myCell01] [name myCAClient] [baseDn] [_Websphere_Config_Dat

a_Id cells/myCell01|security.xml#CAClient_1181834566882] [port 2951] [CACertific

ate] [pkiClientImplClass com.ibm.wsspi.ssl.WSPKIClient] [userId] [_Websphere

_Config_Data_Type CAClient] [retryCheck 0] [properties] [frequencyCheck 0] [pas

sword] [host]]’

Batch mode example usage

v Using Jython string:

print AdminTask.listCAClients(’-all true’)

v Using Jython list:

print AdminTask.listCAClients(’-all’, ’true’)

Interactive mode example usage

v Using Jython:

print AdminTask.listCAClients(’-interactive’)

Creating self-signed certificates using scripting

Use the Jython or Jacl scripting language to create self-signed certificates with the wsadmin tool.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

About this task

You can create self-signed certificates using the scripting and the AdminTask object. You can run the

commands in interactive or batch mode. Interactive mode provides a way to discover the flags that you

need to run the task in batch mode.

Chapter 10. Configuring security with scripting 949

Certificates reside inside of key stores. To run the commands, you will need the name of the key store to

be supplied. Use the listKeyStore command of the AdminTask object to get a list of key stores. If you

need a new key store, use the createKeyStore command of the AdminTask object.

To create a personal key store, use the following examples:

v Interactive mode:

– Using Jython:

AdminTask.createSelfSignedCertificate (’[-interactive]’)

– Using Jacl:

$AdminTask createSelfSignedCertificate -interactive

Example output:

*Key Store Name (keyStoreName): keyStore

Key Store Scope Name (keyStoreScope):

*Certificate Alias (certificateAlias): newCert

"Certificate Version" (certificateVersion): 3

*Key Size (certificateSize): [1024]

*Common Name (certificateCommonName): localhost

*Organization (certificateOrganization): workgroup

Organizational Unit (certificateOrganizationalUnit): testing

certLocality (certificateLocality): austin

State (certificateState): Texas

Zip (certificateZip): 78757

Country (certificateCountry): [US]

Validity Period (certificateValidDays): [365]

Create Self-Signed Certificate

F (Finish)

C (Cancel)

Select [F, C]: [F]

WASX7278I: Generated command line: $AdminTask createSelfSignedCertificate

{-keyStoreName keyStore -certificateAlias newCert -certificateVersion 3

-certificateCommonName localhost -certificateOrganization ibm

-certificateOrganizationalUnit testing -certificateLocality austin

-certificateState Texas -certificateZip 78757 }

true

At the end of the output, the batch mode parameters are provided.

v Batch mode:

– Using Jython:

AdminTask.createSelfSignedCertificate (’[-keyStoreName keyStore

-certificateAlias newCert -certificateVersion 3 -certificateSize 1024

-certificateCommonName localhost -certificateOrganization ibm

-certificateOrganizationalUnit testing -certificateLocality austin

-certificateState Texas -certificateZip 78757]’)

– Using Jacl:

$AdminTask createSelfSignedCertificate {-keyStoreName keyStore

-certificateAlias newCert -certificateVersion 3 -certificateSize 1024

-certificateCommonName localhost -certificateOrganization ibm

-certificateOrganizationalUnit testing -certificateLocality austin

-certificateState Texas -certificateZip 78757 }

keyManagerCommands command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure security. The commands and parameters

in the keyManagerCommands group can be used to manage key manager settings. You can use these

commands to create, modify, list, or obtain information about key managers.

The keyManagerCommands command group for the AdminTask object includes the following commands:

950 Securing applications and their environment

v “deleteKeyManager”

v “getKeyManager”

v “listKeyManagers” on page 952

v “modifyKeyManager” on page 953

deleteKeyManager

The deleteKeyManager command deletes the key manager settings from the configuration.

Target object

None.

Required parameters

-name

Specifies the name that uniquely identifies the key manager. (String, required)

Optional parameters

-scopeName

Specifies the unique name that identifies the management scope. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteKeyManager {-name testKM}

v Using Jython string:

AdminTask.deleteKeyManager(’[-name testKM]’)

v Using Jython list:

AdminTask.deleteKeyManager([’-name’, ’testKM’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteKeyManager {-interactive}

v Using Jython:

AdminTask.deleteKeyManager(’-interactive’)

getKeyManager

The getKeyManager command displays a properties object that contains the key manager attributes and

values.

Target object

None.

Required parameters

-name

Specifies the name that uniquely identifies the key manager. (String, required)

Optional parameters

Chapter 10. Configuring security with scripting 951

-scopeName

Specifies the unique name that identifies the management scope. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getKeyManager {-name testKM}

v Using Jython string:

AdminTask.getKeyManager(’[-name testKM]’)

v Using Jython list:

AdminTask.getKeyManager([’-name’, ’testKM’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getKeyManager {-interactive}

v Using Jython:

AdminTask.getKeyManager(’-interactive’)

listKeyManagers

The listKeyManagers command lists the key managers within a particular management scope.

Target object

None.

Required parameters

None.

Optional parameters

-scopeName

Specifies the unique name that identifies the management scope. (String, optional)

-displayObjectName

Set the value of this parameter to true to list the key manager objects within the scope. Set the value

of this parameter to false to list the strings that contain the key manager name and the management

scope. (Boolean, optional)

-all

Specify the value of this parameter as true to list all key managers. This parameter overrides the

scopeName parameter. The default value is false. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyManagers

v Using Jython:

AdminTask.listKeyManagers()

Interactive mode example usage:

v Using Jacl:

$AdminTask listKeyManagers {-interactive}

952 Securing applications and their environment

v Using Jython:

AdminTask.listKeyManagers(’-interactive’)

modifyKeyManager

The modifyKeyManager command changes existing key manager settings.

Target object

None.

Required parameters

-name

The name that uniquely identifies the key manager. (String, required)

Optional parameters

-scopeName

Specifies the unique name that identifies the management scope. (String, optional)

-provider

Specifies the provider name of the key manager. (String, optional)

-algorithm

Specifies the algorithm name of the key manager. (String, optional)

-keyManagerClass

Specifies the name of the key manager implementation class. You cannot use this parameter with the

provider or the algorithm parameter. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask modifyKeyManager {-name testKM -provider IBMJSSE2 -algorithm IbmX509}

v Using Jython string:

AdminTask.modifyKeyManager(’[-name testKM -provider IBMJSSE2 -algorithm IbmX509]’)

v Using Jython list:

AdminTask.modifyKeyManager([’-name’, ’testKM’, ’-provider’, ’IBMJSSE2’, ’-algorithm’, ’IbmX509’])

Interactive mode example usage:

v Using Jacl:

$AdminTask modifyKeyManager {-interactive}

v Using Jython:

AdminTask.modifyKeyManager(’-interactive’)

Chapter 10. Configuring security with scripting 953

Related concepts

“Key management for cryptographic uses” on page 697
WebSphere Application Server provides a framework for managing keys (secret keys or key pairs) that

applications use to perform cryptographic operations on data. The key management framework provides

an application programming interface (API) for retrieving these keys. Keys are managed in keystores so

the keystore type can be supported by WebSphere Application Server, provided that the keystores can

store the referenced key type. You can configure keys and scope keystores so that they are visible only to

particular processes, nodes, clusters, and so on.

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

“Automating SSL configurations using scripting” on page 933
SSL configuration is needed for WebSphere to perform SSL connections with other servers. A SSL

configuration can be configured through the Admin Console. But if an automated way to create a SSL

configuration is desired then AdminTask should be used.

“Creating an SSL configuration at the node scope using scripting” on page 930
An Secure Socket Layer (SSL) configuration references many other configuration objects. To help you

make valid selections for the new SSL configuration before you create it, view information about existing

configuration objects. Information about existing objects is also useful when you create a node scoped

SSL configuration using the createSSLConfig command of the AdminTask object.

KeyStoreCommands command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure keystores with the wsadmin tool. A

keystore is created by the application server during install and can contain cryptographic keys or

certificates. The commands and parameters in the KeyStoreCommands group can be used to create,

delete, and manage keystores.

The KeyStoreCommands command group for the AdminTask object includes the following commands:

v “changeKeyStorePassword”

v “changeMultipleKeyStorePasswords” on page 955

v “createKeyStore” on page 956

v “createCMSKeyStore” on page 957

v “deleteKeyStore” on page 958

v “exchangeSigners” on page 959

v “getKeyStoreInfo” on page 959

v “listKeyFileAliases” on page 960

v “listKeyStores” on page 961

v “listKeyStoreTypes” on page 961

v “modifyKeyStore” on page 962

changeKeyStorePassword

The changeKeyStorePassword command modifies the password of a keystore. The command

automatically saves the new password to the configuration.

Required parameters

-keyStoreName

Specifies the name of the password to change. (String, required)

954 Securing applications and their environment

-keyStorePassword

Specifies the name of the password to change. (String, required)

-newKeyStorePassword

Specifies the new password that to use to access the keystore. (String, required)

-newKeyStorePasswordVerify

Specifies the new password to confirm the new keystore password. (String, required)

Optional parameters

-scopeName

Specifies the management scope of the keystore. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask changeKeyStorePassword {-keystoreName myKeystore -keyStorePassword

WebAS -newKeyStorePassword newpwd -newKeyStorePasswordVerify newpwd}

v Using Jython string:

AdminTask.changeKeyStorePassword(’[-keystoreName myKeystore -keyStorePassword

WebAS -newKeyStorePassword newpwd -newKeyStorePasswordVerify newpwd]’)

v Using Jython list:

AdminTask.changeKeyStorePassword([’-keystoreName’, ’myKeystore’, ’-keyStorePassword’,

’WebAS’, ’-newKeyStorePassword’, ’newpwd’, ’-newKeyStorePasswordVerify’, ’newpwd’])

Interactive mode example usage:

v Using Jacl:

$AdminTask changeKeyStorePassword {-interactive}

v Using Jython:

AdminTask.changeKeyStorePassword(’-interactive’)

changeMultipleKeyStorePasswords

The changeMultipleKeyStorePasswords command updates the passwords for each keystores in the

configuration that has a specific password. This is useful because when you create keystore files on the

system, they will have WebAS as a password by default.

Required parameters

-keyStorePassword

Specifies the name of the password that you want to change. (String, required)

-newKeyStorePassword

Specifies the new password that you will use to access the keystore. (String, required)

-newKeyStorePasswordVerify

Confirms the new keystore password. (String, required)

Optional parameters

None.

Examples

Batch mode example usage:

v Using Jacl:

Chapter 10. Configuring security with scripting 955

$AdminTask changeMultipleKeyStorePasswords {-keyStorePassword WebAS

-newKeyStorePassword newpwd -newKeyStorePasswordVerify newpwd}

v Using Jython string:

AdminTask.changeMultipleKeyStorePasswords(’[-keyStorePassword WebAS

-newKeyStorePassword newpwd -newKeyStorePasswordVerify newpwd]’)

v Using Jython list:

AdminTask.changeMultipleKeyStorePasswords([’-keyStorePassword’, ’WebAS’,

’-newKeyStorePassword’, ’newpwd’, ’-newKeyStorePasswordVerify’, ’newpwd’])

Interactive mode example usage:

v Using Jacl:

$AdminTask changeMultipleKeyStorePasswords {-interactive}

v Using Jython:

AdminTask.changeMultipleKeyStorePasswords(’-interactive’)

createKeyStore

The createKeyStore command creates the keystore settings in the configuration and the keystore

database.

Required parameters

-keyStoreName

The name that uniquely identifies the keystore configuration object. (String, required)

-keyStoreType

The implementation of the keystore management. (String, required)

-keyStoreLocation

The location of the keystore. For file based, the location is the files system path to the keystore

database. For hardware keystore, the location is the path to the token library. (String, required)

 If you create the IBMi5OSKeyStore keystore, the keystore location must include the .kdb file

extension.

-keyStorePassword

The password that protects the keystore. (String, required)

-keyStorePasswordVerify

The password that protects the keystore. (String, required)

Optional parameters

-keyStoreProvider

The provider used to implement the keystore. (String, optional)

-keyStoreIsFileBased

Set the value of this parameter to true if the keystore is file based. Set the value of this parameter to

false for hardware crypto keystores. (Boolean, optional)

-keyStoreHostList

A list of host names that indicate from where the keystore is remotely managed, separated by

commas. (String, optional)

-keyStoreInitAtStartup

Set the value of this parameter to true if the keystore is initialized at startup. Otherwise, set the value

of this parameter to false. (Boolean, optional)

-keyStoreReadOnly

Set the value of this parameter to true if you cannot write to the keystore. Otherwise, set the value of

this parameter to false. (Boolean, optional)

956 Securing applications and their environment

-keyStoreStashFile

Set the value of this parameter to true if you want to create stash files for CMS type keystore.

Otherwise, set the value of this parameter to false. (Boolean, optional)

-enableCryptoOperations

Specifies if the keystore object will be used for hardware cryptographic operations or not. The default

value is false. (Boolean, optional)

-keyStoreDescription

Specifies user defined text to describe the keystore of interest. (String, optional)

-keyStoreUsage

Specifies the keystore usage of interest. Specify SSLKeys, KeySetKeys, RootKeys, DeletedKeys,

DefaultSigners, or RSATokenKeys. (String, optional)

-scopeName

The name that uniquely identifies the management scope, for example: (cell):localhostNode01Cell.

(String, optional)

-controlRegionUser

Specifies the control region user to create a writable keystore object for the control regions key ring.

Specify this option for SAF key rings when SAF writable key rings is enabled. (String, optional)

-servantRegionUser

Specifies the servant region user to create a writable keystore object for the servant regions key ring.

Specify this option for SAF key rings when SAF writable key rings is enabled. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createKeyStore {-keyStoreName testKS -keyStoreType JCEKS

-keyStoreLocation c:\temp\testKeyFile.p12 -keyStorePassword testpwd

-keyStorePasswordVerify testpwd -keyStoreIsFileBased true -keyStoreInitAtStartup

true -keyStoreReadOnly false}

v Using Jython string:

AdminTask.createKeyStore(’[-keyStoreName testKS -keyStoreType JCEKS -keyStoreLocation

c:\temp\testKeyFile.p12 -keyStorePassword testpwd -keyStorePasswordVerify testpwd

-keyStoreIsFileBased true -keyStoreInitAtStartup true -keyStoreReadOnly false]’)

v Using Jython list:

AdminTask.createKeyStore([’-keyStoreName’, ’testKS’, ’-keyStoreLocation’, ’-keyStoreType’,

’JCEKS’, ’c:\temp\testKeyFile.p12’, ’-keyStorePassword’, ’testpwd’,

’-keyStorePasswordVerify’, ’testpwd’, ’-keyStoreIsFileBased’, ’true’,

’-keyStoreInitAtStartup’, ’true’, ’-keyStoreReadOnly’, ’false’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createKeyStore {-interactive}

v Using Jython:

AdminTask.createKeyStore(’-interactive’)

createCMSKeyStore

The createCMSKeyStore command creates a CMS keystore database and the keystore settings in the

configuration.

Required parameters

-cmsKeyStoreURI

The URI of the CMS keystore. (String, required)

Chapter 10. Configuring security with scripting 957

-pluginHostName

The host name of the plug-in. (String, required)

Optional parameters

None.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createCMSKeyStore {-cmsKeyStoreURI CMSKeystoreURI -pluginHostName myHostName}

v Using Jython string:

AdminTask.createCMSKeyStore(’-cmsKeyStoreURI CMSKeystoreURI -pluginHostName myHostName’)

v Using Jython list:

AdminTask.createCMSKeyStore([’-cmsKeyStoreURI’, ’CMSKeystoreURI’, ’-pluginHostName’,

’myHostName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createCMSKeyStore {-interactive}

v Using Jython:

AdminTask.createCMSKeyStore(’-interactive’)

deleteKeyStore

The deleteKeyStore command deletes the settings of a keystore from the configuration and the keystore

file.

Required parameters

-keyStoreName

The name that uniquely identifies the keystore that you want to delete. (String, required)

Optional parameters

-scopeName

The name that uniquely identifies the management scope, for example: (cell):localhostNode01Cell.

(String, optional)

-removeKeyStoreFile

Specifies whether to remove the keystore file. Specify true to remove the keystore file or false to

keep the keystore file in your configuration. (Boolean, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteKeyStore {-keyStoreName testKS}

v Using Jython string:

AdminTask.deleteKeyStore(’[-keyStoreName testKS]’)

v Using Jython list:

AdminTask.deleteKeyStore([’-keyStoreName’, ’testKS’])

Interactive mode example usage:

v Using Jacl:

958 Securing applications and their environment

$AdminTask deleteKeyStore {-interactive}

v Using Jython:

AdminTask.deleteKeyStore(’-interactive’)

exchangeSigners

The exchangeSigners command exchange signer certificate between keystores.

Required parameters

-keyStoreName1

The name that uniquely identifies a keystore. You must specify a second keystore name using the

keyStoreName2 parameter. (String, required)

-keyStoreScope1

The scope name of the keystore that you specified with the keyStoreName1 parameter. (String,

required)

-keyStoreName2

The name that uniquely identifies a keystore. You must specify a second keystore name using the

keyStoreName1 parameter. (String, required)

-keyStoreScope2

The scope name of the keystore that you specified with the keyStoreName2 parameter. (String,

required)

Optional parameters

-certificateAlaisList1

A list of aliases separated by a comma. (String, optional)

-certificateAliasList2

A list of aliases separated by a comma. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask exchangeSigners {-keyStoreName1 testKS -certificateAliasList1 testCert1

-keyStoreName2 secondKS -certificateAlaisList2 certAlis}

v Using Jython string:

AdminTask.exchangeSigners(’[-keyStoreName1 testKS -certificateAliasList1 testCert1

-keyStoreName2 secondKS -certificateAlaisList2 certAlis]’)

v Using Jython list:

AdminTask.exchangeSigners([’-keyStoreName1’, ’testKS’, ’-certificateAliasList1’,

’testCert1’, ’-keyStoreName2’, ’secondKS’, ’-certificateAlaisList2’,

’certAlis’])

Interactive mode example usage:

v Using Jacl:

$AdminTask exchangeSigners {-interactive}

v Using Jython:

AdminTask.exchangeSigners(’-interactive’)

getKeyStoreInfo

The getKeyStoreInfo command displays the settings of a particular keystore.

Required parameters

Chapter 10. Configuring security with scripting 959

-name

The name that uniquely identifies the keystore. (String, required)

Optional parameters

-scopeName

The name that uniquely identifies the management scope, for example: (cell):localhostNode01Cell.

(String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getKeyStoreInfo {-name testKS}

v Using Jython string:

AdminTask.getKeyStoreInfo(’[-name testKS]’)

v Using Jython list:

AdminTask.getKeyStoreInfo([’-name’, ’testKS’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getKeyStoreInfo {-interactive}

v Using Jython:

AdminTask.getKeyStoreInfo(’-interactive’)

listKeyFileAliases

The listKeyFileAliases command lists the certificates in a keystore file.

Required parameters

-keyFilePath

The path of the key file. (String, required)

-keyFilePassword

The password for the key file. (String, required)

-keyFileType

The key file type. (String, required)

Optional parameters

None.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyFileAliases {-keyFilePath /temp/testKeyFile.p12

-keyFilePassword testPwd -keyFileType PKCS12}

v Using Jython string:

AdminTask.listKeyFileAliases(’[-keyFilePaht /temp/testKeyFile.p12

-keyFilePassword testPwd -keyFileType PKCS12]’)

v Using Jython list:

AdminTask.listKeyFileAliases([’-keyFilePaht’, ’/temp/testKeyFile.p12’,

’-keyFilePassword’, ’testPwd’, ’-keyFileType’, ’PKCS12’])

960 Securing applications and their environment

Interactive mode example usage:

v Using Jacl:

$AdminTask listKeyFileAliases {-interactive}

v Using Jython:

AdminTask.listKeyFileAliases(’-interactive’)

listKeyStores

The listKeyStores command lists the keystore for a particular scope.

Required parameters

None.

Optional parameters

-displayObjectName

Specify the value of this parameter as true to list the keystore configuration objects within a scope.

Set the value of this parameter to false to list the strings that contain the keystore name and

management scope. (Boolean, optional)

-scopeName

Specifies the name that uniquely identifies the management scope, for example:

(cell):localhostNode01Cell. (String, optional)

-all

Specify the value of this parameter as true to list all keystores. This parameter overrides the

scopeName parameter. The default value is false. (Boolean, optional)

-keyStoreUsage

Specifies the keystore usage of interest. Specify SSLKeys, KeySetKeys, RootKeys, DeletedKeys,

DefaultSigners, or RSATokenKeys. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyStores

v Using Jython:

AdminTask.listKeyStores()

Interactive mode example usage:

listKeyStoreTypes

The listKeyStoreTypes command lists all valid keystore types.

Required parameters

None.

Optional parameters

None.

Examples

Chapter 10. Configuring security with scripting 961

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyStoreTypes

v Using Jython:

AdminTask.listKeyStoreTypes()

Interactive mode example usage:

v Using Jacl:

$AdminTask listKeyStoreTypes {-interactive}

v Using Jython string:

AdminTask.listKeyStoreTypes(’-interactive’)

modifyKeyStore

The modifyKeyStore command modifies attributes for an existing keystore. Only some keystore attributes

are modifiable, depending on what you are modifying. Use the following guidelines to use the command:

v To use this command to change the keystore file that the keystore object references, specify the

keyStoreName, keyStoreLocation, keyStoreType, and keyStorePassword parameters.

v

Required parameters

-keyStoreName

Specifies the unique name that identifies the keystore. (String, required)

Optional parameters

-scopeName

Specifies the management scope of the keystore. (String, optional)

-keyStoreType

Specifies one of the predefined keystore types. Valid values are JCEKS, CMSKS, PKCS12, PKCS11, and JKS.

(String, optional)

-keyStoreLocation

Specifies the fully qualified location of the keystore file. To modify the location of the keystore file, you

must specify the keyStoreLocation, keyStoreType, keyStorePassword, and keyStoreName parameters.

(String, optional)

-keyStorePassword

Specifies the password to open the keystore. Use the changeKeystorePassword command to change

the password of the keystore. (String, optional)

-keyStoreIsFileBased

Specifies whether the keystore is file based. To modify whether the keystore is file-based, specify the

keyStoreIsFileBased and keyStoreName parameters. (Boolean, optional)

-keyStoreInitAtStartup

Specifies whether the keystore initiates at server startup. To modify whether the keystore initiates at

server startup, specify the keyStoreInitAtStartup and keyStoreName parameters. (Boolean, optional)

-keyStoreReadOnly

Specifies whether the keystore is writable. To modify whether the keystore is read-only, specify the

keyStoreReadOnly and keyStoreName parameters. (Boolean, optional)

-keyStoreDescription

Specifies a statement that describes the keystore. To modify the keystore description, specify the

keyStoreDescription and keyStoreName parameters. (String, optional)

962 Securing applications and their environment

-keyStoreUsage

Specifies the keystore usage of interest. Specify SSLKeys, KeySetKeys, RootKeys, DeletedKeys,

DefaultSigners, or RSATokenKeys. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask modifyKeyStore {-keyStoreName CellDefaultKeyStore

-keyStoreLocation c:\temp\testKeyFile.p12 -keyStoreType JCEKS

-keyStorePassword my1password}

v Using Jython:

AdminTask.modifyKeyStore(’-keyStoreName CellDefaultKeyStore -keyStoreLocation

c:\temp\testKeyFile.p12 -keyStoreType JCEKS -keyStorePassword my1password’)

Interactive mode example usage:

v Using Jacl:

$AdminTask modifyKeyStore {-interactive}

v Using Jython:

AdminTask.modifyKeyStore(’-interactive’)

Related concepts

“Key management for cryptographic uses” on page 697
WebSphere Application Server provides a framework for managing keys (secret keys or key pairs) that

applications use to perform cryptographic operations on data. The key management framework provides

an application programming interface (API) for retrieving these keys. Keys are managed in keystores so

the keystore type can be supported by WebSphere Application Server, provided that the keystores can

store the referenced key type. You can configure keys and scope keystores so that they are visible only to

particular processes, nodes, clusters, and so on.

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

“Automating SSL configurations using scripting” on page 933
SSL configuration is needed for WebSphere to perform SSL connections with other servers. A SSL

configuration can be configured through the Admin Console. But if an automated way to create a SSL

configuration is desired then AdminTask should be used.

“Creating an SSL configuration at the node scope using scripting” on page 930
An Secure Socket Layer (SSL) configuration references many other configuration objects. To help you

make valid selections for the new SSL configuration before you create it, view information about existing

configuration objects. Information about existing objects is also useful when you create a node scoped

SSL configuration using the createSSLConfig command of the AdminTask object.

SSLConfigCommands command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the SSLConfigCommands group can be used to create and manage Secure

Sockets Layer (SSL) configurations and properties.

The SSLConfigCommands command group for the AdminTask object includes the following commands:

v “createSSLConfig” on page 964

v “createSSLConfigProperty” on page 965

v “deleteSSLConfig” on page 966

v “getSSLConfig” on page 967

v “getSSLConfigProperties” on page 968

Chapter 10. Configuring security with scripting 963

v “listSSLCiphers” on page 968

v “listSSLConfigs” on page 969

v “listSSLConfigProperties” on page 970

v “listSSLRepertoires” on page 971

v “modifySSLConfig” on page 972

createSSLConfig

The createSSLConfig command creates an SSL configuration that is based on key store and trust store

settings. You can use the SSL configuration settings to make the SSL connections.

Target object

None.

Required parameters

-alias

The name of the alias. (String, required)

-trustStoreNames

The key store that holds trust information used to validate the trust from remote connections. (String,

required)

-keyStoreName

The key store that holds the personal certificates that provide identity for the connection. (String,

required)

Optional parameters

-scopeName

The name of the scope. (String, optional)

-clientKeyAlias

The certificate alias name for the client. (String, optional)

-serverKeyAlias

The certificate alias name for the server. (String, optional)

-type

The type of SSL configuration. (String, optional)

-clientAuthentication

Set the value of this parameter to true to request client authentication. Otherwise, set the value of this

parameter to false. (Boolean, optional)

-securityLevel

The cipher group that you want to use. Valid values include: HIGH, MEDIUM, LOW, and CUSTOM. (String,

optional)

-enabledCiphers

A list of ciphers used during SSL handshake. (String, optional)

-jsseProvider

One of the JSSE providers. (String, optional)

-clientAuthenticationSupported

Set the value of this parameter to true to support client authentication. Otherwise, set the value of this

parameter to false. (Boolean, optional)

964 Securing applications and their environment

-sslProtocol

The protocol type for the SSL handshake. Valid values include: SSL_TLS, SSL, SSLv2, SSLv3, TLS, TLSv1.

(String, optional)

-trustManagerObjectName

A list of trust managers separated by commas. (String, optional)

-trustStoreScopeName

The management scope name of the trust store. (String, optional)

-keyStoreScopeName

The management scope name of the key store. (String, optional)

-ssslKeyRingName

Specifies a system SSL (SSSL) key ring name. The value for this parameter has no affect unless the

SSL configuration type is SSSL. (String, optional)

Example output

The command returns the configuration object name of the new SSL configuration object.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createSSLConfig {-alias testSSLCfg -clientKeyAlias key1

-serverKeyAlias key2 -trustStoreNames trustKS –keyStoreName

testKS -keyManagerName testKeyMgr}

v Using Jython string:

AdminTask.createSSLConfig(’[-alias testSSLCfg -clientKeyAlias key1

-serverKeyAlias key2 -trustStoreNames trustKS –keyStoreName

testKS -keyManagerName testKeyMgr]’)

v Using Jython list:

AdminTask.createSSLConfig([’-alias’, ’testSSLCfg’, ’-clientKeyAlias’,

’key1’, ’-serverKeyAlias’, ’key2’, ’-trustStoreNames’, ’trustKS’,

’–keyStoreName’, ’testKS’, ’-keyManagerName’, ’testKeyMgr’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createSSLConfig {-interactive}

v Using Jython:

AdminTask.createSSLConfig(’-interactive’)

createSSLConfigProperty

The createSSLConfigProperty command creates a property for an SSL configuration. Use this command to

set SSL configuration settings that are different than the settings in the SSL configuration object.

Target object

None.

Required parameters

-sslConfigAliasName

The alias name of the SSL configuration. (String, required)

Chapter 10. Configuring security with scripting 965

-propertyName

The name of the property. (String, required)

-propertyValue

The value of the property. (String, required)

Optional parameters

-scopeName

The name of the scope. (String, optional)

Example output

The command does not return output.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createSSLConfigProperty {-sslConfigAliasName NodeDefaultSSLSettings

-scopeName (cell):localhostNode01Cell:(node):localhostNode01 -propertyName

test.property -propertyValue testValue}

v Using Jython string:

AdminTask.createSSLConfigProperty(’[-sslConfigAliasName NodeDefaultSSLSettings

-scopeName (cell):localhostNode01Cell:(node):localhostNode01 -propertyName

test.property -propertyValue testValue]’)

v Using Jython list:

AdminTask.createSSLConfigProperty([’-sslConfigAliasName’, ’NodeDefaultSSLSettings’,

’-scopeName’, ’(cell):localhostNode01Cell:(node):localhostNode01’, ’-propertyName’,

’test.property’, ’-propertyValue’, ’testValue’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createSSLConfigProperty {-interactive}

v Using Jython:

AdminTask.createSSLConfigProperty(’-interactive’)

deleteSSLConfig

The deleteSSLConfig command deletes the SSL configuration object that you specify from the

configuration.

Target object

None.

Required parameters and return values

-alias

The name of the alias. (String, required)

Optional parameters

-scopeName

The name of the scope. (String, optional)

Example output

966 Securing applications and their environment

The command does not return output.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteSSLConfig {-alias NodeDefaultSSLSettings -scopeName

(cell):localhostNode01Cell:(node):localhostNode01}

v Using Jython string:

AdminTask.deleteSSLConfig(’[-alias NodeDefaultSSLSettings -scopeName

(cell):localhostNode01Cell:(node):localhostNode01]’)

v Using Jython list:

AdminTask.deleteSSLConfig([’-alias’, ’NodeDefaultSSLSettings’, ’-scopeName’,

’(cell):localhostNode01Cell:(node):localhostNode01’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteSSLConfig {-interactive}

v Using Jython:

AdminTask.deleteSSLConfig(’-interactive’)

getSSLConfig

The getSSLConfig command obtains information about an SSL configuration and displays the settings.

Target object

None.

Required parameters and return values

-alias

The name of the alias. (String, required)

Optional parameters

-scopeName

The name of the scope. (String, optional)

Example output

The command returns information about the SSL configuration of interest.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getSSLConfig {-alias NodeDefaultSSLSettings -scopeName

(cell):localhostNode01Cell:(node):localhostNode01}

v Using Jython string:

AdminTask.getSSLConfig(’[-alias NodeDefaultSSLSettings -scopeName

(cell):localhostNode01Cell:(node):localhostNode01]’)

v Using Jython list:

AdminTask.getSSLConfig([’-alias’, ’NodeDefaultSSLSettings’, ’-scopeName’,

’(cell):localhostNode01Cell:(node):localhostNode01’])

Chapter 10. Configuring security with scripting 967

Interactive mode example usage:

v Using Jacl:

$AdminTask getSSLConfig {-interactive}

v Using Jython:

AdminTask.getSSLConfig(’-interactive’)

getSSLConfigProperties

The getSSLConfigProperties command obtains information about SSL configuration properties.

Target object

None.

Required parameters and return values

-alias

The name of the alias. (String, required)

Optional parameters

-scopeName

The name of the scope. (String, optional)

Example output

The command returns additional information about the SSL configuration properties.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getSSLConfigProperties {-sslConfigAliasName NodeDefaultSSLSettings

-scopeName (cell):localhostNode01Cell:(node):localhostNode01}

v Using Jython string:

AdminTask.getSSLConfigProperties(’[-sslConfigAliasName NodeDefaultSSLSettings

-scopeName (cell):localhostNode01Cell:(node):localhostNode01]’)

v Using Jython list:

AdminTask.getSSLConfigProperties([’-sslConfigAliasName’, ’NodeDefaultSSLSettings’,

’-scopeName’, ’(cell):localhostNode01Cell:(node):localhostNode01’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getSSLConfigProperties {-interactive}

v Using Jython:

AdminTask.getSSLConfigProperties(’-interactive’)

listSSLCiphers

The listSSLCiphers command lists the SSL ciphers.

Target object

None.

968 Securing applications and their environment

Required parameters

-sslConfigAliasName

The alias name of the SSL configuration. (String, required)

-securityLevel

The cipher group that you want to use. Valid values include: HIGH, MEDIUM, LOW, and CUSTOM. (String,

required)

Optional parameters

-scopeName

The name of the scope. (String, optional)

-provider

(String, optional)

Example output

The command returns a list of SSL ciphers.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listSSLCiphers {-sslConfigAliasName testSSLCfg

-securityLevel HIGH}

v Using Jython string:

AdminTask.listSSLCiphers(’[-sslConfigAliasName testSSLCfg

-securityLevel HIGH]’)

v Using Jython list:

AdminTask.listSSLCiphers([’-sslConfigAliasName’, ’testSSLCfg’,

’-securityLevel’, ’HIGH’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listSSLCiphers {-interactive}

v Using Jython:

AdminTask.listSSLCiphers(’-interactive’)

listSSLConfigs

The listSSLConfigs command lists the defined SSL configurations within a management scope.

Target object

None.

Optional parameters

-scopeName

The name of the scope. (String, optional)

-displayObjectName

Set the value of this parameter to true to list the SSL configuration objects within the scope. Set the

value of this parameter to false to list the strings that contain the SSL configuration alias and

management scope. (Boolean, optional)

Chapter 10. Configuring security with scripting 969

-all

Specify the value of this parameter as true to list all SSL configurations. This parameter overrides the

scopeName parameter. The default value is false. (Boolean, optional)

Example output

The command returns a list of defined SSL configurations.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listSSLConfigs {-scopeName (cell): localhostNode01Cell:(node):localhostNode01

-displayObjectName true}

v Using Jython string:

AdminTask.listSSLConfigs(’[-scopeName (cell):localhostNode01Cell:(node):localhostNode01

-displayObjectName true]’)

v Using Jython list:

AdminTask.listSSLConfigs([’-scopeName’, ’(cell):localhostNode01Cell:(node):localhostNode01’,

’-displayObjectName’, ’true’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listSSLConfigs {-interactive}

v Using Jython:

AdminTask.listSSLConfigs(’-interactive’)

listSSLConfigProperties

The listSSLConfigProperties command lists the properties for a SSL configuration.

Target object

None.

Required parameters

-alias

The alias name of the SSL configuration. (String, required)

Optional parameters

-scopeName

The name of the scope. (String, optional)

-displayObjectName

Set the value of this parameter to true to list the SSL configuration objects within the scope. Set the

value of this parameter to false to list the strings that contain the SSL configuration alias and

management scope. (Boolean, optional)

Example output

The command returns SSL configuration properties.

Examples

970 Securing applications and their environment

Batch mode example usage:

v Using Jacl:

$AdminTask listSSLConfigProperty {-alias SSL123 -scopeName

(cell):localhostNode01Cell:(node):localhostNode01 -displayObjectName true}

v Using Jython string:

AdminTask.listSSLConfigProperty(’[-alias SSL123 -scopeName

(cell):localhostNode01Cell:(node):localhostNode01 -displayObjectName true]’)

v Using Jython list:

AdminTask.listSSLConfigProperty([’-alias’, ’SSL123’, ’-scopeName’,

’(cell):localhostNode01Cell:(node):localhostNode01’, ’-displayObjectName’, ’true’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listSSLConfigProperties {-interactive}

v Using Jython:

AdminTask.listSSLConfigProperties(’-interactive’)

listSSLRepertoires

The listSSLRepertoires command lists all of the Secure Sockets Layer (SSL) configuration instances that

you can associate with an SSL inbound channel.If you create a new SSL alias using the administrative

console, the alias name is automatically created in the node_name/alias_name format. However, if you

create a new SSL alias using the wsadmin tool, you must create the SSL alias and specify both the node

name and alias name in the node_name/alias_name format.

Target object

SSLInboundChannel instance for which the SSLConfig candidates are listed.

Required parameters

None.

Optional parameters

None.

Sample output

The command returns a list of eligible SSL configuration object names.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listSSLRepertoires SSL_3(cells/mybuildCell01/nodes/mybuildNode01/servers/

server2|server.xml#SSLInboundChannel_1093445762330)

v Using Jython string:

print AdminTask.listSSLRepertoires(’SSL_3(cells/mybuildCell01/nodes/mybuildNode01/

servers/server2|server.xml#SSLInboundChannel_1093445762330)’)

v Using Jython list:

print AdminTask.listSSLRepertoires(’SSL_3(cells/mybuildCell01/nodes/mybuildNode01/

servers/server2|server.xml#SSLInboundChannel_1093445762330)’)

Interactive mode example usage:

Chapter 10. Configuring security with scripting 971

v Using Jacl:

$AdminTask listSSLRepertoires {-interactive}

v Using Jython:

print AdminTask.listSSLRepertoires(’-interactive’)

modifySSLConfig

The modifySSLConfig command modifies the settings of an existing SSL configuration.

Target object

None.

Required parameters

-alias

The name of the alias. (String, required)

Optional parameters

-scopeName

The name of the scope. (String, optional)

-clientKeyAlias

The certificate alias name for the client. (String, optional)

-serverKeyAlias

The certificate alias name for the server. (String, optional)

-type

The type of SSL configuration. (String, optional)

-clientAuthentication

Set the value of this parameter to true to request client authentication. Otherwise, set the value of this

parameter to false. (Boolean, optional)

-securityLevel

The cipher group that you want to use. Valid values include: HIGH, MEDIUM, LOW, and CUSTOM. (String,

optional)

-enabledCiphers

A list of ciphers used during SSL handshake. (String, optional)

-jsseProvider

One of the JSSE providers. (String, optional)

-clientAuthenticationSupported

Set the value of this parameter to true to support client authentication. Otherwise, set the value of this

parameter to false. (Boolean, optional)

-sslProtocol

The protocol type for the SSL handshake. Valid values include: SSL_TLS, SSL, SSLv2, SSLv3, TLS, TLSv1.

(String, optional)

-trustManagerObjectNames

A list of trust managers separated by commas. (String, optional)

-trustStoreNames

The key store that holds trust information used to validate the trust from remote connections. (String,

optional)

-trustStoreScopeName

The management scope name of the trust store. (String, optional)

972 Securing applications and their environment

-keyStoreName

The key store that holds the personal certificates that provide identity for the connection. (String,

optional)

-keyStoreScopeName

The management scope name of the key store. (String, optional)

-ssslKeyRingName

Specifies a system SSL (SSSL) key ring name. The value for this parameter has no affect unless the

SSL configuration type is SSSL. (String, optional)

Example output

The command does not return output.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask modifySSLConfig {-alias testSSLCfg -clientKeyAlias tstKey1

-serverKeyAlias tstKey2 -securityLevel LOW}

v Using Jython string:

AdminTask.modifySSLConfig(’[-alias testSSLCfg -clientKeyAlias tstKey1

-serverKeyAlias tstKey2 -securityLevel LOW]’)

v Using Jython list:

AdminTask.modifySSLConfig([’-alias’, ’testSSLCfg’, ’-clientKeyAlias’, ’tstKey1’,

’-serverKeyAlias’, ’tstKey2’, ’-securityLevel’, ’LOW’])

Interactive mode example usage:

v Using Jacl:

$AdminTask modifySSLConfig {-interactive}

v Using Jython:

AdminTask.modifySSLConfig(’-interactive’)

SSLConfigGroupCommands group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the SSLConfigGroupCommands group can be used to create and manage

SSL configuration groups.

The SSLConfigGroupCommands command group for the AdminTask object includes the following

commands:

v “deleteSSLConfigGroup”

v “getSSLConfigGroup” on page 974

v “listSSLConfigGroups” on page 975

v “modifySSLConfigGroup” on page 976

deleteSSLConfigGroup

The deleteSSLConfigGroup command deletes a SSL configuration group from the configuration.

Target object

None.

Chapter 10. Configuring security with scripting 973

Required parameters

-name

Specifies the name that uniquely identifies the SSL configuration group. (String, required)

-direction

Specifies the direction to which the SSL configuration applies. Valid values include inbound or

outbound. (String, required)

Optional parameters

-scopeName

Specifies the name that uniquely identifies the management scope. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteSSLConfigGroup {-name createSSLCfgGrp -direction inbound}

v Using Jython string:

AdminTask.deleteSSLConfigGroup(’[-name createSSLCfgGrp -direction inbound)’]

v Using Jython list:

AdminTask.deleteSSLConfigGroup([’-name’, ’createSSLCfgGrp’, ’-direction’, ’inbound’)]

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteSSLConfigGroup {-interactive}

v Using Jython:

AdminTask.deleteSSLConfigGroup(’-interactive’)

getSSLConfigGroup

The getSSLConfigGroup command returns information about a SSL configuration setting.

Target object

None.

Required parameters

-name

Specifies the name that uniquely identifies the SSL configuration group. (String, required)

-direction

Specifies the direction to which the SSL configuration applies. Valid values include inbound or

outbound. (String, required)

Optional parameters

-scopeName

Specifies the name that uniquely identifies the management scope. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getSSLConfigGroup {-name createSSLCfgGrp -direction inbound}

974 Securing applications and their environment

v Using Jython string:

AdminTask.getSSLConfigGroup(’[-name createSSLCfgGrp -direction inbound)’]

v Using Jython list:

AdminTask.getSSLConfigGroup([’-name’, ’createSSLCfgGrp’, ’-direction’, ’inbound’)]

Interactive mode example usage:

v Using Jacl:

$AdminTask getSSLConfigGroup {-interactive}

v Using Jython:

AdminTask.getSSLConfigGroup(’-interactive’)

listSSLConfigGroups

The listSSLConfigGroups command lists the SSL configuration groups within a scope and a direction.

Target object

None.

Required parameters

None.

Optional parameters

-direction

Specifies the direction to which the SSL configuration applies. Valid values include inbound or

outbound. (String, optional)

-scopeName

Specifies the name that uniquely identifies the management scope. (String, optional)

-displayObjectName

If you set this parameter to true, the command returns a list of all of the SSL configuration group

objects within the scope. If you set this parameter to false, the command returns a list of strings that

contain the SSL configuration name and management scope. (Boolean, optional)

-all

Specify the value of this parameter as true to list all SSL configuration groups. This parameter

overrides the scopeName parameter. The default value is false. (Boolean, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listSSLConfigGroups {-displayObjectName true}

v Using Jython string:

AdminTask.listSSLConfigGroups(’[-displayObjectName true)’]

v Using Jython list:

AdminTask.listSSLConfigGroups([’-displayObjectName’ ’true’)]

Interactive mode example usage:

v Using Jacl:

$AdminTask listSSLConfigGroups {-interactive}

v Using Jython:

AdminTask.listSSLConfigGroups(’-interactive’)

Chapter 10. Configuring security with scripting 975

modifySSLConfigGroup

The modifySSLConfigGroup command modifies the setting of an existing SSL configuration group.

Target object

None.

Required parameters

-name

Specifies the name that uniquely identifies the SSL configuration group. (String, required)

-direction

Specifies the direction to which the SSL configuration applies. Valid values include inbound or

outbound. (String, required)

Optional parameters

-certificateAlias

Specifies a unique name to identify a certificate. (String, optional)

-scopeName

Specifies the name that uniquely identifies the management scope. (String, optional)

-sslConfigAliasName

Specifies the alias that uniquely identifies the SSL configurations in the group. (String, optional)

-sslConfigScopeName

Specifies the scope that uniquely identifies the SSL configurations in the group. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask modifySSLConfigGroup {-name createSSLCfgGrp -direction inbound -certificateAlias alias2}

v Using Jython string:

AdminTask.modifySSLConfigGroup(’[-name createSSLCfgGrp -direction inbound -certificateAlias alias2)’]

v Using Jython list:

AdminTask.modifySSLConfigGroup([’-name’, ’createSSLCfgGrp’, ’-direction’, ’inbound’, ’-certificateAlias’, ’alias2’)]

Interactive mode example usage:

v Using Jacl:

$AdminTask modifySSLConfigGroup {-interactive}

v Using Jython:

AdminTask.modifySSLConfigGroup(’-interactive’)

976 Securing applications and their environment

Related concepts

“Key management for cryptographic uses” on page 697
WebSphere Application Server provides a framework for managing keys (secret keys or key pairs) that

applications use to perform cryptographic operations on data. The key management framework provides

an application programming interface (API) for retrieving these keys. Keys are managed in keystores so

the keystore type can be supported by WebSphere Application Server, provided that the keystores can

store the referenced key type. You can configure keys and scope keystores so that they are visible only to

particular processes, nodes, clusters, and so on.

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

“Automating SSL configurations using scripting” on page 933
SSL configuration is needed for WebSphere to perform SSL connections with other servers. A SSL

configuration can be configured through the Admin Console. But if an automated way to create a SSL

configuration is desired then AdminTask should be used.

“Creating an SSL configuration at the node scope using scripting” on page 930
An Secure Socket Layer (SSL) configuration references many other configuration objects. To help you

make valid selections for the new SSL configuration before you create it, view information about existing

configuration objects. Information about existing objects is also useful when you create a node scoped

SSL configuration using the createSSLConfig command of the AdminTask object.

TrustManagerCommands command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the TrustManagerCommands group can be used to create, delete, and

query trust manager settings in your configuration. You can also use these commands to create a custom

trust manager for a pure client.

The TrustManagerCommands command group for the AdminTask object includes the following commands:

v “deleteTrustManager”

v “getTrustManager” on page 978

v “listTrustManagers” on page 978

v “modifyTrustManager” on page 979

deleteTrustManager

The deleteTrustManager command deletes the trust manager settings from the configuration.

Target object

None.

Required parameters

-name

Specifies the name that uniquely identifies the trust manager. (String, required)

Optional parameters

-scopeName

Specifies the name of the scope. (String, optional)

Examples

Chapter 10. Configuring security with scripting 977

Batch mode example usage:

v Using Jacl:

$AdminTask deleteTrustManager {-name testTM}

v Using Jython string:

AdminTask.deleteTrustManager(’[-name testTM]’)

v Using Jython list:

AdminTask.deleteTrustManager([’-name’, ’testTM’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteTrustManager {-interactive}

v Using Jython:

AdminTask.deleteTrustManager(’-interactive’)

getTrustManager

The getTrustManager command obtains the setting of a trust manager.

Target object

None.

Required parameters

-name

Specifies the name that uniquely identifies the trust manager. (String, required)

Optional parameters

-scopeName

Specifies the unique name that identifies the management scope. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getTrustManager {-name testTM}

v Using Jython string:

AdminTask.getTrustManager(’[-name testTM]’)

v Using Jython list:

AdminTask.getTrustManager([’-name’, ’testTM’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getTrustManager {-interactive}

v Using Jython:

AdminTask.getTrustManager(’-interactive’)

listTrustManagers

The listTrustManagers command lists the trust managers within a particular management scope.

Target object

978 Securing applications and their environment

None.

Required parameters

None.

Optional parameters

-scopeName

Specifies the unique name that identifies the management scope. (String, optional)

-displayObjectName

Set the value of this parameter to true to list the trust manager objects within a scope. Set the value of

this parameter to false to list the strings that contain the trust manager name and management scope.

(Boolean, optional)

-all

Specify the value of this parameter as true to list all trust managers. This parameter overrides the

scopeName parameter. The default value is false. (Boolean, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listTrustManagers {-displayObjectName true}

v Using Jython string:

AdminTask.listTrustManagers(’[-displayObjectName true]’)

v Using Jython list:

AdminTask.listTrustManagers([’-displayObjectName’, ’true’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listTrustManagers {-interactive}

v Using Jython:

AdminTask.listTrustManagers(’-interactive’)

modifyTrustManager

The modifyTrustManager command changes existing trust manager settings.

Target object

None.

Required parameters

-name

Specifies the name that uniquely identifies the trust manager. (String, required)

Optional parameters

-scopeName

Specifies the unique name that identifies the management scope. (String, optional)

-provider

Specifies the provider name of the trust manager. (String, optional)

Chapter 10. Configuring security with scripting 979

-algorithm

Specifies the algorithm name of the trust manager. (String, optional)

-trustManagerClass

Specifies a class that implements the javax.net. sslX509Tr ustManager interface. You cannot use

this parameter with the provider or algorithm parameters. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask modifyTrustManager {-name testTM -trustManagerClass test.trust.manager}

v Using Jython string:

AdminTask.modifyTrustManager(’[-name testTM -trustManagerClass test.trust.manager]’)

v Using Jython list:

AdminTask.modifyTrustManager([’-name’, ’testTM’, ’-trustManagerClass’, ’test.trust.manager’])

Interactive mode example usage:

v Using Jacl:

$AdminTask modifyTrustManager {-interactive}

v Using Jython:

AdminTask.modifyTrustManager(’-interactive’)

Related concepts

“Key management for cryptographic uses” on page 697
WebSphere Application Server provides a framework for managing keys (secret keys or key pairs) that

applications use to perform cryptographic operations on data. The key management framework provides

an application programming interface (API) for retrieving these keys. Keys are managed in keystores so

the keystore type can be supported by WebSphere Application Server, provided that the keystores can

store the referenced key type. You can configure keys and scope keystores so that they are visible only to

particular processes, nodes, clusters, and so on.

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

“Automating SSL configurations using scripting” on page 933
SSL configuration is needed for WebSphere to perform SSL connections with other servers. A SSL

configuration can be configured through the Admin Console. But if an automated way to create a SSL

configuration is desired then AdminTask should be used.

“Creating a custom trust manager configuration” on page 628
You can create a custom trust manager configuration at any management scope and associate the new

trust manager with a Secure Sockets Layer (SSL) configuration.

KeySetCommands command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the KeySetCommands group can be used to create, delete, and query for

key set settings in your configuration.

The KeySetCommands command group for the AdminTask object includes the following commands:

v “createKeySet” on page 981

v “deleteKeySet” on page 982

v “generateKeyForKeySet” on page 983

980 Securing applications and their environment

v “getKeySet” on page 983

v “listKeySets” on page 984

v “modifyKeySet” on page 985

createKeySet

The createKeySet command creates the key set settings in the configuration. Use this command to

control key instances that have the same type.

Target object

None.

Required parameters

-name

Specifies the name that uniquely identifies the key set. (String, required)

-aliasPrefix

Specifies the prefix for the key alias when a new key generates. (String, required)

-password

Specifies the password that protects the key in the keystore. (String, required)

-maxKeyReferences

Specifies the maximum number of key references from the returned keys in the key set of interest.

(Integer, required)

-keyStoreName

Specifies the keystore that contains the keys. (String, required)

Optional parameters

-scopeName

Specifies the unique name of the management scope. (String, optional)

-deleteOldKeys

Set the value of this parameter to true to delete old keys when new keys are generated. Otherwise,

set the value of this parameter to false. (Boolean, optional)

-keyGenerationClass

Specifies the class that is used to generate new keys in the key set. (String, optional)

-keyStoreScopeName

Specifies the management scope where the keystore is located. (String, optional)

-isKeyPair

Set the value of this parameter to true if the keys in the key set are key pairs. Otherwise, set the

value of this parameter to false. (Boolean, optional)

Example output

The command returns the configuration object name of the key set object that you created.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createKeySet {-name testKeySet –aliasPrefix test –password pwd

–maxKeyReferences 2 –deleteOldKeys true –keyStoreName testKeyStore –isKeyPair false}

Chapter 10. Configuring security with scripting 981

v Using Jython string:

AdminTask.createKeySet(’[-name testKeySet –aliasPrefix test –password pwd

–maxKeyReferences 2 –deleteOldKeys true –keyStoreName testKeyStore –isKeyPair false]’)

v Using Jython list:

AdminTask.createKeySet([’-name’, ’testKeySet’, ’–aliasPrefix’, ’test’,

’–password’, ’pwd’, ’–maxKeyReferences’, ’2’, ’–deleteOldKeys’, ’true’,

’–keyStoreName’, ’testKeyStore’, ’–isKeyPair’, ’false’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createKeySet {-interactive}

v Using Jython string:

AdminTask.createKeySet (’[-interactive]’)

v Using Jython list:

AdminTask.createKeySet ([’-interactive’])

deleteKeySet

The deleteKeySet command deletes the settings of a key set from the configuration.

Target object

None.

Required parameters

-name

The name that uniquely identifies the key set. (String, required)

Optional parameters

-scopeName

Specifies the unique name of the management scope. (String, optional)

Example output

The command does not return output.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteKeySet{ -name testKeySet}

v Using Jython string:

AdminTask.deleteKeySet(’[-name testKeySet]’)

v Using Jython list:

AdminTask.deleteKeySet([’-name’, ’testKeySet’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteKeySet {-interactive}

v Using Jython string:

AdminTask.deleteKeySet (’[-interactive]’)

982 Securing applications and their environment

v Using Jython list:

AdminTask.deleteKeySet ([’-interactive’])

generateKeyForKeySet

The generateKeyForKeySet command generates keys for the keys in the key set.

Target object

None.

Required parameters

-keySetName

Specifies the name of the key set. (String, required)

Optional parameters

-keySetScope

Specifies the scope of the key set. (String, optional)

-keySetSaveConfig

Set the value of this parameter to true to save the configuration of the key set. Otherwise, set the

value of this parameter to false. (Boolean, optional)

Example output

The command does not return output.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask generateKeyForKeySet{ -keySetName testKeySet }

v Using Jython string:

AdminTask.generateKeyForKeySet(’[-keySetName testKeySet]’)

v Using Jython list:

AdminTask.generateKeyForKeySet([’-keySetName’, ’testKeySet’])

Interactive mode example usage:

v Using Jacl:

$AdminTask generateKeyForKeySet {-interactive}

v Using Jython string:

AdminTask.generateKeyForKeySet (’[-interactive]’)

v Using Jython list:

AdminTask.generateKeyForKeySet ([’-interactive’])

getKeySet

The getKeySet command displays the settings of a particular key set.

Target object

None.

Chapter 10. Configuring security with scripting 983

Required parameters

-name

Specifies the name that uniquely identifies the key set. (String, required)

Optional parameters

-scopeName

Specifies the unique name of the management scope. (String, optional)

Example output

The command returns the settings of the specified key set group.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getKeySet {-name testKeySet}

v Using Jython string:

AdminTask.getKeySet (’[-name testKeySet]’)

v Using Jython list:

AdminTask.getKeySet ([’-name’, ’testKeySet’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getKeySet {-interactive}

v Using Jython string:

AdminTask.getKeySet (’[-interactive]’)

v Using Jython list:

AdminTask.getKeySet ([’-interactive’])

listKeySets

The listKeySets command lists the key sets in a particular scope.

Target object

None.

Required parameters

None.

Optional parameters

-scopeName

Specifies the unique name of the management scope. (String, optional)

-displayObjectNames

Set the value of this parameter to true to list the key set configuration objects within the scope. Set

the value of this parameter to false if you want to list the strings that contain the key set group name

and management scope. (Boolean, optional)

984 Securing applications and their environment

-all

Specify the value of this parameter as true to list all key sets. This parameter overrides the

scopeName parameter. The default value is false. (Boolean, optional)

Example output

The command returns the key sets for the scope that you specified.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listKeySets {-displayObjectName true}

v Using Jython string:

AdminTask.listKeySets (’[-displayObjectName true]’)

v Using Jython list:

AdminTask.listKeySets ([’-displayObjectName’, ’true’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listKeySets {-interactive}

v Using Jython string:

AdminTask.listKeySets (’[-interactive]’)

v Using Jython list:

AdminTask.listKeySets ([’-interactive’])

modifyKeySet

The modifyKeySet command changes the settings of an existing key set.

Target object

None.

Required parameters

-name

Specifies the name that uniquely identifies the key set. (String, required)

Optional parameters

-scopeName

Specifies the unique name of the management scope. (String, optional)

-aliasPrefix

Specifies the prefix for the key alias when a new key generates. (String, optional)

-password

Specifies the password that protects the key in the keystore. (String, optional)

-maxKeyReferences

Specifies the maximum number of key references from the returned keys in the key set of interest.

(Integer, optional)

Chapter 10. Configuring security with scripting 985

-deleteOldKeys

Set the value of this parameter to true to delete old keys when new keys are generated. Otherwise,

set the value of this parameter to false. (Boolean, optional)

-keyGenerationClass

Specifies the class that is used to generate new keys in the key set. (String, optional)

-keyStoreName

Specifies the keystore that contains the keys. (String, optional)

-keyStoreScopeName

Specifies the management scope where the keystore is located. (String, optional)

-isKeyPair

Set the value of this parameter to true if the keys in the key set are key pairs. Otherwise, set the

value of this parameter to false. (Boolean, optional)

Example output

The command does not return output.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask modifyKeySet {-name testKeySet -maxKeyReferences 3

–deleteOldKeys false}

v Using Jython string:

AdminTask.modifyKeySet (’[-name testKeySet -maxKeyReferences 3

–deleteOldKeys false]’)

v Using Jython list:

AdminTask.modifyKeySet ([’-name’, ’testKeySet’, ’-maxKeyReferences’, ’3’,

’–deleteOldKeys’, ’false’])

Interactive mode example usage:

v Using Jacl:

$AdminTask modifyKeySet {-interactive}

v Using Jython string:

AdminTask.modifyKeySet (’[-interactive]’)

v Using Jython list:

AdminTask.modifyKeySet ([’-interactive’])

KeyReferenceCommands command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the KeyReferenceCommands group can be used to create and manage the

key reference settings for key set objects in your configuration.

The KeyReferenceCommands command group for the AdminTask object includes the following commands:

v “createKeyReference” on page 987

v “deleteKeyReference” on page 988

v “getKeyReference” on page 988

v “listKeyReferences” on page 989

986 Securing applications and their environment

createKeyReference

The createKeyReference command creates the key reference setting in the configuration for key set

objects.

Target object

None.

Required parameters and return values

-keySetName

The name that uniquely identifies the key set to which the key reference belongs. (String, required)

-keySetScope

The management scope of the key set. (String, optional)

-keyAlias

The alias name that identifies the key for the key set that you specify. (String, required)

-keyPassword

The password used for encrypting the key. (String, optional)

-keyPasswordVerify

The password used for encrypting the key. (String, optional)

-version

The version of the key reference. (String, optional)

-keyReferenceSaveConfig

Set the value of this parameter to true to save the key reference to the configuration. Otherwise, set

the value to false. (String, optional)

v Returns: The configuration object name of the key reference scope object that you created.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createKeyReference {-keySetName testKeySet -keyAlias testKey

–password testPWD –passwordVerify testPWD –keyReferenceSaveConfig true}

v Using Jython string:

AdminTask.createKeyReference (’[-keySetName testKeySet -keyAlias testKey

–password testPWD –passwordVerify testPWD –keyReferenceSaveConfig true]’)

v Using Jython list:

AdminTask.createKeyReference ([’-keySetName’, ’testKeySet’, ’-keyAlias’, ’testKey’,

’–password’, ’testPWD’, ’–passwordVerify’, ’testPWD’, ’–keyReferenceSaveConfig’, ’true’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createKeyReference {-interactive}

v Using Jython string:

AdminTask.createKeyReference (’[-interactive]’)

v Using Jython list:

AdminTask.createKeyReference ([’-interactive’])

Chapter 10. Configuring security with scripting 987

deleteKeyReference

The deleteKeyReference command deletes a key reference object from the key set object in the

configuration.

Target object

None.

Required parameters and return values

-keySetName

The name that uniquely identifies the key set to which the key reference belongs. (String, required)

-keySetScope

The management scope of the key set. (String, optional)

-keyAlias

The alias name that identifies the key for the key set that you specify. (String, required)

v Returns: None.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteKeyReference { -keySetName testKeySet –keyAlias testKey }

v Using Jython string:

AdminTask.deleteKeyReference (’[-keySetName testKeySet –keyAlias testKey]’)

v Using Jython list:

AdminTask.deleteKeyReference ([’-keySetName’, ’testKeySet’, ’–keyAlias’, ’testKey’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteKeyReference {-interactive}

v Using Jython string:

AdminTask.deleteKeyReference (’[-interactive]’)

v Using Jython list:

AdminTask.deleteKeyReference ([’-interactive’])

getKeyReference

The getKeyReference command displays the setting of a key reference object.

Target object

None.

Required parameters and return values

-keySetName

The name that uniquely identifies the key set to which the key reference belongs. (String, required)

-keySetScope

The management scope of the key set. (String, optional)

988 Securing applications and their environment

-keyAlias

The alias name that identifies the key for the key set that you specify. (String, required)

v Returns: The settings of the key reference object.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getKeyReference { -keySetName testKeySet –keyAlias testKey }

v Using Jython string:

AdminTask.getKeyReference (’[-keySetName testKeySet –keyAlias testKey]’)

v Using Jython list:

AdminTask.getKeyReference ([’-keySetName’, ’testKeySet’, ’–keyAlias’, ’testKey’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getKeyReference {-interactive}

v Using Jython string:

AdminTask.getKeyReference (’[-interactive]’)

v Using Jython list:

AdminTask.getKeyReference ([’-interactive’])

listKeyReferences

The listKeyReferences command lists the key references for a particular key set in the configuration.

Target object

None.

Required parameters and return values

-keySetName

The name that uniquely identifies the key set to which the key reference belongs. (String, required)

-keySetScope

The management scope of the key set. (String, optional)

v Returns: The configuration object name of the key reference scope object that you created.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyRefereces { -keySetName testKeySet}

v Using Jython string:

AdminTask.listKeyRefereces (’[-keySetName testKeySet]’)

v Using Jython list:

AdminTask.listKeyRefereces ([’-keySetName’, ’testKeySet’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listKeyReferences {-interactive}

Chapter 10. Configuring security with scripting 989

v Using Jython string:

AdminTask.listKeyReferences (’[-interactive]’)

v Using Jython list:

AdminTask.listKeyReferences ([’-interactive’])

KeySetGroupCommands command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the KeySetGroupCommands group can be used to create and manage key

set groups. Use these commands to manage groups of public, private, and shared keys.

The KeySetGroupCommands command group for the AdminTask object includes the following commands:

v “deleteKeySetGroup”

v “generateKeysForKeySetGroup”

v “getKeySetGroup” on page 991

v “listKeySetGroups” on page 991

v “modifyKeySetGroup” on page 992

deleteKeySetGroup

The deleteKeySetGroup command deletes the settings of a key set group from the configuration.

Target object

None.

Required parameters

-name

Specifies the name that uniquely identifies the key set group. (String, required)

Optional parameters

-scopeName

Specifies the unique name that identifies the management scope. (String, optional)

Examples

Batch mode example usage:

Interactive mode example usage:

generateKeysForKeySetGroup

The generateKeysForKeySetGroup command generates keys for all of the keys in the key sets that

make up the key set group.

Target object

None.

Required parameters

-keySetGroupName

Specifies the name of the key set group. (String, required)

990 Securing applications and their environment

Optional parameters

-keySetGroupScope

Specifies the scope of the key set group. (String, optional)

Examples

Batch mode example usage:

Interactive mode example usage:

getKeySetGroup

The getKeySetGroup command displays the settings of a particular key set group.

Target object

None.

Required parameters

-name

Specifies the name that uniquely identifies the key set group. (String, required)

Optional parameters

-scopeName

Specifies the unique name that identifies the management scope. (String, optional)

Examples

Batch mode example usage:

Interactive mode example usage:

listKeySetGroups

The listKeySetGroups command lists the key set groups for a particular scope.

Target object

None.

Required parameters

None.

Optional parameters

-scopeName

Specifies the unique name that identifies the management scope. (String, optional)

-displayObjectNames

If you set the value of this parameter to true, the command returns a list of all of the key set group

objects within a scope. If you set the value of this parameter to false, the command returns a list of

strings that contain the key set group name and management scope. (Boolean, optional)

Chapter 10. Configuring security with scripting 991

-all

Specify the value of this parameter as true to list all key set groups. This parameter overrides the

scopeName parameter. The default value is false. (Boolean, optional)

Examples

Batch mode example usage:

Interactive mode example usage:

modifyKeySetGroup

The modifyKeySetGroup command changes the settings of an existing key set group.

Target object

None.

Required parameters

-name

Specifies the name that uniquely identifies the key set group. (String, required)

Optional parameters

-scopeName

Specifies the unique name that identifies the management scope. (String, optional)

-autoGenerate

Set the value of this parameter to true if you want to automatically generate keys. If not, set the value

to false. (Boolean, optional)

-wsScheduleName

Specifies the name of the scheduler to use to perform key generation. (String, optional)

-keySetObjectNames

A list of key set configuration names separated by colons (:). (String, optional)

Examples

Batch mode example usage:

Interactive mode example usage:

992 Securing applications and their environment

Related concepts

“Key management for cryptographic uses” on page 697
WebSphere Application Server provides a framework for managing keys (secret keys or key pairs) that

applications use to perform cryptographic operations on data. The key management framework provides

an application programming interface (API) for retrieving these keys. Keys are managed in keystores so

the keystore type can be supported by WebSphere Application Server, provided that the keystores can

store the referenced key type. You can configure keys and scope keystores so that they are visible only to

particular processes, nodes, clusters, and so on.

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

“Creating a key set group configuration” on page 703

A key set group manages one or more key sets. WebSphere Application Server uses key set groups to

automatically generate cryptographic keys or multiple synchronized key sets.

Related reference

“Key set groups settings” on page 709
Use this page to create new key set groups.

DynamicSSLConfigSelections command group for the AdminTask

object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the DynamicSSLConfigSelections group can be used to create, delete, and

query dynamic SSL configuration selection objects.

The DynamicSSLConfigSelections command group for the AdminTask object includes the following

commands:

v “deleteDynamicSSLConfigSelection”

v “getDynamicSSLConfigSelection” on page 994

v “listDynamicSSLConfigSelections” on page 994

deleteDynamicSSLConfigSelection

The deleteDynamicSSLConfigSelection command deletes the dynamic SSL configuration selection from

the configuration.

Target object

None.

Required parameters

-dynSSLConfigSelectionName

Specifies the name that uniquely identifies the dynamic SSL configuration selection. (String, required)

Optional parameters

-scopeName

Specifies the unique name that identifies the management scope. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

Chapter 10. Configuring security with scripting 993

$AdminTask deleteDynamicSSLConfigSelection {-dynSSLConfigSelectionName sampleConfigSelection}

v Using Jython:

AdminTask.deleteDynamicSSLConfigSelection(-dynSSLConfigSelectionName sampleConfigSelection)

v

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteDynamicSSLConfigSelection {-interactive}

v Using Jython:

AdminTask.deleteDynamicSSLConfigSelection(’-interactive’)

getDynamicSSLConfigSelection

The getDynamicSSLConfigSelection command obtains information about a particular dynamic SSL

configuration selection.

Target object

None.

Required parameters

-dynSSLConfigSelectionName

Specifies the name that uniquely identifies the dynamic SSL configuration selection. (String, required)

Optional parameters

-scopeName

Specifies the unique name that identifies the management scope. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getDynamicSSLConfigSelection {-dynSSLConfigSelectionName sampleConfigSelection}

v Using Jython:

AdminTask.getDynamicSSLConfigSelection(-dynSSLConfigSelectionName sampleConfigSelection)

Interactive mode example usage:

v Using Jacl:

$AdminTask getDynamicSSLConfigSelection {-interactive}

v Using Jython:

AdminTask.getDynamicSSLConfigSelection(’-interactive’)

listDynamicSSLConfigSelections

The listDynamicSSLConfigSelections command lists the configuration objects name for a dynamic SSL

configuration selection.

Target object

None.

Required parameters

994 Securing applications and their environment

None.

Optional parameters

-scopeName

Specifies the unique name that identifies the management scope. (String, optional)

-all

Specify the value of this parameter as true to list all dynamic SSL configuration selections. This

parameter overrides the scopeName parameter. The default value is false. (String, optional)

Example output

The command does not return output.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listDynamicSSLConfigSelections

v Using Jython:

AdminTask.listDynamicSSLConfigSelections()

v Using Jacl:

$AdminTask listDynamic SSLConfigSelections

v Using Jython:

AdminTask.listDynamic SSLConfigSelections()

Interactive mode example usage:

v Using Jacl:

$AdminTask listDynamicSSLConfigSelections {-interactive}

v Using Jython:

AdminTask.listDynamicSSLConfigSelections(’-interactive’)

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

“Replacing an existing self-signed certificate” on page 669
Occasionally, you need to replace an existing or expired self-signed certificate with a new certificate.

Certificates are referenced in the runtime configuration by the Secure Sockets Layer (SSL) Configuration

object and the Dynamic SSL Configuration Selection object. You can replace a certificate with a new

certificate alias reference or with a new signer certificate.

“Automating SSL configurations using scripting” on page 933
SSL configuration is needed for WebSphere to perform SSL connections with other servers. A SSL

configuration can be configured through the Admin Console. But if an automated way to create a SSL

configuration is desired then AdminTask should be used.

PersonalCertificateCommands command group for the AdminTask

object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the PersonalCertificateCommands group can be used to create and manage

personal or signer certificates.

Chapter 10. Configuring security with scripting 995

The PersonalCertificateCommands command group for the AdminTask object includes the following

commands:

v “createChainedCertificate”

v “createSelfSignedCertificate” on page 997

v “deleteCertificate” on page 998

v “exportCertificate” on page 999

v “exportCertToManagedKS” on page 1000

v “extractCertificate” on page 1001

v “getCertificate” on page 1001

v “getCertificateChain” on page 1002

v “importCertificate” on page 1003

v “importCertFromManagedKS” on page 1004

v “listPersonalCertificates” on page 1004

v “queryCACertificate” on page 1005

v “receiveCertificate” on page 1006

v “renewCertificate” on page 1007

v “replaceCertificate” on page 1008

v “requestCACertificate” on page 1009

v “revokeCACertificate” on page 1010

createChainedCertificate

The createChainedCertificate command creates a new self-signed certificate and stores the certificate in a

keystore.

Note: To use the IBMi5OSKeyStore key store, verify that the signer for each part of the chain exists in the

keystore before creating the new certificate. You must import the signer into the IBMi5OSKeyStore

keystore before creating the new certificate.

Target object

None.

Required parameters

-keyStoreName

Specifies the name that uniquely identifies the keystore configuration object. (String, required)

-certificateAlias

Specifies the name that uniquely identifies the certificate request in a keystore. (String, required)

-certificateSize

Specifies the size of the certificate. (Integer, required)

-certificateCommonName

Specifies the common name of the certificate. (String, required)

-certificateOrganization

Specifies the organization of the certificate. (String, optional)

Optional parameters

-rootCertificateAlias

Specifies a unique name to identify the root certificated to use for signing. The default root certificate

alias is root. (String, optional)

996 Securing applications and their environment

-certificateVersion

Specifies the version of the certificate. (String, optional)

-keyStoreScope

Specifies the scope name of the keystore. (String, optional)

-certificateOrganization

Specifies the organization of the certificate. (String, optional)

-certificateOrganizationalUnit

Specifies the organizational unit of the certificate. (String, optional)

-certificateLocality

Specifies the locality of the certificate. (String, optional)

-certificateState

Specifies the state of the certificate. (String, optional)

-certificateZip

Specifies the zip code of the certificate. (String, optional)

-certificateCountry

Specifies the country of the certificate. (String, optional)

-certificateValidDays

Specifies the amount of time in days for which the certificate is valid. (Integer, optional)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.createChainedCertificate(’-keyStoreName myKeystore -certificateAlias

newCertificate -certificateSize 10 -certificateCommonName localhost

-certificateOrganization ibm’)

v Using Jython list:

AdminTask.createChainedCertificate(’-keyStoreName’, ’myKeystore’, ’-certificateAlias’,

’newCertificate’, ’-certificateSize’, ’10’, ’-certificateCommonName’, ’localhost’,

’-certificateOrganization’, ’ibm’)

Interactive mode example usage

v Using Jython:

AdminTask.createChainedCertificate(’-interactive’)

createSelfSignedCertificate

The createSelfSignedCertificate command creates a self-signed personal certificate in a keystore.

Target object

None.

Required parameters

-keyStoreName

The name that uniquely identifies the keystore configuration object. (String, required)

-certificateAlias

The name that uniquely identifies the certificate request in a keystore. (String, required)

Chapter 10. Configuring security with scripting 997

-certificateVersion

The version of the certificate. (String, required)

-certificateSize

The size of the certificate. (Integer, required)

-certificateCommonName

The common name of the certificate. (String, required)

Optional parameters

-keyStoreScope

The scope name of the keystore. (String, optional)

-certificateOrganization

The organization of the certificate. (String, optional)

-certificateOrganizationalUnit

The organizational unit of the certificate. (String, optional)

-certificateLocality

The locality of the certificate. (String, optional)

-certificateState

The state of the certificate. (String, optional)

-certificateZip

The zip code of the certificate. (String, optional)

-certificateCountry

The country of the certificate. (String, optional)

-certificateValidDays

The amount of time in days for which the certificate is valid. (Integer, optional)

Example output

The command does not return output.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createSelfSignedCertificate {-keyStoreName testKeyStore -certificateAlias

default -certificateCommonName localhost -certificateOrganization ibm}

v Using Jython string:

AdminTask.createSelfSignedCertificate(’[-keyStoreName testKeyStore -certificateAlias

default -certificateCommonName localhost -certificateOrganization ibm]’)

v Using Jython list:

AdminTask.createSelfSignedCertificate([’-keyStoreName’, ’testKeyStore’, ’-certificateAlias’,

’default’, ’-certificateCommonName’, ’localhost’, ’-certificateOrganization’, ’ibm’])

Interactive mode example usage:

v Using Jython:

AdminTask.createSelfSignedCertificate(’-interactive’)

deleteCertificate

The deleteCertificate command deletes a personal certificate from a keystore. The command saves a copy

of the certificate in the delete keystore.

998 Securing applications and their environment

Target object

None.

Required parameters

-keyStoreName

The name that uniquely identifies the keystore configuration object. (String, required)

-certificateAlias

The name that uniquely identifies the certificate request in a keystore. (String, required)

Optional parameters

-keyStoreScope

The scope name of the keystore. (String, optional)

Example output

The command does not return output.

Examples

Interactive mode example usage:

v Using Jython:

AdminTask.deleteCertificate(’-interactive’)

exportCertificate

The exportCertificate command exports a personal certificate from one keystore to another.

Target object

None.

Required parameters

-keyStoreName

The name that uniquely identifies the keystore configuration object. (String, required)

-keyStorePassword

The password to the keystore. (String, required)

-keyFilePath

The full path to a keystore file that is located in a file system. The store from where a certificate will be

imported or exported. (String, required)

-keyFilePassword

The password to the keystore file. (String, required)

-keyFileType

The type of the key file. (String, required)

-certificateAlias

The name that uniquely identifies the certificate request in a keystore. (String, required)

Optional parameters

-keyStoreScope

The scope name of the keystore. (String, optional)

Chapter 10. Configuring security with scripting 999

-aliasInKeyStore

(String, optional)

Example output

The command does not return output.

Examples

Interactive mode example usage:

v Using Jython:

AdminTask.exportCertificate(’-interactive’)

exportCertToManagedKS

The exportCertToManagedKS command exports a personal certificate to a managed keystore in the

configuration.

Target object

None.

Required parameters

-keyStoreName

Specifies the name that uniquely identifies the keystore configuration object. (String, required)

-keyStorePassword

The password to the keystore. (String, required)

-toKeyStoreName

Specifies the unique name of the keystore to export the certificate to. (String, required)

-certificateAlias

Specifies the alias of the certificate of interest. (String, required)

Optional parameters

-keyStoreScope

Specifies the keystore of the certificate of interest. (String, optional)

-toKeyStoreScope

Specifies the scope of the keystore to export to. (String, optional)

-aliasInKeyStore

Specifies the alias that identifies the certificate in the keystore. (String, optional)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.exportCertificateToManagedKS(’-keyStoreName myKS -keyStorePassword myKSpw

-toKeyStoreName myKS2 -certificateAlias testingKeyStore’)

v Using Jython list:

AdminTask.exportCertificateToManagedKS([’-keyStoreName’, ’myKS’, ’-keyStorePassword’,

’myKSpw’, ’-toKeyStoreName’, ’myKS2’, ’-certificateAlias’, ’testingKeyStore’])

Interactive mode example usage

1000 Securing applications and their environment

v Using Jython:

AdminTask.exportCertificateToManagedKS(’-interactive’)

extractCertificate

The extractCertificate command extracts the signer part of a personal certificate to a certificate file. The

certificate in the file can later be added to a keystore to establish trust.

Target object

None.

Required parameters

-keyStoreName

The name that uniquely identifies the keystore configuration object. (String, required)

-certificateAlias

The name that uniquely identifies the certificate request in a keystore. (String, required)

-certificateFilePath

The full path of the request file that contains the certificate. (String, required)

-base64Encoded

Set the value of this parameter to true if the certificate is a Base64 encoded ASCII file type. Set the

value of this parameter to false if the certificate is binary. (Boolean, required)

Optional parameters

-keyStoreScope

The scope name of the keystore. (String, optional)

Example output

The command does not return output.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask extractCertificate {-keyStoreName testKeyStore -certificateFilePath

/temp/CertFile.arm -certificateAlias testCertificate}

v Using Jython string:

AdminTask.extractCertificate(’[-keyStoreName testKeyStore -certificateFilePath

/temp/CertFile.arm -certificateAlias testCertificate]’)

v Using Jython list:

AdminTask.extractCertificate([’-keyStoreName’, ’testKeyStore’, ’-certificateFilePath’,

’/temp/CertFile.arm’, ’-certificateAlias’, ’testCertificate’])

Interactive mode example usage:

v Using Jython:

AdminTask.extractCertificate(’-interactive’)

getCertificate

The getCertificate command obtains information about a particular personal certificate in a keystore. If the

certificate of interest was created with the requestCACertificate command, the certificate can be in the

COMPLETE or REVOKED state. Certificate requests can be in the PENDING state. Use the getCertificateRequest

command to determine if a certificate request is in the PENDING state.

Chapter 10. Configuring security with scripting 1001

Target object

None.

Required parameters

-keyStoreName

The name that uniquely identifies the keystore configuration object. (String, required)

-certificateAlias

The name that uniquely identifies the certificate request in a keystore. (String, required)

Optional parameters

-keyStoreScope

The scope name of the keystore. (String, optional)

Example output

The command returns information about the certificate request.

Examples

Interactive mode example usage:

v Using Jython:

AdminTask.getCertificate(’-interactive’)

getCertificateChain

The getCertificateChain command queries your configuration for information about each personal

certificate in a certificate chain.

Target object

None.

Required parameters and return values

-keyStoreName

Specifies the name of the keystore object that stores the CA certificate. Use the listKeyStores

command to display a list of available keystores. (String, required)

-certificateAlias

Specifies the unique alias of the certificate. (String, required)

Optional parameters

-keyStoreScope

Specifies the management scope of the keystore. For a deployment manager profile, the default value

is the cell scope. For an application server profile, the default value is the node scope. (String,

optional)

Example output

The command returns an array of attribute lists that contain configuration information for each certificate in

a chain.

Examples

1002 Securing applications and their environment

Batch mode example usage:

v Using Jacl:

$AdminTask getCertificateChain {-certificateAlias newCertificate

-keyStoreName CellDefaultKeyStore}

v Using Jython string:

AdminTask.getCertificateChain(’-certificateAlias newCertificate

-keyStoreName CellDefaultKeyStore’)

v Using Jython list:

AdminTask.getCertificateChain([’-certificateAlias’, ’newCertificate’,

’-keyStoreName’, ’CellDefaultKeyStore’])

Interactive mode example usage:

v Using Jython:

AdminTask.getCertificateChain(’-interactive’)

importCertificate

The importCertificate command imports a personal certificate from a keystore.

Target object

None.

Required parameters

-keyStoreName

The name that uniquely identifies the keystore configuration object. (String, required)

-keyFilePath

The full path to a keystore file that is located in a file system. The store from where a certificate will be

imported or exported. (String, required)

-keyFilePassword

The password to the keystore file. (String, required)

-keyFileType

The type of the key file. (String, required)

-certificateAliasFromKeyFile

The certificate alias in the key file from which the certificate is being imported. (String, required)

-certificateAlias

The name that uniquely identifies the certificate request in a keystore. (String, required)

Optional parameters

-keyStoreScope

The scope name of the keystore. (String, optional)

Example output

The command does not return output.

Examples

Interactive mode example usage:

v Using Jython:

AdminTask.importCertificate(’-interactive’)

Chapter 10. Configuring security with scripting 1003

importCertFromManagedKS

The importCertFromManagedKS command imports a personal certificate from a managed keystore in the

configuration.

Target object

None.

Required parameters

-keyStoreName

Specifies the name that uniquely identifies the keystore configuration object. (String, required)

-fromKeyStoreName

Specifies the name that uniquely identifies the keystore from which the system imports the certificate.

(String, required)

-fromKeyStorePassword

Specifies the password for the keystore from which the system imports the certificate. (String,

required)

-certificateAliasFromKeyStore

Specifies the alias of the certificate in the keystore. (String, required)

Optional parameters

-keyStoreScope

Specifies the scope of the keystore to import the certificate to. (String, optional)

-fromKeyStoreScope

Specifies the scope of the keystore to import the certificate from. (String, optional)

-certificateAlias

Specifies the alias of the certificate for the destination keystore. (String, optional)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.importCertFromManagedKS(’-keyStoreName myKeystore -fromKeyStoreName

oldKeystore -fromKeyStorePassword my122password -certificateAliasFromKeyStore

myCertificate’)

v Using Jython list:

AdminTask.importCertFromManagedKS(’-keyStoreName’, ’myKeystore’, ’-fromKeyStoreName’,

’oldKeystore’, ’-fromKeyStorePassword’, ’my122password’, ’-certificateAliasFromKeyStore’,

’myCertificate’)

Interactive mode example usage

v Using Jython:

AdminTask.importCertFromManagedKS(’-interactive’)

listPersonalCertificates

The listPersonalCertificates command lists the personal certificates in a particular keystore.

Target object

1004 Securing applications and their environment

None.

Required parameters

-keyStoreName

The name that uniquely identifies the keystore configuration object. (String, required)

Optional parameters

-keyStoreScope

The scope name of the keystore. (String, optional)

Example output

The command returns a list of attributes for each personal certificate in a keystore.

Examples

Batch mode example usage:

v Using Jython string:

AdminTask.listPersonalCertificates(’-keyStoreName myKS’)

v Using Jython list:

AdminTask.listPersonalCertificates([’-keyStoreName’, ’myKS’])

Interactive mode example usage:

v Using Jython:

AdminTask.listPersonalCertificates(’-interactive’)

queryCACertificate

The queryCACertificate command queries your configuration to determine if the CA has completed the

certificate. If the CA returns a personal certificate, then the system marks the certificate as COMPLETE.

Otherwise, it remains marked as PENDING.

Target object

None.

Required parameters and return values

-keyStoreName

Specifies the name of the keystore object that stores the CA certificate. Use the listKeyStores

command to display a list of available keystores. (String, required)

-certificateAlias

Specifies the unique alias of the certificate. (String, required)

Optional parameters

-keyStoreScope

Specifies the management scope of the keystore. For a deployment manager profile, the default value

is the cell scope. For an application server profile, the default value is the node scope. (String,

optional)

Example output

Chapter 10. Configuring security with scripting 1005

The command returns one of two values: Certificate COMPLETE or certificate PENDING. If the command

returns the Certificate COMPLETE message, the certificate authority returned the requested certificate and

the default personal certificate is replaced. If the command returns the certificate PENDING message, the

certificate authority did not yet return a certificate.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask queryCACertificate {-certificateAlias newCertificate

-keyStoreName CellDefaultKeyStore}

v Using Jython string:

AdminTask.queryCACertificate(’-certificateAlias newCertificate

-keyStoreName CellDefaultKeyStore’)

v Using Jython list:

AdminTask.queryCACertificate([’-certificateAlias’, ’newCertificate’,

’-keyStoreName’, ’CellDefaultKeyStore’])

Interactive mode example usage:

v Using Jython:

AdminTask.queryCACertificate(’-interactive’)

receiveCertificate

The receiveCertificate command receives a signer certificate from a file to a personal certificate.

Target object

None.

Required parameters

-keyStoreName

The name that uniquely identifies the keystore configuration object. (String, required)

-certificateAlias

The name that uniquely identifies the certificate request in a keystore. (String, required)

-certificateFilePath

The full path of the file that contains the certificate. (String, required)

-base64Encoded

Set the value of this parameter to true if the certificate is ascii base 64 encoded. Set the value of this

parameter to false if the certificate is binary. (Boolean, required)

Optional parameters

-keyStoreScope

The scope name of the keystore. (String, optional)

Example output

The command does not return output.

Examples

Batch mode example usage:

v Using Jacl:

1006 Securing applications and their environment

$AdminTask receiveCertificate {-keyStoreName testKeyStore

-certificateFilePath /temp/CertFile.arm}

v Using Jython string:

AdminTask.receiveCertificate(’[-keyStoreName testKeyStore

-certificateFilePath /temp/CertFile.arm]’)

v Using Jython list:

AdminTask.receiveCertificate([’-keyStoreName’, ’testKeyStore’,

’-certificateFilePath’, ’/temp/CertFile.arm’])

Interactive mode example usage:

v Using Jython:

AdminTask.receiveCertificate(’-interactive’)

renewCertificate

The renewCertificate command renews a certificate with a new generated certificate.

Target object

None.

Required parameters

-keyStoreName

Specifies the unique name that identifies the keystore. (String, required)

-certificateAlias

Specifies the unique name that identifies the certificate. (String, required)

Optional parameters

-keyStoreScope

Specifies the scope of the keystore. (String, optional)

-deleteOldSigners

Specifies whether to delete the old signers that are associated with the old certificate. Specify false to

retain the old signers. (Boolean, optional)

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.renewCertificate(’-keyStoreName myKS -certificateAlias

testCertificate’)

v Using Jython list:

AdminTask.renewCertificate([’-keyStoreName’, ’myKS’, ’-certificateAlias’,

’testCertificate’])

Interactive mode example usage

v Using Jython:

AdminTask.renewCertificate(’-interactive’)

Chapter 10. Configuring security with scripting 1007

replaceCertificate

The replaceCertificate command replaces a personal certificate with another personal certificate. The

command finds each reference to the old certificate alias in the configuration and replaces the alias with

the new one. The command also replaces each signer certificate from the old personal certificate with the

signer from the new personal certificate.

Target object

None.

Required parameters and return values

-keyStoreName

The name that uniquely identifies the keystore configuration object. (String, required)

-certificateAlias

The name that uniquely identifies the certificate request in a keystore. (String, required)

-replacementCertificateAlias

The alias of the certificate that is used to replace a different certificate. (String, required)

Optional parameters

-keyStoreScope

The scope name of the keystore. (String, optional)

-deleteOldCert

Set the value of this parameter to true if you want to delete the old signer certificates during certificate

replacement. Otherwise, set the value of this parameter to false. (Boolean, optional)

-deleteOldSigners

Set the value of this parameter to true if you want to delete the old certificates during certificate

replacement. Otherwise, set the value of this parameter to false. (Boolean, optional)

Example output

The command does not return output.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask replaceCertificate {-keyStoreName testKeyStore -certificateAlias

default -replacementCertificateAlias replaceCert -deleteOldCert true

-deleteOldSigners true}

v Using Jython string:

AdminTask.replaceCertificate(’[-keyStoreName testKeyStore -certificateAlias

default -replacementCertificateAlias replaceCert -deleteOldCert true

-deleteOldSigners true]’)

v Using Jython list:

AdminTask.replaceCertificate([’-keyStoreName’, ’testKeyStore’, ’-certificateAlias’,

’default’, ’-replacementCertificateAlias’, ’replaceCert’, ’-deleteOldCert’,

’true’, ’-deleteOldSigners’, ’true’])

Interactive mode example usage:

v Using Jython:

AdminTask.replaceCertificate(’-interactive’)

1008 Securing applications and their environment

requestCACertificate

The requestCACertificate command creates a certificate request and sends the request to a certificate

authority (CA). If the certificate authority returns a personal certificate, then the returned certificate

replaces the certificate request in the keystore. The command also works with a preexisting certificate

request that was created with the createCertificateRequest command. When the CA returns a personal

certificate, the system marks the certificate as COMPLETE and the command returns a message stating that

the certificate is complete. If the CA does not return a personal certificate, then the system marks the

certificate request as PENDING and the command returns a message stating that the certificate is PENDING.

Note: To use the IBMi5OSKeyStore key store, verify that the signer for each part of the chain exists in the

keystore before creating the new certificate. You must import the signer into the IBMi5OSKeyStore

keystore before creating the new certificate.

Target object

None.

Required parameters and return values

-certificateAlias

Specifies the alias of the certificate. You can specify a predefined certificate request. (String, required)

-keyStoreName

Specifies the name of the keystore object that stores the CA certificate. Use the listKeyStores

command to display a list of available keystores. (String, required)

-caClientName

Specifies the name of the CA client that was used to create the CA certificate. (String, required)

-revocationPassword

Specifies the password to use to revoke the certificate at a later date. (String, required)

Optional parameters

-keyStoreScope

Specifies the management scope of the keystore. For a deployment manager profile, the default value

is the cell scope. For an application server profile, the default value is the node scope. (String,

optional)

-caClientScope

Specifies the management scope of the CA client. For a deployment manager profile, the default value

is the cell scope. For an application server profile, the default value is the node scope. (String,

optional)

-certificateCommonName

Specifies the common name (CN) part of the full distinguished name (DN) of the certificate. This

common name can represent a person, company, or machine. For Web sites, the common name is

frequently the DNS host name where the server resides. (String, optional)

-certificateOrganization

Specifies the organization part of the full distinguished name (DN) of the certificate. (String, optional)

-certificateOrganizationalUnity

Specifies the organization unit part of the full distinguished name (DN) of the certificate. (String,

optional)

-certificateLocality

Specifies the locality part of the full distinguished name (DN) of the certificate. (String, optional)

Chapter 10. Configuring security with scripting 1009

-certificateState

Specifies the state part of the full distinguished name (DN) of the certificate. (String, optional)

-certificateZip

Specifies the zip code part of the full distinguished name (DN) of the certificate. (String, optional)

-certificateCountry

Specifies the country part of the full distinguished name (DN) of the certificate. (String, optional)

-certificateSize

Specifies the size of the certificate key. The valid values are 512, 1024, and 2048. The default value is

1024. (String, optional)

Example output

The command returns one of two values: Certificate COMPLETE or certificate PENDING.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask requestCACertificate {-certificateAlias newCertificate -keyStoreName

CellDefaultKeyStore -CAClientName myCAClient -revocationPassword revokeCApw}

v Using Jython string:

AdminTask.requestCACertificate(’-certificateAlias newCertificate -keyStoreName

CellDefaultKeyStore -CAClientName myCAClient -revocationPassword revokeCApw’)

v Using Jython list:

AdminTask.requestCACertificate([’-certificateAlias’,’newCertificate’,’-keyStoreName’,

’CellDefaultKeyStore’,’-CAClientName’,’myCAClient’,’-revocationPassword’,

’revokeCApw’])

Interactive mode example usage:

v Using Jython:

AdminTask.requestCACertificate(’-interactive’)

revokeCACertificate

The revokeCACertificate command sends a request to the CA to revoke the CA personal certificate of

interest.

Target object

None.

Required parameters and return values

-certificateAlias

Specifies the unique name that identifies the CA personal certificate object and the alias name of the

certificate in the keystore. (String, required)

-keyStoreName

Specifies the name of the keystore where the CA personal certificate is stored. (String, required)

-revocationPassword

Specifies the password needed to revoke the certificate. This is the same password that was provided

when the certificate was created. (String, required)

Optional parameters

1010 Securing applications and their environment

-keyStoreScope

Specifies the management scope of the keystore. For a deployment manager profile, the default value

is the cell scope. For an application server profile, the default value is the node scope. (String,

optional)

-revocationReason

Specifies the reason for revoking the certificate of interest. The default value for this parameter is

unspecified. (String, optional)

Example output

The command does not return output. Use the getCertificate command to view the current status of the

certificate, as the following example displays:

AdminTask.getCertificate(’-certificateAlias myCertificate -keyStoreName CellDefaultKeyStore’)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask revokeCACertificate {-keyStoreName CellDefaultKeyStore -certificateAlias

myCertificate -revocationPassword pw4revoke}

v Using Jython string:

AdminTask.revokeCACertificate(’[-keyStoreName CellDefaultKeyStore -certificateAlias

myCertificate -revocationPassword pw4revoke]’)

v Using Jython list:

AdminTask.revokeCACertificate([’-keyStoreName’, ’CellDefaultKeyStore’, ’-certificateAlias’,

’myCertificate’, ’-revocationPassword’, ’pw4revoke’])

Interactive mode example usage:

v Using Jython:

AdminTask.revokeCACertificate(’-interactive’)

WSCertExpMonitorCommands command group for the AdminTask

object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the WSCertExpMonitorCommands group can be used to start or update the

certificate expiration monitor.

The WSCertExpMonitorCommands command group for the AdminTask object includes the following

commands:

v “createWSCertExpMonitor”

v “deleteWSCertExpMonitor” on page 1013

v “getWSCertExpMonitor” on page 1013

v “listWSCertExpMonitor” on page 1014

v “modifyWSCertExpMonitor” on page 1014

v “startCertificateExpMonitor” on page 1015

createWSCertExpMonitor

The createWSCertExpMonitor command creates the certificate expiration monitor settings in the

configuration.

Target object

Chapter 10. Configuring security with scripting 1011

None.

Required parameters and return values

-name

The name that uniquely identifies the certificate expiration monitor. (String, required)

-autoReplace

Set the value of this parameter to true if you want to replace a certificate within a certificate expiration

date. If not, set the value of this parameter to false. (Boolean, required)

-deleteOld

Set the value of this parameter to true if you want to delete an old certificate during certificate

expiration monitoring. If not, set the value of this parameter to false. (Boolean, required)

-daysBeforeNotification

The number of days before a certificate expires that you want to be notified of the expiration. (Integer,

required)

-wsScheduleName

The name of the scheduler to use for certificate expiration. (String, required)

-wsNotificationName

The name of the notifier to use for certificate expiration. (String, required)

-isEnabled

Set the value of this parameter to true if the certificate expiration monitor is enabled. If not, set the

value of this parameter to false. (Boolean, optional)

v Returns: The configuration object name of the certificate expiration monitor object that you created.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createWSCertExpMonitor {-name testCertMon –autoReplace true –deleteOld true

–daysBeforeNotification 30 –wsScheduleName testSchedule –wsNotificationName testNotifier

–isEnabled false}

v Using Jython string:

AdminTask.createWSCertExpMonitor (’[-name testCertMon –autoReplace true –deleteOld true

–daysBeforeNotification 30 –wsScheduleName testSchedule –wsNotificationName testNotifier

–isEnabled false]’)

v Using Jython list:

AdminTask.createWSCertExpMonitor ([’-name’, ’testCertMon’, ’–autoReplace’, ’true’, ’–deleteOld’,

’true’, ’–daysBeforeNotification’, ’30’, ’–wsScheduleName’, ’testSchedule’, ’–wsNotificationName’,

’testNotifier’, ’–isEnabled’, ’false’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createWSCertExpMonitor {-interactive}

v Using Jython string:

AdminTask.createWSCertExpMonitor (’[-interactive]’)

v Using Jython list:

AdminTask.createWSCertExpMonitor ([’-interactive’])

1012 Securing applications and their environment

deleteWSCertExpMonitor

The deleteWSCertExpMonitor command deletes the settings of a scheduler from the configuration.

Target object

None.

Required parameters and return values

-name

The name that uniquely identifies the certificate expiration monitor. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteWSCertExpMonitor {-name testCertMon}

v Using Jython string:

AdminTask.deleteWSCertExpMonitor (’[-name testCertMon]’)

v Using Jython list:

AdminTask.deleteWSCertExpMonitor ([’-name’, ’testCertMon’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteWSCertExpMonitor {-interactive}

v Using Jython string:

AdminTask.deleteWSCertExpMonitor (’[-interactive]’)

v Using Jython list:

AdminTask.deleteWSCertExpMonitor ([’-interactive’])

getWSCertExpMonitor

The getWSCertExpMonitor command displays the settings of a particular scheduler.

Target object

None.

Required parameters and return values

-name

The name that uniquely identifies the certificate expiration monitor. (String, required)

v Returns: The scheduler in the configuration.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getWSCertExpMonitor {-name testCertMon}

v Using Jython string:

AdminTask getWSCertExpMonitor (’[-name testCertMon]’)

v Using Jython list:

Chapter 10. Configuring security with scripting 1013

AdminTask getWSCertExpMonitor ([’-name’, ’testCertMon’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getWSCertExpMonitor {-interactive}

v Using Jython string:

AdminTask.getWSCertExpMonitor (’[-interactive]’)

v Using Jython list:

AdminTask.getWSCertExpMonitor ([’-interactive’])

listWSCertExpMonitor

The listWSCertExpMonitor command lists the scheduler in the configuration.

Target object

None.

Required parameters and return values

-displayObjectNames

If you set the value of this parameter to true, the command returns the certificate expiration monitor

configuration object. If you set the value of this parameter to false, the command returns the name of

the certificate expiration monitor. (Boolean, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listWSCertExpMonitor {-displayObjectName false}

v Using Jython string:

AdminTask.listWSCertExpMonitor (’[-displayObjectName false]’)

v Using Jython list:

AdminTask.listWSCertExpMonitor ([’-displayObjectName’, ’false’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listWSCertExpMonitor {-interactive}

v Using Jython string:

AdminTask.listWSCertExpMonitor (’[-interactive]’)

v Using Jython list:

AdminTask.listWSCertExpMonitor ([’-interactive’])

modifyWSCertExpMonitor

The modifyWSCertExpMonitor command changes the setting of an existing scheduler.

Target object

None.

Required parameters and return values

1014 Securing applications and their environment

-name

The name that uniquely identifies the certificate expiration monitor. (String, required)

-autoReplace

Set the value of this parameter to true if you want to replace a certificate within a certificate expiration

date. If not, set the value of this parameter to false. (Boolean, required)

-deleteOld

Set the value of this parameter to true if you want to delete an old certificate during certificate

expiration monitoring. If not, set the value of this parameter to false. (Boolean, required)

-daysBeforeNotification

The number of days before a certificate expires that you want to be notified of the expiration. (Integer,

required)

-wsScheduleName

The name of the scheduler to use for certificate expiration. (String, required)

-wsNotificationName

The name of the notifier to use for certificate expiration. (String, required)

-isEnabled

Set the value of this parameter to true if the certificate expiration monitor is enabled. If not, set the

value of this parameter to false. (Boolean, optional)

v Returns: None

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask modifyWSCertExpMonitor {-name testCertMon –autoReplace false –deleteOld false

–daysBeforeNotification 20 –isEnabled true}

v Using Jython string:

AdminTask.modifyWSCertExpMonitor (’[-name testCertMon –autoReplace false –deleteOld false

–daysBeforeNotification 20 –isEnabled true]’)

v Using Jython list:

AdminTask.modifyWSCertExpMonitor ([’-name’, ’testCertMon’, ’–autoReplace’, ’false’, ’–deleteOld’,

’false’, ’–daysBeforeNotification’, ’20’, ’–isEnabled’, ’true’])

Interactive mode example usage:

v Using Jacl:

$AdminTask modifyWSCertExpMonitor {-interactive}

v Using Jython string:

AdminTask.modifyWSCertExpMonitor (’[-interactive]’)

v Using Jython list:

AdminTask.modifyWSCertExpMonitor ([’-interactive’])

startCertificateExpMonitor

The startCertificateExpMonitor command performs certificate monitoring. This command visits all key

stores and checks to see if they are within certificate expiration range.

Target object

None.

Required parameters and return values

Chapter 10. Configuring security with scripting 1015

v Parameters: None

v Returns: None

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask startCertificateExpMonitor

v Using Jython:

AdminTask.startCertificateExpMonitor()

Interactive mode example usage:

v Using Jacl:

$AdminTask startCertificateExpMonitor {-interactive}

v Using Jython string:

AdminTask.startCertificateExpMonitor (’[-interactive]’)

v Using Jython list:

AdminTask.startCertificateExpMonitor ([’-interactive’])

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

Related reference

Commands for the AdminTask object
Use the AdminTask object to run administrative commands with the wsadmin tool.

SignerCertificateCommands command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the SignerCertificateCommands group can be used to create and modify

signer certificates in relation to the key store file and to query for signer information on ports of remote

hosts.

The SignerCertificateCommands command group for the AdminTask object includes the following

commands:

v “addSignerCertificate”

v “deleteSignerCertificate” on page 1017

v “extractSignerCertificate” on page 1018

v “getSignerCertificate” on page 1019

v “listSignerCertificates” on page 1019

v “retrieveSignerFromPort” on page 1020

v “retrieveSignerInfoFromPort” on page 1021

addSignerCertificate

The addSignerCertificate command add a signer certificate from a certificate file to a keystore.

Target object

None.

1016 Securing applications and their environment

Required parameters

-keyStoreName

Specifies the name that uniquely identifies the keystore configuration object. (String, required)

-certificateAlias

Specifies the name that uniquely identifies the certificate request in a keystore. (String, required)

-certificateFilePath

Specifies the full path of the request file that contains the certificate. (String, required)

-base64Encoded

Specifies that the certificate is a Base64 encoded ASCII data file type if the value is set to true. Set

the value of this parameter to false if the certificate is a binary DER data file type. (Boolean, required)

Optional parameters

-keyStoreScope

Specifies the scope name of the keystore. (String, optional)

Example output

The command does not return output.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask addSignerCertificate {-keyStoreName testKeyStore -certificateAlias

default -certificateFilePath <file path> -base64Encoded true}

v Using Jython string:

AdminTask.addSignerCertificate(’[-keyStoreName testKeyStore -certificateAlias

default -certificateFilePath <file path> -base64Encoded true]’)

v Using Jython list:

AdminTask.addSignerCertificate([’-keyStoreName’, ’testKeyStore’, ’-certificateAlias’,

’default’, ’-certificateFilePath’, ’<file path>’, ’-base64Encoded’, ’true’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addSignerCertificate {-interactive}

v Using Jython string:

AdminTask.addSignerCertificate (’[-interactive]’)

deleteSignerCertificate

The deleteSignerCertificate command delete a signer certificate from a certificate file from a keystore.

Target object

None.

Required parameters

-keyStoreName

Specifies the name that uniquely identifies the keystore configuration object. (String, required)

-certificateAlias

Specifies the name that uniquely identifies the certificate request in a keystore. (String, required)

Chapter 10. Configuring security with scripting 1017

Optional parameters

-keyStoreScope

Specifies the scope name of the keystore. (String, optional)

Example output

The command does not return output.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteSignerCertificate {-keyStoreName testKeyStore -certificateAlias

default}

v Using Jython string:

AdminTask.deleteSignerCertificate(’[-keyStoreName testKeyStore -certificateAlias

default]’)

v Using Jython list:

AdminTask.deleteSignerCertificate([’-keyStoreName’, ’testKeyStore’, ’-certificateAlias’,

’default’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteSignerCertificate {-interactive}

v Using Jython string:

AdminTask.deleteSignerCertificate (’[-interactive]’)

extractSignerCertificate

The extractSignerCertificate command extracts a signer certificate from a key store to a file.

Target object

None

Required parameters and return values

-keyStoreName

The name of the key store where the signer certificate is located. (String, required)

-keyStoreScope

The management scope of the key store. (String, optional)

-certificateAlias

The alias name of the signer certificate in the key store. (String, required)

-certificateFilePath

The full path name of the file that contains the signer certificate. (String, required)

-base64Encoded

Set the value of this parameter to true if the certificate is ascii base 64 encoded. Set the value of this

parameter to false if the certificate is binary. (String, required)

Examples

Interactive mode example usage:

1018 Securing applications and their environment

v Using Jacl:

$AdminTask extractSigner Certificate {-interactive}

v Using Jython string:

AdminTask.extractSignerC ertificate (’[-interactive]’)

v Using Jython list:

AdminTask.extractSignerCe rtificate ([’-interactive’])

getSignerCertificate

The getSignerCertificate command obtains information about a signer certificate from a key store.

Target object

None

Required parameters and return values

-keyStoreName

The name of the key store where the signer certificate is located. (String, required)

-keyStoreScope

The management scope of the key store. (String, optional)

-certificateAlias

The alias name of the signer certificate in the key store. (String, required)

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask getSignerCert ificate {-interactive}

v Using Jython string:

AdminTask.getSignerCert ificate (’[-interactive]’)

v Using Jython list:

AdminTask.getSignerCert ificate ([’-interactive’])

listSignerCertificates

The listSignerCertificates command lists all signer certificates in a particular key store.

Target object

None

Required parameters and return values

-keyStoreName

The name of the key store where the signer certificate is located. (String, required)

-keyStoreScope

The management scope of the key store. (String, optional)

Examples

Interactive mode example usage:

v Using Jacl:

Chapter 10. Configuring security with scripting 1019

$AdminTask listSignerCer tificates {-interactive}

v Using Jython string:

AdminTask.listSignerCer tificates (’[-interactive]’)

v Using Jython list:

AdminTask.listSignerCer tificates ([’-interactive’])

retrieveSignerFromPort

The retrieveSignerFromPort command retrieves a signer from a remote host and stores the signer in a

key store.

Target object

None

Required parameters and return values

-host

The host name of the system from where the signer certificate will be retrieved. (String, required)

-port

The port of the remote system from where the signer certificate will be retrieved. (Integer, required)

-keyStoreName

The name of the key store where the signer certificate is located. (String, required)

-keyStoreScope

The management scope of the key store. (String, required)

-sslConfigName

The name of the SSL configuration object. (String, optional)

-sslConfigScopeName

The management scope where the SSL configuration object is located. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask retrieveSigner FromPort {-host serverHost -port 443 -keyStoreName testKeyStore

-certificate Alias serverHostSigner}

v Using Jython string:

AdminTask.retrieveSigner FromPort (’[-host server Host -port 443 -keyStore Name testKeyStore

-certi ficateAlias serverHost Signer]’)

v Using Jython list:

AdminTask.retrieveSigner FromPort ([’-host’, ’serverHost’, ’-port’, ’443’, ’-keyStoreName’,

’testKeyStore’, ’-certi ficateAlias’, ’serverHost Signer’])

Interactive mode example usage:

v Using Jacl:

$AdminTask retrieveSigner FromPort {-interactive}

v Using Jython string:

AdminTask.retrieveSigner FromPort (’[-interactive]’)

v Using Jython list:

AdminTask.retrieveSigner FromPort ([’-interactive’])

1020 Securing applications and their environment

retrieveSignerInfoFromPort

The retrieveSigner InfoFromPort command retrieves signer information from a port on a remote host.

Target object

None

Required parameters and return values

-host

The host name of the system from where the signer certificate will be retrieved. (String, required)

-port

The port of the remote system from where the signer certificate will be retrieved. (Integer, required)

-sslConfigName

The name of the SSL configuration object. (String, optional)

-sslConfigScopeName

The management scope where the SSL configuration object is located. (String, optional)

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask retrieveSigner InfoFromPort {-interactive}

v Using Jython string:

AdminTask.retrieveSigner InfoFromPort (’[-interactive]’)

v Using Jython list:

AdminTask.retrieveSigner InfoFromPort ([’-interactive’])

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

Related reference

Commands for the AdminTask object
Use the AdminTask object to run administrative commands with the wsadmin tool.

CertificateRequestCommands command group of the AdminTask

object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the CertificateRequestCommands group can be used to create and manage

certificate requests.

The CertificateRequestCommands command group for the AdminTask object includes the following

commands:

v “createCertificateRequest” on page 1022

v “deleteCertificateRequest” on page 1023

v “extractCertificateRequest” on page 1023

v “getCertificateRequest” on page 1024

v “listCertificateRequest” on page 1025

Chapter 10. Configuring security with scripting 1021

createCertificateRequest

The createCertificateRequest command creates a certificate request that is associated with a particular

key store.

Target object

None.

Required parameters and return values

-keyStoreName

The name that uniquely identifies the key store configuration object. (String, required)

-keyStoreScope

The scope name of the key store. (String, optional)

-certificateAlias

The name that uniquely identifies the certificate request in a key store. (String, required)

-certificateVersion

The certificate version. (String, required)

-certificateSize

(Integer, required)

-certificateCommonName

(String, required)

-certificateOrganization

(String, optional)

-certificateOrganizationalUnit

(String, optional)

-certificateLocality

(String, optional)

-certificateState

The state code for the certificate. (String, optional)

-certificateZip

The zip code for the certificate. (String, optional)

-certificateCountry

The country for the certificate. (String, optional)

-certificateValidDays

The amount of time in days for which the certificate is valid. (Integer, optional)

-certificateRequestFilePath

The file location of the certificate request that can be sent to a certificate authority. (String, required)

v Returns: The configuration object name of the key store object that you created.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createCertificateRequest {-keyStoreName testKeyStore

-certificateAlias certReq -certificateSize 1024 -certificate

CommonName localhost -certificate Organization testing -certificate

RequestFilePath c:\temp\testCertReq.arm}

v Using Jython string:

1022 Securing applications and their environment

AdminTask.createCertificateRequest (’[-keyStoreName testKeyStore

-certificateAlias certReq -certificateSize 1024 -certificate

CommonName localhost -certificate Organization testing -certificate

RequestFilePath c:\temp\testCertReq.arm]’)

v Using Jython list:

AdminTask.createCertificateRequest ([’-keyStoreName’, ’testKeyStore’,

’-certificateAlias’, ’certReq’, ’-certificateSize’, ’1024’,

’-certificateCommonName’, ’localhost’,’-certificateOrganization’,

’testing’, ’-certificateRequestFilePath’,’c:\temp\testCertReq.arm’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createCertificateRequest {-interactive}

v Using Jython string:

AdminTask.createCertificateRequest (’[-interactive]’)

v Using Jython list:

AdminTask.createCertificateRequest ([’-interactive’])

deleteCertificateRequest

The deleteCertificateRequest command deletes a certificate request from a key store.

Target object

None.

Required parameters and return values

-keyStoreName

The name that uniquely identifies the key store configuration object. (String, required)

-keyStoreScope

The scope name of the key store. (String, optional)

-certificateAlias

The name that uniquely identifies the certificate request in a key store. (String, required)

v Returns: None.

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteCertificateRequest {-interactive}

v Using Jython string:

AdminTask.deleteCertificateRequest (’[-interactive]’)

v Using Jython list:

AdminTask.deleteCertificateRequest ([’-interactive’])

extractCertificateRequest

The extractCertificateRequestcommand extracts a certificate request to a file.

Target object

None.

Chapter 10. Configuring security with scripting 1023

Required parameters and return values

-keyStoreName

The name that uniquely identifies the key store configuration object. (String, required)

-keyStoreScope

The scope name of the key store. (String, optional)

-certificateAlias

The name that uniquely identifies the certificate request in a key store. (String, required)

-certificateRequestFilePath

The file location of the certificate request that can be sent to a certificate authority. (String, required)

v Returns: A certificate request file is created that contains the extracted certificate.

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask extractCertificateRequest {-interactive}

v Using Jython string:

AdminTask.extractCertificateRequest (’[-interactive]’)

v Using Jython list:

AdminTask.extractCertificateRequest ([’-interactive’])

getCertificateRequest

The getCertificateRequest command obtains information about a particular certificate request in a key

store.

Target object

None.

Required parameters and return values

-keyStoreName

The name that uniquely identifies the key store configuration object. (String, required)

-keyStoreScope

The scope name of the key store. (String, optional)

-certificateAlias

The name that uniquely identifies the certificate request in a key store. (String, required)

v Returns: Information about the certificate request.

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask getCertificateRequest {-interactive}

v Using Jython string:

AdminTask.getCertificateRequest (’[-interactive]’)

v Using Jython list:

AdminTask.getCertificateRequest ([’-interactive’])

1024 Securing applications and their environment

listCertificateRequest

The listCertificateRequest command lists all the certificate requests associated with a particular key

store.

Target object

None.

Required parameters and return values

-keyStoreName

The name that uniquely identifies the key store configuration object. (String, required)

-keyStoreScope

The scope name of the key store. (String, optional)

v Returns: An attribute list for each certificate request in a key store.

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask listCertificateRequest {-interactive}

v Using Jython string:

AdminTask.listCertificateRequest (’[-interactive]’)

v Using Jython list:

AdminTask.listCertificateRequest ([’-interactive’])

Enabling authentication in the file transfer service using scripting

You can enable authentication in the file transfer service using scripting and the wsadmin tool.

Before you begin

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

v A wsadmin Jacl script is provided to help you redeploy the file transfer. The script is called

redeployFileTransfer.jacl and is located in the app_server_root/bin directory.

The syntax for running the script from the bin directory is the following:

–

wsadmin -conntype NONE -lang jacl -profile redeployFileTransfer.jacl -c "fileTransferAuthenticationXxx

cellName nodeName serverName"

where Xxx is On or Off.

Use wsadmin.

– For example, when running the script to enable use of the filetransferSecured.ear file, the syntax is

similar to the following example:

wsadmin -conntype NONE -lang jacl -profile redeployFileTransfer.jacl -c

"fileTransferAuthenticationOn managedCell managedCellManager dmgr"

or

wsadmin -conntype NONE -lang jacl -profile redeployFileTransfer.jacl -c

"fileTransferAuthenticationOn baseCell base server1"

Chapter 10. Configuring security with scripting 1025

v If you want to go return to running the file transfer service without authentication, you can run the script

as shown in the following example:

wsadmin -conntype NONE -lang jacl -profile redeployFileTransfer.jacl -c

"fileTransferAuthenticationOff baseNodeCell baseNode server1"

or

wsadmin -conntype NONE -lang jacl -profile redeployFileTransfer.jacl -c

"fileTransferAuthenticationOff managedCell managedCellManager dmgr"

What to do next

You must restart the server for the change to take affect.

Propagating security policy of installed applications to a JACC

provider using wsadmin scripting

It is possible that you have applications installed prior to enabling the Java Authorization Contract for

Containers (JACC)-based authorization. You can start with default authorization and then move to an

external provider-based authorization using JACC later.

Before you begin

Note: Use the wsadmin tool to propagate information to the JACC provider independent of the application

installation process, avoiding the need to reinstall applications. Also, during application installation

or modification you might have had problems propagating the security policy information to the

JACC provider. For example, network problems might occur, the JACC provider might not be

available, and so on. For these cases, the security policy of the previously installed applications

does not exist in the JACC provider to make the access decisions. One choice is to reinstall the

applications involved. However, you can avoid reinstalling by using the wsadmin scripting tool. Use

this tool to propagate information to the JACC provider independent of the application installation

process. The tool eliminates the need for reinstalling the applications.

The tool uses the SecurityAdmin MBean to propagate the policy information in the deployment descriptor

of any installed application to the JACC provider. You can invoke this tool using wsadmin at the base

application server for base and deployment manager level for Network Deployment. Note that the

SecurityAdmin MBean is available only when the server is running.

Use propagatePolicyToJACCProvider{-appNames appNames} to propagate the policy information in the

deployment descriptor or annotations of the enterprise archive (EAR) files to the JACC provider. If the

RoleConfigurationFactory and the RoleConfiguration interfaces are implemented by the JACC provider, the

authorization table information in the binding file of the EAR files is also propagated to the provider. See

the Securing applications and their environment PDF for more information about these interfaces.

The appNames String contains the list of application names, delimited by a colon (:), whose policy

information must be stored in the provider. If appNames is not present, the policy information of all the

deployed applications is propagated to the provider.

Also, be aware of the following items:

v Before migrating applications to the Tivoli Access Manager JACC provider, create or import the users

and groups that are in the applications to Tivoli Access Manager.

v Depending on the application or the number of applications that are propagated, you might have to

increase the request time-out period either in the soap.client.props file in the directory

profile_root/properties (if using SOAP) or in the sas.client.props file (if using RMI) for the

command to complete. You can set the request time-out value to 0 to avoid the timeout problem, and

change it back to the original value after the command is run.

1026 Securing applications and their environment

1. Configure your JACC provider in WebSphere Application Server.

See the Securing applications and their environment PDF for more information.

2. Restart the server.

3. Enter the following commands:

wsadmin>$AdminTask propagatePolicyToJACCProvider {-appNames appNames}

JACCUtilityCommands command group for the AdminTask object

Use this topic as a reference for the commands for the JACCUtilityCommands group for the AdminTask

object. Use these commands to determine whether Java Authorization Contract for Containers (JACC) is

enabled and whether the runtime uses a single security domain. You can also use these commands to

propagate the security policies for application to the JACC provider.

The following commands are available for the JACCUtilityCommands group of the AdminTask object.

v “isJACCEnabled”

v “isSingleSecurityDomain”

v “propagatePolicyToJACCProvider ” on page 1028

isJACCEnabled

The isJACCEnabled command displays whether JACC is enabled or disabled in the global security domain

when the server was started. The command does not indicate dynamic changes. Instead, it displays the

JACC status at server startup.

Target object

None.

Required parameters

None.

Return value

The command returns true if JACC is enabled. The command returns false if JACC is disabled.

Batch mode example usage

Using Jython string:

AdminTask.isJACCEnabled()

Interactive mode example usage

Using Jython:

AdminTask.isJACCEnabled(’-interactive’)

isSingleSecurityDomain

The isSingleSecurityDomain command displays whether the environment is configured to use a single

security domain when the server was started. The command does not indicate dynamic changes. Instead,

it displays the security domain status at server startup.

Target object

None.

Chapter 10. Configuring security with scripting 1027

Required parameters

None.

Return value

The command returns true if the environment uses a single security domain. The command returns the

false string if the environment uses multiple security domains.

Batch mode example usage

Using Jython:

AdminTask.isSingleSecurityDomain()

Interactive mode example usage

Using Jython:

AdminTask.isSingleSecurityDomain(’-interactive’)

propagatePolicyToJACCProvider

The propagatePolicyToJACCProvider command propagates the security policies of the applications of

interest to the JACC provider. This command is supported in a single security domain environment only.

Target object

None.

Required parameters

None.

Optional parameters

-appNames

Specifies a list of application names delimited with a colon character (:). (String, optional)

 The command uses all applications if you do not specify a value for this parameter, as the following

syntax demonstrates: AdminTask.propagatePolicyToJACCProvider()

Return value

The command does not return output.

Batch mode example usage

Using Jython string:

AdminTask.propagatePolicyToJACCProvider (’–appNames "app1:app2:app3"’)

Using Jython list:

AdminTask.propagatePolicyToJACCProvider (’–appNames’, ’"app1:app2:app3"’)

Interactive mode example usage

Using Jython:

AdminTask.propagatePolicyToJACCProvider (’-interactive’)

1028 Securing applications and their environment

Configuring custom adapters for federated repositories using wsadmin

You can use the Jython or Jacl scripting language with the wsadmin tool to define custom adapters in the

federated repositories configuration file.

Before you begin

Shut down the WebSphere Application Server and the wsadmin command window.

About this task

The federated repositories configuration file, wimconfig.xml, is shipped with WebSphere Application Server

6.1.x and is located in the app_server_root/profiles/profile_name/config/cells/cell_name/wim/config

directory.

Note: For additional information about the commands to use for this topic, see “IdMgrRepositoryConfig

command group for the AdminTask object” on page 1135.

Use the following steps to add a custom adapter to any federated repositories configuration file and to any

realm defined within the configuration file.

 1. Open the wimconfig.xml file with a text editor.

 2. Add a new config:repositories element to the file. This element should be placed before the

config:realmConfiguration element.

The following example configures a custom repository to use the

com.ibm.ws.wim.adapter.sample.SampleFileAdapter class and sets the SampleFileRepository

repository as the identifier:

<config:repositories adapterClassName="com.ibm.ws.wim.adapter.sample.SampleFileAdapter"

id="SampleFileRepository"/>

 3. Save the wimconfig.xml file and close the text editor.

 4. Copy the vmmsampleadapter.jar file that is provided to app_server_root/lib.

 5. Start the wsadmin command prompt application and enter the following command:

wsadmin –conntype none

 6. Disable paging in the common repository configuration. Set the supportPaging parameter for the

updateIdMgrRepository command to false to disable paging.

Note: You must perform this step because the sample adapter does not support paging.

The following examples use the SampleFileRepository repository as the identifier for the custom

repository.

Using Jython:

AdminTask.updateIdMgrRepository(’-id SampleFileRepository -supportPaging false’)

Using Jacl:

$AdminTask updateIdMgrRepository {-id SampleFileRepository -supportPaging

false}

Note: A warning will appear until the configuration of the sample repository is complete.

 7. Add the necessary custom properties for the adapter. Use the setIdMgrCustomProperty command

repeatedly to add multiple properties. Use this command once per property to add multiple properties

to your configuration. You must use both the name and value parameters to add the custom property

for the specified repository. For example, to add a custom property of fileName, enter the following

command.

Using Jython:

AdminTask.setIdMgrCustomProperty(’-id SampleFileRepository -name fileName

-value "c:\sampleFileRegistry.xml"’)

Chapter 10. Configuring security with scripting 1029

Using Jacl:

$AdminTask setIdMgrCustomProperty {-id SampleFileRepository -name fileName

-value "c:\sampleFileRegistry.xml"}

 8. Add a base entry to the adapter configuration. Use the addIdMgrRepositoryBaseEntry command to

specify the name of the base entry for the specified repository. For example:

Using Jython:

AdminTask.addIdMgrRepositoryBaseEntry(’-id SampleFileRepository -name

o=sampleFileRepository’)

Using Jacl:

$AdminTask addIdMgrRepositoryBaseEntry {-id SampleFileRepository -name

o=sampleFileRepository}

 9. Use the addIdMgrRealmBaseEntry command to add the base entry to the realm, which will link the

realm with the repository:

Using Jython:

AdminTask.addIdMgrRealmBaseEntry(’-name defaultWIMFileBasedRealm -baseEntry o=sampleFileRepository’)

Using Jacl:

$AdminTask addIdMgrRealmBaseEntry {-name defaultWIMFileBasedRealm -baseEntry o=sampleFileRepository}

10. Save your configuration changes. Enter the following commands to save the new configuration and

close the wsadmin tool.

Using Jython:

AdminConfig.save()

exit

Using Jacl:

$AdminConfig save

exit

The following example displays the complete text of the newly-revised wimconfig.xml file:

<!--

 Begin Copyright

 Licensed Materials - Property of IBM

 virtual member manager

 (C) Copyright IBM Corp. 2005 All Rights Reserved.

 US Government Users Restricted Rights - Use, duplication or

 disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 End Copyright

-->

<sdo:datagraph xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:config="http://www.ibm.com/websphere/wim

/config" xmlns:sdo="commonj.sdo">

 <config:configurationProvider maxPagingResults="500" maxSearchResults="4500"

maxTotalPagingResults="1000"

pagedCacheTimeOut="900" pagingEntityObject="true" searchTimeOut="600000">

 <config:dynamicModel xsdFileName="wimdatagraph.xsd"/>

 <config:supportedEntityTypes defaultParent="o=defaultWIMFileBasedRealm" name="Group">

 <config:rdnProperties>cn</config:rdnProperties>

 </config:supportedEntityTypes>

 <config:supportedEntityTypes defaultParent="o=defaultWIMFileBasedRealm" name="OrgContainer">

 <config:rdnProperties>o</config:rdnProperties>

 <config:rdnProperties>ou</config:rdnProperties>

 <config:rdnProperties>dc</config:rdnProperties>

 <config:rdnProperties>cn</config:rdnProperties>

 </config:supportedEntityTypes>

 <config:supportedEntityTypes defaultParent="o=defaultWIMFileBasedRealm" name="PersonAccount">

 <config:rdnProperties>uid</config:rdnProperties>

1030 Securing applications and their environment

</config:supportedEntityTypes>

 <config:repositories xsi:type="config:FileRepositoryType" adapterClassName="com.ibm.

 ws.wim.adapter.file.was.FileAdapter"

id="InternalFileRepository" supportPaging="false" supportSorting="false" messageDigestAlgorithm="SHA-1">

 <config:baseEntries name="o=defaultWIMFileBasedRealm"/>

 </config:repositories>

 <config:repositories adapterClassName="com.ibm.ws.wim.adapter.sample.SampleFileAdapter"

 id="SampleFileRepository">

 <config:CustomProperties name="fileName" value="c:\sampleFileRegistry.xml"/>

 <config:baseEntries name="o=sampleFileRepository"/>

 </config:repositories>

 <config:realmConfiguration defaultRealm="defaultWIMFileBasedRealm">

 <config:realms delimiter="@" name="defaultWIMFileBasedRealm" securityUse="active">

 <config:participatingBaseEntries name="o=defaultWIMFileBasedRealm"/>

 <config:participatingBaseEntries name="o=sampleFileRepository"/>

 <config:uniqueUserIdMapping propertyForInput="uniqueName" propertyForOutput="uniqueName"/>

 <config:userSecurityNameMapping propertyForInput="principalName" propertyForOutput="principalName"/>

 <config:userDisplayNameMapping propertyForInput="principalName" propertyForOutput="principalName"/>

 <config:uniqueGroupIdMapping propertyForInput="uniqueName" propertyForOutput="uniqueName"/>

 <config:groupSecurityNameMapping propertyForInput="cn" propertyForOutput="cn"/>

 <config:groupDisplayNameMapping propertyForInput="cn" propertyForOutput="cn"/>

 </config:realms>

 </config:realmConfiguration>

</config:configurationProvider></sdo:datagraph>

11. Restart the application server.

Related reference

“Sample custom adapters for federated repositories examples” on page 203
Out of the box adapters for federated repositories provide File, LDAP, and Database adapters for your use.

These adapters implement the com.ibm.wsspi.wim.Repository software programming interface (SPI). A

virtual member manager custom adapter needs to implement the same SPI.

Disabling embedded Tivoli Access Manager client using wsadmin

Follow these steps to unconfigure the Java Authorization Contract for Containers (JACC) provider for Tivoli

Access Manager.

About this task

Note: It is also possible to unconfigure using the administrative console. For details on unconfiguring the

embedded Tivoli Access Manager client using the WebSphere Application Server administrative

console, refer to “Disabling embedded Tivoli Access Manager client using the administrative

console” on page 545.

1. Start the wsadmin command-line utility. The wsadmin command is found in theinstall_dir/bin

directory

2. From the wsadmin prompt, enter the following command:

WSADMIN>$AdminTask unconfigureTAM -interactive

You are prompted to enter the following information:

 Option Description

WebSphere Application Server node name Enter an asterisk (*) to select all nodes.

Tivoli Access Manager administrator user name Enter the Tivoli Access Manager administration user ID,

as created at the time of Tivoli Access Manager

configuration. This name is usually, sec_master.

Tivoli Access Manager administrator user password Enter the password for the Tivoli Access Manager

administrator.

Chapter 10. Configuring security with scripting 1031

Option Description

Force Enter yes, if you want to ignore errors when unconfiguring

the JACC provider for Tivoli Access Manager. Enter this

option as yes only when the Tivoli Access Manager

domain is in an irreparable state.

Defer Enter no, to force the unconfiguration of the connected

server. Enter No for the unconfiguration to proceed

correctly.

3. When all information is entered, enter F to save the properties or C to cancel from the unconfiguration

process and discard the entered information.

4. Restart all WebSphere Application Server instances for the changes to take effect.

Configuring security auditing using scripting

Security auditing provides tracking and archiving of auditable events. This topic uses the wsadmin tool to

enable and administer your security auditing configurations.

About this task

While security authentication and authorization ensures that users must have access to view protected

resources, security auditing provides a mechanism to validate the integrity of a security computing

environment. Security auditing collects and logs authentication, authorization, system management,

security, and audit policy events in audit event records. You can analyze audit event records to determine

possible security breaches, threats, attacks, and potential weaknesses in the security configuration of your

environment. Enable security auditing in your environment. For example, the following list displays a

sample of events to audit:

v Determine the time that a specific user attempted to access a resource.

v View information for successful and unsuccessful attempts to access resources.

v Review changes to resources that were made by a specific user.

v Determine the cause of unsuccessful login attempts.

Use the following task outline to enable and configure security auditing in your environment:

1. Enable administrative security in your environment.

2. Configure auditable events. The security auditing configuration provides four default auditable filters.

Use this topic to configure filters for additional audit events.

3. Configure audit event factories. The security auditing configuration provides a default event factory.

Use this topic to configure additional audit event factories.

4. Configure audit service providers. The security auditing configuration provides a default service

provider. Use this topic to configure additional audit service providers.

5. Set the global audit policy. After setting up audit event factories, service providers, and events, use this

topic to enable security auditing.

Results

After completing the steps to enable and configure security auditing, the profile of interest audits your

security configurations for specific auditable event types.

What to do next

To further configure security auditing, you can:

v Configure audit notifications.

1032 Securing applications and their environment

v Encrypt audit records.

v Sign audit records.

Configuring audit service providers using scripting

Before enabling security auditing, use this task to configure audit service providers using the wsadmin tool.

Security auditing provides tracking and archiving of auditable events.

Before you begin

Before configuring security audit service providers, enable administrative security in your environment.

About this task

In order to enable security auditing in your environment, you must configure an audit service provider. The

audit service provider writes the audit records and data to the back-end repository associated with the

service provide implementation. The security auditing configuration provides a default service provider. Use

this topic to customize your security auditing subsystem by creating additional audit service providers.

Use the following steps to configure your security auditing subsystem using the wsadmin tool:

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Configure an audit service provider. You can use the default binary-based audit service provider, or use

this step to create a new audit service provider.

There are binary file-based and third-party audit service providers. In addition to the default binary

file-based service provider, you can configure a third-party audit service provider.

Choose the type of audit service provider to create.

v Use the createBinaryEmitter command and the following required parameters to create a default

audit service provider:

 Parameter Description Data Type Required

-uniqueName Specifies a unique name that identifies the audit

service provider.

String Yes

-className Specifies the class implementation of the audit

service provider interface.

String Yes

-fileLocation Specifies the file location for the audit service

provider to write the audit logs.

String Yes

-auditFilters Specifies a reference or a group of references to

predefined audit filters, using the following format:

reference, reference, reference

String Yes

-maxFileSize Specifies the maximum size each audit log

reaches before the system saves it with a

timestamp and creates a new file. Specify the file

size in megabytes. If you do not specify this

parameter, the system sets the maximum file size

to 10 megabytes.

Integer No

-maxLogs Specifies the maximum number of audit logs to

create before rewriting the oldest log. If you do not

specify this parameter, the system allows up to

100 audit logs before overwriting the oldest log.

Integer No

The following example creates a new audit service provider in your security auditing configuration:

AdminTask.createBinaryEmitter(’-uniqueName newASP -className

com.ibm.ws.security.audit.BinaryEmitterImpl -fileLocation /AUDIT_logs

-auditFilters "AuditSpecification_1173199825608, AuditSpecification_1173199825609,

AuditSpecification_1173199825610, AuditSpecification_1173199825611"’)

v Use the createThirdPartyEmitter command to use a third-party audit service provider. Use the

following parameters with the createThirdPartyEmitter command:

Chapter 10. Configuring security with scripting 1033

Parameter Description Data Type Required

-uniqueName Specifies a unique name that identifies the audit

service provider.

String Yes

-className Specifies the class implementation of the audit

service provider interface.

String Yes

-eventFormatterClass Specifies the class that implements how the audit

event is formatted for output. If you do not specify

this parameter, the system uses the standard text

format for output.

String Yes

-auditFilters Specifies a reference identifier or a group of

reference identifiers to pre-defined audit filters,

using the following format: reference, reference,

reference.

String Yes

-customProperties Specifies any custom properties that might be

required to configure a third party audit service

provider.

String No

The following example creates a new third party audit service provider in your security auditing

configuration:

AdminTask.createThirdPartyEmitter(’-uniqueName myAuditServiceProvider -className

com.mycompany.myclass -fileLocation /auditLogs -auditFilters

"AuditSpecification_1173199825608, AuditSpecification_1173199825609,

AuditSpecification_1173199825610, AuditSpecification_1173199825611"’)

3. Save your configuration changes.

What to do next

Enable security auditing in your environment.

Configuring audit event factories using scripting

Before enabling security auditing, use this task to configure audit event factories using the wsadmin tool.

Security auditing provides tracking and archiving of auditable events.

Before you begin

Before configuring security auditing event factories, enable administrative security in your environment.

About this task

In order to enable security auditing in your environment, you must configure an audit event factory. The

audit event factory gathers the data that is associated with security events. The security auditing

configuration provides a default event factory. Use this topic to customize your security auditing subsystem

by creating additional audit event factories.

Use the following steps to configure your security auditing subsystem using the wsadmin tool:

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Configure event filters. You can use the default event filters or use this step to create additional filters

to customize your security auditing configuration.

The application server provides the following event filters by default in the audit.xml template file:

 Event Name Outcome of event

SECURITY_AUTHN SUCCESS

SECURITY_AUTHN DENIED

SECURITY_RESOURCE_ACCESS SUCCESS

SECURITY_AUTHN REDIRECT

You can configure additional audit event types to track and archive various events. Use the following

command to list all supported auditable events:

1034 Securing applications and their environment

print AdminTask.getSupportedAuditEvents()

Use the createAuditFilter command with the -eventType and -outcome parameters to enable one or

multiple audit events and outcomes. You can specify multiple event types and multiple outcomes

separated by a comma with one command invocation. The following list describes each valid auditable

event that you can specify with the -eventType parameter:

 Event name Description

SECURITY_AUTHN Audits all authentication events

SECURITY_AUTHN_MAPPING Audits events that record mapping of credentials where two user identities are involved

SECURITY_AUTHN_TERMINATE Audits authentication termination events such as a timeout, terminated session, or user-initiated

logging out

SECURITY_AUTHZ Audits events related to authorization checks when the system enforces access control policies

SECURITY_MGMT_POLICY Audits events related to security policies, such as the creation of access control lists

SECURITY_MGMT_PROVISIONING Audits provisioning events such as the creation of an account for a user on a specific machine or

adding a user to a group on a specific machine. A given provisioning event might be related to one or

more SECURITY_MGMT_REGISTRY events.

SECURITY_MGMT_RESOURCE Audits resource management events such as creation, deletion, and changes to the attributes of a

resource. The resource represents an entity with operations that need to be secured. An example of

a resource is the Tivoli Access Manager protected object that might represent a file, a Web page,

and so on.

SECURITY_RUNTIME_KEY Audits events related to runtime operations for certificates such as expiration, expiration checks, and

invalid certificates

SECURITY_MGMT_KEY Audits events related to management operations for certificates such as creating, updating, or

exporting a certificate, reading or updating a certificate request, publishing a certificate revocation list,

monitoring changes to the keystore, truststore, and so on.

SECURITY_MGMT_AUDIT Audits events that record operations related to the audit subsystem such as starting audit, stopping

audit, turning audit on or off, changing configuration of audit filters or level, archiving audit data,

purging audit data, and so on.

SECURITY_RESOURCE_ACCESS Audits events that record all accesses to a resource. Examples are all accesses to a file, all HTTP

requests and responses to a given Web page, and all accesses to a critical database table

SECURITY_SIGNING Audits events that record signing such as signing operations used to validate parts of a SOAP

Message for Web services

SECURITY_ENCRYPTION Audits events that record encryption information such as encryption for Web services

SECURITY_AUTHN_DELEGATION Audits events that record delegation, including identity assertion, RunAs, and low assertion. Used

when the client identity is propagated or when delegation involves the use of a special identity. This

event type is also used when switching user identities within a given session.

SECURITY_AUTHN_CREDS_MODIFY Audits events to modify credentials for a given user identity

For each audit event type, you must specify an outcome. Valid outcomes include SUCCESS,

FAILURE, REDIRECT, ERROR, DENIED, WARNING, and INFO. The following command example

creates an audit filter to log users who receive an error when modifying credentials:

AdminTask.createAuditFilter(’-name uniqueFilterName -eventType

SECURITY_AUTHN_CREDS_MODIFY,SECURITY_AUTHN_DELEGATION -outcome ERROR,REDIRECT’)

3. Create an audit event factory. You can use the default audit event factory or use this step to create a

new audit event factory.

Use the createAuditEventFactory command to create an audit event factory in your security

configuration. You can use the default implementation of the audit event factory or use a third-party

implementation. To configure a third-party implementation, use the optional -customProperties

parameter to specify any properties necessary to configure the audit event factory implementation.

Specify the following required parameters with the createAuditEventFactory to configure your audit

event factory:

 Parameter Description Data type Required

-uniqueName Specifies a unique name that identifies the audit

event factory.

String Yes

-className Specifies the class implementation of the audit event

factory interface.

String Yes

-auditFilters Specifies a reference or a group of references to

predefined audit filters, using the following format:

″reference, reference, reference″

String Yes

Chapter 10. Configuring security with scripting 1035

Parameter Description Data type Required

-provider Specifies a reference to a predefined audit service

provider implementation.

String Yes

-customProperties Specifies a comma (,) separated list of custom

property pairs to add to the security object in the

following format: attribute=value,attribute=value

String No

The following sample command creates an enables an audit event factory:

AdminTask.createAuditEventFactory(’-uniqueName eventFactory1 -className

com.ibm.ws.security.audit.AuditEventFactoryImpl -auditFilters

"AuditSpecification_1173199825608, AuditSpecification_1173199825609, AuditSpecification_1173199825610,

AuditSpecification_1173199825611" -provider newASP’)

4. Save your configuration changes.

What to do next

Configure the audit service provider.

Configuring auditable events using scripting

Before enabling security auditing, use this task to configure event filters using the wsadmin tool. Security

auditing provides tracking and archiving of auditable events.

Before you begin

Before configuring security auditing filters, enable administrative security in your environment.

About this task

Before configuring an audit event factory and audit service provider, configure event filters. The audit

service provider writes audit records to the back end repository associated with the provider

implementation. The audit event factory generates security events. Event filters specify which event types

and outcomes the system audits and records. Each event type has up to seven possible outcomes,

including success, failure, denied, error, warning, info, and redirect. The security auditing configuration

provides four default filters. Use this topic to customize your security auditing subsystem by creating

additional audit event filters.

Use the following steps to configure your security auditing subsystem using the wsadmin tool:

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Configure event filters. You can use the default event filters or use this step to create additional filters

to customize your security auditing configuration.

The application server provides the following event filters by default in the audit.xml template file:

 Event Name Outcome of event

SECURITY_AUTHN SUCCESS

SECURITY_AUTHN DENIED

SECURITY_RESOURCE_ACCESS SUCCESS

SECURITY_AUTHN REDIRECT

You can configure additional audit event types to capture various events. Use the following command

to list all supported auditable events:

print AdminTask.getSupportedAuditEvents()

Use the createAuditFilter command with the -name, -eventType, and -outcome parameters to enable

one or multiple audit events and outcomes. You can specify multiple event types and multiple

outcomes separated by a comma with one command invocation. The following list describes each valid

auditable event that you can specify with the -eventType parameter:

1036 Securing applications and their environment

Event name Description

SECURITY_AUTHN Audits all authentication events

SECURITY_AUTHN_MAPPING Audits events that record mapping of credentials where two user identities are involved

SECURITY_AUTHZ Audits events related to authorization checks when the system enforces access control policies

SECURITY_MGMT_AUDIT Audits events that record operations related to the audit subsystem such as starting audit, stopping

audit, turning audit on or off, changing configuration of audit filters or level, archiving audit data,

purging audit data, and so on.

SECURITY_RESOURCE_ACCESS Audits events that record all accesses to a resource. Examples are all accesses to a file, all HTTP

requests and responses to a given Web page, and all accesses to a critical database table

SECURITY_AUTHN_DELEGATION Audits events that record delegation, including identity assertion, RunAs, and low assertion. Used

when the client identity is propagated or when delegation involves the use of a special identity. This

event type is also used when switching user identities within a given session.

For each audit event type, you must specify an outcome. Valid outcomes include SUCCESS,

FAILURE, REDIRECT, ERROR, DENIED, WARNING, and INFO. The following command example

creates an audit filter to log users who receive an error when modifying credentials:

AdminTask.createAuditFilter(’-name myUniqueName -eventType SECURITY_AUTHN_CREDS_MODIFY,SECURITY_AUTHN_DELEGATION -outcome ERROR,REDIRECT’)

3. Save your configuration changes.

What to do next

Enable security auditing in your environment.

Enabling security auditing using scripting

Use this task to enable and configure security auditing in your environment with the wsadmin tool. Security

auditing provides tracking and archiving of auditable events.

Before you begin

Before enabling security auditing, enable administrative security in your environment.

If you previously configured security auditing and do not want to modify configuration settings, use the

enableAudit and disableAudit commands to start and stop security auditing. After enabling or disabling

security auditing, restart the server to apply the configuration changes.

About this task

Security auditing ensures the integrity of a security computing environment. Security auditing collects and

logs authentication, authorization, system management, security, and audit policy events in audit event

records. You can analyze audit event records to determine possible security breaches, threats, attacks,

and potential weaknesses in the security configuration of your environment.

Use the following steps to enable and configure security auditing in your environment:

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Verify that the security auditing subsystem is configured.

To enable security auditing, you must configure event filters, an audit emitter, and an audit event

factory. Event filters specify which event types the system audits and records, and the outcome of the

event. The audit service provider writes the audit records to the backend repository that is associated

with the implementation. The audit event factory generates security events.

By default, the security auditing system includes one audit service provider and one audit event

factory.

The audit command groups provide several commands to query for event filters, audit emitters, event

factories, and their respective configuration attributes. Use the audit command reference to use

specific query commands. The following example commands query your security auditing configuration

at a high level.

Chapter 10. Configuring security with scripting 1037

v Use the getAuditFilters command to display a list of references to all audit filters defined in your

configuration, as the following example demonstrates:

AdminTask.getAuditFilters()

v Use the listAuditEmitters command to display a list of all audit emitters in your configuration, as the

following example demonstrates:

AdminTask.listAuditEmitters()

v Use the listAuditEventFactories command to display a list of all audit event factories in your

configuration, as the following example demonstrates:

AdminTask.listAuditEventFactories()

3. Enable security auditing in your environment. Use the modifyAuditPolicy command to enable security

auditing in your environment. Use the following optional parameters for the modifyAuditPolicy

command to customize your security auditing configuration:

 Parameter Description Data type Required

-auditEnabled Specifies whether to enable security

auditing.

Boolean No

-auditPolicy Specifies the behavior of the server

process if the audit subsystem fails.

Valid values are: WARN, NOWARN and

FATAL. The WARN setting notifies the

auditor when an error occurs and

ceases auditing when an error

occurs in the audit sub-system, but

continues to run the application

server process. The NOWARN setting

does not notify the auditor when an

error occurs and ceases auditing,

but continues to run the application

server process. The FATAL setting

notifies the auditor of the error and

stops the application server

process. By default, the command

assigns the NOWARN setting.

String No

-auditorId Specifies the ID of the user to

assign to the auditor role.

String No

-auditorPwd Specifies the password for the

auditor role.

String No

-sign Specifies whether to sign audit

records. By default, the security

auditing system does not sign audit

records. You must configure the

signing of audit records before you

can specify this parameter.

Boolean No

-encrypt Specifies whether to encrypt audit

records. By default, the security

auditing system does not encrypt

audit records. You must configure

encryption for audit records before

you can specify this parameter.

Boolean No

-verbose Specifies whether to capture

verbose audit data. By default, the

security auditing system does not

capture verbose audit data.

Boolean No

-encryptionCert Specifies the reference ID of the

certificate to use for encryption.

Specify this parameter if you set the

-encrypt parameter to true.

String No

The following example command enables security auditing, and identifies the primary auditor by

assigning a user and password.

AdminTask.modifyAuditPolicy(’-auditEnabled true -auditorId securityAdmin -auditorPwd security4you’)

4. Save your configuration changes.

5. Restart the server.

1038 Securing applications and their environment

Results

After completing the steps to enable and configure security auditing, the profile of interest audits your

security configurations for specific auditable event types.

What to do next

After you configure the audit policy for the first time, use the enableAudit and disableAudit commands to

turn the security auditing system on and off. The system maintains the settings that you define with the

modifyAuditPolicy command when you enable and disable the security auditing system.

Note: You must restart the server to apply the configuration changes.

Configuring security audit notifications using scripting

Configure the security auditing system to send email notifications to a distribution list, system log, or both

a distribution list and a system log if a failure occurs in the audit subsystem. Security auditing provides

tracking and archiving of auditable events.

Before you begin

Before configuring a notification object in the audit.xml configuration file, verify that you set up a security

auditing subsystem and configured the security auditing policy.

About this task

You can configure the security auditing system to notify a specific person or group when a failure occurs in

the audit subsystem. Use the following steps to enable security auditing email notifications, set the format

of notification email, and secure email:

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Customize and enable security auditing email notifications.

Use the createAuditNotification command and the following parameters to configure notifications:

 Parameter Description Data Types Required

-notificationName Specifies a unique name to assign

the audit notification object in the

audit.xml file.

String Yes

-logToSystemOut Specifies whether to log the

notification to the SystemOut.log

file.

Boolean Yes

-sendEmail Specifies whether to email

notifications.

Boolean Yes

-emailList Specifies the email address or

email distribution list to email

notifications. The format for this

parameter is:

admin@company.com(smtp-
server.mycompany.com)

String No

-emailFormat Specifies whether to send the email

be HTML or TEXT format.

String No

To create the audit notification object, you must specify the -notificationName, -logToSystemOut, and

-sendEmail parameters, as the following example demonstrates:

AdminTask.createAuditNotification(’-notificationName defaultEmailNotification

-logToSystemOut true -sendEmail true -emailList administrator@mycompany.com(smtp-server.mycompany.com)

-emailFormat HTML’)

3. Create an audit notification monitor object.

Chapter 10. Configuring security with scripting 1039

Create an audit notification monitor object to monitor the security auditing subsystem for possible

failure. Use the createAuditNotificationMonitor command and the following parameters to create a

monitor object for the security auditing system:

 Parameter Description Data Types Required

-notificationName Specifies a unique name to assign

the audit notification object in the

audit.xml file.

String Yes

-logToSystemOut Specifies whether to log the

notification to the SystemOut.log

file.

Boolean Yes

-sendEmail Specifies whether to email

notifications.

Boolean Yes

-emailList Specifies the email address or

email distribution list to email

notifications. The format for this

parameter is:

admin@company.com(smtp-
server.mycompany.com)

String No

-emailFormat Specifies whether to send the email

be HTML or TEXT format.

String No

To create the audit notification monitor object, you must specify the -notificationName,

-logToSystemOut, and -sendEmail parameters, as the following example demonstrates:

AdminTask.createAuditNotificationMonitor(’-notificationName defaultEmailNotification

-logToSystemOut true -sendEmail true -emailList administrator@mycompany.com(smtp-server.mycompany.com)

-emailFormat HTML’)

4. Save your configuration changes.

Results

The security auditing system notifies the specified recipients if a failure occurs in the security auditing

system.

What to do next

Use the modifyAuditNotification command and the Audit Notification Commands command group for the

AdminTask object to manage your notification configuration.

Encrypting security audit data using scripting

You can use the wsadmin tool to configure the security auditing system to encrypt security audit records.

Security auditing provides tracking and archiving of auditable events.

Before you begin

Before configuring encryption, set up your security auditing subsystem. You can enable security auditing

before or after completing the steps in this topic.

Verify that you have the appropriate administrative role. To complete this topic, you must have the auditor

administrative role. If you are importing a certificate from a keystore that exists in the security.xml file, you

must have the auditor and administrator administrative roles.

About this task

When configuring encryption, the auditor can select one of the following choices:

v Allow the application server to automatically generate a certificate or use an existing self-signed

certificate generated by the auditor.

v Use an existing keystore to store this certificate, or create a new keystore to store this certificate.

1040 Securing applications and their environment

Note: To ensure that there is a separation of privileges between the administrator role and the auditor

role, the auditor can create a self-signed certificate outside of the application server process and

maintain the private key of that certificate.

Use the following task steps to encrypt security audit data:

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Configure encryption settings for security audit data.

Use the createAuditEncryptionConfig command and the following parameters to create the audit

encryption model to encrypt your audit records. You must specify the -enableAuditEncryption,

-certAlias, and -encryptionKeyStoreRef parameters, and either the -autogenCert or -importCert

parameters.

 Parameter Description Data Type Required

-enableAuditEncryption Specifies whether to encrypt audit

records. This parameter modifies

your audit policy configuration.

Boolean Yes

-certAlias Specifies the alias name that

identifies the generated or imported

certificate.

String Yes

-encryptionKeyStoreRef Specifies the reference ID of the

keystore to import the certificate to.

String Yes

-autogenCert Specifies whether to automatically

generate the certificate used to

encrypt the audit records. You must

specify either this parameter or the

-importCert parameter, but you

cannot specify both.

Boolean No

-importCert Specifies whether to import an

existing certificate to encrypt the

audit records. You must specify

either this parameter or the

-autogenCert parameter, but you

cannot specify both.

Boolean No

-certKeyFileName Specifies the unique name of the

key file from which the certificate is

imported.

String No

-certKeyFilePath Specifies the key file location from

which the certificate is imported.

String No

-certKeyFileType Specifies the key file type from

which the certificate is imported.

String No

-certKeyFilePassword Specifies the key file password from

which the certificate is imported.

String No

-certAliasToImport Specifies the alias from which the

certificate is imported.

String No

The following command example configures encryption and supports the system to automatically

generate the certificate:

AdminTask.createAuditEncryptionConfig(’-enableAuditEncryption true -certAlias auditCertificate

-autogenCert true -encryptionKeyStoreRef auditKeyStore’)

The following command example configures encryption and imports a certificate:

AdminTask.createAuditEncryptionConfig(’-enableAuditEncryption true -certAlias auditCertificate

-importCert true -certKeyFileName MyServerKeyFile.p12 -certKeyFilePath

install_root/etc/MyServerKeyFile.p12 -certKeyFileType PKCS12 -certKeyFilePassword password4key

-certAliasToImport defaultCertificate -encryptionKeyStoreRef auditKeyStore’)

3. You must restart the server to apply configuration changes.

Results

Encryption is configured for security audit data. If you set the -enableAuditEncryption parameter to true,

then your security auditing system encrypts security audit data when security auditing is enabled.

Chapter 10. Configuring security with scripting 1041

What to do next

After you configure the encryption model for the first time, then you may use the enableAuditEncryption

and disableAuditEncryption commands to turn encryption on and off.

The following example uses the enableAuditEncryption command to turn on encryption:

AdminTask.enableAuditEncryption()

The following example uses the disableAuditEncryption command to turn off encryption:

AdminTask.disableAuditEncryption()

Signing security audit data using scripting

You can use the wsadmin tool to configure the security auditing system to sign security audit records.

Security auditing provides tracking and archiving of auditable events.

Before you begin

Verify that you have the appropriate administrative role. To complete this topic, you must have the auditor

and administrator administrative roles.

About this task

When configuring the signing of audit data, the auditor can choose between the following options:

v Allow the application server to automatically generate a certificate.

v Use an existing self-signed certificate that the auditor previously generated.

v Use the same self-signed certificate as the system uses to encrypt the audit records.

v Use an existing keystore to store this certificate.

v Create a new keystore to store this certificate.

v Use an existing self-signed certificate in an existing keystore.

Use the following task steps to configure the signing of security audit data:

1. Launch the wsadmin scripting tool using the Jython scripting language.

2. Configure signing settings for security audit data.

Use the createAuditSigningConfig command to create the signing model to sign your audit records.

You can import the certificate from an existing key file name that contains that certificate, automatically

generate the certificate, or use the same certificate as used to encrypt the audit records. The signing

keystore must exist in the security.xml file. The system updates this keystore with the certificate to

use to sign the audit records. Use the parameters in the following table with the

createAuditSigningConfig command. You must specify the -enableAuditSigning, -certAlias, and

-signingKeyStoreRef parameters.

 Parameter Description Data Type Required

-enableAuditSigning Specifies whether to sign audit

records. This parameter modifies

your audit policy configuration.

Boolean Yes

-certAlias Specifies the alias name that

identifies the generated or imported

certificate.

String Yes

-signingKeyStoreRef Specifies the reference ID of the

keystore to import the certificate to.

String Yes

-useEncryptionCert Specifies whether to use the same

certificate for encryption and

signing. You must specify the

-useEncryptionCert, -autogenCert,

or -importCert parameter.

Boolean No

1042 Securing applications and their environment

Parameter Description Data Type Required

-autogenCert Specifies whether to automatically

generate the certificate used to sign

the audit records. You must specify

the -useEncryptionCert,

-autogenCert, or -importCert

parameter.

Boolean No

-importCert Specifies whether to import an

existing certificate to sign the audit

records. You must specify the

-useEncryptionCert, -autogenCert,

or -importCert parameter.

Boolean No

-certKeyFileName Specifies the unique name of the

key file for the certificate to import.

String No

-certKeyFilePath Specifies the key file location for the

certificate to import.

String No

-certKeyFileType Specifies the key file type for the

certificate to import.

String No

-certKeyFilePassword Specifies the key file password for

the certificate to import.

String No

-certAliasToImport Specifies the alias of the certificate

to import.

String No

The following command example configures signing and allows the system to automatically generate

the certificate:

AdminTask.createAuditSigningConfig(’-enableAuditSigning true -certAlias auditSigningCert

-autogenCert true -signingKeyStoreRef Ref_Id_of_KeyStoreInSecurityXML’)

The following command example configures signing and imports a certificate:

AdminTask.createAuditSigningConfig(’-enableAuditSigning true -certAlias auditSigningCert

-importCert true -certKeyFileName MyServerKeyFile.p12 -certKeyFilePath install_root/etc/MyServerKeyFile.p12

-certKeyFileType PKCS12 -certKeyFilePassword password4key -certAliasToImport defaultCertificate

-signingKeyStoreRef Ref_Id_of_KeyStoreInSecurityXML’)

The following command example uses the same certificate for signing and encryption:

AdminTask.createAuditSigningConfig(’-enableAuditSigning true -certAlias auditSigningCert

-useEncryptionCert true -signingKeyStoreRef Ref_Id_of_KeyStoreInSecurityXML’)

3. Save your configuration changes.

4. Restart the server to apply the configuration changes.

Results

Signing is configured for your security audit data. If you set the -enableAuditSigning parameter to true,

your security auditing system signs security audit data when security auditing is enabled.

What to do next

Once you configure the signing model for the first time, use the enableAuditSigning and

disableAuditSigning commands to quickly turn signing on and off. The following example uses the

enableAuditSigning command to turn signing on:

AdminTask.enableAuditSigning()

The following example uses the disableAuditSigning command to turn signing off:

AdminTask.disableAuditSigning()

AuditKeyStoreCommands command group for the AdminTask object

You can use the Jython scripting language to configure the security auditing system with the wsadmin tool.

Use the commands and parameters in the AuditKeyStoreCommands group to configure audit keystores in

the security auditing system.

Use the following commands to manage audit key stores in the audit.xml configuration file:

v createAuditKeyStore

Chapter 10. Configuring security with scripting 1043

v deleteAuditKeyStore

v getAuditKeyStoreInfo

v listAuditKeyStores

v modifyAuditKeyStore

createAuditKeyStore

Creates a keystore in the audit.xml file. The system uses this keystore to encrypt audit records.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-keyStoreName

Specifies the unique name of the keystore. (String, required)

-keyStoreType

Specifies a valid keystore type. The default keystore type is PKCS12. (String, required)

-keyStoreLocation

Specifies the location where the system creates the keystore. (String, required)

-keyStorePassword

Specifies the password for the keystore. (String, required)

-keyStorePasswordVerify

Verifies the password for the keystore. (String, required)

Optional parameters

-keyStoreProvider

Specifies a provider for the keystore. (String, optional)

-keyStoreIsFileBased

Specifies if the keystore is file-based. The default is true. (Boolean, optional)

-keyStoreHostList

Specifies the host list for the keystore. (String, optional)

-keyStoreInitAtStartup

Specifies whether the system initializes the keystore on startup. The default is false. (Boolean,

optional)

-keyStoreReadOnly

Specifies whether the keystore is read-only or not. Default is false. (Boolean, optional)

-keyStoreStashFile

Specifies whether the keystore needs a stash file. (Boolean, optional)

-enableCryptoOperations

Specifies whether the keystore is an acceleration keystore. False default. (Boolean, optional)

-scopeName

Specifies the scope for the keystore. (String, optional)

-keyStoreDescription

Specifies a description for the keystore. (String, optional)

1044 Securing applications and their environment

Return value

The command returns the ID of the new keystore, as the following example displays:

KeyStore_1173199825578

Batch mode example usage

v Using Jython string:

AdminTask.createAuditKeyStore(’-keyStoreName mynewkeystore -keyStoreLocation

c:\install_root\appserver\profiles\AppSrv01\config\cells -keyStorePassword

myPwd -keyStorePasswordVerify myPwd -keyStoreProvider IBMJCE -scopeName (cell):Node04Cell’)

v Using Jython list:

AdminTask.createAuditKeyStore([’-keyStoreName’, ’mynewkeystore’, ’-keyStoreLocation’,

’c:\install_root\appserver\profiles\AppSrv01\config\cells’, ’-keyStorePassword’,

’myPwd’, ’-keyStorePasswordVerify’, ’myPwd’, ’-keyStoreProvider’, ’IBMJCE’,

’-scopeName’, ’(cell):Node04Cell’])

Interactive mode example usage

v Using Jython:

AdminTask.createAuditKeyStore(’-interactive’)

deleteAuditKeyStore

The deleteAuditKeyStore command removes the reference to an audit keystore from the audit.xml

configuration file.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-keyStoreName

Specifies the name of the keystore. (String, required)

Optional parameters

-scopeName

Specifies the management scope of the keystore. (String, optional)

-removeKeyStoreFile

Specifies whether to remove the keystore from the configuration. Specify this parameter if the keystore

of interest is not in use. (Boolean, optional)

Return value

The command returns a value of true if the system successfully removes the reference to the keystore

from the audit.xml configuration file.

Batch mode example usage

v Using Jython string:

AdminTask.deleteAuditKeyStore(’-keyStoreName AuditDefaultKeyStore -scopeName

(cell):Node04Cell -removeKeyStoreFile false’)

v Using Jython list:

AdminTask.deleteAuditKeyStore([’-keyStoreName’, ’AuditDefaultKeyStore’, ’-scopeName’,

’(cell):Node04Cell’, ’-removeKeyStoreFile’, ’false’])

Interactive mode example usage

Chapter 10. Configuring security with scripting 1045

v Using Jython:

AdminTask.deleteAuditKeyStore(’-interactive’)

getAuditKeyStoreInfo

The getAuditKeyStoreInfo command returns a list of attributes for the keystore that the system uses to

encrypt audit records.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-keyStoreName

Specifies the unique name to identify the keystore. (String, required)

Optional parameters

-scopeName

Specifies the management scope of the keystore. (String, optional)

Return value

The command returns a list of attributes for the keystore, as the following sample output displays:

{{location ${CONFIG_ROOT}/audittrust.p12}

{password *****}

{_Websphere_Config_Data_Id cells/Node04Cell|audit.xml#KeyStore_1173199825578}

{_Websphere_Config_Data_Version {}}

{useForAcceleration false}

{slot 0}

{type PKCS12}

{additionalKeyStoreAttrs {}}

{fileBased true}

{_Websphere_Config_Data_Type KeyStore}

{customProviderClass {}}

{hostList {}}

{createStashFileForCMS false}

{description {keyStore description}}

{readOnly false}

{initializeAtStartup true}

{managementScope (cells/Node04Cell|audit.xml#ManagementScope_1173199825608)}

Batch mode example usage

v Using Jython string:

AdminTask.getAuditKeyStoreInfo(’-keyStoreName AuditDefaultKeyStore’)

v Using Jython list:

AdminTask.getAuditKeyStoreInfo([’-keyStoreName’, ’AuditDefaultKeyStore’])

Interactive mode example usage

v Using Jython:

AdminTask.getAuditKeyStoreInfo(’-interactive’)

listAuditKeyStores

The listAuditKeyStores command lists the attributes for the audit keystores within a specific management

scope or for all audit keystores.

The user must have the monitor administrative role to run this command.

1046 Securing applications and their environment

Target object

None.

Optional parameters

-scopeName

Specifies the management scope associated with the keystores of interest. (String, optional)

-all

Specifies whether to list all keystores. When the -all parameter is set as true, it overrides the

-scopeName parameter. (Boolean, optional)

Return value

The command returns a list of attributes for the scope of interest, as the following sample output displays:

{{location ${CONFIG_ROOT}/audittrust.p12}

{password *****}

{_Websphere_Config_Data_Id cells/Node04Cell|audit.xml#KeyStore_1173199825578}

{_Websphere_Config_Data_Version {}}

{useForAcceleration false}

{slot 0}

{type PKCS12}

{additionalKeyStoreAttrs {}}

{fileBased true}

{_Websphere_Config_Data_Type KeyStore}

{customProviderClass {}}

{hostList {}}

{keyStoreRef KeyStore_1173199825578}

{createStashFileForCMS false}

{description {keyStore description}}

{managementScope (cells/Node04Cell|audit.xml#ManagementScope_1173199825608)}

{readOnly false}

{initializeAtStartup true}

{usage {}}

{provider IBMJCE}{name AuditDefaultKeyStore}}

{{location c:\install_root\appserver\profiles\AppSrv01\config\cells}

{password *****}

{_Websphere_Config_Data_Id cells/Node04Cell|audit.xml#KeyStore_1184700968484}

{_Websphere_Config_Data_Version {}}

{useForAcceleration false}

{slot 0}

{type PKCS12}

{additionalKeyStoreAttrs {}}

{fileBased true}

{_Websphere_Config_Data_Type KeyStore}

{customProviderClass {}}

{hostList {}}

{keyStoreRef KeyStore_1184700968484}

{createStashFileForCMS false}

{description {}}

{managementScope {}}

{readOnly false}

{initializeAtStartup false}

{usage {}}

{provider IBMJCE}

{name mykeystore}}

Batch mode example usage

v Using Jython string:

AdminTask.listAuditKeyStores(’-scopeName (cell):Node04Cell’)

v Using Jython list:

AdminTask.listAuditKeyStores([’-scopeName’, ’(cell):Node04Cell’])

Interactive mode example usage

v Using Jython:

AdminTask.listAuditKeyStores(’-interactive’)

Chapter 10. Configuring security with scripting 1047

modifyAuditKeyStore

The modifyAuditKeyStore command modifies the keystore reference in the audit.xml file. The command

edits keystore that encrypts audit records.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-keyStoreName

Specifies the unique name of the keystore. (String, required)

Optional parameters

-scopeName

Specifies the scope name of this keystore. (String, optional)

-keyStoreType

Specifies valid keystore type. (String, optional)

-keyStoreLocation

Specifies the location where the system creates the keystore. (String, optional)

-keyStorePassword

Specifies the password for this keystore. (String, optional)

-keyStoreIsFileBased

Specifies whether the keystore is file based. (Boolean, optional)

-keyStoreInitAtStartup

Specifies whether the system should initialize the keystore at startup. (Boolean, optional)

-keyStoreReadOnly

Specifies whether the keystore is read-only or editable. (Boolean, optional)

-keyStoreDescription

Specifies a description for the keystore. (String, optional)

Return value

The command returns a value of true if the system successfully modifies the keystore.

Batch mode example usage

v Using Jython string:

AdminTask.modifyAuditKeyStore(’-keyStoreName AuditDefaultKeyStore -scopeName

(cell):Node04Cell -keyStoreType PKCS12 -keyStoreLocation

c:\install_root\appserver\profiles\AppSrv01\config\cells\Node04Cell\audittrust.p12

-keyStorePassword myPwd’)

v Using Jython list:

AdminTask.modifyAuditKeyStore([’-keyStoreName’, ’AuditDefaultKeyStore’, ’-scopeName’,

’(cell):Node04Cell’, ’-keyStoreType’, ’PKCS12’, ’-keyStoreLocation’,

’c:\install_root\appserver\profiles\AppSrv01\config\cells\Node04Cell\audittrust.p12’,

’-keyStorePassword’, ’myPwd’])

Interactive mode example usage

v Using Jython:

AdminTask.modifyAuditKeyStore(’-interactive’)

1048 Securing applications and their environment

AuditEmitterCommands for the AdminTask object

You can use the Jython scripting language to configure audit service providers with the wsadmin tool. Use

the commands and parameters in the AuditEmitterCommands group to create, manage, and remove audit

service providers from your security auditing system configuration.

Use the following commands to configure audit service providers:

v “createBinaryEmitter”

v “createSMFEmitter” on page 1050

v “createThirdPartyEmitter” on page 1051

v “deleteAuditEmitterByRef” on page 1052

v “deleteAuditEmitterByName” on page 1052

v “getAuditEmitter” on page 1053

v “getBinaryFileLocation” on page 1054

v “getAuditEmitterFilters” on page 1054

v “getBinaryFileSize” on page 1055

v “getEmitterClass” on page 1055

v “getEmitterUniqueId” on page 1056

v “getMaxNumBinaryLogs” on page 1056

v “listAuditEmitters” on page 1057

v “modifyAuditEmitter” on page 1058

v “setAuditEmitterFilters” on page 1059

createBinaryEmitter

The createBinaryEmitter command creates an entry in the audit.xml file to reference the configuration of

the binary file emitter implementation of the audit service provider interface.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-uniqueName

Specifies a name to uniquely identify this implementation of the audit service provider interface.

(String, required)

-className

Specifies the class that implements the audit service provider interface. (String, required)

-fileLocation

Specifies the location where the system writes the audit logs. (String, required)

-auditFilters

Specifies a reference or a group of references to predefined audit filters. Use the following format to

specify multiple references: reference,reference,reference (String, required)

Optional parameters

-eventFormatterClass

Specifies the class that implements how the system formats the audit event for output. If you want to

use the default audit service provider, do not specify this parameter. (String, optional)

Chapter 10. Configuring security with scripting 1049

-maxFileSize

Specifies the maximum size that each log reaches before the system saves the audit log with a

timestamp. Specify the size in megabytes. The default value is 10 MB. (Integer, optional)

-maxLogs

Specifies the maximum number of log files to create before the system rewrites the oldest audit log.

The default value is 100 logs. (Integer, optional)

Return value

The command returns the shortened reference ID for the audit service provider, as the following sample

output displays:

AuditServiceProvider_1184686384968

Batch mode example usage

v Using Jython string:

AdminTask.createBinaryEmitter(’-uniqueName mybinaryemitter -className

com.ibm.ws.security.audit.BinaryEmitterImpl -fileLocation

c:\wasinstall\appserver\profiles\AppSrv01\logs\server1 -maxFileSize 20 -maxLogs

100 -auditFilters AuditSpecification_1173199825608’)

v Using Jython list:

AdminTask.createBinaryEmitter([’-uniqueName’, ’mybinaryemitter’, ’-className’,

’com.ibm.ws.security.audit.BinaryEmitterImpl’, ’-fileLocation’,

’c:\wasinstall\appserver\profiles\AppSrv01\logs\server1’, ’-maxFileSize’,

’20’, ’-maxLogs’, ’100’, ’-auditFilters’, ’AuditSpecification_1173199825608’])

Interactive mode example usage

v Using Jython:

AdminTask.createBinaryEmitter(’-interactive’)

createSMFEmitter

The createSMFEmitter command creates an entry in the audit.xml file to reference the configuration of an

SMF implementation of the audit service provider interface. The encryption and signing of audit records is

not supported for SMF implementations.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-uniqueName

Specifies a name to uniquely identify this implementation of the audit service provider interface.

(String, required)

-auditFilters

Specifies a reference or a group of references to predefined audit filters. Use the following format to

specify multiple references: reference,reference,reference (String, required)

Return value

The command returns the shortened reference ID for the audit service provider, as the following sample

output displays:

AuditServiceProvider_1184686384968

Batch mode example usage

1050 Securing applications and their environment

v Using Jython string:

AdminTask.createSMFEmitter(’-uniqueName mySMFEmitter -auditFilters

AuditSpecification_1173199825608’)

v Using Jython list:

AdminTask.createSMFEmitter([’-uniqueName’, ’mySMFEmitter’, ’-auditFilters’,

’AuditSpecification_1173199825608’])

Interactive mode example usage

v Using Jython:

AdminTask.createSMFEmitter(’-interactive’)

createThirdPartyEmitter

The createThirdPartyEmitter command creates an entry in the audit.xml configuration file to reference the

configuration of a third party emitter implementation of the audit service provider interface. The encryption

and signing of audit records is not supported for third party implementations.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-uniqueName

Specifies a name to uniquely identify this implementation of the audit service provider interface.

(String, required)

-className

Specifies the class that implements the audit service provider interface. (String, required)

-auditFilters

Specifies a reference or a group of references to predefined audit filters. Use the following format to

specify multiple references: reference,reference,reference (String, required)

Optional parameters

-eventFormatterClass

Specifies the class that implements how the system formats the audit event for output. (String,

optional)

-customProperties

Specifies any custom properties that the system might need to configure the third party implementation

of the audit service provider. Use the following format to specify the custom properties:

name=value,name=value (String, optional)

Return value

The command returns the shortened reference ID to the audit service provider, as the following example

output displays:

AuditServiceProvider_1184686638218

Batch mode example usage

v Using Jython string:

AdminTask.createThirdPartyEmitter(’-uniqueName myThirdPartyEmitter -className

com.mycompany.myemitterclass -eventFormatterClass com.mycompany.myeventformatterclass

-auditFilters AuditSpecification_1173199825608’)

v Using Jython list:

Chapter 10. Configuring security with scripting 1051

AdminTask.createThirdPartyEmitter([’-uniqueName’, ’myThirdPartyEmitter’, ’-className’,

’com.mycompany.myemitterclass’, ’-eventFormatterClass’, ’com.mycompany.myeventformatterclass’,

’-auditFilters’, ’AuditSpecification_1173199825608’])

Interactive mode example usage

v Using Jython:

AdminTask.createThirdPartyEmitter(’-interactive’)

deleteAuditEmitterByRef

The deleteAuditEmitterByRef command deletes the audit service provider implementation that the system

references with the reference id. If an event factory is using the audit service provider, the system

generates an error that indicates that the system cannot remove the audit service provider.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-emitterRef

Specifies the reference identifier of the audit service provider implementation to delete. (String,

required)

Return value

The command returns a value of true if the system successfully removes the audit service provider.

Batch mode example usage

v Using Jython string:

AdminTask.deleteAuditEmitterByRef(’–emitterRef AuditServiceProvider_1173199825608’)

v Using Jython list:

AdminTask.deleteAuditEmitterByRef([’–emitterRef’, ’AuditServiceProvider_1173199825608’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteAuditEmitterByRef(’-interactive’)

deleteAuditEmitterByName

The deleteAuditEmitterByName command deletes the audit service provider implementation that the

system references with the unique name. If an event factory is using the audit service provider, the system

generates an error that indicates that the system cannot remove the audit service provider.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-uniqueName

Specifies the name that uniquely identifies this implementation of the audit service provider interface to

delete. (String, required)

1052 Securing applications and their environment

Return value

The command returns a value of true if the system successfully deletes the audit service provider

implementation.

Batch mode example usage

v Using Jython string:

AdminTask.deleteAuditEmitterByName(’-uniqueName mybinaryemitter’)

v Using Jython list:

AdminTask.deleteAuditEmitterByName([’-uniqueName’, ’mybinaryemitter’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteAuditEmitterByName(’-interactive’)

getAuditEmitter

The getAuditEmitter command returns the attributes for the audit service provider of interest.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-emitterRef

Specifies a reference to a audit service provider implementation. (String, required)

Return value

The command returns an attribute list for the audit service provider specified by the -emitterRef parameter,

as the following example output displays:

{{auditSpecifications myfilter(cells/CHEYENNENode04Cell|audit.xml#AuditSpecification_1184598886859)}

{name auditServiceProviderImpl_1}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#AuditServiceProvider_1173199825608}

{maxFileSize 1}

{_Websphere_Config_Data_Type AuditServiceProvider}

{fileLocation ${PROFILE_ROOT}/logs/server1}

{className com.ibm.ws.security.audit.BinaryEmitterImpl}

{properties {}}

{eventFormatterClass {}}

{maxLogs 100}}

Batch mode example usage

v Using Jython string:

AdminTask.getAuditEmitter(’-emitterRef AuditServiceProvider_1173199825608’)

v Using Jython list:

AdminTask.getAuditEmitter([’-emitterRef AuditServiceProvider_1173199825608’])

Interactive mode example usage

v Using Jython:

AdminTask.getEmitterClass(’-interactive’)

Chapter 10. Configuring security with scripting 1053

getBinaryFileLocation

The getBinaryFileLocation command returns the file location of the binary file audit logs.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-emitterRef

Specifies a reference to a binary file audit service provider implementation. (String, required)

Return value

The command returns the file path of the audit log, as the following example displays:

$profile_root/logs/server1

Batch mode example usage

v Using Jython string:

AdminTask.getBinaryFileLocation(’-emitterRef AuditServiceProvider_1173199825608’)

v Using Jython list:

AdminTask.getBinaryFileLocation([’-emitterRef’, ’AuditServiceProvider_1173199825608’])

Interactive mode example usage

v Using Jython:

AdminTask.getBinaryFileLocation(’-interactive’)

getAuditEmitterFilters

The getAuditEmitterFilters command returns a list of defined filters for the audit service provider

implementation of interest.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-emitterRef

Specifies the audit service provider implementation of interest. You can specify a reference to the

service provider object. (String, required)

Return value

The command returns a list of defined filters in a shortened format, as the following example output

displays:

AUTHN:SUCCESS,AUTHN:INFO,AUTHZ:SUCCESS,AUTHZ:INFO

Batch mode example usage

v Using Jython string:

AdminTask.getAuditEmitterFilters(’-emitterRef AuditServiceProvider_1173199825608’)

1054 Securing applications and their environment

v Using Jython list:

AdminTask.getAuditEmitterFilters([’-emitterRef’, ’AuditServiceProvider_1173199825608’])

Interactive mode example usage

v Using Jython:

AdminTask.getAuditEmitterFilters(’-interactive’)

getBinaryFileSize

The getBinaryFileSize command returns the maximum file size of the binary audit log that is defined for

the audit service provider of interest in the audit.xml configuration file.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-emitterRef

Specifies a reference to a binary file audit service provider implementation. (String, required)

Return value

The command returns the integer value of the maximum file size in megabytes.

Batch mode example usage

v Using Jython string:

AdminTask.getBinaryFileSize(’-emitterRef AuditServiceProvider_1173199825608’)

v Using Jython list:

AdminTask.getBinaryFileSize([’-emitterRef’, ’AuditServiceProvider_1173199825608’])

Interactive mode example usage

v Using Jython:

AdminTask.getBinaryFileSize(’-interactive’)

getEmitterClass

The getEmitterClass command returns the class name of the audit service provider emitter

implementation.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-emitterRef

Specifies a reference to a audit service provider implementation. (String, required)

Return value

The command returns the class name of the audit service provider implementation.

Chapter 10. Configuring security with scripting 1055

Batch mode example usage

v Using Jython string:

AdminTask.getEmitterClass(’-emitterRef AuditServiceProvider_1173199825608’)

v Using Jython list:

AdminTask.getEmitterClass([’-emitterRef’, ’AuditServiceProvider_1173199825608’])

Interactive mode example usage

v Using Jython:

AdminTask.getEmitterClass(’-interactive’)

getEmitterUniqueId

The getEmitterUniqueId command returns the unique identifier of the audit service provider

implementation.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-emitterRef

Specifies a reference to a service provider implementation. (String, required)

Return value

The command returns the unique ID of the audit service provider of interest.

Batch mode example usage

v Using Jython string:

AdminTask.getEmitterUniqueId(’-emitterRef AuditServiceProvider_1173199825608’)

v Using Jython list:

AdminTask.getEmitterUniqueId([’-emitterRef’, ’AuditServiceProvider_1173199825608’])

Interactive mode example usage

v Using Jython:

AdminTask.getEmitterUniqueId(’-interactive’)

getMaxNumBinaryLogs

The getMaxNumBinaryLogs command returns the maximum number of binary audit logs that is defined for

the audit service provider of interest in the audit.xml configuration file.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-emitterRef

Specifies a reference to a binary file audit service provider implementation. (String, required)

1056 Securing applications and their environment

Return value

The command returns the integer value that represents the maximum number of binary audit logs in the

configuration.

Batch mode example usage

v Using Jython string:

AdminTaskgetMaxNumBinaryLogs(’-emitterRef AuditServiceProvider_1173199825608’)

v Using Jython list:

AdminTaskgetMaxNumBinaryLogs([’-emitterRef’, ’AuditServiceProvider_1173199825608’])

Interactive mode example usage

v Using Jython:

AdminTask.getMaxNumBinaryLogs(’-interactive’)

listAuditEmitters

The listAuditEmitters command returns a list of configured audit service provider implementation objects

and the corresponding attributes.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns an array list of audit service provider implementation objects and attributes, as the

following example output displays:

{{auditSpecifications myfilter(cells/CHEYENNENode04Cell|audit.xml#AuditSpecifica

tion_1184598886859)}

{name auditServiceProviderImpl_1}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#AuditServiceProvid

er_1173199825608}

{maxFileSize 1}

{_Websphere_Config_Data_Type AuditServiceProvider}

{fileLocation ${PROFILE_ROOT}/logs/server1}

{className com.ibm.ws.security.audit.BinaryEmitterImpl}

{properties {}}

{auditSpecRef1 AuditSpecification_1184598886859}

{eventFormatterClass {}}

{maxLogs 100}

{emitterRef AuditServiceProvider_1173199825608}}

{{auditSpecifications DefaultAuditSpecification_1(cells/CHEYENNENode04Cell|audit

.xml#AuditSpecification_1173199825608)}

{name mythirdpartyemitter}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#AuditServiceProvid

er_1184686638218}

{maxFileSize 0}

{_Websphere_Config_Data_Type AuditServiceProvider}

{fileLocation {}}

{className com.mycompany.myemitterclass}

{properties {}}

{auditSpecRef1 AuditSpecification_1173199825608}

{eventFormatterClass com.mycompany.myeventformatterclass}

{maxLogs 0}

{emitterRef AuditServiceProvider_1184686638218}}

Batch mode example usage

v Using Jython string:

AdminTask.listAuditEmitters()

v Using Jython list:

AdminTask.listAuditEmitters()

Chapter 10. Configuring security with scripting 1057

Interactive mode example usage

v Using Jython:

AdminTask.listAuditEmitters(’-interactive’)

modifyAuditEmitter

The modifyAuditEmitter command modifies the attributes of an audit service provider implementation

object.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-emitterRef

Specifies a reference to a audit service provider implementation. (String, required)

-auditFilters

Specifies a reference or a group of references to predefined audit filters. Use the following format to

specify multiple references: reference,reference,reference (String, required)

-fileLocation

Specifies the location where the system writes the audit logs. (String, required)

Optional parameters

-className

Specifies the class name to use to identify the implementation. (String, optional)

-eventFormatterClass

Specifies the class that implements how the system formats the audit event for output. If you want to

use the default audit service provider, do not specify this parameter. (String, optional)

-customProperties

Specifies a list of custom properties formatted as name and value pairs in the following format:

name=value,name=value. (String, optional)

-maxFileSize

Specifies the maximum size that each log reaches before the system saves the audit log with a

timestamp. Specify the size in megabytes. The default value is 10 MB. (Integer, optional)

-maxLogs

Specifies the maximum number of log files to create before the system rewrites the oldest audit log.

The default value is 100 logs. (Integer, optional)

Return value

The command returns a value of true if the system successfully modifies the audit service provider of

interest.

Batch mode example usage

v Using Jython string:

AdminTask.modifyAuditEmitter(’-emitterRef AuditServiceProvider_1184686638218

-auditFilters AuditSpecification_1173199825608

-fileLocation c:\wasinstall\appserver\profiles\AppSrv01\mylogs -maxFileSize

14 -maxLogs 200’)

v Using Jython list:

1058 Securing applications and their environment

AdminTask.modifyAuditEmitter([’-emitterRef’, ’AuditServiceProvider_1184686638218’,

’-auditFilters’, ’AuditSpecification_1173199825608’, ’-fileLocation’,

’c:\wasinstall\appserver\profiles\AppSrv01\mylogs’, ’-maxFileSize’, ’14’, ’-maxLogs’,

’200’])

Interactive mode example usage

v Using Jython:

AdminTask.modifyAuditEmitter(’-interactive’)

setAuditEmitterFilters

The setAuditEmitterFilters command sets the filters for an audit service provider implementation.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-emitterRef

Specifies a reference to a audit service provider implementation. (String, required)

-filtersRef

Specifies one or more references to defined audit filters. Use the following format to specify more than

one filter reference: reference,reference,reference (String, required)

Return value

The command returns a value of true if the system successfully sets the filters for the audit service

provider.

Batch mode example usage

v Using Jython string:

AdminTask.setAuditEmitterFilters(’-emitterRef AuditServiceProvider_1173199825608

-filtersRef AuditSpecification_1184598886859’)

v Using Jython list:

AdminTask.setAuditEmitterFilters([’-emitterRef’, ’AuditServiceProvider_1173199825608’,

’-filtersRef’, ’AuditSpecification_1184598886859’])

Interactive mode example usage

v Using Jython:

AdminTask.setAuditEmitterFilters(’-interactive’)

AuditSigningCommands command group for the AdminTask object

You can use the Jython scripting language to configure the signing of audit records with the wsadmin tool.

Use the commands and parameters in the AuditSigningCommands group to enable, disable, and configure

the security audit system to sign audit records.

Use the following commands to configure audit signing:

v “createAuditSigningConfig” on page 1060

v “deleteAuditSigningConfig” on page 1061

v “disableAuditSigning” on page 1061

v “enableAuditSigning” on page 1062

v “getAuditSigningConfig” on page 1062

Chapter 10. Configuring security with scripting 1059

v “importEncryptionCertificate” on page 1063

v “isAuditSigningEnabled” on page 1064

v “modifyAuditSigningConfig” on page 1064

createAuditSigningConfig

The createAuditSigningConfig command creates the signing model that the system uses to sign the audit

records. Use this command to configure your audit signing configuration for the first time. If you have

already configured audit signing, use the enableAuditSigning and disableAuditSigning commands to turn

audit signing on and off.

You can import the certificate from an existing key file name containing that certificate, automatically

generate the certificate, or use the same certificate as the application server uses encrypt the audit

records. To use an existing certificate in an existing keystore, specify input values for the

-enableAuditEncryption, -certAlias, and –signingKeyStoreRef parameters. Also, set the value of the

-useEncryptionCert, –autogenCert, and –importCert parameters as false for this scenario.

The user must have the administrator and auditor administrative roles to run this command.

Target object

None.

Required parameters

-enableAuditSigning

Specifies whether to sign audit records. This parameter modifies your audit policy configuration.

(Boolean, required)

-certAlias

Specifies the alias name that identifies the generated or imported certificate. (String, required)

-signingKeyStoreRef

Specifies the reference ID of the key store that system imports the certificate to. The signing keystore

must already exist in the security.xml file. The system updates this keystore with the certificate that is

used to sign the audit records. (String, required)

Optional parameters

-useEncryptionCert

Specifies whether to use the same certificate for encryption and signing. (Boolean, optional)

-autogenCert

Specifies whether to automatically generate the certificate used to sign the audit records. (Boolean,

optional)

-importCert

Specifies whether to import an existing certificate to sign the audit records. (Boolean, optional)

-certKeyFileName

Specifies the unique name of the key file for the certificate to import. (String, optional)

-certKeyFilePath

Specifies the key file location for the certificate to import. (String, optional)

-certKeyFileType

Specifies the key file type for the certificate to import. (String, optional)

-certKeyFilePassword

Specifies the key file password for the certificate to import. (String, optional)

1060 Securing applications and their environment

-certAliasToImport

Specifies the alias of the certificate to import. (String, optional)

Return value

If successful, returns the shortened from of the keystore where the signing certificate has been added to.

Remember, this keystore is in the security.xml file, not the audit.xml file.

Batch mode example usage

v Using Jython string:

AdminTask.createAuditSigningConfig(’-enableAuditSigning true -certAlias

auditSigningCert -autogenCert true -signingKeyStoreRef Ref_Id_of_KeyStoreInSecurityXML’)

v Using Jython list:

AdminTask.createAuditSigningConfig([’-enableAuditSigning’, ’true’, ’-certAlias’,

’auditSigningCert’, ’-autogenCert’, ’true -signingKeyStoreRef’,

’Ref_Id_of_KeyStoreInSecurityXML’])

Interactive mode example usage

v Using Jython :

AdminTask.createAuditSigningConfig(’-interactive’)

deleteAuditSigningConfig

The deleteAuditSigningConfig command deletes the signing model that the system uses to sign the audit

records. When the system deletes the audit signing configuration, it does not delete the key store file in

the security.xml or the signer certificate for the keystore.

The user must have the auditor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if the system successfully removes the audit signing configuration.

Batch mode example usage

v Using Jython string:

AdminTask.deleteAuditSigningConfig()

v Using Jython list:

AdminTask.deleteAuditSigningConfig()

Interactive mode example usage

v Using Jython:

AdminTask.deleteAuditSigningConfig(’-interactive’)

disableAuditSigning

The disableAuditSigning command disables audit record signing for the security auditing system.

The user must have the auditor administrative role to run this command.

Target object

None.

Chapter 10. Configuring security with scripting 1061

Return value

The command returns a value of true if the system successfully disables audit signing.

Batch mode example usage

v Using Jython string:

AdminTask.disableAuditSigning()

v Using Jython list:

AdminTask.disableAuditSigning()

Interactive mode example usage

v Using Jython:

AdminTask.disableAuditSigning(’-interactive’)

enableAuditSigning

The enableAuditSigning command enables audit record signing in the security auditing system.

The user must have the auditor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if the system successfully enables audit signing in the security

auditing system.

Batch mode example usage

v Using Jython string:

AdminTask.enableAuditSigning()

v Using Jython list:

AdminTask.enableAuditSigning()

Interactive mode example usage

v Using Jython:

AdminTask.enableAuditSigning()

getAuditSigningConfig

The getAuditSigningConfig command retrieves the signing model that the system uses to sign the audit

records.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a list of attributes that are associated with the signing model, as the following

sample output displays:

1062 Securing applications and their environment

{{securityXmlSignerScopeName (cell):Node04Cell:(node):Node04}

{securityXmlSignerCertAlias mysigningcert}

{securityXmlSignerKeyStoreName NodeDefaultRootStore}

{signerKeyStoreRef KeyStore_Node04_4}

{enabled true}}

Batch mode example usage

v Using Jython string:

AdminTask.getAuditSigningConfig()

v Using Jython list:

AdminTask.getAuditSigningConfig()

Interactive mode example usage

v Using Jython string:

AdminTask.getAuditSigningConfig(’-interactive’)

importEncryptionCertificate

The importEncryptionCertificate command imports the self-signed certificate used for encrypting audit data

from the encryption keystore into another keystore. Use this command internally to automatically generate

a certificate for either encryption or signing. You can also use this command to import the certificate into

the keystore by specifying the keyStoreName and keyStoreScope parameters.

Target object

None.

Required parameters

-keyStoreName

Specifies the unique name to identify the keystore. (String, required)

-keyFilePath

Specifies the keystore path name that contains the certificate to import. (String, required)

-keyFilePassword

Specifies the password of the keystore that contains the certificate to import. (String, required)

-keyFileType

Specifies the type of the keystore. (String, required)

-certificateAliasFromKeyFile

Specifies the alias of the certificate to import from the keystore file. (String, required)

Optional parameters

-keyStoreScope

Specifies the scope name of the keystore. (String, optional)

-certificateAlias

Specifies a unique name to identify the imported certificate. (String, optional)

Return value

The command returns a value of true if the system successfully imports the encryption certificate.

Batch mode example usage

v Using Jython string:

AdminTask.importEncryptionCertificate(’{-keyStoreName AuditDefaultKeyStore -keyStoreScope

(cell):Node04Cell -keyFilePath c:/install_root/appserver/profiles/AppSrv01/config/cells/Node04Cell/nodes/Node04/trust.p12

-keyFilePassword WebAS -keyFileType PKCS12 -certificateAliasFromKeyFile root -certificateAlias myimportcert’)

Chapter 10. Configuring security with scripting 1063

v Using Jython list:

AdminTask.importEncryptionCertificate([’{-keyStoreName’, ’AuditDefaultKeyStore’, ’-keyStoreScope’,

’(cell):Node04Cell’, ’-keyFilePath’, ’c:/install_root/appserver/profiles/AppSrv01/config/cells/Node04Cell/nodes/Node04/trust.p12’,

’-keyFilePassword’, ’WebAS’, ’-keyFileType’, ’PKCS12’, ’-certificateAliasFromKeyFile’,

’root’, ’-certificateAlias’, ’myimportcert’])

Interactive mode example usage

v Using Jython:

AdminTask.importEncryptionCertificate(’-interactive’)

isAuditSigningEnabled

The isAuditSigningEnabled command indicates whether audit signing is enabled or disable in the security

audit system.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if signing is configured in the security auditing system.

Batch mode example usage

v Using Jython string:

AdminTask.isAuditSigningEnabled()

v Using Jython list:

AdminTask.isAuditSigningEnabled()

Interactive mode example usage

v Using Jython:

AdminTask.isAuditSigningEnabled(’-interactive’)

modifyAuditSigningConfig

The modifyAuditSigningConfig command modifies the signing model that the system uses to sign the audit

records.

The certificate may either be imported from an existing key file name containing that certificate,

automatically generated, or be the same certificate used to encrypt the audit records. To use an existing

certificate in an existing keystore, specify input values for the -enableAuditEncryption, -certAlias, and

–signingKeyStoreRef parameters. Also, set the value the -useEncryptionCert, –autogenCert, and

–importCert parameters as false for this scenario.

The user must have the administrator and auditor administrative roles to run this command.

Target object

None.

Required parameters

-enableAuditSigning

Specifies whether to sign audit records. This parameter modifies your audit policy configuration.

(Boolean, required)

1064 Securing applications and their environment

-certAlias

Specifies the alias name that identifies the generated or imported certificate. (String, required)

-signingKeyStoreRef

Specifies the reference ID of the key store that system imports the certificate to. The signing keystore

must already exist in the security.xml file. The system updates this keystore with the certificate that is

used to sign the audit records. (String, required)

Optional parameters

-useEncryptionCert

Specifies whether to use the same certificate for encryption and signing. (Boolean, optional)

-autogenCert

Specifies whether to automatically generate the certificate used to sign the audit records. (Boolean,

optional)

-importCert

Specifies whether to import an existing certificate to sign the audit records. (Boolean, optional)

-certKeyFileName

Specifies the unique name of the key file for the certificate to import. (String, optional)

-certKeyFilePath

Specifies the key file location for the certificate to import. (String, optional)

-certKeyFileType

Specifies the key file type for the certificate to import. (String, optional)

-certKeyFilePassword

Specifies the key file password for the certificate to import. (String, optional)

-certAliasToImport

Specifies the alias of the certificate to import. (String, optional)

Return value

The command returns a value of true if the system successfully modifies the security auditing system

configuration.

Batch mode example usage

v Using Jython string:

AdminTask.modifyAuditSigningConfig(’-enableAuditSigning true -certAlias auditSigningCert

-autogenCert true -signingKeyStoreRef Ref_Id_of_KeyStoreInSecurityXML’)

v Using Jython list:

AdminTask.modifyAuditSigningConfig([’-enableAuditSigning’, ’true’, ’-certAlias’,

’auditSigningCert’, ’-autogenCert’, ’true’, ’-signingKeyStoreRef’, ’Ref_Id_of_KeyStoreInSecurityXML’])

Interactive mode example usage

v Using Jython:

AdminTask.modifyAuditSigningConfig(’-interactive’)

AuditEncryptionCommands command group for the AdminTask object

You can use the Jython scripting language to configure the security auditing system with the wsadmin tool.

Use the commands and parameters in the AuditEncryptionCommands group to configure the security audit

system to encrypt audit records.

Use the following commands to enable, disable, and configure audit record encryption:

v “createAuditEncryptionConfig” on page 1066

Chapter 10. Configuring security with scripting 1065

v “createAuditSelfSignedCertificate” on page 1067

v “deleteAuditCertificate” on page 1068

v “deleteAuditEncryptionConfig” on page 1069

v “disableAuditEncryption” on page 1070

v “enableAuditEncryption” on page 1070

v “exportAuditCertificate” on page 1070

v “exportAuditCertToManagedKS” on page 1071

v “getAuditCertificate” on page 1072

v “getAuditEncryptionConfig” on page 1073

v “getEncryptionKeyStore” on page 1074

v “importAuditCertFromManagedKS” on page 1074

v “importAuditCertificate” on page 1075

v “importEncryptionCertificate” on page 1076

v “isAuditEncryptionEnabled” on page 1077

v “listAuditEncryptionKeyStores” on page 1078

v “listCertAliases” on page 1078

v “modifyAuditEncryptionConfig” on page 1079

v “renewAuditCertificate” on page 1080

createAuditEncryptionConfig

The createAuditEncryptionConfig command creates the encryption model used to encrypt the audit

records.

You can import the certificate from an existing key file name containing that certificate or automatically

generate a certificate.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-enableAuditEncryption

Specifies whether to encrypt audit records. This parameter modifies your audit policy configuration.

(Boolean, required)

-certAlias

Specifies the alias name that identifies the generated or imported certificate. (String, required)

-encryptionKeyStoreRef

Specifies the reference ID of the keystore to import the certificate to. (String, required)

Optional parameters

-autogenCert

Specifies whether to automatically generate the certificate used to encrypt the audit records. You must

specify either this parameter or the -importCert parameter, but you cannot specify both. (Boolean,

optional)

1066 Securing applications and their environment

-importCert

Specifies whether to import an existing certificate to encrypt the audit records. You must specify either

this parameter or the -autogenCert parameter, but you cannot specify both. (Boolean, optional)

-certKeyFileName

Specifies the unique name of the key file for the certificate to import. (String, optional)

-certKeyFilePath

Specifies the key file location for the certificate to import. (String, optional)

-certKeyFileType

Specifies the key file type for the certificate to import. (String, optional)

-certKeyFilePassword

Specifies the key file password for the certificate to import. (String, optional)

-certAliasToImport

Specifies the alias of the certificate to import. (String, optional)

Return value

The command returns the shortened form of the reference ID of the created encryption keystore if the

system successfully creates the audit encryption configuration, as the following example output displays:

KeyStore_1173199825578

Batch mode example usage

v Using Jython string:

AdminTask.createAuditEncryptionConfig(’-enableAuditEncryption true -certAlias

auditCertificate -autogenCert true -encryptionKeyStoreRef auditKeyStore’)

v Using Jython list:

AdminTask.createAuditEncryptionConfig([’-enableAuditEncryption’, ’true’, ’-certAlias’,

’auditCertificate’, ’-autogenCert’, ’true’, ’-encryptionKeyStoreRef’, ’auditKeyStore’])

Interactive mode example usage

v Using Jython string:

AdminTask.createAuditEncryptionConfig(’-interactive’)

createAuditSelfSignedCertificate

The createAuditSelfSignedCertificate command creates a self-signed certificate. Use this command

internally to automatically generate a certificate for encryption and signing or to import that certificate into

the keystore.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-keyStoreName

Specifies the unique name of the keystore where the system imports the self-signed certificate to.

(String, optional)

-certificateAlias

Specifies a unique alias name for the certificate. (String, required)

Chapter 10. Configuring security with scripting 1067

-certificateSize

Specifies the size that the private key uses for the personal certificate. The default value is 1024.

(Integer, required)

-certificateCommonName

Specifies the common name portion of the distinguished name. (String, required)

Optional parameters

-certificateOrganization

Specifies the organizational part of the distinguished name. (String, optional)

-keyStoreScope

Specifies the scope of the keystore that the system imports the self-signed certificate to. (String,

optional)

-certificateVersion

Specifies the version of the personal certificate. (String, optional)

-certificateOrganizationalUnit

Specifies the organization unit part of the distinguished name. (String, optional)

-certificateLocality

Specifies the locality portion of the distinguished name. (String, optional)

-certificateState

Specifies the state portion of the distinguished name. (String, optional)

-certificateZip

Specifies the zip code portion of the distinguished name. (String, optional)

-certificateCountry

Specifies the country portion of the distinguished name. The default value is US. (String, optional)

-certificateValidDays

Specifies the length of time, in days, which the certificate is valid. The default value is 365 days.

(Integer, optional)

Return value

The command returns a value of true if the system successfully creates the self-signed certificate.

Batch mode example usage

v Using Jython string:

AdminTask.createAuditSelfSignedCertificate(’-keyStoreName AuditDefaultKeyStore -keyStoreScope

(cell):Node04Cell -certificateAlias myNew -certificateCommonName cn=oet -certificateOrganization mycompany’)

v Using Jython list:

AdminTask.createAuditSelfSignedCertificate([’-keyStoreName’, ’AuditDefaultKeyStore’, ’-keyStoreScope’,

’(cell):Node04Cell’, ’-certificateAlias’, ’myNew’, ’-certificateCommonName’, ’cn=oet’,

’-certificateOrganization’, ’mycompany’])

Interactive mode example usage

v Using Jython:

AdminTask.createAuditSelfSignedCertificate(’-interactive’)

deleteAuditCertificate

The deleteAuditCertificate command deletes a self-signed certificate from an audit keystore.

The user must have the auditor administrative role to run this command.

1068 Securing applications and their environment

Target object

None.

Required parameters

-keyStoreName

Specifies the unique name of the keystore from which the system deletes the self-signed certificate.

(String, required)

-certificateAlias

Specifies a unique alias name for the certificate to delete. (String, required)

Optional parameters

-keyStoreScope

Specifies a unique alias name for the certificate. (String, optional)

Return value

The command returns a value of true if the system successfully deletes the audit certificate.

Batch mode example usage

v Using Jython string:

AdminTask.deleteAuditCertificate(’-keyStoreName myKeystore -certificateAlias oldCertificate’)

v Using Jython list:

AdminTask.deleteAuditCertificate([’-keyStoreName’, ’myKeystore’, ’-certificateAlias’, ’oldCertificate’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteAuditCertificate(’-interactive’)

deleteAuditEncryptionConfig

The deleteAuditEncryptionConfig command deletes the encryption model used to encrypt the audit

records. The command does not remove keystore files or the certificates.

The user must have the auditor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if the system successfully deletes the audit encryption configuration.

Batch mode example usage

v Using Jython string:

AdminTask.deleteAuditEncryptionConfig()

v Using Jython list:

AdminTask.deleteAuditEncryptionConfig()

Interactive mode example usage

v Using Jython:

AdminTask.deleteAuditEncryptionConfig(’-interactive’)

Chapter 10. Configuring security with scripting 1069

disableAuditEncryption

The disableAuditEncryption command disables the encryption of audit records.

The user must have the auditor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if the system successfully disables audit record encryption.

Batch mode example usage

v Using Jython string:

AdminTask.disableAuditEncryption()

v Using Jython list:

AdminTask.disableAuditEncryption()

Interactive mode example usage

v Using Jython string:

AdminTask.disableAuditEncryption(’-interactive’)

enableAuditEncryption

The enableAuditEncryption command enables the encryption of audit records.

The user must have the auditor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if the system successfully enables audit record encyption.

Batch mode example usage

v Using Jython string:

AdminTask.enableAuditEncryption()

v Using Jython list:

AdminTask.enableAuditEncryption()

Interactive mode example usage

v Using Jython:

AdminTask.enableAuditEncryption()

exportAuditCertificate

The exportAuditCertificate command exports a self-signed certificate from a keystore. To use this

command, you must adhere to the following user role and privilege guidelines:

v You must have audit privileges to export the certificate from an audit keystore.

v You must have the auditor and administrator roles to export the certificate to a security keystore.

1070 Securing applications and their environment

Target object

None.

Required parameters

-keyStoreName

Specifies the unique name of the keystore. (String, required)

-keyStorePassword

Specifies the password that the system uses to access the keystore specified with the -keyStoreName

parameter. (String, required)

-keyFilePath

Specifies the key store path name that contains the certificate to export. (String, required)

-keyFilePassword

Specifies the password of the keystore that contains the certificate to export. (String, required)

-keyFileType

Specifies the type of the keystore. (String, required)

-certificateAlias

Specifies the alias of the certificate to export from the keystore. (String, required)

Optional parameters

-keyStoreScope

Specifies the scope name of the keystore. (String, optional)

-aliasInKeyStore

Specifies a new unique name to identify the exported certificate. (String, optional)

Return value

The command returns a value of true if the system successfully exports the audit certificate.

Batch mode example usage

v Using Jython string:

AdminTask.exportAuditCertificate(’-keyStoreName AuditDefaultKeyStore -keyStoreScope

(cell):Node04Cell -keyFilePath c:/wasinstall/appserver/profiles/AppSrv01/config/cells/Node04Cell/nodes/Node04/trust.p12

-keyFilePassword myPwd -keyFileType PKCS12 -certificateAlias root’)

v Using Jython list:

AdminTask.exportAuditCertificate([’-keyStoreName’, ’AuditDefaultKeyStore’, ’-keyStoreScope’,

’(cell):Node04Cell’, ’-keyFilePath’, ’c:/wasinstall/appserver/profiles/AppSrv01/config/cells/Node04Cell/nodes/Node04/trust.p12’,

’-keyFilePassword’, ’myPwd’, ’-keyFileType’, ’PKCS12’, ’-certificateAlias’, ’root’])

Interactive mode example usage

v Using Jython:

AdminTask.exportAuditCertificate(’-interactive’)

exportAuditCertToManagedKS

The exportAuditCertToManagedKS command exports a self-signed certificate from an audit keystore to a

managed audit keystore.

The user must have the auditor administrative role to run this command.

Target object

None.

Chapter 10. Configuring security with scripting 1071

Required parameters

-keyStoreName

Specifies the unique name of the managed keystore. (String, required)

-keyStorePassword

Specifies the password of the managed keystore that contains the certificate to export. (String,

required)

-toKeyStoreName

Specifies the unique name of the managed keystore that contains the certificate to export. (String,

required)

-certificateAlias

Specifies a unique name to identify the exported certificate. (String, required)

Optional parameters

-keyStoreScope

Specifies the scope name of the keystore. (String, optional)

-toKeyStoreScope

Specifies the scope of the managed keystore that contains the certificate to export. (String, optional)

-aliasInKeyStore

Specifies the new unique name to identify the exported certificate. If you do not specify a value for this

parameter, the system sets the unique name to the value specified for the -certificateAlias parameter.

(String, optional)

Return value

The command returns a value of true if the system successfully exports the audit certificate.

Batch mode example usage

v Using Jython string:

AdminTask.exportAuditCertToManagedKS(’-keyStoreName auditEncryptionKeyStore -keyStorePassword myPwd

-toKeyStoreName AuditTrustStore -toKeyStoreScope (cell):my03Cell -certificateAlias newauditcert

-aliasInKeyStore newauditcert1’)

v Using Jython list:

AdminTask.exportAuditCertToManagedKS([’-keyStoreName’, ’auditEncryptionKeyStore’, ’-keyStorePassword’, ’myPwd’,

’-toKeyStoreName’, ’AuditTrustStore’, ’-toKeyStoreScope’, ’(cell):my03Cell’, ’-certificateAlias’, ’newauditcert’,

’-aliasInKeyStore’, ’newauditcert1’])

Interactive mode example usage

v Using Jython:

AdminTask.exportAuditCertToManagedKS(’-interactive’)

getAuditCertificate

The getAuditCertificate command retrieves the attributes for an audit self-signed certificate in an audit

keystore.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

1072 Securing applications and their environment

-keyStoreName

Specifies the unique name of the managed keystore of interest. (String, required)

-certificateAlias

Specifies a unique name to identify the exported certificate of interest. (String, required)

Optional parameters

-keyStoreScope

Specifies the scope name of the keystore of interest. (String, optional)

Return value

The command returns a list of attributes associated with the audit certificate.

Batch mode example usage

v Using Jython string:

AdminTask.getAuditCertificate(’-keyStoreName auditEncryptionKeyStore -certificateAlias

newauditcert’)

v Using Jython list:

AdminTask.getAuditCertificate([’-keyStoreName’, ’auditEncryptionKeyStore’, ’-certificateAlias’,

’newauditcert’])

Interactive mode example usage

v Using Jython:

AdminTask.getAuditCertificate(’-interactive’)

getAuditEncryptionConfig

The getAuditEncryptionConfig command retrieves the encryption model that the system uses to encrypt

the audit records.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a list of attributes associated with the encryption model, as the following example

output displays:

{{certRef Certificate_1184698729015}

{keystoreRef KeyStore_1173199825578}

{keyStore AuditDefaultKeyStore(cells/CHEYENNENode04Cell|audit.xml#KeyStore_1173199825578)}

{enabled true}

{alias mycertalias}

{_Websphere_Config_Data_Version {}}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#Certificate_1184698729015}

{_Websphere_Config_Data_Type Certificate}}

Batch mode example usage

v Using Jython string:

AdminTask.getAuditEncryptionConfig()

v Using Jython list:

AdminTask.getAuditEncryptionConfig()

Interactive mode example usage

v Using Jython:

Chapter 10. Configuring security with scripting 1073

AdminTask.getAuditEncryptionConfig(’-interactive’)

getEncryptionKeyStore

The getEncryptionKeyStore command retrieves the attributes for the keystore that contains the certificate

that the system uses to encrypt the audit records.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a list of attributes for the keystore of interest, as the following example displays:

{{location ${CONFIG_ROOT}/audittrust.p12}

{password *****}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#KeyStore_1173199825578}

{_Websphere_Config_Data_Version {}}

{useForAcceleration false}

{slot 0}

{type PKCS12}

{additionalKeyStoreAttrs {}}

{fileBased true}

{_Websphere_Config_Data_Type KeyStore}

{customProviderClass {}}

{hostList {}}

{keystoreRef KeyStore_1173199825578}

{createStashFileForCMS false}

{description {keyStore description}}

{managementScope (cells/CHEYENNENode04Cell|audit.xml#ManagementScope_1173199825608)}

{readOnly false}

{initializeAtStartup true}

{usage {}}

{provider IBMJCE}

{name AuditDefaultKeyStore}}

Batch mode example usage

v Using Jython string:

AdminTask.getEncryptionKeyStore()

v Using Jython list:

AdminTask.getEncryptionKeyStore()

Interactive mode example usage

v Using Jython:

AdminTask.getEncryptionKeyStore(’-interactive’)

importAuditCertFromManagedKS

The importAuditCertFromManagedKS command imports a self-signed certificate into a keystore from a

managed audit keystore. Use this command internally to automatically generate a certificate for encryption

or signing and to import a certificate into the keystore.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-keyStoreName

Specifies the unique name of the managed keystore. (String, required)

1074 Securing applications and their environment

-fromKeyStoreName

Specifies the unique name of the managed keystore that contains the certificate to import. (String,

required)

-fromKeyStorePassword

Specifies the password of the managed keystore that contains the certificate to import. (String,

required)

-certificateAliasFromKeyFile

Specifies the alias of the certificate to import from the managed keystore file. (String, required)

Optional parameters

-keyStoreScope

Specifies the scope name of the keystore. (String, optional)

-fromKeyStoreScope

Specifies the scope of the managed keystore that contains the certificate to import. (String, optional)

-certificateAlias

Specifies a unique name to identify the imported certificate. (String, optional)

Return value

The command returns a value of true if the system successfully imports the audit certificate.

Batch mode example usage

v Using Jython string:

AdminTask.importAuditCertFromManagedKS(’-keyStoreName AuditDefaultKeyStore -keyStoreScope

(cell):myNode03Cell -fromKeyStoreName AuditSecondDefaultKeyStore -fromKeyStoreScope

(cell):myNode03Cell -fromKeyStorePassword myPwd

-certificateAliasFromKeyFile root -certificateAlias myimportcert’)

v Using Jython list:

AdminTask.importAuditCertFromManagedKS([’-keyStoreName’, ’AuditDefaultKeyStore’, ’-keyStoreScope’,

’(cell):Node04Cell’, ’-fromKeyStoreName’, ’AuditSecondDefaultKeyStore’, ’-fromKeyStoreScope’,

’(cell):myNode03Cell’, ’-fromKeyStorePassword’, ’myPwd’, ’-certificateAliasFromKeyFile’,

’root’, ’-certificateAlias’, ’myimportcert’])

Interactive mode example usage

v Using Jython:

AdminTask.importAuditCertFromManagedKS(’-interactive’)

importAuditCertificate

The importAuditCertificate command imports a self-signed certificate into a keystore. Use this command

internally to automatically generate a certificate for encryption or signing and to import a certificate into the

keystore. To use this command, you must adhere to the following user role and privilege guidelines:

v You must have audit privileges to import the certificate to an audit keystore.

v You must have the auditor and administrator roles to import the certificate to a security keystore.

Target object

None.

Required parameters

-keyStoreName

Specifies the unique name of the keystore. (String, required)

-keyFilePath

Specifies the key store path name that contains the certificate to import. (String, required)

Chapter 10. Configuring security with scripting 1075

-keyFilePassword

Specifies the password of the keystore that contains the certificate to import. (String, required)

-keyFileType

Specifies the type of the keystore. (String, required)

-certificateAliasFromKeyFile

Specifies the alias of the certificate to import from the keystore file. (String, required)

Optional parameters

-keyStoreScope

Specifies the scope name of the keystore. (String, optional)

-certificateAlias

Specifies a unique name to identify the imported certificate. (String, optional)

Return value

The command returns a value of true if the system successfully imports the audit certificate.

Batch mode example usage

v Using Jython string:

AdminTask.importAuditCertificate(’-keyStoreName AuditDefaultKeyStore -keyStoreScope

(cell):Node04Cell -keyFilePath c:/wasinstall/appserver/profiles/AppSrv01/config/cells/Node04Cell/nodes/Node04/trust.p12

-keyFilePassword myPwd -keyFileType PKCS12 -certificateAliasFromKeyFile root -certificateAlias myimportcert’)

v Using Jython list:

AdminTask.importAuditCertificate([’-keyStoreName’, ’AuditDefaultKeyStore’, ’-keyStoreScope’, ’(cell):Node04Cell’,

’-keyFilePath’, ’c:/wasinstall/appserver/profiles/AppSrv01/config/cells/Node04Cell/nodes/Node04/trust.p12’,

’-keyFilePassword’, ’myPwd’, ’-keyFileType’, ’PKCS12’, ’-certificateAliasFromKeyFile’, ’root’,

’-certificateAlias’, ’myimportcert’])

Interactive mode example usage

v Using Jython:

AdminTask.importAuditCertificate(’-interactive’)

importEncryptionCertificate

The importEncryptionCertificate command imports the self-signed certificate that the system uses to

encrypt audit data from the encryption keystore into a managed keystore in security.xml.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-keyStoreName

Specifies the unique name of the keystore. (String, required)

-keyFilePath

Specifies the key store path name that contains the certificate to import. (String, required)

-keyFilePassword

Specifies the password of the keystore that contains the certificate to import. (String, required)

-keyFileType

Specifies the type of the keystore. (String, required)

1076 Securing applications and their environment

-certificateAliasFromKeyFile

Specifies the alias of the certificate to import from the keystore file. (String, required)

Optional parameters

-keyStoreScope

Specifies the scope name of the keystore. (String, optional)

-certificateAlias

Specifies a unique name to identify the imported certificate. (String, optional)

Return value

The command returns a value of true if the system successfully imports the encryption certificate.

Batch mode example usage

v Using Jython string:

AdminTask.importEncryptionCertificate(’-keyStoreName DefaultKeyStore -keyStoreScope (cell):Node04Cell

-keyFilePath c:/wasinstall/appserver/profiles/AppSrv01/config/cells/Node04Cell/nodes/Node04/trust.p12

-keyFilePassword myPwd -keyFileType PKCS12 -certificateAliasFromKeyFile root -certificateAlias myimportcert’)

v Using Jython list:

AdminTask.importEncryptionCertificate([’-keyStoreName’, ’DefaultKeyStore’, ’-keyStoreScope’, ’(cell):Node04Cell’,

’-keyFilePath’, ’c:/wasinstall/appserver/profiles/AppSrv01/config/cells/Node04Cell/nodes/Node04/trust.p12’,

’-keyFilePassword’, ’myPwd’, ’-keyFileType’, ’PKCS12’, ’-certificateAliasFromKeyFile’, ’root’,

’-certificateAlias’, ’myimportcert’])

Interactive mode example usage

v Using Jython:

AdminTask.importEncryptionCertificate(’-interactive’)

isAuditEncryptionEnabled

The isAuditEncryptionEnabled command determines if audit record encryption is enabled.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if audit record encryption is enabled.

Batch mode example usage

v Using Jython string:

AdminTask.isAuditEncryptionEnabled()

v Using Jython list:

AdminTask.isAuditEncryptionEnabled()

Interactive mode example usage

v Using Jython:

AdminTask.isAuditEncryptionEnabled(’-interactive’)

Chapter 10. Configuring security with scripting 1077

listAuditEncryptionKeyStores

The listAuditEncryptionKeyStores command retrieves the attributes for each configured encryption keystore

from the audit.xml file. The command returns attributes for active and inactive keystores.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a list of attributes for each configured keystore, as the following example output

displays:

{{location ${CONFIG_ROOT}/audittrust.p12}

{password *****}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#KeyStore_1173199825578}

{useForAcceleration false}

{slot 0}

{type PKCS12}

{additionalKeyStoreAttrs {}}

{fileBased true}

{_Websphere_Config_Data_Type KeyStore}

{customProviderClass {}}

{hostList {}}

{keystoreRef KeyStore_1173199825578}

{createStashFileForCMS false}

{description {keyStore description}}

{readOnly false}

{initializeAtStartup true}

{managementScope (cells/CHEYENNENode04Cell|audit.xml#ManagementScope_1173199825608)}

{usage {}}

{provider IBMJCE}

{name AuditDefaultKeyStore}}

Batch mode example usage

v Using Jython string:

AdminTask.listAuditEncryptionKeyStores()

v Using Jython list:

AdminTask.listAuditEncryptionKeyStores()

Interactive mode example usage

v Using Jython:

AdminTask.listAuditEncryptionKeyStores(’-interactive’)

listCertAliases

The listCertAliases command retrieves a list of the personal certificates in the keystore, as specified by the

keystore name and scope of interest.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-keyStoreName

Specifies the unique name of the keystore. (String, required)

Optional parameters

1078 Securing applications and their environment

-keyStoreScope

Specifies the scope of the keystore. The default value is the cell scope. (String, optional)

Return value

The command returns a list of certificate aliases for the personal certificates that are configured for the

keystore, as the following sample output displays:

mycertalias

Batch mode example usage

v Using Jython string:

AdminTask.listCertAliases(’-keyStoreName AuditDefaultKeyStore -keyStoreScope (cell):Node04Cell’)

v Using Jython list:

AdminTask.listCertAliases([’-keyStoreName AuditDefaultKeyStore -keyStoreScope (cell):Node04Cell’])

Interactive mode example usage

v Using Jython:

AdminTask.listCertAliases(’-interactive’)

modifyAuditEncryptionConfig

The modifyAuditEncryptionConfig command modifies the encryption model that the system uses to encrypt

the audit records. Specify values for the -enableAuditEncryption, -certAlias, and encryptionKeyStoreRef

parameters to use an existing keystore. Do not specify the -importCert or -autogenCert parameters if you

use an existing keystore.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

None

Optional parameters

-enableAuditEncryption

Specifies whether to encrypt audit records. This parameter modifies your audit policy configuration.

(Boolean, optional)

-autogenCert

Specifies whether to automatically generate the certificate used to encrypt the audit records. You must

specify either this parameter or the -importCert parameter, but you cannot specify both. (Boolean,

optional)

-importCert

Specifies whether to import an existing certificate to encrypt the audit records. You must specify either

this parameter or the -autogenCert parameter, but you cannot specify both. (Boolean, optional)

-certKeyFileName

Specifies the unique name of the key file for the certificate to import. (String, optional)

-certKeyFilePath

Specifies the key file location for the certificate to import. (String, optional)

Chapter 10. Configuring security with scripting 1079

-certKeyFileType

Specifies the key file type for the certificate to import. (String, optional)

-certKeyFilePassword

Specifies the key file password for the certificate to import. (String, optional)

-certAliasToImport

Specifies the alias of the certificate to import. (String, optional)

-certAlias

Specifies the alias name that identifies the generated or imported certificate. (String, optional)

-encryptionKeyStoreRef

Specifies the reference ID of the keystore to import the certificate to. (String, optional)

Return value

The command returns a value of true if the system successfully updates the configuration.

Batch mode example usage

v Using Jython string:

AdminTask.modifyAuditEncryptionConfig(’-enableAuditEncryption true -certAlias mycertalias

-encryptionKeyStoreRef KeyStore_1173199825578’)

v Using Jython list:

AdminTask.modifyAuditEncryptionConfig([’-enableAuditEncryption’, ’true’, ’-certAlias’, ’mycertalias’,

’-encryptionKeyStoreRef’, ’KeyStore_1173199825578’])

Interactive mode example usage

v Using Jython:

AdminTask.modifyAuditEncryptionConfig(’-interactive’)

renewAuditCertificate

The renewAuditCertificate command renews a self signed certificate in an audit keystore.

The user must have the auditor administrative role to run this command.

Target object

None.

-keyStoreName

Specifies the unique name of the managed keystore of interest. (String, required)

-certificateAlias

Specifies a unique name to identify the exported certificate to renew. (String, required)

Optional parameters

-keyStoreScope

Specifies the scope name of the keystore of interest. (String, optional)

Return value

The command returns a value of true if the system successfully updates the configuration.

Batch mode example usage

v Using Jython string:

AdminTask.renewAuditCertificate(’-keyStoreName auditEncryptionKeyStore

-certificateAlias newauditcert’)

1080 Securing applications and their environment

v Using Jython list:

AdminTask.renewAuditCertificate([’-keyStoreName’, ’auditEncryptionKeyStore’,

’-certificateAlias’, ’newauditcert’])

Interactive mode example usage

v Using Jython:

AdminTask.renewAuditCertificate(’-interactive’)

AuditEventFactoryCommands for the AdminTask object

You can use the Jython scripting language to configure the security auditing system with the wsadmin tool.

Use the commands and parameters in the AuditEventFactoryCommands group to configure the default or

a third-party audit event factory.

Use the following commands to configure the default audit event factory or a third-party audit event

factory:

v “createAuditEventFactory”

v “deleteAuditEventFactoryByName” on page 1082

v “deleteAuditEventFactoryByRef” on page 1083

v “getAuditEventFactory” on page 1083

v “getAuditEventFactoryClass” on page 1084

v “getAuditEventFactoryFilters” on page 1084

v “getAuditEventFactoryName” on page 1085

v “getAuditEventFactoryProvider” on page 1086

v “listAuditEventFactories” on page 1086

v “modifyAuditEventFactory” on page 1087

v “setAuditEventFactoryFilters” on page 1088

createAuditEventFactory

The createAuditEventFactory command creates an audit event factory in your security auditing system

configuration. You can use the default implementation of the audit event factory or use a third-party

implementation. To configure a third-party implementation, use the optional -customProperties parameter to

specify any properties necessary to configure the audit event factory implementation.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-uniqueName

Specifies a unique name that identifies the audit event factory. (String, required)

-className

Specifies the class implementation of the audit event factory interface. (String, required)

-provider

Specifies a reference to a predefined audit service provider implementation. (String, required)

-auditFilters

Specifies a reference or a group of references to predefined audit filters, using the following format:

reference, reference, reference (String, required)

Chapter 10. Configuring security with scripting 1081

Optional parameters

-customProperties

Specifies any custom properties necessary to configure a third-party implementation. (String, optional)

Return value

The command returns the shortened reference ID for the newly created audit event factory.

Batch mode example usage

v Using Jython string:

AdminTask.createAuditEventFactory(’-uniqueName myeventfactory -className

com.mycompany.myeventfactoryclass -provider AuditServiceProvider_1173199825608

-customProperties a=b -auditFilters AuditSpecification_1184598886859’)

v Using Jython list:

AdminTask.createAuditEventFactory([’-uniqueName’, ’myeventfactory’, ’-className’,

’com.mycompany.myeventfactoryclass’, ’-provider’, ’AuditServiceProvider_1173199825608’,

’-customProperties’, ’a=b’, ’-auditFilters’, ’AuditSpecification_1184598886859’])

Interactive mode example usage

v Using Jython:

AdminTask.createAuditEventFactory()

deleteAuditEventFactoryByName

The deleteAuditEventFactoryByName command deletes the audit event factory implementation in the

audit.xml file that matches a specific unique name identifier.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-uniqueName

Specifies the unique name of the audit event factory implementation. (String, required)

Return value

The command returns a value of true if the system successfully deletes the audit event factory.

Batch mode example usage

v Using Jython string:

AdminTask.deleteAuditEventFactoryByName(’–uniqueName

myeventfactory’)

v Using Jython list:

AdminTask.deleteAuditEventFactoryByName([’–uniqueName’, ’myeventfactory’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteAuditEventFactoryByName(’-interactive’)

1082 Securing applications and their environment

deleteAuditEventFactoryByRef

The deleteAuditEventFactoryByRef command deletes the audit event factory implementation that matches

the reference ID of interest.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-eventFactoryRef

Specifies an audit event factory implementation. This parameter can be a reference to the event

factory object. (String, required)

Return value

The command returns a value of true if the system successfully deletes the audit event factory.

Batch mode example usage

v Using Jython string:

AdminTask.deleteAuditEventFactoryByRef(’–eventFactoryRef

AuditEventFactory_1184688293515’)

v Using Jython list:

AdminTask.deleteAuditEventFactoryByRef([’–eventFactoryRef’, ’AuditEventFactory_1184688293515’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteAuditEventFactoryByRef(’–interactive’)

getAuditEventFactory

The getAuditEventFactory command retrieves the list of attributes for the audit event factory

implementation in the audit.xml file for a specific reference id.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-eventFactoryRef

Specifies an audit event factory implementation. This parameter can be a reference to the event

factory object. (String, required)

Return value

The command returns an attribute list for the audit event factory implementation of interest, as the

following example output displays:

{{name myeventfactory}

{properties {{{validationExpression {}}

{name a}

{description {}}

{value b}

Chapter 10. Configuring security with scripting 1083

{_Websphere_Config_Data_Id cells/Node04Cell|audit.xml#Property_1184688593531}

{_Websphere_Config_Data_Type Property}

{required false}}}}

{className com.mycompany.myeventfactoryclass}

{auditServiceProvider auditServiceProviderImpl_1(cells/Node04Cell|audit.xml#AuditServiceProvider_1173199825608)}

{auditSpecifications DefaultAuditSpecification_1(cells/Node04Cell|audit.xml#AuditSpecification_1173199825608)}

{_Websphere_Config_Data_Id cells/Node04Cell|audit.xml#AuditEventFactory_1184688293515}

{_Websphere_Config_Data_Type AuditEventFactory}}

Batch mode example usage

v Using Jython string:

AdminTask.getAuditEventFactory(’-eventFactoryRef AuditEventFactory_1184688293515’)

v Using Jython list:

AdminTask.getAuditEventFactory([’-eventFactoryRef’, ’AuditEventFactory_1184688293515’])

Interactive mode example usage

v Using Jython:

AdminTask.getAuditEventFactory(’-interactive’)

getAuditEventFactoryClass

The getAuditEventFactoryClass command retrieves the class name of the audit event factory

implementation that matches a specific reference ID in the audit.xml configuration file.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-eventFactoryRef

Specifies an audit event factory implementation. This parameter can be a reference to the event

factory object. (String, required)

Return value

The command returns the class name of the audit event factory of interest, as the following sample output

displays:

com.mycompany.myeventfactoryclass

Batch mode example usage

v Using Jython string:

AdminTask.getAuditEventFactoryClass(’-eventFactoryRef

AuditEventFactory_1184688293515’)

v Using Jython list:

AdminTask.getAuditEventFactoryClass([’-eventFactoryRef’,

’AuditEventFactory_1184688293515’])

Interactive mode example usage

v Using Jython:

AdminTask.getAuditEventFactoryClass(’-interactive’)

getAuditEventFactoryFilters

The getAuditEventFactoryFilters command retrieves a list of defined filters for the passed-in event factory.

The user must have the monitor administrative role to run this command.

1084 Securing applications and their environment

Target object

None.

Required parameters

-eventFactoryRef

Specifies an audit event factory implementation. This parameter can be a reference to the event

factory object. (String, required)

Return value

The command returns a list of the defined filters for the event factory reference of interest in a shortened

format, as the following sample output displays:

AUTHN:SUCCESS,AUTHN:INFO,AUTHZ:SUCCESS,AUTHZ:INFO

Batch mode example usage

v Using Jython string:

AdminTask.getAuditEventFactoryFilters(’-eventFactoryRef

AuditEventFactory_1184688293515’)

v Using Jython list:

AdminTask.getAuditEventFactoryFilters([’-eventFactoryRef’,

’AuditEventFactory_1184688293515’])

Interactive mode example usage

v Using Jython:

AdminTask.getAuditEventFactoryFilters(’-interactive’)

getAuditEventFactoryName

The getAuditEventFactoryName command retrieves the unique name of the audit event factory

implementation that matches a specific reference ID in the audit.xml configuration file.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-eventFactoryRef

Specifies an audit event factory implementation. This parameter can be a reference to the event

factory object. (String, required)

Return value

The command returns the name of the audit event factory, as the following sample output displays:

myeventfactory

Batch mode example usage

v Using Jython string:

AdminTask.getAuditEventFactoryName(’-eventFactoryRef

AuditEventFactory_1184688293515’)

v Using Jython list:

AdminTask.getAuditEventFactoryName([’-eventFactoryRef’,

’AuditEventFactory_1184688293515’])

Chapter 10. Configuring security with scripting 1085

Interactive mode example usage

v Using Jython:

AdminTask.getAuditEventFactoryName(’-interactive’)

getAuditEventFactoryProvider

The getAuditEventFactoryProvider command retrieves the object name of the audit service provider that a

specific audit event factory implementation uses in the audit.xml configuration file.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-eventFactoryRef

Specifies an audit event factory implementation. This parameter can be a reference to the event

factory object. (String, required)

Return value

The command returns the object name of the audit service provider for the audit event factory of interest,

as the following sample output displays:

auditServiceProviderImpl_1(cells/Node04Cell|audit.xml#AuditServiceProvider_1173199825608)

Batch mode example usage

v Using Jython string:

AdminTask.getAuditEventFactoryProvider(’-eventFactoryRef

AuditEventFactory_1184688293515’)

v Using Jython list:

AdminTask.getAuditEventFactoryProvider([’-eventFactoryRef’,

’AuditEventFactory_1184688293515’])

Interactive mode example usage

v Using Jython:

AdminTask.getAuditEventFactoryProvider(’-interactive’)

listAuditEventFactories

The listAuditEventFactories command retrieves a list of audit event factory objects and their attributes that

are defined in the audit.xml file.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns an array list of audit event factories and attributes, as the following example output

displays:

{{auditSpecifications DefaultAuditSpecification_1(cells/Node04Cell|audit.xml#AuditSpecification_1173199825608)

DefaultAuditSpecification_2(cells/Node04Cell|audit.xml#AuditSpecification_1173199825609)

DefaultAuditSpecification_3(cells/Node04Cell|audit.xml#AuditSpecification_1173199825610)

1086 Securing applications and their environment

DefaultAuditSpecification_4(cells/Node04Cell|audit.xml#AuditSpecification_1173199825611)}

{name auditEventFactoryImpl_1}

{_Websphere_Config_Data_Id cells/Node04Cell|audit.xml#AuditEventFactory_1173199825608}

{_Websphere_Config_Data_Type AuditEventFactory}

{auditSpecRef4 AuditSpecification_1173199825611}

{properties {}}

{auditSpecRef3 AuditSpecification_1173199825610}

{className com.ibm.ws.security.audit.AuditEventFactoryImpl}

{auditServiceProvider auditServiceProviderImpl_1(cells/Node04Cell|audit.xml#AuditServiceProvider_1173199825608)}

{auditSpecRef2 AuditSpecification_1173199825609}

{auditSpecRef1 AuditSpecification_1173199825608}

{auditEventFactoryRef AuditEventFactory_1173199825608}

{emitterRef AuditServiceProvider_1173199825608}}

{{auditSpecifications myfilter(cells/Node04Cell|audit.xml#AuditSpecification_1184598886859)}

{name myeventfactory}

{_Websphere_Config_Data_Id cells/Node04Cell|audit.xml#AuditEventFactory_1184688293515}

{_Websphere_Config_Data_Type AuditEventFactory}

{className com.mycompany.myeventfactoryclass}

{auditServiceProvider auditServiceProviderImpl_1(cells/Node04Cell|audit.xml#AuditServiceProvider_1173199825608)}

{properties {{{validationExpression {}}

{name a}

{description {}}

{value b}

{_Websphere_Config_Data_Id cells/Node04Cell|audit.xml#Property_1184688293546}

{_Websphere_Config_Data_Type Property}

{required false}}}}

{auditSpecRef1 AuditSpecification_1184598886859}

{auditEventFactoryRef AuditEventFactory_1184688293515}

{emitterRef AuditServiceProvider_1173199825608}}

Batch mode example usage

v Using Jython string:

AdminTask.listAuditEventFactories()

v Using Jython list:

AdminTask.listAuditEventFactories()

Interactive mode example usage

v Using Jython string:

AdminTask.listAuditEventFactories(’-interactive’)

modifyAuditEventFactory

The modifyAuditEventFactory command modifies the attributes of the audit event factory implementation

that the command references with the reference id.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-eventFactoryRef

Specifies an audit event factory implementation. This parameter can be a reference to the event

factory object. (String, required)

Optional parameters

-provider

Specifies the reference ID of an audit service provider implementation. (String, optional)

-className

Specifies the name of the class that implements the audit event factory interface. (String, optional)

-customProperties

Specifies one or more custom properties to associate with the audit event factory of interest. Use the

following format: name=value, name=value (String, optional)

Chapter 10. Configuring security with scripting 1087

-auditFilters

Specifies a list of references to audit filters that exist in your configuration. You can separate each item

in the list with a comma (,), a semicolon (;), or a space. (String, optional)

Return value

The command returns a value of true if the system successfully updates the security auditing system

configuration.

Batch mode example usage

v Using Jython string:

AdminTask.modifyAuditEventFactory(’-eventFactoryRef AuditEventFactory_1184688293515 -provider

AuditServiceProvider_1173199825608 -customProperties b=c’)

v Using Jython list:

AdminTask.modifyAuditEventFactory([’-eventFactoryRef’, ’AuditEventFactory_1184688293515’,

’-provider’, ’AuditServiceProvider_1173199825608’, ’-customProperties’, ’b=c’])

Interactive mode example usage

v Using Jython:

AdminTask.modifyAuditEventFactory(’-interactive’)

setAuditEventFactoryFilters

The setAuditEventFactoryFilters command sets the filters for an audit event factory implementation.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-eventFactoryRef

Specifies an audit event factory implementation. This parameter can be a reference to the event

factory object. (String, required)

-filtersRef

Specifies a list of references to defined audit filters. (String, required)

Return value

The command returns a value of true if the system successfully sets the filters for the audit event factory.

Batch mode example usage

v Using Jython string:

AdminTask.setAuditEventFactoryFilters(’-eventFactoryRef AuditEventFactory_1184688293515

-filtersRef AuditSpecification_1173199825608’)

v Using Jython list:

AdminTask.setAuditEventFactoryFilters([’-eventFactoryRef’, ’AuditEventFactory_1184688293515’,

’-filtersRef’, ’AuditSpecification_1173199825608’])

Interactive mode example usage

v Using Jython string:

AdminTask.setAuditEventFactoryFilters(’-interactive’)

1088 Securing applications and their environment

AuditFilterCommands command group for the AdminTask object

You can use the Jython scripting language to configure the security auditing system with the wsadmin tool.

Use the commands and parameters in the AuditFilterCommands group to configure and manage auditable

events.

Use the following commands to configure filters for auditable events in your security auditing configuration:

v “convertFilterRefToString”

v “convertFilterStringToRef” on page 1090

v “createAuditFilter” on page 1090

v “deleteAuditFilter” on page 1092

v “deleteAuditFilterByRef” on page 1093

v “disableAuditFilter” on page 1093

v “enableAuditFilter” on page 1094

v “getAuditFilter” on page 1094

v “getAuditOutcomes” on page 1095

v “getSupportedAuditEvents” on page 1096

v “getSupportedAuditOutcomes” on page 1097

v “isAuditFilterEnabled” on page 1097

v “isEventEnabled” on page 1099

v “listAuditFilters” on page 1100

v “listAuditFiltersByEvent” on page 1101

v “listAuditFiltersByRef” on page 1101

v “modifyAuditFilter” on page 1102

convertFilterRefToString

The convertFilterRefToString command converts a reference ID of a filter to a shortened string value such

as AUTHN:SUCCESS.

Target object

None.

Required parameters

-filterRef

Specifies a reference ID for a specific audit filter in the audit.xml file. The system defines 4 default

audit filters by default. Use the createAuditFilter command to create additional audit filters in your

audit.xml configuration file. (String, required)

Return value

The command returns the string value of an event type in a shortened format, as the following sample

output displays:

AUTHN:SUCCESS,AUTHN:INFO,AUTHZ:SUCCESS,AUTHZ:INFO

Batch mode example usage

v Using Jython string:

AdminTask.convertFilterRefToString(’-filterRef AuditSpecification_1184598886859’)

v Using Jython list:

AdminTask.convertFilterRefToString([’-filterRef’, ’AuditSpecification_1184598886859’])

Chapter 10. Configuring security with scripting 1089

Interactive mode example usage

v Using Jython:

AdminTask.convertFilterRefToString(’-interactive’)

convertFilterStringToRef

The convertFilterStringToRef command converts the shortened name of an event type, such as

AUTHN:SUCCESS, to the reference ID of the audit filter in the audit.xml configuration file.

The command accepts one event and outcome pair. The command does not accept multiple event and

outcome pairs, such as AUTHN:SUCCESS AUTHZ:SUCCESS.

Target object

None.

Required parameters

-filter

Specifies a shortened form of a reference ID for an audit filter, such as AUTHN:SUCCESS. The event type

must exist in your security auditing system configuration. (String, required)

Return value

The command returns the reference ID for the event type of interest, as the following example displays:

AuditSpecification_1173199825608

Batch mode example usage

v Using Jython string:

AdminTask.convertFilterStringToRef(’-filter AUTHN:SUCCESS’)

v Using Jython list:

AdminTask.convertFilterStringToRef([’-filter’, ’AUTHN:SUCCESS’])

Interactive mode example usage

v Using Jython:

AdminTask.convertFilterStringToRef(’-interactive’)

createAuditFilter

The createAuditFilter command creates and enables a new audit event filter specification entry in the

audit.xml configuration file.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-name

Specifies a unique name to associate with the audit event filter. (String, required)

-eventType

Specifies a list of one or more auditable events. To specify a list, separate each outcome with a

comma (,) character. (String, required)

1090 Securing applications and their environment

You can configure the following auditable events in your security auditing system:

 Event name Description

SECURITY_AUTHN Audits all authentication events.

SECURITY_AUTHN_MAPPING Audits events that record mapping of credentials where two user identities exist.

SECURITY_AUTHN_TERMINATE Audits authentication termination events such as a timeout, terminated session, or user-initiated

logging out.

SECURITY_AUTHZ Audits events related to authorization checks when the system enforces access control policies.

SECURITY_MGMT_POLICY Audits events related to security policies, such as the creation of access control lists.

SECURITY_MGMT_PROVISIONING Audits provisioning events such as the creation an account for a user on a specific machine or

adding a user to a group on a specific machine. A given provisioning event might related to one or

more SECURITY_MGMT_REGISTRY events.

SECURITY_MGMT_RESOURCE Audits resource management events such as creation, deletion, and changes to the attributes of a

resource. The resource represents an entity with operations that need to be secured. An example of

a resource is the Tivoli Access Manager protected object that could represent a file, a Web page, and

so on.

SECURITY_RUNTIME_KEY Audits events related to runtime operations for certificates such as expiration, expiration checks, and

invalid certificates.

SECURITY_MGMT_KEY Audits events related to management operations for certificates such as creating, updating, or

exporting a certificate, reading or updating a certificate request, publishing a certificate revocation list,

monitoring changes to the keystore, truststore, and so on.

SECURITY_MGMT_AUDIT Audits events that record operations related to the audit subsystem such as starting audit, stopping

audit, turning audit on or off, changing configuration of audit filters or level, archiving audit data,

purging audit data, and so on.

SECURITY_RESOURCE_ACCESS Audits events that record all accesses to a resource. Examples are all accesses to a file, all HTTP

requests and responses to a given Web page, and all accesses to a critical database table.

SECURITY_SIGNING Audits events that record signing such as signing operations used to validate parts of a SOAP

Message for Web Services.

SECURITY_ENCRYPTION Audits events that record encryption information such as encryption for Web services.

SECURITY_AUTHN_DELEGATION Audits events that record delegation, including Identity Assertion, RunAs, and Low Assertion. Used

when the client identity is propagated or when delegation involves the use of a special identity. This

event type is also used when switching user identities within a given session.

SECURITY_AUTHN_CREDS_MODIFY Audits events to modify credentials for a given user identity.

-outcome

Specifies a list of one or multiple event outcomes. For each audit event type, you must specify an

outcome. Valid outcomes include SUCCESS, FAILURE, REDIRECT, ERROR, DENIED, WARNING, and INFO.

(String, required)

Return value

If the system is successful, the command returns the reference ID for the new audit event filter, as the

following sample output displays:

AuditSpecification_1184689433421

Batch mode example usage

v Using Jython string:

AdminTask.createAuditFilter(’-name myfilter -eventType

"SECURITY_MGMT_PROVISIONING, SECURITY_MGMT_POLICY" -outcome SUCCESS’)

v Using Jython list:

AdminTask.createAuditFilter([’-name’, ’myfilter’, ’-eventType’,

’"SECURITY_MGMT_PROVISIONING,’, ’SECURITY_MGMT_POLICY"’, ’-outcome’, ’SUCCESS’])

Interactive mode example usage

v Using Jython:

AdminTask.createAuditFilter(’-interactive’)

Chapter 10. Configuring security with scripting 1091

deleteAuditFilter

The deleteAuditFilter command deletes the audit event filter specification from the audit.xml file that the

system references by an event type and outcome.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-eventType

Specifies the auditable event to delete. (String, required)

 The following table displays all valid event types:

 Event name Description

SECURITY_AUTHN Audits all authentication events.

SECURITY_AUTHN_MAPPING Audits events that record mapping of credentials where two user identities exist.

SECURITY_AUTHN_TERMINATE Audits authentication termination events such as a timeout, terminated session, or user-initiated

logging out.

SECURITY_AUTHZ Audits events related to authorization checks when the system enforces access control policies.

SECURITY_MGMT_POLICY Audits events related to security policies, such as the creation of access control lists.

SECURITY_MGMT_PROVISIONING Audits provisioning events such as the creation an account for a user on a specific machine or

adding a user to a group on a specific machine. A given provisioning event might related to one or

more SECURITY_MGMT_REGISTRY events.

SECURITY_MGMT_RESOURCE Audits resource management events such as creation, deletion, and changes to the attributes of a

resource. The resource represents an entity with operations that need to be secured. An example of

a resource is the Tivoli Access Manager protected object that could represent a file, a Web page, and

so on.

SECURITY_RUNTIME_KEY Audits events related to runtime operations for certificates such as expiration, expiration checks, and

invalid certificates.

SECURITY_MGMT_KEY Audits events related to management operations for certificates such as creating, updating, or

exporting a certificate, reading or updating a certificate request, publishing a certificate revocation list,

monitoring changes to the keystore, truststore, and so on.

SECURITY_MGMT_AUDIT Audits events that record operations related to the audit subsystem such as starting audit, stopping

audit, turning audit on or off, changing configuration of audit filters or level, archiving audit data,

purging audit data, and so on.

SECURITY_RESOURCE_ACCESS Audits events that record all accesses to a resource. Examples are all accesses to a file, all HTTP

requests and responses to a given Web page, and all accesses to a critical database table.

SECURITY_SIGNING Audits events that record signing such as signing operations used to validate parts of a SOAP

Message for Web Services.

SECURITY_ENCRYPTION Audits events that record encryption information such as encryption for Web services.

SECURITY_AUTHN_DELEGATION Audits events that record delegation, including Identity Assertion, RunAs, and Low Assertion. Used

when the client identity is propagated or when delegation involves the use of a special identity. This

event type is also used when switching user identities within a given session.

SECURITY_AUTHN_CREDS_MODIFY Audits events to modify credentials for a given user identity.

-outcome

Specifies the event outcome. Valid outcomes include SUCCESS, FAILURE, REDIRECT, ERROR, DENIED,

WARNING, and INFO. (String, required)

Return value

The command returns a value of true if the system successfully deletes the audit filter from your

configuration.

Batch mode example usage

1092 Securing applications and their environment

v Using Jython string:

AdminTask.deleteAuditFilter(’-eventType SECURITY_AUTHN –outcome SUCCESS’)

v Using Jython list:

AdminTask.deleteAuditFilter([’-eventType’, ’SECURITY_AUTHN’, ’–outcome’, ’SUCCESS’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteAuditFilter(’-interactive’)

deleteAuditFilterByRef

The deleteAuditFilterByRef command deletes the audit filter that the system references by the referenced

id.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-filterRef

Specifies the reference ID for an audit filter in your security auditing system configuration. (String,

required)

Return value

The command returns a value of true if the system successfully deletes the audit filter specification from

the audit.xml file.

Batch mode example usage

v Using Jython string:

AdminTask.deleteAuditFilterByRef(’-filterRef AuditSpecification_1173199825608’)

v Using Jython list:

AdminTask.deleteAuditFilterByRef([’-filterRef’, ’AuditSpecification_1173199825608’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteAuditFilterByRef(’-interactive’)

disableAuditFilter

The disableAuditFilter command disables the audit filter specification that corresponds to a specific

reference id.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

Chapter 10. Configuring security with scripting 1093

-filterRef

Specifies a reference ID for a specific audit filter in the audit.xml file. The system defines 4 default

audit filters by default. Use the createAuditFilter command to create additional audit filters in your

audit.xml configuration file. (String, required)

Return value

The command returns a value of true if the system successfully disables the audit filter.

Batch mode example usage

v Using Jython string:

AdminTask.disableAuditFilter(’-filterRef’, ’AuditSpecification_1184689433421’)

Interactive mode example usage

v Using Jython string:

AdminTask.disableAuditFilter(’-interactive’)

enableAuditFilter

The enableAuditFilter command enables the audit filter specification that corresponds to a specific

reference id. Use this command to enable a filter that was previously configured and disabled in your

security auditing system configuration. To create a new audit filter specification, use the creatAuditFilter

command.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-filterRef

Specifies a reference ID for a specific audit filter in the audit.xml file. The system defines 4 default

audit filters by default. Use the createAuditFilter command to create additional audit filters in your

audit.xml configuration file. (String, required)

Return value

The command returns a value of true if the system successfully enables the audit filter.

Batch mode example usage

v Using Jython string:

AdminTask.enableAuditFilter(’-filterRef AuditSpecification_1184689433421’)

v Using Jython list:

AdminTask.enableAuditFilter([’-filterRef’, ’AuditSpecification_1184689433421’])

Interactive mode example usage

v Using Jython string:

AdminTask.enableAuditFilter(’-interactive’)

getAuditFilter

The getAuditFilter command retrieves the attributes that the system associates with the audit filter

specification of interest.

1094 Securing applications and their environment

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-reference

Specifies the reference ID for an audit filter in your security auditing system configuration. (String,

required)

Return value

The command returns a list of attributes for the audit filter specification of interest, as the following sample

output displays:

{{enabled true}

{name DefaultAuditSpecification_1}

{event SECURITY_AUTHN

SECURITY_AUTHN_MAPPING}

{outcome FAILURE}

{_Websphere_Config_Data_Id cells/Node04Cell|audit.xml#AuditSpecification_1173199825608}

{_Websphere_Config_Data_Type AuditSpecification}}

Batch mode example usage

v Using Jython string:

AdminTask.getAuditFilter(’-reference AuditSpecification_1173199825608’)

v Using Jython list:

AdminTask.getAuditFilter([’-reference’, ’AuditSpecification_1173199825608’])

Interactive mode example usage

v Using Jython string:

AdminTask.getAuditFilter(’-interactive’)

getAuditOutcomes

The getAuditOutcomes command retrieves a list of the enabled outcomes for the auditable event type of

interest.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-eventType

Specifies a list of one or more auditable events. To specify a list, separate each outcome with a

comma (,) character. (String, required)

 You can retrieve the event outcome for any of the following auditable events that might be configured

in your security auditing system:

 Event name Description

SECURITY_AUTHN Audits all authentication events.

SECURITY_AUTHN_MAPPING Audits events that record mapping of credentials where two user identities exist.

SECURITY_AUTHN_TERMINATE Audits authentication termination events such as a timeout, terminated session, or user-initiated

logging out.

Chapter 10. Configuring security with scripting 1095

Event name Description

SECURITY_AUTHZ Audits events related to authorization checks when the system enforces access control policies.

SECURITY_MGMT_POLICY Audits events related to security policies, such as the creation of access control lists.

SECURITY_MGMT_PROVISIONING Audits provisioning events such as the creation an account for a user on a specific machine or

adding a user to a group on a specific machine. A given provisioning event might related to one or

more SECURITY_MGMT_REGISTRY events.

SECURITY_MGMT_RESOURCE Audits resource management events such as creation, deletion, and changes to the attributes of a

resource. The resource represents an entity with operations that need to be secured. An example of

a resource is the Tivoli Access Manager protected object that could represent a file, a Web page, and

so on.

SECURITY_RUNTIME_KEY Audits events related to runtime operations for certificates such as expiration, expiration checks, and

invalid certificates.

SECURITY_MGMT_KEY Audits events related to management operations for certificates such as creating, updating, or

exporting a certificate, reading or updating a certificate request, publishing a certificate revocation list,

monitoring changes to the keystore, truststore, and so on.

SECURITY_MGMT_AUDIT Audits events that record operations related to the audit subsystem such as starting audit, stopping

audit, turning audit on or off, changing configuration of audit filters or level, archiving audit data,

purging audit data, and so on.

SECURITY_RESOURCE_ACCESS Audits events that record all accesses to a resource. Examples are all accesses to a file, all HTTP

requests and responses to a given Web page, and all accesses to a critical database table.

SECURITY_SIGNING Audits events that record signing such as signing operations used to validate parts of a SOAP

Message for Web Services.

SECURITY_ENCRYPTION Audits events that record encryption information such as encryption for Web services.

SECURITY_AUTHN_DELEGATION Audits events that record delegation, including Identity Assertion, RunAs, and Low Assertion. Used

when the client identity is propagated or when delegation involves the use of a special identity. This

event type is also used when switching user identities within a given session.

SECURITY_AUTHN_CREDS_MODIFY Audits events to modify credentials for a given user identity.

Return value

The command returns one or multiple outcomes for the event type of interest, as the following sample

output displays:

SUCCESS

Batch mode example usage

v Using Jython string:

AdminTask.getAuditOutcomes(’-eventType SECURITY_MGMT_PROVISIONING’)

v Using Jython list:

AdminTask.getAuditOutcomes([’-eventType’, ’SECURITY_MGMT_PROVISIONING’])

Interactive mode example usage

v Using Jython string:

AdminTask.getAuditOutcomes(’-interactive’)

getSupportedAuditEvents

The getSupportedAuditEvents command returns a list of each supported auditable event.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns the following list of possible event outcomes:

1096 Securing applications and their environment

SECURITY_AUTHN SECURITY_AUTHN_CREDS_MODIFY

SECURITY_AUTHN_DELEGATION SECURITY_AUTHN_MAPPING

SECURITY_AUTHN_TERMINATE SECURITY_AUTHZ

SECURITY_ENCRYPTION SECURITY_MGMT_AUDIT

SECURITY_MGMT_CONFIG SECURITY_MGMT_KEY

SECURITY_MGMT_POLICY SECURITY_MGMT_PROVISIONING

SECURITY_MGMT_REGISTRY SECURITY_MGMT_RESOURCE

SECURITY_RESOURCE_ACCESS SECURITY_RUNTIME

SECURITY_RUNTIME_KEY SECURITY_SIGNING

Batch mode example usage

v Using Jython string:

AdminTask.getSupportedAuditEvents()

v Using Jython list:

AdminTask.getSupportedAuditEvents()

Interactive mode example usage

v Using Jython:

AdminTask.getSupportedAuditEvents(’-interactive’)

getSupportedAuditOutcomes

The getSupportedAuditOutcomes command retrieves a list of each supported outcome for the auditable

event filters.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns the following list of possible event outcomes:

SUCCESS

INFO

WARNING

ERROR

DENIED

REDIRECT

FAILURE

Batch mode example usage

v Using Jython string:

AdminTask.getSupportedAuditOutcomes()

v Using Jython list:

AdminTask.getSupportedAuditOutcomes()

Interactive mode example usage

v Using Jython:

AdminTask.getSupportedAuditOutcomes(’-interactive’)

isAuditFilterEnabled

The isAuditFilterEnabled command determines if the audit filter of interest is enabled in the audit.xml

configuration file.

The user must have the monitor administrative role to run this command.

Target object

Chapter 10. Configuring security with scripting 1097

None.

Required parameters

-eventType

Specifies a list of one or more auditable events. To specify a list, separate each outcome with a

comma (,) character. (String, required)

 The following auditable events might be configured in your security auditing system:

 Event name Description

SECURITY_AUTHN Audits all authentication events.

SECURITY_AUTHN_MAPPING Audits events that record mapping of credentials where two user identities exist.

SECURITY_AUTHN_TERMINATE Audits authentication termination events such as a timeout, terminated session, or user-initiated

logging out.

SECURITY_AUTHZ Audits events related to authorization checks when the system enforces access control policies.

SECURITY_MGMT_POLICY Audits events related to security policies, such as the creation of access control lists.

SECURITY_MGMT_PROVISIONING Audits provisioning events such as the creation an account for a user on a specific machine or

adding a user to a group on a specific machine. A given provisioning event might related to one or

more SECURITY_MGMT_REGISTRY events.

SECURITY_MGMT_RESOURCE Audits resource management events such as creation, deletion, and changes to the attributes of a

resource. The resource represents an entity with operations that need to be secured. An example of

a resource is the Tivoli Access Manager protected object that could represent a file, a Web page, and

so on.

SECURITY_RUNTIME_KEY Audits events related to runtime operations for certificates such as expiration, expiration checks, and

invalid certificates.

SECURITY_MGMT_KEY Audits events related to management operations for certificates such as creating, updating, or

exporting a certificate, reading or updating a certificate request, publishing a certificate revocation list,

monitoring changes to the keystore, truststore, and so on.

SECURITY_MGMT_AUDIT Audits events that record operations related to the audit subsystem such as starting audit, stopping

audit, turning audit on or off, changing configuration of audit filters or level, archiving audit data,

purging audit data, and so on.

SECURITY_RESOURCE_ACCESS Audits events that record all accesses to a resource. Examples are all accesses to a file, all HTTP

requests and responses to a given Web page, and all accesses to a critical database table.

SECURITY_SIGNING Audits events that record signing such as signing operations used to validate parts of a SOAP

Message for Web Services.

SECURITY_ENCRYPTION Audits events that record encryption information such as encryption for Web services.

SECURITY_AUTHN_DELEGATION Audits events that record delegation, including Identity Assertion, RunAs, and Low Assertion. Used

when the client identity is propagated or when delegation involves the use of a special identity. This

event type is also used when switching user identities within a given session.

SECURITY_AUTHN_CREDS_MODIFY Audits events to modify credentials for a given user identity.

-outcome

Specifies the event outcome. Valid outcomes include SUCCESS, FAILURE, REDIRECT, ERROR, DENIED,

WARNING, and INFO. (String, required)

Return value

The command returns a value of true if the event type of interest is enabled in your configuration.

Batch mode example usage

v Using Jython string:

AdminTask.isAuditFilterEnabled(’-eventType SECURITY_MGMT_PROVISIONING

-outcome SUCCESS’)

v Using Jython list:

AdminTask.isAuditFilterEnabled([’-eventType’, ’SECURITY_MGMT_PROVISIONING’,

’-outcome’, ’SUCCESS’])

Interactive mode example usage

v Using Jython string:

1098 Securing applications and their environment

AdminTask.isAuditFilterEnabled(’-interactive’)

isEventEnabled

The isEventEnabled command determines if the system enabled at least one audit outcome for the event

of interest.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-eventType

Specifies a list of one or more auditable events. To specify a list, separate each outcome with a

comma (,) character. (String, required)

 The following auditable events are available to configure in your security auditing system:

 Event name Description

SECURITY_AUTHN Audits all authentication events.

SECURITY_AUTHN_MAPPING Audits events that record mapping of credentials where two user identities exist.

SECURITY_AUTHN_TERMINATE Audits authentication termination events such as a timeout, terminated session, or user-initiated

logging out.

SECURITY_AUTHZ Audits events related to authorization checks when the system enforces access control policies.

SECURITY_MGMT_POLICY Audits events related to security policies, such as the creation of access control lists.

SECURITY_MGMT_PROVISIONING Audits provisioning events such as the creation an account for a user on a specific machine or

adding a user to a group on a specific machine. A given provisioning event might related to one or

more SECURITY_MGMT_REGISTRY events.

SECURITY_MGMT_RESOURCE Audits resource management events such as creation, deletion, and changes to the attributes of a

resource. The resource represents an entity with operations that need to be secured. An example of

a resource is the Tivoli Access Manager protected object that could represent a file, a Web page, and

so on.

SECURITY_RUNTIME_KEY Audits events related to runtime operations for certificates such as expiration, expiration checks, and

invalid certificates.

SECURITY_MGMT_KEY Audits events related to management operations for certificates such as creating, updating, or

exporting a certificate, reading or updating a certificate request, publishing a certificate revocation list,

monitoring changes to the keystore, truststore, and so on.

SECURITY_MGMT_AUDIT Audits events that record operations related to the audit subsystem such as starting audit, stopping

audit, turning audit on or off, changing configuration of audit filters or level, archiving audit data,

purging audit data, and so on.

SECURITY_RESOURCE_ACCESS Audits events that record all accesses to a resource. Examples are all accesses to a file, all HTTP

requests and responses to a given Web page, and all accesses to a critical database table.

SECURITY_SIGNING Audits events that record signing such as signing operations used to validate parts of a SOAP

Message for Web Services.

SECURITY_ENCRYPTION Audits events that record encryption information such as encryption for Web services.

SECURITY_AUTHN_DELEGATION Audits events that record delegation, including Identity Assertion, RunAs, and Low Assertion. Used

when the client identity is propagated or when delegation involves the use of a special identity. This

event type is also used when switching user identities within a given session.

SECURITY_AUTHN_CREDS_MODIFY Audits events to modify credentials for a given user identity.

Return value

The command returns a value of true if the audit filter of interest has at least one outcome configured in

the audit.xml file.

Batch mode example usage

v Using Jython string:

Chapter 10. Configuring security with scripting 1099

AdminTask.isEventEnabled(’-eventType SECURITY_AUTHN’)

v Using Jython list:

AdminTask.isEventEnabled([’-eventType’, ’SECURITY_AUTHN’])

Interactive mode example usage

v Using Jython:

AdminTask.isEventEnabled(’-interactive’)

listAuditFilters

The listAuditFilters command lists each audit filter and the corresponding attributes that the system defines

in the audit.xml file.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a list of audit filters and the corresponding attributes, as the following example

displays:

{{enabled true}

{name DefaultAuditSpecification_1}

{event SECURITY_AUTHN SECURITY_AUTHN_MAPPING}

{outcome FAILURE}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#AuditSpecification_1173199825608}

{_Websphere_Config_Data_Type AuditSpecification}

{filterRef AuditSpecification_1173199825608}}

{{enabled true}

{name DefaultAuditSpecification_2}

{event {}}

{outcome FAILURE}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#AuditSpecification_1173199825609}

{_Websphere_Config_Data_Type AuditSpecification}

{filterRef AuditSpecification_1173199825609}}

{{enabled true}

{name DefaultAuditSpecification_3}

{event SECURITY_RESOURCE_ACCESS}

{outcome FAILURE}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#AuditSpecification_1173199825610}

{_Websphere_Config_Data_Type AuditSpecification}

{filterRef AuditSpecification_1173199825610}}

{{enabled true}

{name DefaultAuditSpecification_4}

{event SECURITY_AUTHN_TERMINATE}

{outcome FAILURE}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#AuditSpecification_1173199825611}

{_Websphere_Config_Data_Type AuditSpecification}

{filterRef AuditSpecification_1173199825611}}

{{enabled true}

{name myfilter}

{event SECURITY_AUTHZ}

{outcome REDIRECT}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#AuditSpecification_1184365235250}

{_Websphere_Config_Data_Type AuditSpecification}

{filterRef AuditSpecification_1184365235250}}

{{enabled true}

{name myfilter1}

{event SECURITY_AUTHZ SECURITY_RESOURCE_ACCESS}

{outcome REDIRECT INFO}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#AuditSpecification_1184365353218}

{_Websphere_Config_Data_Type AuditSpecification}

{filterRef AuditSpecification_1184365353218}}

{{enabled true}

{name myfilter}

{event SECURITY_AUTHN SECURITY_AUTHZ}

{outcome SUCCESS INFO}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#AuditSpecification_1184598886859}

{_Websphere_Config_Data_Type AuditSpecification}

{filterRef AuditSpecification_1184598886859}}

{{enabled false}

{name myfilter}

{event SECURITY_MGMT_PROVISIONING SECURITY_MGMT_POLICY}

1100 Securing applications and their environment

{outcome SUCCESS}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#AuditSpecification_1184689433421}

{_Websphere_Config_Data_Type AuditSpecification}

{filterRef AuditSpecification_1184689433421}}

Batch mode example usage

v Using Jython string:

AdminTask.listAuditFilters()

v Using Jython list:

AdminTask.listAuditFilters()

Interactive mode example usage

v Using Jython:

AdminTask.listAuditFilters(’-interactive’)

listAuditFiltersByEvent

The listAuditFiltersByEvent command retrieves a list of events and event outcomes for each audit filter that

is configured in the audit.xml file.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a list of events and event outcomes for the audit filters of interest, as the following

sample output displays:

{AuditSpecification_1173199825608 SECURITY_AUTHN:FAILURE}{AuditSpecification_117

3199825608 SECURITY_AUTHN_MAPPING:FAILURE}{AuditSpecification_1173199825610 SECU

RITY_RESOURCE_ACCESS:FAILURE}{AuditSpecification_1173199825611 SECURITY_AUTHN_TE

RMINATE:FAILURE}{AuditSpecification_1184365235250 SECURITY_AUTHZ:REDIRECT}{Audit

Specification_1184365353218 SECURITY_AUTHZ:REDIRECT;SECURITY_AUTHZ:INFO}{AuditSp

ecification_1184365353218 SECURITY_RESOURCE_ACCESS:REDIRECT;SECURITY_RESOURCE_AC

CESS:INFO}{AuditSpecification_1184598886859 SECURITY_AUTHN:SUCCESS;SECURITY_AUTH

N:INFO}{AuditSpecification_1184598886859 SECURITY_AUTHZ:SUCCESS;SECURITY_AUTHZ:I

NFO}{AuditSpecification_1184689433421 SECURITY_MGMT_PROVISIONING:SUCCESS}{AuditS

pecification_1184689433421 SECURITY_MGMT_POLICY:SUCCESS}

Batch mode example usage

v Using Jython string:

AdminTask.listAuditFiltersByEvent()

v Using Jython list:

AdminTask.listAuditFiltersByEvent()

Interactive mode example usage

v Using Jython:

AdminTask.listAuditFiltersByEvent(’-interactive’)

listAuditFiltersByRef

The listAuditFiltersByRef command lists all reference ids that correspond to the audit filters that are

defined in the audit.xml file.

The user must have the monitor administrative role to run this command.

Target object

Chapter 10. Configuring security with scripting 1101

None.

Return value

The command returns a list of each reference that exists in the audit.xml configuration file, as the following

sample output displays:

AuditSpecification_1173199825608 AuditSpecification_1173199825609

AuditSpecification_1173199825610 AuditSpecification_1173199825611

AuditSpecification_1184365235250 AuditSpecification_1184365353218

AuditSpecification_1184598886859 AuditSpecification_1184689433421

Batch mode example usage

v Using Jython string:

AdminTask.listAuditFiltersByRef()

v Using Jython list:

AdminTask.listAuditFiltersByRef()

Interactive mode example usage

v Using Jython string:

AdminTask.listAuditFiltersByRef(’-interactive’)

modifyAuditFilter

The modifyAuditFilter command modifies the audit filter specification in the audit.xml configuration file.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-filterRef

Specifies the reference ID for the audit filter to modify in your security auditing system configuration.

(String, required)

Optional parameters

-name

Specifies a unique name to associate with the audit event filter. (String, optional)

-eventType

Specifies a comma-separated list of one or more event types. (String, optional)

-outcome

Specifies a comma-separated list of one or multiple event outcomes. For each audit event type, you

must specify an outcome. Valid outcomes include SUCCESS, FAILURE, REDIRECT, ERROR, DENIED, WARNING,

and INFO. (String, optional)

-enableFilter

Specifies whether to enable the filter. Specify true to enable the filter, or false to disable the filter.

(Boolean, optional).

Return value

The command returns a value of true if the system successfully updates the audit filter.

Batch mode example usage

1102 Securing applications and their environment

v Using Jython string:

AdminTask.modifyAuditFilter(’-filterRef AuditSpecification_1173199825608 -name

myname -eventType SECURITY_AUTHN -outcome SUCCESS -enableFilter true’)

v Using Jython list:

AdminTask.modifyAuditFilter([’-filterRef’, ’AuditSpecification_1173199825608’, ’-name’,

’myname’, ’-eventType’, ’SECURITY_AUTHN’, ’-outcome’, ’SUCCESS’, ’-enableFilter’,

’true’])

Interactive mode example usage

v Using Jython:

AdminTask.modifyAuditFilter(’-interactive’)

AuditNotificationCommands command group for the AdminTask object

You can use the Jython scripting language to manage the security auditing system with the wsadmin tool.

Use the commands and parameters in the AuditNotificationCommands group to configure and manage

audit notifications and audit notification monitors.

Use the following commands to configure your security auditing system notifications:

v “createAuditNotification”

v “createAuditNotificationMonitor” on page 1104

v “deleteAuditNotification” on page 1105

v “deleteAuditNotificationMonitorByName” on page 1105

v “deleteAuditNotificationMonitorByRef” on page 1106

v “getAuditNotification” on page 1107

v “getAuditNotificationMonitor” on page 1107

v “getEmailList” on page 1108

v “getSendEmail” on page 1108

v “getAuditNotificationRef” on page 1109

v “getAuditNotificationName” on page 1109

v “isSendEmailEnabled” on page 1110

v “isAuditNotificationEnabled” on page 1110

v “listAuditNotifications” on page 1111

v “listAuditNotificationMonitors” on page 1111

v “modifyAuditNotification” on page 1112

v “modifyAuditNotificationMonitor” on page 1113

v “setEmailList” on page 1113

v “setSendEmail” on page 1114

createAuditNotification

The createAuditNotification command creates an audit notification object in the audit.xml configuration

file.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

Chapter 10. Configuring security with scripting 1103

-notificationName

Specifies the unique name to assign the audit notification object. (String, required)

-logToSystemOut

Specifies whether the system logs notifications to the SystemOut.log file.(Boolean, required)

-sendEmail

Specifies whether to email security auditing subsystem failure notifications. (Boolean, required)

Optional parameters

-emailList

Specifies the email list to send security auditing subsystem failure notifications. (String, optional)

-emailFormat

Specifies the email format. Specify HTML for HTML format or TEXT for text format. (String, optional)

Return value

The command returns the shortened reference ID of the new audit notification object, as the following

sample output displays:

WSNotification_1184690835390

Batch mode example usage

v Using Jython string:

AdminTask.createAuditNotification(’[-notificationName mynotification -logToSystemOut

true -sendEmail true -emailList admin@mycompany.com(smtp-server.mycompany.com)

-emailFormat HTML]’)

v Using Jython list:

AdminTask.createAuditNotification([’-notificationName’, ’mynotification’, ’-logToSystemOut’,

’true’, ’-sendEmail’, ’true’, ’-emailList’, ’admin@mycompany.com(smtp-server.mycompany.com)’,

’-emailFormat’, ’HTML’])

Interactive mode example usage

v Using Jython:

AdminTask.createAuditNotification(’-interactive’)

createAuditNotificationMonitor

The createAuditNotificationMonitor command creates an audit notification monitor object for the security

auditing system. This object monitors the security auditing subsystem for possible failure.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-monitorName

Specifies the unique name of the audit notification monitoring object. (String, required)

-notificationRef

Specifies the reference ID of the audit notification object. (String, required)

-enable

Specifies whether to enable the audit notification monitor. (Boolean, required)

Return value

1104 Securing applications and their environment

The command returns the shortened form of the reference ID for the audit notification monitor, as the

following sample output displays:

AuditNotificationMonitor_1184695615171

Batch mode example usage

v Using Jython string:

AdminTask.createAuditNotificationMonitor(’-monitorName mymonitor -notificationRef

WSNotification_1184690835390 -enable true’)

v Using Jython list:

AdminTask.createAuditNotificationMonitor([’-monitorName’, ’mymonitor’, ’-notificationRef’,

’WSNotification_1184690835390’, ’-enable’, ’true’])

Interactive mode example usage

v Using Jython:

AdminTask.createAuditNotificationMonitor(’-interactive’)

deleteAuditNotification

The deleteAuditNotification command deletes an audit notification object from the audit.xml configuration

file.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-notificationRef

Specifies the reference ID of the audit notification object to delete. (String, required)

Return value

The command returns a value of true if the system successfully deletes the audit notification object from

the audit.xml configuration file.

Batch mode example usage

v Using Jython string:

AdminTask.deleteAuditNotification(’-notificationRef WSNotification_1184690835390’)

v Using Jython list:

AdminTask.deleteAuditNotification([’-notificationRef’, ’WSNotification_1184690835390’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteAuditNotification(’-interactive’)

deleteAuditNotificationMonitorByName

The deleteAuditNotificationMonitorByName command deletes the audit notification monitor that the user

specifies with the unique name.

The user must have the auditor administrative role to run this command.

Target object

Chapter 10. Configuring security with scripting 1105

None.

Required parameters

-monitorName

Specifies the unique name of the audit notification monitor to delete. (String, required)

Return value

The command returns a value of true if the system successfully deletes the audit notification monitor from

the configuration.

Batch mode example usage

v Using Jython string:

AdminTask.deleteAuditNotificationMonitor(’-monitorName mymonitor’)

v Using Jython list:

AdminTask.deleteAuditNotificationMonitor([’-monitorName’, ’mymonitor’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteAuditNotificationMonitor(’-interactive’)

deleteAuditNotificationMonitorByRef

The deleteAuditNotificationMonitorByRef command deletes the audit notification monitor that the user

specifies with the reference ID.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-monitorRef

Specifies the reference ID of the audit notification monitor object to delete. (String, required)

Return value

The command returns a value of true if the system successfully deletes the audit notification monitor of

interest.

Batch mode example usage

v Using Jython string:

AdminTask.deleteAuditNotificationMonitor(’-monitorRef

AuditNotificationMonitor_1184695615171’)

v Using Jython list:

AdminTask.deleteAuditNotificationMonitor([’-monitorRef’,

’AuditNotificationMonitor_1184695615171’])

Interactive mode example usage

v Using Jython:

AdminTask.deleteAuditNotificationMonitor(’-interactive’)

1106 Securing applications and their environment

getAuditNotification

The getAuditNotification command retrieves the attributes for an audit notification object of interest.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-notificationRef

Specifies the reference ID of the audit notification object of interest. (String, required)

Return value

The command returns a list of attributes for the specific audit notification object, as the following sample

output displays:

{{name mynotification}

{sslConfig {}}

{logToSystemOut true}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#WSNotification_1184690835390}

{emailList sweetshadow@us.ibm.com(smtp-server.us.ibm.com)}

{sendEmail true}

{_Websphere_Config_Data_Type WSNotification}

{properties {}}

{emailFormat HTML}}

Batch mode example usage

v Using Jython string:

AdminTask.getAuditNotification(’-notificationRef WSNotification_1184690835390’)

v Using Jython list:

AdminTask.getAuditNotification([’-notificationRef’, ’WSNotification_1184690835390’])

Interactive mode example usage

v Using Jython:

AdminTask.getAuditNotification(’-interactive’)

getAuditNotificationMonitor

The getAuditNotificationMonitor command retrieves the attributes that the system associates with the audit

notification monitor of interest.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-monitorRef

Specifies the reference ID of the audit notification monitor of interest. (String, required)

Return value

The command returns a list of attributes for the audit notification monitor of interest, as the following

sample output displays:

Chapter 10. Configuring security with scripting 1107

{{name mymonitor}

{enabled true}

{_Websphere_Config_Data_Id cells/Node04Cell|audit.xml#AuditNotificationMonitor_1184695615171}

{_Websphere_Config_Data_Type AuditNotificationMonitor}

{wsNotification mynotification(cells/Node04Cell|audit.xml#WSNotification_1184690835390)}}

Batch mode example usage

v Using Jython string:

AdminTask.getAuditNotificationMonitor(’-monitorRef

AuditNotificationMonitor_1184695615171’)

v Using Jython list:

AdminTask.getAuditNotificationMonitor([’-monitorRef’,

’AuditNotificationMonitor_1184695615171’])

Interactive mode example usage

v Using Jython:

AdminTask.getAuditNotificationMonitor(’-interactive’)

getEmailList

The getEmailList command retrieves the email distribution list for the audit notification object. If the

notification monitor is not configured, the audit notification object is not active and the command returns a

null value.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns this email list for the active audit notification object, as the following sample output

displays:

admin@mycompany.com(smtp-server.mycompany.com)

Batch mode example usage

v Using Jython string:

AdminTask.getEmailList()

v Using Jython list:

AdminTask.getEmailList()

Interactive mode example usage

v Using Jython:

AdminTask.getEmailList(’-interactive’)

getSendEmail

The getSendEmail command displays whether or not the audit notification object sends an email if the

audit subsystem fails. If the notification monitor is not configured, the audit notification object is not active

and the command returns a null value.

The user must have the monitor administrative role to run this command.

Target object

None.

1108 Securing applications and their environment

Return value

The command returns a value of true if the system is configured to send an email to the distribution list.

Batch mode example usage

v Using Jython string:

AdminTask.getSendEmail()

v Using Jython list:

AdminTask.getSendEmail()

Interactive mode example usage

v Using Jython:

AdminTask.getSendEmail(’-interactive’)

getAuditNotificationRef

The getAuditNotificationRef command retrieves the reference ID for the active audit notification object. If

the notification monitor is not configured, the audit notification object is not active and the command

returns a null value.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns the reference ID of the audit notification object if it is active, as the following sample

output displays:

WSNotification_1184690835390

Batch mode example usage

v Using Jython string:

AdminTask.getAuditNotificationRef()

v Using Jython list:

AdminTask.getAuditNotificationRef()

Interactive mode example usage

v Using Jython:

AdminTask.getAuditNotificationRef(’-interactive’)

getAuditNotificationName

The getAuditNotificationName command retrieves the unique name for the active audit notification object.

If the notification monitor is not configured, the audit notification object is not active and the command

returns a null value.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

Chapter 10. Configuring security with scripting 1109

The command returns the unique name of the audit notification object, as the following sample output

displays:

mynotification

Batch mode example usage

v Using Jython string:

AdminTask.getAuditNotificationName()

v Using Jython list:

AdminTask.getAuditNotificationName()

Interactive mode example usage

v Using Jython:

AdminTask.getAuditNotificationName(’-interactive’)

isSendEmailEnabled

The isSendEmailEnabled command determines if the system is configured to send an email if the security

auditing subsystem fails.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if email notification is enabled.

Batch mode example usage

v Using Jython string:

AdminTask.isSendEmailEnabled()

v Using Jython list:

AdminTask.isSendEmailEnabled()

Interactive mode example usage

v Using Jython:

AdminTask.isSendEmailEnabled(’-interactive’)

isAuditNotificationEnabled

The isAuditNotificationEnabled command determines whether the security auditing system notifications are

enabled.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if security auditing system notifications are enabled.

Batch mode example usage

1110 Securing applications and their environment

v Using Jython string:

AdminTask.isAuditNotificationEnabled()

v Using Jython list:

AdminTask.isAuditNotificationEnabled()

Interactive mode example usage

v Using Jython:

AdminTask.isAuditNotificationEnabled()

listAuditNotifications

The listAuditNotifications command retrieves the attributes for each audit notification object that is

configured in the audit.xml file.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a list of attributes for each configured audit notification object, as the following

sample output displays:

{{name mynotification}

{sslConfig {}}

{logToSystemOut true}

{_Websphere_Config_Data_Id cells/CHEYENNENode04Cell|audit.xml#WSNotification_1184690835390}

{emailList sweetshadow@us.ibm.com(smtp-server.us.ibm.com)}

{sendEmail true}

{notificationRef WSNotification_1184690835390}

{_Websphere_Config_Data_Type WSNotification}

{properties {}}

{emailFormat HTML}}

Batch mode example usage

v Using Jython string:

AdminTask.listAuditNotifications()

v Using Jython list:

AdminTask.listAuditNotifications()

Interactive mode example usage

v Using Jython:

AdminTask.listAuditNotifications(’-interactive’)

listAuditNotificationMonitors

The listAuditNotificationMonitors command lists the attributes for the audit notification monitor that is

configured in the audit.xml file.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

Chapter 10. Configuring security with scripting 1111

The command returns a list of attributes for the audit notification monitor, as the following sample output

displays:

{{name mymonitor}

{enabled true}

{_Websphere_Config_Data_Id cells/Node04Cell|audit.xml#AuditNotificationMonitor_1184695615171}

{_Websphere_Config_Data_Type AuditNotificationMonitor}

{monitorRef AuditNotificationMonitor_1184695615171}

{wsNotification mynotification(cells/Node04Cell|audit.xml#WSNotification_1184690835390)}

{notificationRef WSNotification_1184690835390}}

Batch mode example usage

v Using Jython string:

AdminTask.listAuditNotificationMonitors()

v Using Jython list:

AdminTask.listAuditNotificationMonitors()

Interactive mode example usage

v Using Jython:

AdminTask.listAuditNotificationMonitors(’-interactive’b)

modifyAuditNotification

The modifyAuditNotification command edits the audit notification object in the audit.xml configuration file.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-notificationRef

Specifies the reference ID of the audit notification object to edit. (String, required)

Optional parameters

-logToSystemOut

Specifies whether to log notifications to the SystemOut.log file. (Boolean, optional)

-sendEmail

Specifies whether to email notifications. (Boolean, optional)

-emailList

Specifies the email address of distribution list where the system sends email notifications. (String,

optional)

-emailFormat

Specifies the email format. Specify HTML for HTML format or TEXT for text format. (String, optional)

Return value

The command returns a value of true if the system successfully updates the security auditing system

configuration.

Batch mode example usage

v Using Jython string:

AdminTask.modifyAuditNotification(’-notificationRef WSNotification_1184690835390

-logToSystemOut false -sendEmail true -emailList admin@mycompany.com(smtp-server.mycompany.com)

-emailFormat TEXT’)

1112 Securing applications and their environment

v Using Jython list:

AdminTask.modifyAuditNotification([’-notificationRef’, ’WSNotification_1184690835390’,

’-logToSystemOut’, ’false’, ’-sendEmail’, ’true’, ’-emailList’,

’admin@mycompany.com(smtp-server.mycompany.com)’, ’-emailFormat’, ’TEXT’])

Interactive mode example usage

v Using Jython:

AdminTask.modifyAuditNotification(’-interactive’)

modifyAuditNotificationMonitor

The modifyAuditNotificationMonitor command edits the audit notification monitor configuration for the

security auditing system.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-monitorRef

Specifies the reference ID of the audit notification monitor of interest. (String, required)

Optional parameters

-notificationRef

Specifies the reference ID of the audit notification object. (String, optional)

-enable

Specifies whether to enable the audit notification monitor. (Boolean, optional)

Return value

The command returns a value of true if the system successfully updates the audit notification monitor

configuration.

Batch mode example usage

v Using Jython string:

AdminTask.modifyAuditNotificationMonitor(’-monitorRef AuditNotificationMonitor_1184695615171

-notificationRef WSNotification_1184690835390 -enable true’)

v Using Jython list:

AdminTask.modifyAuditNotificationMonitor([’-monitorRef’, ’AuditNotificationMonitor_1184695615171’,

’-notificationRef’, ’WSNotification_1184690835390’, ’-enable’, ’true’])

Interactive mode example usage

v Using Jython:

AdminTask.modifyAuditNotificationMonitor(’-interactive’)

setEmailList

The setEmailList command specifies the distribution list to send email notifications to if the security

auditing subsystem fails.

The user must have the auditor administrative role to run this command.

Target object

Chapter 10. Configuring security with scripting 1113

None.

Required parameters

-emailList

Specifies the email address or email distribution list to send audit notifications to. (String, required)

Return value

The command returns a value of true if the system successfully sets the email notification list for the

notification object.

Batch mode example usage

v Using Jython string:

AdminTask.setEmailList(’[-emailList admin@mycompany.com(smtp-server.mycompany.com)]’)

v Using Jython list:

AdminTask.setEmailList([’-emailList’, ’admin@mycompany.com(smtp-server.mycompany.com)’])

Interactive mode example usage

v Using Jython string:

AdminTask.setEmailList(’-interactive’)

setSendEmail

The setSendEmail command enables or disables email notifications for the security auditing system.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-enable

Specifies whether to enable the system to send audit notifications by email. (Boolean, required)

Return value

The command returns a value of true if the system successfully modifies the configuration.

Batch mode example usage

v Using Jython string:

AdminTask.setSendEmail(’-enable true’)

v Using Jython list:

AdminTask.setSendEmail([’-enable’, ’true’])

Interactive mode example usage

v Using Jython:

AdminTask.setSendEmail(’-interactive’)

AuditPolicyCommands command group for the AdminTask object

You can use the Jython scripting language to manage the security auditing system with the wsadmin tool.

Use the commands and parameters in the AuditPolicyCommands group to enable and configure the

security auditing system.

1114 Securing applications and their environment

Use the following commands to configure, query, and manage the security auditing system:

v “disableAudit”

v “disableVerboseAudit”

v “enableAudit” on page 1116

v “enableVerboseAudit” on page 1116

v “getAuditPolicy” on page 1117

v “getAuditSystemFailureAction” on page 1118

v “getAuditorId” on page 1118

v “isAuditEnabled” on page 1119

v “isVerboseAuditEnabled” on page 1119

v “mapAuditGroupIDsOfAuthorizationGroup” on page 1120

v “modifyAuditPolicy” on page 1120

v “setAuditSystemFailureAction” on page 1121

v “resetAuditSystemFailureAction” on page 1122

v “setAuditorId” on page 1122

v “setAuditorPwd” on page 1123

disableAudit

The disableAudit command disables security auditing in the audit.xml configuration file.

The user must have the auditor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if the system successfully disables security auditing.

Batch mode example usage

v Using Jython string:

AdminTask.disableAudit()

v Using Jython list:

AdminTask.disableAudit()

Interactive mode example usage

v Using Jython:

AdminTask.disableAudit(’-interactive’)

disableVerboseAudit

The disableVerboseAudit command disables the verbose capture of audit data for the security auditing

system.

The user must have the auditor administrative role to run this command.

Target object

None.

Chapter 10. Configuring security with scripting 1115

Return value

The command returns a value of true if the system successfully disables the verbose capture of audit

data.

Batch mode example usage

v Using Jython string:

AdminTask.disableVerboseAudit()

v Using Jython list:

AdminTask.disableVerboseAudit()

Interactive mode example usage

v Using Jython string:

AdminTask.disableVerboseAudit(’-interactive’)

enableAudit

The enableAudit command enables security auditing in the audit.xml configuration file. By default, security

auditing is disabled.

The user must have the auditor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if the system successfully enables security auditing.

Batch mode example usage

v Using Jython string:

AdminTask.enableAudit()

v Using Jython list:

AdminTask.enableAudit()

Interactive mode example usage

v Using Jython:

AdminTask.enableAudit(’-interacive’)

enableVerboseAudit

The enableVerboseAudit command sets the security auditing system to perform verbose capture of audit

data.

The user must have the auditor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if the system successfully sets the security auditing system to

perform verbose capture of audit data.

1116 Securing applications and their environment

Batch mode example usage

v Using Jython string:

AdminTask.enableVerboseAudit()

v Using Jython list:

AdminTask.enableVerboseAudit()

Interactive mode example usage

v Using Jython:

AdminTask.enableVerboseAudit(’-interactive’)

getAuditPolicy

The getAuditPolicy command retrieves each attribute that is associated with the audit policy in the

audit.xml configuration file.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a list of attributes for the security auditing system, as the following sample output

displays:

{{auditEventFactories {{{name auditEventFactoryImpl_1}

{properties {}}

{className com.ibm.ws.security.audit.AuditEventFactoryImpl}

{auditServiceProvider auditServiceProviderImpl_1(cells/Node04Cell|audit.xml#AuditServiceProvider_1173199825608)}

{auditSpecifications DefaultAuditSpecification_1(cells/Node04Cell|audit.xml#AuditSpecification_1173199825608)

DefaultAuditSpecification_2(cells/Node04Cell|audit.xml#AuditSpecification_1173199825609)

DefaultAuditSpecification_3(cells/Node04Cell|audit.xml#AuditSpecification_1173199825610)

DefaultAuditSpecification_4(cells/Node04Cell|audit.xml#AuditSpecification_1173199825611)}

{_Websphere_Config_Data_Id cells/Node04Cell|audit.xml#AuditEventFactory_1173199825608}

{_Websphere_Config_Data_Type AuditEventFactory}}}}

{_Websphere_Config_Data_Id cells/Node04Cell|audit.xml#AuditPolicy_1173199825608}

{auditServiceProviders {{{auditSpecifications

DefaultAuditSpecification_1(cells/Node04Cell|audit.xml#AuditSpecification_1173199825608)

DefaultAuditSpecification_2(cells/Node04Cell|audit.xml#AuditSpecification_1173199825609)

DefaultAuditSpecification_3(cells/Node04Cell|audit.xml#AuditSpecification_1173199825610)

DefaultAuditSpecification_4(cells/Node04Cell|audit.xml#AuditSpecification_1173199825611)}

{name auditServiceProviderImpl_1}

{_Websphere_Config_Data_Id cells/Node04Cell|audit.xml#AuditServiceProvider_1173199825608}

{maxFileSize 1}

{_Websphere_Config_Data_Type AuditServiceProvider}

{fileLocation ${PROFILE_ROOT}/logs/server1}

{className com.ibm.ws.security.audit.BinaryEmitterImpl}

{properties {}}

{eventFormatterClass {}}

{maxLogs 100}}}}

{securityXmlSignerCertAlias auditSignCert}

{properties {}}

{securityXmlSignerScopeName (cell):Node04Cell:(node):Node04}

{auditorPwd SweetShadowsPwd}

{_Websphere_Config_Data_Type AuditPolicy}

{securityXmlSignerKeyStoreName NodeDefaultSignersStore}

{verbose false}

{auditPolicy WARN}

{encrypt false}

{managementScope {}}

{encryptionCert {}}

{batching false}

{auditorId SweetShadow}

{auditEnabled false}

{sign true}}

Batch mode example usage

v Using Jython string:

AdminTask.getAuditPolicy()

v Using Jython list:

Chapter 10. Configuring security with scripting 1117

AdminTask.getAuditPolicy()

Interactive mode example usage

v Using Jython:

AdminTask.getAuditPolicy(’-interactive’)

getAuditSystemFailureAction

The getAuditSystemFailureAction command displays the action that the application server takes if a failure

occurs in the security auditing subsystem.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a string that describes the action that the application server takes if the security

auditing subsystem fails. Possible values are WARN, NOWARN, or FATAL. The following table describes the

behavior associated with each action that the application server takes if the security auditing subsystem

fails:

 WARN Specifies that the application server should notify the auditor, stop security auditing, and continue to run the

application server process.

NOWARN Specifies that the application server should not notify the auditor, but should stop security auditing and continue to

run the application server process

FATAL Specifies that the application server should notify the auditor, stop security auditing, and stop the application server

process.

Batch mode example usage

v Using Jython string:

AdminTask.getAuditSystemFailureAction()

v Using Jython list:

AdminTask.getAuditSystemFailureAction()

Interactive mode example usage

v Using Jython:

AdminTask.getAuditSystemFailureAction(’-interactive’)

getAuditorId

The getAuditorId command retrieves the name of the user who is assigned as the auditor.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns the name of the user who is assigned as the auditor.

Batch mode example usage

1118 Securing applications and their environment

v Using Jython string:

AdminTask.getAuditorId()

v Using Jython list:

AdminTask.getAuditorId()

Interactive mode example usage

v Using Jython:

AdminTask.getAuditorId(’-interactive’)

isAuditEnabled

The isAuditEnabled command determines whether the security auditing is enabled in your configuration.

By default, auditing is not enabled in the audit.xml configuration file.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if security auditing is enabled in your environment. If the command

returns a value of false, security auditing is disabled.

Batch mode example usage

v Using Jython string:

AdminTask.isAuditEnabled()

v Using Jython list:

AdminTask.isAuditEnabled()

Interactive mode example usage

v Using Jython:

AdminTask.isAuditEnabled(’-interactive’)

isVerboseAuditEnabled

The isVerboseAuditEnabled command determines whether or not the security auditing system verbosely

captures audit data.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if the security auditing system is configured to verbosely capture

audit data.

Batch mode example usage

v Using Jython string:

AdminTask.isVerboseAuditEnabled()

Chapter 10. Configuring security with scripting 1119

v Using Jython list:

AdminTask.isVerboseAuditEnabled()

Interactive mode example usage

v Using Jython:

AdminTask.isVerboseAuditEnabled(’-interactive’)

mapAuditGroupIDsOfAuthorizationGroup

The mapAuditGroupIDsOfAuthorizationGroup command maps the special subjects to users in the registry.

The user must have the monitor administrative role to run this command.

Target object

None.

Return value

The command does not return output.

Batch mode example usage

v Using Jython string:

AdminTask.mapAuditGroupIDsOfAuthorizationGroup()

v Using Jython list:

AdminTask.mapAuditGroupIDsOfAuthorizationGroup()

Interactive mode example usage

v Using Jython:

AdminTask.mapAuditGroupIDsOfAuthorizationGroup(’-interactive’)

modifyAuditPolicy

The modifyAuditPolicy command modifies the audit policy attributes in the audit.xml configuration file. You

can use this command to modify one or multiple attributes.

The user must have the auditor administrative role to run this command.

Target object

None.

Optional parameters

-auditEnabled

Specifies whether security auditing is enabled in your configuration. (Boolean, optional)

-auditPolicy

Specifies the action that the application server takes if the security auditing subsystem fails. (String,

optional)

 The following table describes the valid values for this parameter:

 WARN Specifies that the application server should notify the auditor, stop security auditing, and continue to run the

application server process.

NOWARN Specifies that the application server should not notify the auditor, but should stop security auditing and continue to

run the application server process

1120 Securing applications and their environment

FATAL Specifies that the application server should notify the auditor, stop security auditing, and stop the application server

process.

-auditorId

Specifies the name of the user that the system assigns as the auditor. (String, optional)

-auditorPwd

Specifies the password for the auditor id. (String, optional)

-sign

Specifies whether to sign audit records. Use the AuditSigningCommands command group to configure

signing settings. (Boolean, optional)

-encrypt

Specifies whether to encrypt audit records. Use the AuditEncryptionCommands command group to

configure encryption settings. (Boolean, optional)

-verbose

Specifies whether to capture verbose audit data. (Boolean, optional)

-encryptionCert

Specifies the reference ID of the certificate to use for encryption. Specify this parameter if you set the

-encrypt parameter to true. (String, optional)

Return value

The command returns a value of true if the system successfully updates the security auditing system

policy.

Batch mode example usage

v Using Jython string:

AdminTask.modifyAuditPolicy(’-auditEnabled true -auditPolicy NOWARN -auditorId

testuser -auditorPwd testuserpwd -sign false -encrypt false -verbose false’)

v Using Jython list:

AdminTask.modifyAuditPolicy([’-auditEnabled’, ’true’, ’-auditPolicy’, ’NOWARN’,

’-auditorId’, ’testuser’, ’-auditorPwd’, ’testuserpwd’, ’-sign’, ’false’, ’-encrypt’,

’false’, ’-verbose’, ’false’])

Interactive mode example usage

v Using Jython:

AdminTask.modifyAuditPolicy(’-interactive’)

setAuditSystemFailureAction

The setAuditSystemFailureAction command sets the action that the application server takes if the security

auditing subsystem fails.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-action

Specifies the action to take if the security auditing subsystem fails. (String, required)

 The following table describes the valid values for this parameter:

Chapter 10. Configuring security with scripting 1121

WARN Specifies that the application server should notify the auditor, stop security auditing, and continue to run the

application server process.

NOWARN Specifies that the application server should not notify the auditor, but should stop security auditing and continue to

run the application server process

FATAL Specifies that the application server should notify the auditor, stop security auditing, and stop the application server

process.

Return value

The command returns a value of true if the system successfully updates the security auditing system

policy.

Batch mode example usage

v Using Jython string:

AdminTask.setAuditSystemFailureAction(’-action NOWARN’)

v Using Jython list:

AdminTask.setAuditSystemFailureAction([’-action’, ’NOWARN’])

Interactive mode example usage

v Using Jython:

AdminTask.setAuditSystemFailureAction(’-interactive’)

resetAuditSystemFailureAction

The resetAuditSystemFailureAction command sets the action that the application server takes if the

security auditing system fails to the NOWARN setting.

The user must have the auditor administrative role to run this command.

Target object

None.

Return value

The command returns a value of true if the system successfully updates your configuration.

Batch mode example usage

v Using Jython string:

AdminTask.resetAuditSystemFailureAction()

v Using Jython list:

AdminTask.resetAuditSystemFailureAction()

Interactive mode example usage

v Using Jython:

AdminTask.resetAuditSystemFailureAction(’-interactive’)

setAuditorId

The setAuditorId command sets the name of the user to assign as the auditor.

The user must have the auditor administrative role to run this command.

Target object

1122 Securing applications and their environment

None.

Required parameters

-name

Specifies the name of the user to assign as the auditor. (String, required)

Return value

The command returns a value of true if the system successfully updates your configuration.

Batch mode example usage

v Using Jython string:

AdminTAsk.setAuditorId(’-name myAdmin’)

v Using Jython list:

AdminTAsk.setAuditorId([’-name’, ’myAdmin’])

Interactive mode example usage

v Using Jython string:

AdminTAsk.setAuditorId(’-interactive’)

setAuditorPwd

The setAuditorPwd command sets the password for the auditor.

The user must have the auditor administrative role to run this command.

Target object

None.

Required parameters

-password

Specifies the password for the user assigned as the auditor. (String, required)

Return value

The command returns a value of true if the system successfully updates your configuration.

Batch mode example usage

v Using Jython string:

AdminTask.setAuditorPwd(’-password myAdminPassword’)

v Using Jython list:

AdminTask.setAuditorPwd([’-password’, ’myAdminPassword’])

Interactive mode example usage

v Using Jython:

AdminTask.setAuditorPwd(’-interactive’)

AuditEventFormatterCommands command group for the AdminTask

object

You can use the Jython scripting language to manage the security auditing system with the wsadmin tool.

Use the commands and parameters in the AuditEventFormatterCommands group to manage the event

formatter for the audit service provider.

Chapter 10. Configuring security with scripting 1123

Use the following commands to display information about the audit event formatter:

v “getEventFormatterClass”

getEventFormatterClass

The getEventFormatterClass command retrieves the class name of the event formatter specified by the

reference ID of the binary file audit service provider of interest.

The user must have the monitor administrative role to run this command.

Target object

None.

Required parameters

-emitterRef

Specifies the reference ID of the audit service provider implementation of interest. (String, required)

Return value

The command returns a null value if the event formatter class is not defined for the audit service provider

implementation of interest.

Batch mode example usage

v Using Jython string:

AdminTask.getEventFormatterClass(’-emitterRef AuditServiceProvider_1173199825608’)

v Using Jython list:

AdminTask.getEventFormatterClass([’-emitterRef’, ’AuditServiceProvider_1173199825608’])

Interactive mode example usage

v Using Jython:

AdminTask.getEventFormatterClass(’-interactive’)

AuditReaderCommands command group for the AdminTask object

You can use the Jython scripting language to manage the security auditing system with the wsadmin tool.

Use the commands and parameters in the AuditReaderCommands group to display audit record

information from the binary audit log.

Use the following commands to query the binary audit log:

v “binaryAuditLogReader”

v “showAuditLogEncryptionInfo” on page 1126

binaryAuditLogReader

The binaryAuditLogReader command reads the default binary audit log and generates an HTML report

based on the parameters you provide. You must use the auditor security role to use this command.

Target object

None.

Required parameters

1124 Securing applications and their environment

-fileName

Specifies the fully qualified file name for the binary audit log. (String, required)

-outputLocation

Specifies the location of the HTML report that the command generates. (String, required)

Optional parameters

-reportMode

Specifies the type of report to generate. Valid values include basic, complete, or custom. The basic

report provides the following configuration information:

v creationTime

v action

v progName

v registryType

v domain

v realm

v remoteAddr

v remotePort

v remoteHost

v resourceName

v resourceType

v resourceUniqueId

The complete report provides the data included by the default report type and each additional

datapoint of interest. The custom report allows you to specify only the datapoints you choose to see

generated in the report. The default value is basic. (String, optional)

-eventFilter

Specifies the audit types to read and report. Specify one or more audit event types. If you specify

more than one value for the eventFilter parameter, separate each audit event type with a colon

character (:). (String, optional)

-outcomeFilter

Specifies the audit event outcomes to read and report. Specify one or more audit event outcomes. If

you specify more than one value for the outcomeFilter parameter, separate each audit event outcome

with a colon character (:). (String, optional)

-sequenceFilter

Specifies a list of beginning and ending sequence numbers. Use the a:b syntax, where a, the starting

sequence number where the HTML report begins, and is less than or equal to b, the sequence number

where the HTML report ends. A single sequence may also be specified, such as -sequenceFilter 10,

to only generate a report for the tenth record. (String, optional)

-timeStampFilter

Specifies the time stamp range of records to read and report. Use the a:b syntax, where a and b are

strings in the format java.text.SimpleDateFormat(″MMddhhmmyyyy″). You can also specify a single

timestamp. (String, optional)

-keyStorePassword

Specifies password to open the keystore. (String, optional)

-dataPoints

Specifies a list of specific audit data to use to generate the report. Use this option only when you set

the reportMode parameter as custom. If you specify multiple data points, separate each data point with

a colon character (:). (String, optional)

Chapter 10. Configuring security with scripting 1125

Return value

The command returns the HTML report based on the values specified for each parameter to the location

specified by the outputLocation parameter.

Batch mode example usage

v Using Jython string:

AdminTask.binaryAuditLogReader(’[-fileName myFileName -reportMode basic

-keyStorePassword password123 -outputLocation /binaryLogs]’)

v Using Jython list:

AdminTask.binaryAuditLogReader([’-fileName’, ’myFileName’, ’-reportMode’, ’basic’,

’-keyStorePassword’, ’password123’, ’-outputLocation’, ’/binaryLogs’])

Interactive mode example usage

v Using Jython:

AdminTask.binaryAuditLogReader(’-interactive’)

showAuditLogEncryptionInfo

The showAuditLogEncryptionInfo command displays information about the keystore that the auditing

system uses to encrypt audit records. Use this information as a hint of the keystore password in order to

decrypt encrypted audit logs in the binary audit log.

Target object

None.

Required parameters

-fileName

Specifies the fully qualified path of the binary audit log. (String, required)

Return value

The command returns the certificate alias and the fully qualified path to the keystore of interest.

Batch mode example usage

v Using Jython string:

AdminTask.showAuditLogEncryptionInfo(’-fileName myFileName’)

v Using Jython list:

AdminTask.showAuditLogEncryptionInfo([’-fileName’, ’myFileName’])

Interactive mode example usage

v Using Jython:

AdminTask.showAuditLogEncryptionInfo(’-interactive’)

SSLMigrationCommands command group for the AdminTask object

You can use the Jython or Jacl scripting languages to migrate key store configurations. Use the

commands in the SSLMigrationCommands group to convert self-signed certificates to chained personal

certificates and to enable writable key rings.

The SSLMigrationCommands command group for the AdminTask object includes the following commands:

v “convertSelfSignedCertificatesToChained command” on page 1127

v “enableWritableKeyrings command” on page 1128

1126 Securing applications and their environment

v “convertSSLConfig command” on page 1129

convertSelfSignedCertificatesToChained command

The convertSelfSignedCertificatesToChained command converts specific self-signed certificates to chained

personal certificates.

Note: Chained certificates are the default certificate type in Websphere Application Server Version 7.0.

The convertSelfSignedCertificatesToChained command takes information from the self-signed

certificate—such as issued-to DN, size, and life span—and creates a chained certificate with the

same information. The new chained certificate replaces the self-signed certificate. Signer certificates

from the self-signed certificate that are distributed across the security configuration are replaced

with the signer certificates from the root certificate used to sign the chained certificate.

Syntax

The command has the following syntax:

wsadmin>$AdminTask convertSelfSignedCertificatesToChained

 [-certificateReplacementOption ALL_CERTIFICATES | DEFAULT_CERTIFICATES | KEYSTORE_CERTIFICATES]

 [-keyStoreName keystore_name]

 [-keyStoreScope keystore_scope]

 [-rootCertificateAlias alias_name]

Required parameters

certificateReplacementOption

Specifies the convert self-signed certificates replacement options. (String, required)

 Specify the value for the parameter as one of the following options:

ALL_CERTIFICATES

 This option looks for all self-signed certificates in all keystores with in the specified scope.

The scope can be provided in the -keyStoreScope parameter. If no scope is provided using

the -keyStoreScope parameter, all scopes are visited.

DEFAULT_CERTIFICATES

 This option looks for self-signed certificates in the default CellDefaultKeyStore and

NodeDefaultKeyStore keystores within the specified scope.

The scope can be provided with the -keyStoreScope parameter. If no scope is provided using

the -keyStoreScope parameter, all scopes are visited.

KEYSTORE_CERTIFICATES

 This option replaces only those self-signed certificates in the keystore that are specified by the

-keyStoreName parameter.

If no scope is provided using the -keyStoreScope parameter, the default scope is used.

Optional parameters

keyStoreName

Specifies the name of a keystore in which to look for self-signed certificates to convert. Use this

parameter with the KEYSTORE_CERTIFICATES option on the certificateReplacementOption

parameter. (String, optional)

keyStoreScope

Specifies the name of the scope in which to look for the self-signed certificates to convert. (String,

optional)

Chapter 10. Configuring security with scripting 1127

rootCertificateAlias

Specifies the root certificate to use from the default root store used to sign the chained certificate. The

default value is root. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask convertSelfSignedCertificatesToChained {-certificateReplacementOption ALL_CERTIFICATES -keyStoreName testKS}

v Using Jython string:

AdminTask.convertSelfSignedCertificatesToChained(’[-certificateReplacementOption ALL_CERTIFICATES -keyStoreName testKS]’)

v Using Jython list:

AdminTask.convertSelfSignedCertificatesToChained([’-certificateReplacementOption’, ’ALL_CERTIFICATES’, ’-keyStoreName’, ’testKS’])

Interactive mode example usage:

v Using Jacl:

$AdminTask exchangeSigners {-interactive}

v Using Jython:

AdminTask.exchangeSigners(’-interactive’)

enableWritableKeyrings command

The enableWritableKeyrings command modifies the keystore and enables writable SAF support. The

system uses this command during migration. The command creates additional writable keystore objects for

the control region and servant region key rings for SSL keystores.

Required parameters

-keyStoreName

Specifies the name that uniquely identifies the keystore that you want to delete. (String, required)

Optional parameters

-controlRegionUser

Specifies the control region user to use to enable writable key rings. (String, optional)

-servantRegionUser

Specifies the servant region user to enable writable key rings. (String, optional)

-scopeName

Specifies the name that uniquely identifies the management scope, for example:

(cell):localhostNode01Cell. (String, optional)

Examples

Batch mode example usage:

v Using Jython string:

AdminTask.enableWritableKeyrings(’[-keyStoreName testKS -controlRegionUser CRUser1 -servantRegionUser SRUser1]’)

v Using Jython list:

AdminTask.enableWritableKeyrings([’-keyStoreName’, ’testKS’, ’-controlRegionUser’, ’CRUser1’, ’-servantRegionUser’, ’SRUser1’])

Interactive mode example usage:

v Using Jython:

AdminTask.enableWritablekeyrings(’-interactive’)

1128 Securing applications and their environment

convertSSLConfig command

The convertSSLConfig command migrates existing SSL configurations to the new configuration object

format for SSL configurations.

Required parameters

-sslConversionOption

Specifies how the system converts the SSL configuration. Specify the CONVERT_SSLCONFIGS value to

convert the SSL configuration objects from the previous SSL configuration object to the new SSL

configuration object. Specify the CONVERT_TO_DEFAULT value to convert the SSL configuration to a

centralized SSL configuration, which also removes the SSL configuration direct referencing from the

servers.

Optional parameters

None.

Examples

Batch mode example usage:

v Using Jython string:

AdminTask.convertSSLConfig(’[-keyStoreName testKS -controlRegionUser CRUser1 -servantRegionUser SRUser1]’)

v Using Jython list:

AdminTask.convertSSLConfig([’-keyStoreName’, ’testKS’, ’-controlRegionUser’, ’CRUser1’, ’-servantRegionUser’, ’SRUser1’])

Interactive mode example usage:

v Using Jython:

AdminTask.convertSSLConfig(’-interactive’)

Chapter 10. Configuring security with scripting 1129

Related concepts

“Key management for cryptographic uses” on page 697
WebSphere Application Server provides a framework for managing keys (secret keys or key pairs) that

applications use to perform cryptographic operations on data. The key management framework provides

an application programming interface (API) for retrieving these keys. Keys are managed in keystores so

the keystore type can be supported by WebSphere Application Server, provided that the keystores can

store the referenced key type. You can configure keys and scope keystores so that they are visible only to

particular processes, nodes, clusters, and so on.

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

“Automating SSL configurations using scripting” on page 933
SSL configuration is needed for WebSphere to perform SSL connections with other servers. A SSL

configuration can be configured through the Admin Console. But if an automated way to create a SSL

configuration is desired then AdminTask should be used.

“Creating an SSL configuration at the node scope using scripting” on page 930
An Secure Socket Layer (SSL) configuration references many other configuration objects. To help you

make valid selections for the new SSL configuration before you create it, view information about existing

configuration objects. Information about existing objects is also useful when you create a node scoped

SSL configuration using the createSSLConfig command of the AdminTask object.

Related reference

“KeyStoreCommands command group for the AdminTask object” on page 954
You can use the Jython or Jacl scripting languages to configure keystores with the wsadmin tool. A

keystore is created by the application server during install and can contain cryptographic keys or

certificates. The commands and parameters in the KeyStoreCommands group can be used to create,

delete, and manage keystores.

IdMgrConfig command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure the virtual member manager with the

wsadmin tool. The commands and parameters in the IdMgrConfig group can be used to create and

manage your entity type configuration.

The IdMgrConfig command group for the AdminTask object includes the following commands:

v “deleteIdMgrSupportedEntityType”

v “getIdMgrSupportedEntityType” on page 1131

v “listIdMgrSupportedEntityTypes” on page 1132

v “resetIdMgrConfig” on page 1132

v “showIdMgrConfig” on page 1133

v “updateIdMgrLDAPBindInfo” on page 1133

v “updateIdMgrSupportedEntityType” on page 1134

deleteIdMgrSupportedEntityType

The deleteIdMgr Supported EntityType command deletes the supported entity type configuration that

you specify.

Parameters and return values

-name

The name of the supported entity type. The value of this parameter must be one of the supported

entity types. (String, required)

1130 Securing applications and their environment

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrSupported EntityType {-name entity1}

v Using Jython string:

AdminTask.deleteIdMgrSupported EntityType (’[-name entity1]’)

v Using Jython list:

AdminTask.deleteIdMgr SupportedEntityType ([’ -name’, ’entity1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgr SupportedEntityType {-interactive}

v Using Jython string:

AdminTask.deleteIdMgr SupportedEntityType (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgr SupportedEntityType ([’-interactive’])

getIdMgrSupportedEntityType

The getIdMgr Supported EntityType command returns the configuration of the supported entity type that

you specify.

Parameters and return values

-name

The name of the supported entity type. The value of this parameter must be one of the supported

entity types. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrSupported EntityType {-name entity1}

v Using Jython string:

AdminTask.getIdMgrSupported EntityType (’[-name entity1]’)

v Using Jython list:

AdminTask.getIdMgrSupported EntityType ([’-name’, ’entity1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrSupported EntityType {-interactive}

v Using Jython string:

AdminTask.getIdMgrSupported EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrSupported EntityType ([’-interactive’])

Chapter 10. Configuring security with scripting 1131

listIdMgrSupportedEntityTypes

The listIdMgr Supported EntityTypes command lists all of the supported entity types that are configured.

Parameters and return values

v Parameters: None

v Returns: A list that contains the names of the supported entity types.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgr SupportedEntityTypes

v Using Jython string:

AdminTask.listIdMgr SupportedEntityTypes()

v Using Jython list:

AdminTask.listIdMgr SupportedEntityTypes()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported EntityTypes {-interactive}

v Using Jython string:

AdminTask.listIdMgrSupported EntityTypes (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrSupported EntityTypes ([’-interactive’])

resetIdMgrConfig

The resetId MgrConfig command resets the current configuration to the last configuration that was saved.

Parameters and return values

v Parameters: None

v Returns: None

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask resetIdMgrConfig

v Using Jython string:

AdminTask.resetIdMgrConfig()

v Using Jython list:

AdminTask.resetIdMgrConfig()

Interactive mode example usage:

v Using Jacl:

$AdminTask resetIdMgrConfig {-interactive}

v Using Jython string:

AdminTask.resetIdMgrConfig (’[-interactive]’)

v Using Jython list:

1132 Securing applications and their environment

AdminTask.resetIdMgrConfig ([’-interactive’])

showIdMgrConfig

The showId MgrConfig command returns the current configuration XML in string format.

Parameters and return values

v Parameters: None

v Returns: None

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask showIdMgrConfig

v Using Jython string:

AdminTask.showIdMgrConfig()

v Using Jython list:

AdminTask.showIdMgrConfig()

Interactive mode example usage:

v Using Jacl:

$AdminTask showIdMgrConfig {-interactive}

v Using Jython string:

AdminTask.showIdMgrConfig (’[-interactive]’)

v Using Jython list:

AdminTask.showIdMgrConfig ([’-interactive’])

updateIdMgrLDAPBindInfo

The updateIdMgrLDAPBindInfo command updates the LDAP password under the federated repository.

The change is also reflected in the wimconfig.xml file.

Parameters and return values

-id The ID of the repository. (String, required)

Examples

Batch mode example usage:

v Using Jython:

AdminTask.updateIdMgrLDAPBindInfo(’[-id id1 -bindDN cn=root -bindPassword myPassword22]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPBindInfo([’-id id1 -bindDN cn=root -bindPassword myPassword22’])

v Using Jacl:

$AdminTask updateIdMgrLDAPBindInfo {-id id1 -bindDN cn=root -bindPassword myPassword22}

Interactive mode example usage:

v Using Jython:

AdminTask.updateIdMgrLDAPBindInfo([’-interactive’])

v Using Jacl:

Chapter 10. Configuring security with scripting 1133

$AdminTask updateIdMgrLDAPBindInfo {-interactive}

updateIdMgrSupportedEntityType

The updateIdMgr Supported EntityType command updates the configuration that you specify for a

supported entity type.

Parameters and return values

-name

The name of the supported entity type. The value of this parameter must be one of the supported

entity types. (String, required)

-defaultParent

The default parent node for the supported entity type. (String, optional)

-rdnProperties

The RDN attribute name for the supported entity type in the entity domain name. To reset all the

values of the rdnProperties parameter, specify a blank string (″″). (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrSupported EntityType {-name entity1}

v Using Jython string:

AdminTask.updateIdMgrSupported EntityType (’[-name entity1]’)

v Using Jython list:

AdminTask.updateIdMgrSupported EntityType ([’-name’, ’entity1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrSupported EntityType {-interactive}

v Using Jython string:

AdminTask.updateIdMgrSupported EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrSupported EntityType ([’-interactive’])

1134 Securing applications and their environment

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

Related reference

Commands for the AdminTask object
Use the AdminTask object to run administrative commands with the wsadmin tool.

“IdMgrRepositoryConfig command group for the AdminTask object”
You can use the Jython or Jacl scripting languages to configure security. The commands and parameters

in the IdMgrRepositoryConfig group can be used to create and manage the virtual member manager and

LDAP directory properties.

“IdMgrRealmConfig command group for the AdminTask object” on page 1182
You can use the Jython or Jacl scripting languages to configure the member manager realm and realms.

The commands and parameters in the IdMgrRealmConfig group can be used to create and manage your

realm configuration.

IdMgrRepositoryConfig command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure security. The commands and parameters

in the IdMgrRepositoryConfig group can be used to create and manage the virtual member manager and

LDAP directory properties.

The IdMgrRepositoryConfig command group for the AdminTask object includes the following commands:

v “addIdMgrLDAPAttr” on page 1136

v “addIdMgrLDAPBackupServer” on page 1137

v “addIdMgrLDAPEntityType” on page 1138

v “addIdMgrLDAPEntityTypeRDNAttr” on page 1139

v “addIdMgrLDAPGroupDynamicMemberAttr” on page 1139

v “addIdMgrLDAPGroupMemberAttr” on page 1140

v “addIdMgrLDAPServer” on page 1141

v “addIdMgrRepositoryBaseEntry” on page 1142

v “createIdMgrCustomRepository” on page 1143

v “createIdMgrDBRepository” on page 1143

v “createIdMgrFileRepository” on page 1145

v “createIdMgrLDAPRepository” on page 1146

v “deleteIdMgrLDAPAttr” on page 1147

v “deleteIdMgrLDAPEntityType” on page 1148

v “deleteIdMgrLDAPEntityTypeRDNAttr” on page 1148

v “deleteIdMgrLDAPGroupConfig” on page 1149

v “deleteIdMgrLDAPGroupMemberAttr” on page 1149

v “deleteIdMgrLDAPGroupDynamicMemberAttr” on page 1150

v “deleteIdMgrLDAPServer” on page 1150

v “deleteIdMgrRepository” on page 1151

v “deleteIdMgrRepositoryBaseEntry” on page 1151

v “getIdMgrLDAPAttrCache” on page 1152

v “getIdMgrLDAPContextPool” on page 1152

v “getIdMgrLDAPEntityType” on page 1153

v “getIdMgrLDAPEntityTypeRDNAttr” on page 1153

Chapter 10. Configuring security with scripting 1135

v “getIdMgrLDAPGroupConfig” on page 1154

v “getIdMgrLDAPGroupDynamicMemberAttrs” on page 1154

v “getIdMgrLDAPGroupMemberAttrs” on page 1155

v “getIdMgrLDAPSearchResultCache” on page 1155

v “getIdMgrLDAPServer” on page 1156

v “getIdMgrRepository” on page 1156

v “listIdMgrLDAPAttrs” on page 1157

v “listIdMgrCustomProperties” on page 1157

v “listIdMgrLDAPBackupServers” on page 1158

v “listIdMgrLDAPEntityTypes” on page 1158

v “listIdMgrLDAPServers” on page 1159

v “listIdMgrRepositories” on page 1159

v “listIdMgrRepositoryBaseEntries” on page 1160

v “listIdMgrSupportedDBTypes” on page 1161

v “listIdMgrSupportedMessageDigestAlgorithms” on page 1161

v “listIdMgrSupportedLDAPServerTypes” on page 1162

v “removeIdMgrLDAPBackupServer” on page 1162

v “setIdMgrCustomProperty” on page 1163

v “setIdMgrLDAPAttrCache” on page 1163

v “setIdMgrLDAPContextPool” on page 1165

v “setIdMgrLDAPGroupConfig” on page 1166

v “setIdMgrLDAPSearchResultCache” on page 1167

v “setIdMgrEntryMappingRepository” on page 1168

v “setIdMgrPropertyExtensionRepository” on page 1169

v “updateIdMgrDBRepository” on page 1170

v “updateIdMgrFileRepository” on page 1170

v “updateIdMgrLDAPAttrCache” on page 1171

v “updateIdMgrLDAPContextPool” on page 1173

v “updateIdMgrLDAPEntityType” on page 1174

v “updateIdMgrLDAPGroupDynamicMemberAttr” on page 1175

v “updateIdMgrLDAPGroupMemberAttr” on page 1175

v “updateIdMgrLDAPRepository” on page 1176

v “updateIdMgrLDAPSearchResultCache” on page 1178

v “updateIdMgrLDAPServer” on page 1179

v “updateIdMgrRepository” on page 1180

v “updateIdMgrRepositoryBaseEntry” on page 1181

addIdMgrLDAPAttr

The addIdMgrLDAPAttr command adds an LDAP attribute configuration to the LDAP repository

configuration.

Required parameters

-id Specifies the unique ID of the repository. (String, required)

-name

Specifies the name of the LDAP attribute used in the repository LDAP adapter. (String, required)

1136 Securing applications and their environment

Optional parameters

-entityTypes

Specifies the entity type which applies the attribute mapping. (String, optional)

-syntax

Specifies the syntax of the LDAP attribute. The default value is string. For example, the syntax of the

unicodePwd LDAP attribute is octetString. (String, optional)

-defaultValue

Specifies the default value of the LDAP attribute. If you do not specify this LDAP attribute when you

create an entity which this LDAP attribute applies to, the system adds the attribute using this default

value. (String, optional)

-defaultAttr

The default attribute of the LDAP attribute. If you do not specify this LDAP attribute when you create

an entity which this LDAP attribute applies to, the system uses this value of the default attribute.

(String, optional)

-propertyName

Specifies the name of the corresponding federated repository property. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPAttr {-id id1 -name unicodePwd -syntax octetString}

v Using Jython string:

AdminTask.addIdMgrLDAPAttr (’[-id id1 -name unicodePwd -syntax octetString]’)

v Using Jython list:

AdminTask.addIdMgrLDAPAttr ([’-id’, ’id1’, ’-name’, ’unicodePwd’, ’-syntax’, ’octetString’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPAttr {-interactive}

v Using Jython:

AdminTask.addIdMgrLDAPAttr(’-interactive’)

addIdMgrLDAPBackupServer

The addIdMgrLDAPBackupServer command sets a backup LDAP server in your configuration.

Required parameters

-id Specifies the unique ID of the repository. (String, required)

-primary_host

Specifies the primary host of the LDAP server. (String, required)

-host

Specifies the host name for the LDAP server. (String, required)

Optional parameters

-port

Specifies the port number for the LDAP server. (Integer, optional)

Examples

Chapter 10. Configuring security with scripting 1137

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPBackupServer {-id id1 -primary_host hostName -host hostName2 -port 4020}

v Using Jython string:

AdminTask.addIdMgrLDAPBackupServer (’[-id id1 -primary_host hostName -host hostName2 -port 4020]’)

v Using Jython list:

AdminTask.addIdMgrLDAPBackupServer ([’-id’, ’id1’, ’-primary_host’, ’hostName’, ’-host’, ’hostName2’, ’-port’, ’4020’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPBackupServer {-interactive}

v Using Jython:

AdminTask.addIdMgrLDAPBackupServer(’-interactive’)

addIdMgrLDAPEntityType

The addIdMgrLDAPEntityType command adds an LDAP entity type definition.

Parameters and return values

-id The ID of the repository. (String, required)

-name

The name of the entity type. (String, required)

-searchFilter

The search filter that you want to use to search the entity type. (String, optional)

-objectClasses

One or more object classes for the entity type. (String, required)

-objectClassesForCreate

The object class to use when an entity type is created. If the value of this parameter is the same as

the objectClass parameter, you do not need to specify this parameter. (String, optional)

-searchBases

The search base or bases to use while searching the entity type. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPEntity Type {-id id1 -name name1 -objectClasses objectclass}

v Using Jython string:

AdminTask.addIdMgrLDAPEntity Type (’[-id id1 -name name1 -objectClasses objectclass]’)

v Using Jython list:

AdminTask.addIdMgrLDAPEntity Type ([’-id’, ’id1’, ’-name’, ’name1’, ’-obje ctClasses’, ’objectclass’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAP EntityType {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAP EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAP EntityType ([’-interactive’])

1138 Securing applications and their environment

addIdMgrLDAPEntityTypeRDNAttr

The addId MgrLDAP EntityType RDNAttr command adds RDN attribute configuration to an LDAP entity

type definition.

Parameters and return values

-id The ID of the repository. (String, required)

-entityTypeName

The name of the entity type. (String, required)

-name

The attribute name that is used to build the relative distinguished name (RDN) for the entity type.

(String, required)

-objectClass

The object class to use for the entity type for the relative distinguished name (RDN) attribute name

that you specify. Use this parameter to map one entity type to multiple structural object classes.

(String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPEntity TypeRDNAttr {-id id1 -entityTypeName entitytype -name name1}

v Using Jython string:

AdminTask.addIdMgrLDAPEntity TypeRDNAttr (’[-id id1 -entityTypeName entitytype -name name1]’)

v Using Jython list:

AdminTask.addIdMgrLDAPEntity TypeRDNAttr ([’-id’, ’id1’, ’-entityTypeName’, ’entity type’, ’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPEntity TypeRDNAttr {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAPEntity TypeRDNAttr (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAPEntity TypeRDNAttr ([’-interactive’])

addIdMgrLDAPGroupDynamicMemberAttr

The addIdMgr LDAPGroup Dynamic Member Attr command adds a dynamic member attribute

configuration to an LDAP group configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-name

The name of the LDAP attribute that is used as the group member attribute. For example, member or

uniqueMember. (String, required)

-objectClass

The group object class that contains the member attribute. For example, groupOfNames or

groupOfUniqueNames. If you do not define this parameter, the member attribute applies to all group

object classes. (String, optional)

Chapter 10. Configuring security with scripting 1139

-scope

The scope of the member attribute. The valid values for this parameter include the following:

v direct - The member attribute only contains direct members, therefore, this value refers to the

member directly contained by the group and not contained through the nested group. For example,

if Group1 contains Group2 and Group2 contains User1, then Group2 is a direct member of Group1

but User1 is not a direct member of Group1. Both member and uniqueMember are direct member

attributes.

v nested - The member attribute that contains the direct members and the nested members.

-dummyMember

Indicates that if you create a group without specifying a member, a dummy member will be filled in to

avoid creating an exception about missing a mandatory attribute. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPGroup DynamicMemberAttr {-id id1 -name name1 -objectClass objectclass}

v Using Jython string:

AdminTask.addIdMgrLDAPGroup DynamicMemberAttr (’[-id id1 -name name1 -objectClass objectclass]’)

v Using Jython list:

AdminTask.addIdMgrLDAPGroup DynamicMemberAttr ([’-id’, ’id1’, ’-name’, ’name1’, ’-objectClass’, ’objectclass’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPGroup DynamicMemberAttr {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAPGroup DynamicMemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAPGroup DynamicMemberAttr ([’-interactive’])

addIdMgrLDAPGroupMemberAttr

The addIdMgr LDAPGroup MemberAttr command adds a member attribute configuration to an LDAP

group configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-name

The name of the LDAP attribute that is used as the group member attribute. For example, member or

uniqueMember. (String, required)

-objectClass

The group object class that contains the member attribute. For example, groupOfNames or

groupOfUnqiueNames. If you do not define this parameter, the member attribute applies to all group

object classes. (String, optional)

-scope

The scope of the member attribute. The valid values for this parameter include the following:

v direct - The member attribute only contains direct members, therefore, this value refers to the

member directly contained by the group and not contained through the nested group. For example,

if Group1 contains Group2 and Group2 contains User1, then Group2 is a direct member of Group1

but User1 is not a direct member of Group1. Both member and uniqueMember are direct member

attributes.

1140 Securing applications and their environment

v nested - The member attribute that contains the direct members and the nested members.

-dummyMember

Indicates that if you create a group without specifying a member, a dummy member will be filled in to

avoid creating an exception about missing a mandatory attribute. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPGroup MemberAttr {-id id1 -name name1}

v Using Jython string:

AdminTask.addIdMgrLDAPGroup MemberAttr (’[-id id1 -name name1]’)

v Using Jython list:

AdminTask.addIdMgrLDAPGroup MemberAttr ([’-id’, ’id1’, ’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPGroup MemberAttr {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAPGroup MemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAPGroup MemberAttr ([’-interactive’])

addIdMgrLDAPServer

The addId MgrLDAP Server command adds an LDAP server to the LDAP repository ID that you specify.

Parameters and return values

-id The ID of the repository. (String, required)

-host

The host name for the primary LDAP server. (String, required)

-port

The port number for the LDAP server. (Integer, optional)

-bindDN

The binding distinguished name for the LDAP server. (String, optional)

-bindPassword

The binding password. (String, optional)

-authentication

Indicates the authentication method to use. The default value is simple. Valid values include: none or

strong. (String, optional)

-referal

The LDAP referral. The default value is ignore. Valid values include: follow, throw, or false. (String,

optional)

-derefAliases

Controls how aliases are dereferenced. The default value is always. Valid values include:

v never - never deference aliases

v finding - deferences aliases only during name resolution

v searching - deferences aliases only after name resolution

Chapter 10. Configuring security with scripting 1141

(String, optional)

-sslEnabled

Indicates to enable SSL or not. The default value is false. (Boolean, optional)

-connectionPool

The connection pool. The default value is false. (Boolean, optional)

-connectTimeout

The connection timeout in seconds. The default value is 0. (Integer, optional)

-ldapServerType

The type of LDAP server being used. The default value is IDS51. (String, optional)

-sslConfiguration

The SSL configuration. (String, optional)

-certificateMapMode

Specifies whether to map X.509 certificates into a LDAP directory by exact distinguished name or by

certificate filter. The default value is EXACT_DN. To use the certificate filter for the mapping, specify

CERTIFICATE_FILTER. (String, optional)

-certificateFilter

If certificateMapMode has the value CERTIFICATE_FILTER, then this property specifies the LDAP filter

which maps attributes in the client certificate to entries in LDAP. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPServer {-id id1 -host myhost.ibm.com}

v Using Jython string:

AdminTask.addIdMgrLDAPServer (’[-id id1 -host myhost.ibm.com]’)

v Using Jython list:

AdminTask.addIdMgrLDAPServer ([’-id’, ’id1’, ’-host’, ’myhost.ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAP Server {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAP Server (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAP Server ([’-interactive’])

addIdMgrRepositoryBaseEntry

The addIdMgr Repository BaseEntrycommand adds a base entry to the specified repository.

Parameters and return values

-id The ID of the repository. (String, required)

-name

The distinguished name of a base entry. (String, required)

-nameInRepository

The distinguished name in the repository that uniquely identifies the base entry name. (String,

optional)

1142 Securing applications and their environment

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrRepositoryBaseEntry {-id id1 -name name1}

v Using Jython string:

AdminTask.addIdMgrRepositoryBaseEntry (’[-id id1 -name name1]’)

v Using Jython list:

AdminTask.addIdMgrRepositoryBaseEntry ([’-id’, ’id1’, ’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrRepositoryBaseEntry {-interactive}

v Using Jython string:

AdminTask.addIdMgrRepositoryBaseEntry (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrRepositoryBaseEntry ([’-interactive’])

createIdMgrCustomRepository

The createIdMgrCustomRepository command creates a custom repository configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-adapterClassName

The implementation class name for the repository adapter. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrCustomRepository {-id id1 -adapterClassName adapterClassName}

v Using Jython string:

AdminTask.createIdMgrCustomRepository(’-id id1 -adapterClassName adapterClassName’)

v Using Jython list:

AdminTask.createIdMgrCustomRepository([’-id’, ’id1’, ’-adapterClassName’, ’adapterClassName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrCustomRepository {-interactive}

v Using Jython:

AdminTask.createIdMgrCustomRepository(’-interactive’)

createIdMgrDBRepository

The createIdMgrDBRepository command creates a database repository configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-dataSourceName

The name of the data source. The default value is jdbc/wimDS. (String, required)

Chapter 10. Configuring security with scripting 1143

-databaseType

The type of the database. The default value is DB2. (String, required)

-dbURL

The URL of the database. (String, required)

-dbAdminId

The database administrator ID. (String, required if database type is not Apache Derby.)

-dbAdminPassword

The database administrator password. (String, required if database type is not Apache Derby.)

-adapterClassName

The default value is com.ibm.ws.wim.adapter.db.DBAdapter. (String, optional)

-JDBCDriverClass

The JDBC driver class name. (String, optional)

-supportSorting

Indicates if sorting is supported or not. The default value is false. (Boolean, optional)

-supportTransactions

Indicates if transactions are supported or not. The default value is false. (Boolean, optional)

-isExtIdUnique

Specifies if the external ID is unique. The default value is true. (Boolean, optional)

-supportExternalName

Indicates if external names are supported or not. The default value is false. (Boolean, optional)

-entityRetrievalLimit

Indicates the value of the retrieval limit on database entries. The default value is 200. (Integer,

optional)

-saltLength

The salt length in bits. The default value is 12. (Integer, optional)

-encryptionKey

The default value is rZ15ws0ely9yHk3zCs3sTMv/ho8fY17s. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrDB Repository {-id id1 -dataSourceName datasource name -databaseType DB2}

v Using Jython string:

AdminTask.createIdMgrDB Repository (’[-id id1 -dataSourceName data sourcename -databaseType DB2]’)

v Using Jython list:

AdminTask.createIdMgrDB Repository ([’-id’, ’id1’, ’-dataSourceName’, ’data sourcename’, ’-databaseType’, ’DB2’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrDB Repository {-interactive}

v Using Jython string:

AdminTask.createIdMgrDB Repository (’[-interactive]’)

v Using Jython list:

AdminTask.createIdMgrDB Repository ([’-interactive’])

1144 Securing applications and their environment

createIdMgrFileRepository

The createId MgrFile Repository command creates a file repository configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-messageDigest Algorithm

The message digest algorithm that will be used for hashing the password. The default value is SHA-1.

Valid values include the following: SHA-1, SHA-384, or SHA-512.(String, required)

-adapterClassName

The default value is com.ibm.ws. wim.adapter. file.was. FileAdapter. (String, optional)

-supportPaging

Indicates if paging is supported or not. The default value is false. (Boolean, optional)

-supportSorting

Indicates if sorting is supported or not. The default value is false. (Boolean, optional)

-supportTransactions

Indicates if transaction is supported or not. The default value is false. (Boolean, optional)

-isExtIdUnique

Specifies if the external ID is unique or not. The default value is true. (Boolean, optional)

-supportExternalName

Indicates if external names are supported or not. The default value is false. (Boolean, optional)

-baseDirectory

The base directory where the fill will be created in order to store the data. The default is to be

dynamically built during run time using user.install.root and cell name. (String, optional)

-fileName

The file name of the repository. The default value is fileRegistry.xml. (String, optional)

-saltLength

The salt length of the randomly generated salt for password hashing. The default value is 12. (Integer,

optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrFile Repository {-id id1 -messageDigestAlgorithm SHA-1}

v Using Jython string:

AdminTask.createIdMgrFile Repository (’[-id id1 -messageDigestAlgorithm SHA-1]’)

v Using Jython list:

AdminTask.createIdMgrFile Repository ([’-id’, ’id1’, ’-messageDigestAlgorithm’, ’SHA-1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrFile Repository {-interactive}

v Using Jython string:

AdminTask.createIdMgrFile Repository (’[-interactive]’)

v Using Jython list:

AdminTask.createIdMgrFile Repository ([’-interactive’])

Chapter 10. Configuring security with scripting 1145

createIdMgrLDAPRepository

The create IdMgrLDAP Repository command creates an LDAP repository configuration.

Parameters and return values

-id The unique identifier for the repository. (String, required)

-ldapServerType

The type of LDAP server that is being used. The default value is IDS51. (String, required)

-adapterClassName

The default value is com.ibm.ws. wim.adapter. db.DBAda pter. (String, optional)

-supportSorting

Indicates if sorting is supported or not. The default value is false. (Boolean, optional)

-supportPaging

Indicates if paging is supported or not. The default value is false. (Boolean, optional)

-supportTransactions

Indicates if transactions are supported or not. The default value is false. (Boolean, optional)

-isExtIdUnique

Specifies if the external ID is unique. The default value is true. (Boolean, optional)

-supportExternalName

Indicates if external names are supported or not. The default value is false. (Boolean, optional)

-authentication

Indicates the authentication method to use. The default value is simple. Valid values include: none or

strong. (String, optional)

-referal

The LDAP referral. The default value is ignore. Valid values include: follow, throw, or false. (String,

optional)

-sslEnabled

Indicates to enable SSL or not. The default value is false. (Boolean, optional)

-sslConfiguration

The SSL configuration. (String, optional)

-connectionPool

The connection pool. The default value is false. (Boolean, optional)

-translateRDN

Indicates to translate RDN or not. The default value is false. (Boolean, optional)

-searchTimeLimit

The value of search time limit. (Integer, optional)

-searchCountLimit

The value of search count limit. (Integer, optional)

-searchPageSize

The value of search page size. (Integer, optional)

-returnToPrimaryServer

(Integer, optional)

-primaryServerQueryTimeInterval

(Integer, optional)

1146 Securing applications and their environment

-default

If you set this parameter to true, the default values will be set for the remaining configuration

properties of the LDAP repository. (Boolean, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrLDAP Repository {-id id1 -ldapServerType IDS51}

v Using Jython string:

AdminTask.createIdMgrLDAP Repository (’[-id id1 -ldapServerType IDS51]’)

v Using Jython list:

AdminTask.createIdMgrLDAP Repository ([’-id’, ’id1’, ’-ldapServerType’, ’IDS51’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrLDAP Repository {-interactive}

v Using Jython string:

AdminTask.createIdMgrLDAP Repository (’[-interactive]’)

v Using Jython list:

AdminTask.createIdMgrLDAP Repository ([’-interactive’])

deleteIdMgrLDAPAttr

The deleteIdMgrLDAPAttr command deletes LDAP attribute configuration data for a specific entity type

from the LDAP repository of interest.

Required parameters

-id Specifies the unique ID of the repository. (String, required)

-name

Specifies the name of the LDAP attribute used in the repository LDAP adapter. (String, required)

Optional parameters

-entityTypes

Specifies the entity type which applies the attribute mapping. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAPAttr {-id id1 -name unicodePwd -syntax octetString}

v Using Jython string:

AdminTask.deleteIdMgrLDAPAttr (’[-id id1 -name unicodePwd -syntax octetString]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAPAttr ([’-id’, ’id1’, ’-name’, ’unicodePwd’, ’-syntax’, ’octetString’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAPAttr {-interactive}

v Using Jython:

AdminTask.deleteIdMgrLDAPAttr(’-interactive’)

Chapter 10. Configuring security with scripting 1147

deleteIdMgrLDAPEntityType

The deleteId MgrLDAP EntityType command deletes the LDAP entity type configuration data for a

specified entity type for a specific LDAP repository.

Parameters and return values

-id The ID of the repository. (String, required)

-name

The name of the entity type. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP EntityType {-id id1 -name name1}

v Using Jython string:

AdminTask.deleteIdMgrLDAP EntityType (’[-id id1 -name name1]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP EntityType ([’-id’, ’id1’, ’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP EntityType {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAP EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP EntityType ([’-interactive’])

deleteIdMgrLDAPEntityTypeRDNAttr

The deleteId MgrLDAP EntityType RDNAttr command deletes the relative distinguished name (RDN)

attribute configuration from an LDAP entity type configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-entityTypeName

The name of the entity type. (String, required)

-name

The attribute name that is used to build the relative distinguished name (RDN) for the entity type.

(String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAPEntity TypeRDNAttr {-id id1 -name name1 -entityTypeName entityType}

v Using Jython string:

AdminTask.deleteIdMgrLDAP EntityTypeRDNAttr (’[-id id1 -name name1 -entityType Name entityType]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAPEntity TypeRDNAttr ([’-id’, ’id1’, ’-name’, ’name1’, ’-entity TypeName’, ’entityType’])

1148 Securing applications and their environment

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAPEntity TypeRDNAttr {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAPEntity TypeRDNAttr (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAPEntity TypeRDNAttr ([’-interactive’])

deleteIdMgrLDAPGroupConfig

The deleteId MgrLDAP GroupConfig command deletes the LDAP group configuration.

Parameters and return values

-id The ID of the repository. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP GroupConfig {-id id1}

v Using Jython string:

AdminTask.deleteIdMgrLDAP GroupConfig (’[-id id1]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP GroupConfig ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP GroupConfig {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAP GroupConfig (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP GroupConfig ([’-interactive’])

deleteIdMgrLDAPGroupMemberAttr

The deleteIdMgr LDAPGroup MemberAttr command deletes a member attribute configuration from an

LDAP group configuration.

Parameters and return values

-id The ID of the repository. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP GroupMemberAttr {-id id1}

v Using Jython string:

AdminTask.deleteIdMgrLDAP GroupMemberAttr (’[-id id1]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP GroupMemberAttr ([’-id’, ’id1’])

Chapter 10. Configuring security with scripting 1149

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP GroupMemberAttr {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAP GroupMemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP GroupMemberAttr ([’-interactive’])

deleteIdMgrLDAPGroupDynamicMemberAttr

The deleteIdMgr LDAPGroup Dynamic MemberAttr command deletes a dynamic member attribute

configuration from an LDAP group configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-name

The name of the LDAP attribute that is used as the group member attribute. For example, memberURL.

(String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP GroupDynamicMemberAttr {-id id1 -name name1}

v Using Jython string:

AdminTask.deleteIdMgrLDAP GroupDynamicMemberAttr (’[-id id1 -name name1]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP GroupDynamicMemberAttr ([’ -id’, ’id1’, ’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAPGroup DynamicMemberAttr {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAPGroup DynamicMemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAPGroup DynamicMemberAttr ([’-interactive’])

deleteIdMgrLDAPServer

The deleteId MgrLDAP Server command deletes the configuration for the LDAP server that you specify

from the LDAP repository ID that you specify.

Parameters and return values

-id The ID of the repository. (String, required)

-host

The host name for the primary LDAP server. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

1150 Securing applications and their environment

$AdminTask deleteIdMgrLDAP Server {-id id1 -host myhost.ibm.com}

v Using Jython string:

AdminTask.deleteIdMgrLDAP Server (’[-id id1 -host myhost.ibm.com]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP Server ([’-id’, ’id1’, ’-host’, ’myhost.ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP Server {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAP Server (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP Server ([’-interactive’])

deleteIdMgrRepository

The deleteIdMgr Repository command deletes a repository that you specify.

Parameters and return values

-id The ID of the repository. Valid values include existing repository IDs. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgr Repository {-id id1}

v Using Jython string:

AdminTask.deleteIdMgr Repository (’[-id id1]’)

v Using Jython list:

AdminTask.deleteIdMgr Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRepos itory {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrReposi tory (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrReposi tory ([’-interactive’])

deleteIdMgrRepositoryBaseEntry

The deleteIdMgr Repository BaseEntry command deletes a base entry from the specified repository.

Parameters and return values

-id The ID of the repository. (String, required)

-name

The distinguished name of a base entry. (String, required)

Examples

Batch mode example usage:

Chapter 10. Configuring security with scripting 1151

v Using Jacl:

$AdminTask deleteIdMgrRepository BaseEntry {-id id1 -name name1}

v Using Jython string:

AdminTask.deleteIdMgrRepository BaseEntry (’[-id id1 -name name1]’)

v Using Jython list:

AdminTask.deleteIdMgrRepository BaseEntry ([’-id’, ’id1’, ’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRepository BaseEntry {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrRepository BaseEntry (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrRepository BaseEntry ([’-interactive’])

getIdMgrLDAPAttrCache

The getIdMgr LDAPAttr Cache command returns the LDAP attribute cache configuration.

Parameters and return values

-id The ID of the repository. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPAttr Cache {-id id1}

v Using Jython string:

AdminTask.getIdMgrLDAPAttr Cache (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPAttr Cache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAP AttrCache {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPAttr Cache (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPAttr Cache ([’-interactive’])

getIdMgrLDAPContextPool

The getIdMgr LDAP Context Pool command returns the LDAP context pool configuration.

Parameters and return values

-id The ID of the repository. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

1152 Securing applications and their environment

$AdminTask getIdMgrLDAPContext Pool {-id id1}

v Using Jython string:

AdminTask.getIdMgrLDAPContext Pool (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPContext Pool ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPCon textPool {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPCon textPool (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPCon textPool ([’-interactive’])

getIdMgrLDAPEntityType

The getIdMgr LDAP EntityType command returns the LDAP entity type configuration data.

Parameters and return values

-id The ID of the repository. (String, required)

-name

The name of the entity type. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPEntity Type {-id id1 -name name1}

v Using Jython string:

AdminTask.getIdMgrLDAPEntity Type (’[-id id1 -name name1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPEntity Type ([’-id’, ’id1’, ’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPEn tityType {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPEn tityType (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPEn tityType ([’-interactive’])

getIdMgrLDAPEntityTypeRDNAttr

The getIdMgr LDAPEntity TypeRDNAttr command returns the relative distinguished name (RDN)

attribute configuration for an LDAP entity type definition.

Parameters and return values

-id The ID of the repository. (String, required)

-entityTypeName

The name of the entity name. (String, required)

Chapter 10. Configuring security with scripting 1153

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPEntity TypeRDNAttr {-id id1 -entityTypeName name1}

v Using Jython string:

AdminTask.getIdMgrLDAPEntity TypeRDNAttr (’[-id id1 -entityTypeName name1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPEntity TypeRDNAttr ([’-id’, ’id1’, ’-entityTypeName’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPEntity TypeRDNAttr {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPEntity TypeRDNAttr (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPEntity TypeRDNAttr ([’-interactive’])

getIdMgrLDAPGroupConfig

The getIdMgr LDAPG roupConfig command returns the LDAP group configuration.

Parameters and return values

-id The ID of the repository. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroup Config {-id id1}

v Using Jython string:

AdminTask.getIdMgrLDAPGroup Config (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroup Config ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroup Config {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPGroup Config (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroup Config ([’-interactive’])

getIdMgrLDAPGroupDynamicMemberAttrs

The getIdMgr LDAPGroup Dynamic Member Attrs command returns the dynamic member attribute

configuration from the LDAP group configuration.

Parameters and return values

-id The ID of the repository. (String, required)

1154 Securing applications and their environment

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroupDynamic MemberAttrs {-id id1}

v Using Jython string:

AdminTask.getIdMgrLDAPGroupDynamic MemberAttrs (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroupDynamic MemberAttrs ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroup DynamicMemberAttrs {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPGroup DynamicMemberAttrs (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroup DynamicMemberAttrs ([’-interactive’])

getIdMgrLDAPGroupMemberAttrs

The getIdMgr LDAPGroup MemberAttrs command returns the member attribute configuration for the

LDAP group configuration.

Parameters and return values

-id The ID of the repository. (String, required)

Examples

Batch mode example usage:

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroup MemberAttrs {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPGroup MemberAttrs (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroup MemberAttrs ([’-interactive’])

getIdMgrLDAPSearchResultCache

The getIdMgr LDAPSearch ResultCache command returns the LDAP search result cache configuration.

Parameters and return values

-id The ID of the repository. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAP SearchResultCache {-id id1}

v Using Jython string:

Chapter 10. Configuring security with scripting 1155

AdminTask.getIdMgrLDAP SearchResultCache (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPSear chResultCache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPSea rchResultCache {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPSear chResultCache (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPSe archResultCache ([’-interactive’])

getIdMgrLDAPServer

The getIdMgr LDAPServer command returns the configuration for the LDAP server that you specify for

the LDAP repository ID that you specify.

Parameters and return values

-id The ID of the repository. (String, required)

-host

The host name for the primary LDAP server. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPServer {-id id1 -host myhost.ibm.com}

v Using Jython string:

AdminTask.getIdMgrLDAPServer (’[-id id1 -host myhost.ibm.com]’)

v Using Jython list:

AdminTask.getIdMgrLDAPServer ([’-id’, ’id1’, ’-host’, ’myhost.ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPServer {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPServer (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPServer ([’-interactive’])

getIdMgrRepository

The getIdMgr Repository command returns the configuration of the specified repository.

Parameters and return values

-id The ID of the repository. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

1156 Securing applications and their environment

$AdminTask getIdMgrRepos itory {-id id1}

v Using Jython string:

AdminTask.getIdMgrReposi tory (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrReposi tory ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrRepos itory {-interactive}

v Using Jython string:

AdminTask.getIdMgrReposi tory (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrReposi tory ([’-interactive’])

listIdMgrLDAPAttrs

The listIdMgrLDAPAttrs command lists the name of each configured attributes for the LDAP repository of

interest.

Required parameters

-id Specifies the unique ID of the repository. (String, required)

Return value

The command returns a list of HashMaps that contains parameters of the addIdMgrLDAPAttr command as

keys.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAPAttrs {-id id1}

v Using Jython string:

AdminTask.listIdMgrLDAPAttrs (’[-id id1]’)

v Using Jython list:

AdminTask.listIdMgrLDAPAttrs ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAPAttrs {-interactive}

v Using Jython:

AdminTask.listIdMgrLDAPAttrs(’-interactive’)

listIdMgrCustomProperties

The listIdMgr Custom Propertiescommand returns a list of custom properties for the repository that you

specify.

Parameters and return values

-id The ID of the repository. (String, required)

Examples

Chapter 10. Configuring security with scripting 1157

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrCustomPro perties {-id id1}

v Using Jython string:

AdminTask.listIdMgrCustom Properties (’[-id id1]’)

v Using Jython list:

AdminTask.listIdMgrCustom Properties ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrCustom Properties {-interactive}

v Using Jython string:

AdminTask.listIdMgrCustom Properties (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrCustom Properties ([’-interactive’])

listIdMgrLDAPBackupServers

The listIdMgr LDAPBack upServerscommand returns a list of the backup LDAP server or servers.

Parameters and return values

-id The ID of the repository. (String, required)

-primary_host

The host name for the primary LDAP server. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP BackupServer {-id id1 -primary_host hostname}

v Using Jython string:

AdminTask.listIdMgrLDAPBack upServer (’[-id id1 -primary_host hostname]’)

v Using Jython list:

AdminTask.listIdMgrLDAPBack upServer ([’-id’, ’id1’, ’-primary_host’, ’hostname’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP BackupServer {-interactive}

v Using Jython string:

AdminTask.listIdMgrLDAP BackupServer (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrLDAP BackupServer ([’-interactive’])

listIdMgrLDAPEntityTypes

The listIdMgr LDAPEn tityTypes command lists the name of all of the configured LDAP entity type

definitions.

Parameters and return values

-id The ID of the repository. (String, required)

1158 Securing applications and their environment

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP EntityType {-id id1}

v Using Jython string:

AdminTask.listIdMgrLDAP EntityType (’[-id id1]’)

v Using Jython list:

AdminTask.listIdMgrLDAPEntity Type ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP EntityType {-interactive}

v Using Jython string:

AdminTask.listIdMgrLDAP EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrLDAP EntityType ([’-interactive’])

listIdMgrLDAPServers

The listIdMgr LDAP Servers command lists all of the configured primary LDAP servers.

Parameters and return values

-id The ID of the repository. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP Servers {-id id1}

v Using Jython string:

AdminTask.listIdMgrLDAP Servers (’[-id id1]’)

v Using Jython list:

AdminTask.listIdMgrLDAP Servers ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP Servers {-interactive}

v Using Jython string:

AdminTask.listIdMgrLDAP Servers (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrLDAP Servers ([’-interactive’])

listIdMgrRepositories

The listIdMgr Repositories command lists names and types of all configured repositories.

Parameters and return values

v Parameters: None

v Returns: A hash map with key as the name of the repository and value as another hash map that

includes the following keys:

Chapter 10. Configuring security with scripting 1159

– repositoryType - The type of repository. For example, File, LDAP, DB, and so on.

– specificRepositoryType - The specific type of repository. For example, LDAP, IDS51, NDS, and so

on.

– host - The host name where the repository resides. For File, it is LocalHost and for DB it is

dataSourceName.

This command will not return the Property Extension and Entry Mapping repository data.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrRepositories

v Using Jython string:

AdminTask.listIdMgrRepositories()

v Using Jython list:

AdminTask.listIdMgrRepositories()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrReposi tories {-interactive}

v Using Jython string:

AdminTask.listIdMgrReposit ories (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrReposi tories ([’-interactive’])

listIdMgrRepositoryBaseEntries

The listIdMgr Repository BaseEntries command lists the base entries for a specified repository.

Parameters and return values

-id The ID of the repository. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrRepository BaseEntries {-id id1}

v Using Jython string:

AdminTask.listIdMgrRepository BaseEntries (’[-id id1]’)

v Using Jython list:

AdminTask.listIdMgrRepository BaseEntries ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrRepository BaseEntries {-interactive}

v Using Jython string:

AdminTask.listIdMgrRepository BaseEntries (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrRepository BaseEntries ([’-interactive’])

1160 Securing applications and their environment

listIdMgrSupportedDBTypes

The listIdMgr Supported DBTypes command returns a list of supported database types.

Parameters and return values

v Parameters: None

v Returns: A list of supported database types.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupportedDBTypes

v Using Jython string:

AdminTask.listIdMgrSupportedDBTypes()

v Using Jython list:

AdminTask.listIdMgrSupportedDBTypes()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported DBTypes {-interactive}

v Using Jython string:

AdminTask.listIdMgrSupported DBTypes (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrSupported DBTypes ([’-interactive’])

listIdMgrSupportedMessageDigestAlgorithms

The listIdMgr Supported Message Digest Algorithms command returns a list of supported message

digest algorithms.

Parameters and return values

v Parameters: None

v Returns: A list of supported message digest algorithms.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported MessageDigestAlgorithms

v Using Jython string:

AdminTask.listIdMgrSupported MessageDigestAlgorithms()

v Using Jython list:

AdminTask.listIdMgrSupported MessageDigestAlgorithms()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupportedMes sageDigestAlgorithms {-interactive}

v Using Jython string:

AdminTask.listIdMgrSupportedMessage DigestAlgorithms (’[-interactive]’)

v Using Jython list:

Chapter 10. Configuring security with scripting 1161

AdminTask.listIdMgrSupportedMessage DigestAlgorithms ([’-interactive’])

listIdMgrSupportedLDAPServerTypes

The listIdMgr Supported LDAP ServerTypes command returns a list of supported LDAP server types.

Parameters and return values

v Parameters: None

v Returns: A list of supported LDAP server types.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported LDAPServerTypes

v Using Jython string:

AdminTask.listIdMgrSupported LDAPServerTypes()

v Using Jython list:

AdminTask.listIdMgrSupported LDAPServerTypes()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported LDAPServerTypes {-interactive}

v Using Jython string:

AdminTask.listIdMgrSupported LDAPServerTypes (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrSupported LDAPServerTypes ([’-interactive’])

removeIdMgrLDAPBackupServer

The removeIdMgr LDAPBack upServercommand removes the backup LDAP server or servers.

Parameters and return values

-id The ID of the repository. (String, required)

-primary_host

The host name for the primary LDAP server. (String, required)

-host

The name of the backup host name. Use a asterisk (*) if you want to remove all backup servers.

(String, required)

-port

The port number of the LDAP server. (Integer, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask removeIdMgrLDAP BackupServer {-id id1 -primary_host myprimaryhost. ibm.com -host myhost.ibm.com}

v Using Jython string:

AdminTask.removeIdMgrLDAPBackup Server (’[-id id1 -primary_host myprimaryhost.ibm.com -host myhost.ibm.com]’)

v Using Jython list:

AdminTask.removeIdMgrLDAPBack upServer ([’-id’, ’id1’, ’-primary_host’, ’myprimary host.ibm.com’, ’-host’, ’myhost.ibm.com’])

1162 Securing applications and their environment

Interactive mode example usage:

v Using Jacl:

$AdminTask removeIdMgrLDAP BackupServer {-interactive}

v Using Jython string:

AdminTask.removeIdMgrLDAP BackupServer (’[-interactive]’)

v Using Jython list:

AdminTask.removeIdMgrLDAP BackupServer ([’-interactive’])

setIdMgrCustomProperty

The setIdMgr Custom Property command : sets, adds or deletes a custom property to a repository

configuration. If a value is not specified, or if there is an empty string, the property is deleted from the

repository configuration. If a name does not exist it is added if a value is specified. If the name is ″*″ then

all of the custom properties are deleted.

Parameters and return values

-id The unique identifier of the repository. Valid values include the existing repository IDs. (String,

required)

-name

The name of the additional property for the repository that are not defined OOTB.(String, required)

-value

The value of a property for the repository. If this parameter is an empty string, the property is deleted

from the repository configuration. If this parameter is not an empty string, and a name does not exist,

it is added. If a name is an empty string, all of the custom properties are deleted. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrCustomProperty {-id id1 -name name1 -value value}

v Using Jython string:

AdminTask.setIdMgrCustomProperty (’[-id id1 -name name1 -value value]’)

v Using Jython list:

AdminTask.setIdMgrCustomProperty ([’-id’, ’id1’, ’-name’, ’name1’, ’-value’, ’value’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrCustom Property {-interactive}

v Using Jython string:

AdminTask.setIdMgrCustom Property (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrCustom Property ([’-interactive’])

setIdMgrLDAPAttrCache

The setIdMgr LDAPA ttrCache command configures the LDAP attribute cache configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-cachesDiskOffLoad

(String, optional)

Chapter 10. Configuring security with scripting 1163

-enabled

Indicates if you want to enable attribute caching. The default value is true. (Boolean, optional)

-cacheSize

The maximum size of the attribute cache defined by the number of attribute objects that are permitted

in the attribute cache. The minimum value of this parameter is 100. The default value is 4000. (Integer,

optional)

-cacheTimeOut

The amount of time in seconds before the cached entries that are located in the attributes cache can

be not valid. The minimum value of this parameter is 0. The attribute objects that are cached will

remain in the attributes cache until the virtual member manager changes the attribute objects. The

default value is 1200. (Integer, optional)

-attributeSizeLimit

An integer that represents the maximum number of attribute object values that can cache in the

attributes cache.

 Some attributes, for example, the member attribute, contain many values. The attributeSizeLimit

parameter prevents the attributes cache to cache large attributes. The default value is 2000. (Integer,

optional)

-serverTTLAttribute

The name of the ttl attribute that is supported by the LDAP server. The attributes cache uses the value

of this attribute to determine when the cached entries in the attributes cache will time out.

 The ttl attribute contains the time, in seconds, that any information from the entry should be kept by a

client before it is considered stale and a new copy is fetched. A value of 0 implies that the object will

not be cached. For more information about this attribute, go to: http://www.ietf.org/proceedings/98aug/I-
D/draft-ietf-asid-ldap-cache-01.txt.

The ttl attribute is not supported by all LDAP servers. If this attribute is supported by an LDAP server,

you can set the value of the serverTTLAttribute parameter to the name of the ttl attribute in order to

allow the value of the ttyl attribute to determine when cached entries will time out. The time out value

for different entries in attributes cache can be different.

For example, if the value of the serverTTLAttribute parameter is ttl and the attributes cache retrieves

attributes of a user from an LDAP server, it will also retrieve the value of the ttl attribute of this user. If the

value is 200, the WMM uses this value to set the time out for the attributes of the user in the attributes

cache instead of using the value of cacheTimeout. You can set different ttl attribute values for different

users. (String, optional)

v Returns: None

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPAttr Cache {-id id1}

v Using Jython string:

AdminTask.setIdMgrLDAPAttr Cache (’[-id id1]’)

v Using Jython list:

AdminTask.setIdMgrLDAPAttr Cache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPAttr Cache {-interactive}

v Using Jython string:

AdminTask.setIdMgrLDAPAttr Cache (’[-interactive]’)

1164 Securing applications and their environment

http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt

v Using Jython list:

AdminTask.setIdMgrLDAPAttr Cache ([’-interactive’])

setIdMgrLDAPContextPool

The setIdMgr LDAPCo ntextPoolcommand sets up the LDAP context pool configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-enabled

By default, the context pool is enabled. If you set this parameter to false, the context pool is disabled.

When the context pool is disabled, new context instances will be created for each request. The default

value is true. (Boolean, optional)

-initPoolSize

The number of context instances that the virtual member manager LDAP adapter creates when it

creates the pool. The valid range for this parameter is 1 to 50. The default value is 1. (Integer, optional)

-maxPoolSize

The maximum number of context instances that the context pool will maintain. Context instances that

are in use and those that are idle contribute to this number. When the pool size reaches this number,

new context instances cannot be created for new requests. The new request is blocked until a context

instance is released by another request or is removed. The request checks periodically if there are

context instances available in the pool according to the amount of time that you specify using the

poolWaitTime parameter.

 The minimum value for this parameter is 0. There is no maximum value. Setting the value of this

parameter to 0 means that there is no maximum size and a request for a pooled context instance will

use an existing pooled idle context instance or a newly created pooled context instance. The default

value is 20.(Integer, optional)

-prefPoolSize

The preferred number of context instances that the context pool will maintain. Context instances that

are in use and those that are idle contribute to this number. When there is a request for the use of a

pooled context instance and the pool size is less than the preferred size, the context pool creates and

uses a new pooled context instance regardless of whether an idle connection is available. When a

request finishes with a pooled context instance and the pool size is greater than the preferred size, the

context pool closes and removes the pooled context instance from the pool.

 The valid range for this parameter is from 0 to 100. Setting the value of this parameter to 0 means that

there is no preferred size and a request for a pooled context instance results in a newly created

context instance only if no idle ones are available. The default value is 3.(Integer, optional)

-poolTimeOut

An integer that represents the number of milliseconds that an idle context instance may remain in the

pool without being closed and removed from the pool. When a context instance is requested from the

pool, if this context already exists in the pool for more than the time defined by poolTimeout, this

connection will be closed no matter this context instance is stale or active. A new context instance will

be created and put back to the pool after it has been released from the request.

 The minimum value for this parameter is 0. There is no maximum value. Setting the value of this

parameter to 0 means that the context instances in the pool will remain in the pool until they are

staled. The context pool catches the communication exception and recreates a new context instance.

The default value is 0.(Integer, optional)

-poolWaitTime

The time interval in milliseconds that the request waits until the context pool rechecks if there are idle

Chapter 10. Configuring security with scripting 1165

context instances available in the pool when the number of context instances reaches the maximum

pool size. If no idle context instance, the request will continue waiting for the same period of time until

next checking.

 The minimum value for the poolWaitout parameter is 0. There is no maximum value. A value of 0 for

this parameter means that the context pool will not check if idle context exists. The request will be

notified when a context instance releases from other requests. The default value is 3000.(Integer,

optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPCon textPool {-id id1}

v Using Jython string:

AdminTask.setIdMgrLDAPCon textPool (’[-id id1]’)

v Using Jython list:

AdminTask.setIdMgrLDAPCon textPool ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPCon textPool {-interactive}

v Using Jython string:

AdminTask.setIdMgrLDAPCon textPool (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrLDAPCon textPool ([’-interactive’])

setIdMgrLDAPGroupConfig

The setIdMgr LDAPGr oupConfig command sets up the LDAP group configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-updateGroup Membership

Updates the group membership if the member is deleted or renamed. Some LDAP servers, for

example, Domino server, do not clean up the membership of the user when a user is deleted or

renamed. If you choose these LDAP server types in the ldapServerType property, the value of this

parameter is set to true. Use this parameter to change the value. The default value is false.

(Boolean, optional)

-name

The name of the membership attribute. For example, memberOf in an active directory server and

ibm-allGroups in IDS. (String, optional)

-scope

The scope of the membership attribute. The following are the possible values for this parameter:

v direct - The membership attribute only contains direct groups. Direct groups contain the member

and are not contained through a nested group. For example, if group1 contains group2, group2

contains user1, then group2 is a direct group of user1, but group1 is not a direct group of user1.

v nested - The membership attribute contains both direct groups and nested groups.

v all - The membership attribute contains direct groups, nested groups, and dynamic members.

The default value is direct. (String, optional)

1166 Securing applications and their environment

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAP GroupConfig {-id id1}

v Using Jython string:

AdminTask.setIdMgrLDAP GroupConfig (’[-id id1]’)

v Using Jython list:

AdminTask.setIdMgrLDAP GroupConfig ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPGr oupConfig {-interactive}

v Using Jython string:

AdminTask.setIdMgrLDAPGr oupConfig (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrLDAPGroup Config ([’-interactive’])

setIdMgrLDAPSearchResultCache

The setIdMgr LDAPSearch ResultCache command sets up the LDAP search result cache configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-cachesDiskOffLoad

Loads the attributes caches and the search results onto hard disk. By default, when the number of

cache entries reaches the maximum size of the cache, cache entries are evicted to allow new entries

to enter the caches. If you enable this parameter, the evicted cache entries will be copied to disk for

future access. The default value is false. (Boolean, optional)

-enabled

Enables the search results cache. The default value is true. (Boolean, optional)

-cacheSize

The maximum size of the search results cache. The number of naming enumeration objects that can

be put into the search results cache. The minimum value of this parameter is 100. The default value is

2000. (Integer, optional)

-cacheTimeOut

The amount of time in seconds before the cached entries in the search results cache can be not valid.

The minimum value for this parameter is 0. A value of 0 means that the cached naming enumeration

objects will stay in the search results cache until there are configuration changes. The default value is

600. (Integer, optional)

-searchResultSizeLimit

The maximum number of entries contained in the naming enumeration object that can be cached in

the search results cache.For example, if the results from a search contains 2000 users, the search

results will not cache in the search results cache if the value of the of this property is set to 1000. The

default value is 1000. (Integer, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPSearch ResultCache {-id id1}

Chapter 10. Configuring security with scripting 1167

v Using Jython string:

AdminTask.setIdMgrLDAPSearch ResultCache (’[-id id1]’)

v Using Jython list:

AdminTask.setIdMgrLDAPSearch ResultCache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPSearch ResultCache {-interactive}

v Using Jython string:

AdminTask.setIdMgrLDAPSearch ResultCache (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrLDAPSearch ResultCache ([’-interactive’])

setIdMgrEntryMappingRepository

The setIdMgr Entry Mapping Repository command sets or updates an entry mapping repository

configuration.

Parameters and return values

-dataSourceName

The name of the data source. The default value is jdbc/wimDS. The parameter is required if the

property extension is not set. The parameter is not required if the command is used to update the

existing configuration. (String)

-databaseType

The type of the database. The default value is DB2. The parameter is required if the property extension

is not set. The parameter is not required if the command is used to update the existing configuration.

(String)

-dbURL

The URL of the database. The parameter is required if the property extension is not set. The

parameter is not required if the command is used to update the existing configuration. (String)

-dbAdminId

The database administrator ID. (String, required if database type is not Apache Derby.)

-dbAdminPassword

The database administrator password. (String, required if database type is not Apache Derby.)

-JDBCDriverClass

The JDBC driver class name. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrEntry MappingRepository {-dbAdminId dbid1 -dbAdminPassword pw1}

v Using Jython string:

AdminTask.setIdMgrEntry MappingRepository (’[-dbAdminId dbid1 -dbAdminPassword pw1]’)

v Using Jython list:

AdminTask.setIdMgrEntry MappingRepository ([’-dbAdminId’, ’dbid1’, ’-dbAdmin Password’, ’pw1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrEntryMapping Repository {-interactive}

1168 Securing applications and their environment

v Using Jython string:

AdminTask.setIdMgrEntryMapping Repository (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrEntryMapping Repository ([’-interactive’])

setIdMgrPropertyExtensionRepository

The setIdMgr Property Extension Repository command sets or updates the property extension

repository configuration.

Parameters and return values

-dataSourceName

The name of the data source. The default value is jdbc/wimDS. The parameter is required if the

property extension is not set. The parameter is not required if the command is used to update the

existing configuration. (String)

-databaseType

The type of the database. The default value is DB2. The parameter is required if the property extension

is not set. The parameter is not required if the command is used to update the existing configuration.

(String)

-dbURL

The URL of the database. The parameter is required if the property extension is not set. The

parameter is not required if the command is used to update the existing configuration. (String)

-dbAdminId

The database administrator ID. (String, required if database type is not Apache Derby.)

-dbAdminPassword

The database administrator password. (String, required if database type is not Apache Derby.)

-entityRetrievalLimit

The limit for the retrieval of entities. (Integer, required)

-JDBCDriverClass

The JDBC driver class name. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrProperty ExtensionRepository {-entity RetrievalLimit 10 -JDBC DriverClass classname}

v Using Jython string:

AdminTask.setIdMgrProperty ExtensionRepository (’[-entity RetrievalLimit 10 -JDBC DriverClass classname]’)

v Using Jython list:

AdminTask.setIdMgrProperty ExtensionRepository ([’-entity RetrievalLimit’, ’10’, ’-JDBCDriverClass’, ’classname’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrProperty ExtensionRepository {-interactive}

v Using Jython string:

AdminTask.setIdMgrProperty ExtensionRepository (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrPropertyExt ensionRepository ([’-interactive’])

Chapter 10. Configuring security with scripting 1169

updateIdMgrDBRepository

The updateId MgrDB Repository command updates the configuration for the database repository that

you specify.

Parameters and return values

-id The ID of the repository. (String, required)

-dataSourceName

The name of the data source. The default value is jdbc/wimDS. (String, optional)

-databaseType

The type of the database. The default value is DB2. (String, optional)

-dbURL

The URL of the database. (String, optional)

-dbAdminId

The database administrator ID. (String, optional)

-dbAdminPassword

The database administrator password. (String, optional)

-entityRetrievalLimit

Indicates the value of the retrieval limit on database entries. The default value is 200. (Integer,

optional)

-JDBCDriverClass

The JDBC driver class name. (String, optional)

-saltLength

The salt length in bits. The default value is 12. (Integer, optional)

-encryptionKey

The default value is rZ15ws0ely9yHk3zCs3sTMv/ho8fY17s. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrDB Repository {-id id1}

v Using Jython string:

AdminTask.updateIdMgrDB Repository (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrDB Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrDB Repository {-interactive}

v Using Jython string:

AdminTask.updateIdMgrDB Repository (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrDB Repository ([’-interactive’])

updateIdMgrFileRepository

The updateId MgrFile Repository command updates the configuration for the file repository that you

specify. To update other properties of the file repository use the update IdMgr Repositorycommand.

1170 Securing applications and their environment

Parameters and return values

-id The ID of the repository. (String, required)

-messageDigest Algorithm

The message digest algorithm that will be used for hashing the password. The default value is SHA-1.

Valid values include the following: SHA-1, SHA-384, or SHA-512.(String, optional)

-baseDirectory

The base directory where the fill will be created in order to store the data. The default is to be

dynamically built during run time using user.install.root and cell name. (String, optional)

-fileName

The file name of the repository. The default value is fileRegistry.xml. (String, optional)

-saltLength

The salt length of the randomly generated salt for password hashing. The default value is 12. (Integer,

optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrFile Repository {-id id1}

v Using Jython string:

AdminTask.updateIdMgrFile Repository (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrFile Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrFile Repository {-interactive}

v Using Jython string:

AdminTask.updateIdMgrFile Repository (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrFile Repository ([’-interactive’])

updateIdMgrLDAPAttrCache

The updateId MgrLDAP AttrCache command updates the LDAP attribute cache configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-cachesDiskOffLoad

(String, optional)

-enabled

Indicates if you want to enable attribute caching. The default value is true. (Boolean, optional)

-cacheSize

The maximum size of the attribute cache defined by the number of attribute objects that are permitted

in the attribute cache. The minimum value of this parameter is 100. The default value is 4000. (Integer,

optional)

-cacheTimeOut

The amount of time in seconds before the cached entries that are located in the attributes cache can

Chapter 10. Configuring security with scripting 1171

be not valid. The minimum value of this parameter is 0. The attribute objects that are cached will

remain in the attributes cache until the virtual member manager changes the attribute objects. The

default value is 1200. (Integer, optional)

-attributeSizeLimit

An integer that represents the maximum number of attribute object values that can cache in the

attributes cache.

 Some attributes, for example, the member attribute, contain many values. The attributeSizeLimit

parameter prevents the attributes cache to cache large attributes. The default value is 2000. (Integer,

optional)

-serverTTLAttribute

The name of the ttl attribute that is supported by the LDAP server. The attributes cache uses the value

of this attribute to determine when the cached entries in the attributes cache will time out.

 The ttl attribute contains the time, in seconds, that any information from the entry should be kept by a

client before it is considered stale and a new copy is fetched. A value of 0 implies that the object will

not be cached. For more information about this attribute, go to: http://www.ietf.org/proceedings/98aug/I-
D/draft-ietf-asid-ldap-cache-01.txt.

The ttl attribute is not supported by all LDAP servers. If this attribute is supported by an LDAP server,

you can set the value of the serverTTLAttribute parameter to the name of the ttl attribute in order to

allow the value of the ttyl attribute to determine when cached entries will time out. The time out value

for different entries in attributes cache can be different.

For example, if the value of the serverTTLAttribute parameter is ttl and the attributes cache retrieves

attributes of a user from an LDAP server, it will also retrieve the value of the ttl attribute of this user. If the

value is 200, the WMM uses this value to set the time out for the attributes of the user in the attributes

cache instead of using the value of cacheTimeout. You can set different ttl attribute values for different

users.

(String, optional)

v Returns: None

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP AttrCache {-id id1}

v Using Jython string:

AdminTask.updateIdMgrLDAP AttrCache (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP AttrCache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP AttrCache {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAP AttrCache (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP AttrCache ([’-interactive’])

1172 Securing applications and their environment

http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt

updateIdMgrLDAPContextPool

The updateId MgrLDAP ContextPool command updates the LDAP context pool configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-enabled

By default, the context pool is enabled. If you set the value of this parameter to false, the context pool

is disabled which means that a new context instance will be created for each request. The default

value is true. (Boolean, optional)

-initPoolSize

The number of context instances that the virtual member manager LDAP adapter creates when it

creates the pool. The valid range for this parameter is 1 to 50. The default value is 1. (Integer, optional)

-maxPoolSize

The maximum number of context instances that can be maintained concurrently by the context pool.

Both in-use and idle context instances contribute to this number. When the pool size reaches this

number, new context instances cannot created for new request. The new request is blocked until a

context instance is released by another request or is removed. The request checks periodically if there

are context instances available in the pool according to the value defined for the poolWaitTime

parameter. The minimum value of the maxPoolSize parameter is 0. There is no maximum value. A

maximum pool size of 0 means that there is no maximum size and that a request for a pooled context

instance will use an existing pooled idle context instance or a newly created pooled context instance.

The default value is 20. (Integer, optional)

-prefPoolSize

The preferred number of context instances that the Context Pool should maintain. Both in-use and idle

context instances contribute to this number. When there is a request for the use of a pooled context

instance and the pool size is less than the preferred size, Context Pool will create and use a new

pooled context instance regardless of whether an idle connection is available. When a request is

finished with a pooled context instance and the pool size is greater than the preferred size, the

Context Pool will close and remove the pooled context instance from the pool. The valid range of the

prefPoolSize parameter is 0 to 100. A preferred pool size of 0 means that there is no preferred size: A

request for a pooled context instance will result in a newly created context instance only if no idle ones

are available. The default value is 3. (Integer, optional)

-poolTimeOut

An integer that represents the number of milliseconds that an idle context instance may remain in the

pool without being closed and removed from the pool. When a context instance is requested from the

pool, if this context already exists in the pool for more than the time defined by poolTimeout, this

connection will be closed no matter this context instance is stale or active. A new context instance will

be created and put back to the pool after it has been released from the request.The minimum value of

poolTimeout is 0. There is no maximum value.A poolTimeout of 0 means that the context instances in

the pool will remain in the pool until they are staled. In this case, Context Pool will catch the

communication exception and recreate a new context instance. The default value is 0. (Integer,

optional)

-poolWaitTime

The time interval (in milliseconds) that the request will wait until the Context Pool checks again if there

are idle context instance available in the pool when the number of context instances reaches the

maximum pool size. If there is still no idle context instance, the request will continue waiting for the

same period of time until next checking. The minimum value of poolWaitout is 0. There is no maximum

value. A poolWaitTime of 0 means the Context Pool will not check if there are idle context. Instead, the

request will be notified when there is a context instance is released from other requests. The default

value is 3000. (Integer, optional)

Chapter 10. Configuring security with scripting 1173

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP ContextPool {-id id1}

v Using Jython string:

AdminTask.updateIdMgrLDAP ContextPool (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP ContextPool ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP ContextPool {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAP ContextPool (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP ContextPool ([’-interactive’])

updateIdMgrLDAPEntityType

The updateId MgrLDAP EntityType command updates an existing LDAP entity type definition to LDAP

repository configuration. You can use this command to add more values to multi-valued parameters. If the

property already exists, the value of the property will be replaced. If the property does not exist, it will be

added.

Parameters and return values

-id The ID of the repository. (String, required)

-name

The name of the entity type. (String, required)

-searchFilter

The search filter that you want to use to search the entity type. (String, optional)

-objectClasses

One or more object classes for the entity type. (String, optional)

-objectClassesForCreate

The object class that will be when you create an entity type object. You do not have to specify the

value of this parameter if it is the same as the value of the objectClasses parameter. (String, optional)

-searchBases

The search base or bases to use while searching the entity type. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPEntity Type {-id id1 -name name1}

v Using Jython string:

AdminTask.updateIdMgrLDAPEntity Type (’[-id id1 -name name1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPEntity Type ([’-id’, ’id1’, ’-name’, ’name1’])

Interactive mode example usage:

1174 Securing applications and their environment

v Using Jacl:

$AdminTask updateIdMgrLDAP EntityType {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAP EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP EntityType ([’-interactive’])

updateIdMgrLDAPGroupDynamicMemberAttr

The updateIdMgr LDAPGroup Dynamic MemberAttr command updates a dynamic member attribute

configuration to an LDAP group configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-name

The name of the LDAP attribute that is used as the group member attribute. For example, memberURL.

(String, required)

-objectClass

The group object class that contains the dynamic member attribute. For example groupOfURLs. If you

do not define this parameter, the dynamic member attribute will apply to all group object classes.

(String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPGroup DynamicMemberAttr {-id id1 -name name1 -objectClass groupOfURLs}

v Using Jython string:

AdminTask.updateIdMgrLDAPGroup DynamicMemberAttr (’[-id id1 -name name1 -objectClass groupOfURLs]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPGroup DynamicMemberAttr ([’-id’, ’id1’, ’-name’, ’name1’, ’-objectClass’, ’groupOfURLs’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPGroup DynamicMemberAttr {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAPGroup DynamicMemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPGroup DynamicMemberAttr ([’-interactive’])

updateIdMgrLDAPGroupMemberAttr

The updateIdMgr LDAPGroup MemberAttr command updates a member attribute configuration of an

LDAP group configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-name

The name of the LDAP attribute that is used as the group member attribute. For example, member or

uniqueMember. (String, required)

Chapter 10. Configuring security with scripting 1175

-objectClass

The group object class that contains the member attribute. For example, groupOfNames or

groupOfUnqiueNames. If you do not define this parameter, the member attribute applies to all group

object classes. (String, optional)

-scope

The scope of the member attribute. The following are the valid values:

v direct - The member attribute only contains direct members whereby the member is directly

contained by the group and not contained in a nested group. For example, if group1 contains

group2, group2 contains user1, then group2 is a direct member of group1 but user1 is not a direct

member of group1. Both member and uniqueMember are direct member attributes.

v nested - The member attribute contains both direct members and nested members.

-dummyMember

When you create a group without specifying a member, a dummy member will be filled in automatically

to avoid receiving an exception that indicates that there is a mandatory attribute missing. (String,

optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP GroupMemberAttr {-id id1 -name name1}

v Using Jython string:

AdminTask.updateIdMgrLDAP GroupMemberAttr (’[-id id1 -name name1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP GroupMemberAttr ([’-id’, ’id1’, ’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPGroup MemberAttr {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAPGroup MemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPGroup MemberAttr ([’-interactive’])

updateIdMgrLDAPRepository

The updateId MgrLDAP Repository command updates an LDAP repository configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-ldapServerType

The type of LDAP server that is being used. The default value is IDS51. (String, optional)

-adapterClassName

The default value is com.ibm.ws. wim.adapter. ldap.LdapA dapter. (String, optional)

-certificateMapMode

Specifies whether to map X.509 certificates into a LDAP directory by exact distinguished name or by

certificate filter. The default value is exactdn. To use the certificate filter for the mapping, specify

certificatefilter. (String, optional)

1176 Securing applications and their environment

-certificateFilter

If certificateMapMode has the value certificatefilter, then this property specifies the LDAP filter

which maps attributes in the client certificate to entries in LDAP. (String, optional)

-isExtIdUnique

Specifies if the external ID is unique. The default value is true. (Boolean, optional)

-loginProperties

Indicates the property name used for login. (String , optional)

-primaryServerQueryTimeInterval

Indicates the polling interval for testing the primary server availability. The value of this parameter is

specified in minutes. The default value is 15. (Integer, optional)

-returnToPrimaryServer

Indicates to return to the primary LDAP server when it is available. The default value is true.

(Boolean, optional)

-supportAsyncMode

Indicates if the async mode is supported or not. The default value is false. (Boolean, optional)

-supportSorting

Indicates if sorting is supported or not. The default value is false. (Boolean, optional)

-supportPaging

Indicates if paging is supported or not. The default value is false. (Boolean, optional)

-supportTransactions

Indicates if transactions are supported or not. The default value is false. (Boolean, optional)

-supportExternalName

Indicates if external names are supported or not. The default value is false. (Boolean, optional)

-sslConfiguration

The SSL configuration. (String, optional)

-translateRDN

Indicates to translate RDN or not. The default value is false. (Boolean, optional)

-searchTimeLimit

The value of search time limit. (Integer, optional)

-searchCountLimit

The value of search count limit. (Integer, optional)

-searchPageSize

The value of search page size. (Integer, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP Repository {-id id1}

v Using Jython string:

AdminTask.updateIdMgrLDAP Repository (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP Repository {-interactive}

Chapter 10. Configuring security with scripting 1177

v Using Jython string:

AdminTask.updateIdMgrLDAP Repository (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP Repository ([’-interactive’])

updateIdMgrLDAPSearchResultCache

The updateIdMgr LDAPSearch ResultCache command updates the LDAP search result cache

configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-cachesDiskOffLoad

Loads the attributes caches and the search results onto hard disk. By default, when the number of

cache entries reaches the maximum size of the cache, cache entries are evicted to allow new entries

to enter the caches. If you enable this parameter, the evicted cache entries will be copied to disk for

future access. The default value is false. (Boolean, optional)

-enabled

Enables the search results cache. The default value is true. (Boolean, optional)

-cacheSize

The maximum size of the search results cache. The number of naming enumeration objects that can

be put into the search results cache. The minimum value of this parameter is 100. The default value is

2000. (Integer, optional)

-cacheTimeOut

The amount of time in seconds before the cached entries in the search results cache can be not valid.

The minimum value for this parameter is 0. A value of 0 means that the cached naming enumeration

objects will stay in the search results cache until there are configuration changes. The default value is

600. (Integer, optional)

-searchResultSizeLimit

The maximum number of entries contained in the naming enumeration object that can be cached in

the search results cache.For example, if the results from a search contains 2000 users, the search

results will not cache in the search results cache if the value of the of this property is set to 1000. The

default value is 1000. (Integer, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP SearchResultCache {-id id1}

v Using Jython string:

AdminTask.updateIdMgrLDAPSearch ResultCache (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPSearch ResultCache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP SearchResultCache {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAPSearch ResultCache (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPSearch ResultCache ([’-interactive’])

1178 Securing applications and their environment

updateIdMgrLDAPServer

The updateIdMgr LDAPServercommand updates an LDAP server configuration for the LDAP repository

ID that you specify.

Parameters and return values

-id The ID of the repository. (String, required)

-host

The host name for the LDAP server that contains the properties that you want to modify. (String,

required)

-port

The port number for the LDAP server. (Integer, optional)

-authentication

Indicates the authentication method to use. The default value is simple. Valid values include: none or

strong. (String, optional)

-bindDN

The binding domain name for the LDAP server. (String, optional)

-bindPassword

The binding password. The password is encrypted before it is stored.(String, optional)

-certificateMapMode

Specifies whether to map X.509 certificates into a LDAP directory by exact distinguished name or by

certificate filter. The default value is exactdn. To use the certificate filter for the mapping, specify

certificatefilter. (String, optional)

-certificateFilter

If certificateMapMode has the value certificatefilter, then this property specifies the LDAP filter

which maps attributes in the client certificate to entries in LDAP. (String, optional)

-connectTimeout

The connection timeout measured in seconds. The default value is 0. (Integer, optional)

-connectionPool

The connection pool. The default value is false. (Boolean, optional)

-derefAliases

Controls how aliases are dereferenced. The default value is always. Valid values include:

v never - never deference aliases

v finding - deferences aliases only during name resolution

v searching - deferences aliases only after name resolution

(String, optional)

-ldapServerType

The type of LDAP server being used. The default value is IDS51. (String, optional)

-primary_host

The host name for the primary LDAP server. (String, optional)

-referal

The LDAP referral. The default value is ignore. Valid values include: follow, throw, or false. (String,

optional)

-sslConfiguration

The SSL configuration. (String, optional)

-sslEnabled

Indicates to enable SSL or not. The default value is false. (Boolean, optional)

Chapter 10. Configuring security with scripting 1179

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPServer {-id id1 -host myhost.ibm.com}

v Using Jython string:

AdminTask.updateIdMgrLDAPServer (’[-id id1 -host myhost.ibm.com]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPServer ([’-id’, ’id1’, ’-host’, ’myhost.ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP Server {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAP Server (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP Server ([’-interactive’])

updateIdMgrRepository

The updateIdMgr Repositorycommand updates the common repository configuration.

Parameters and return values

-id The ID of the repository. (String, required)

-adapterClassName

The implementation class name for the repository adapter. (String, optional)

-EntityTypesNot AllowCreate

The name of the entity type that should not be created in this repository. (String, optional)

-EntityTypesNotAllowUpdate

The name of the entity type that should not be updated in this repository. (String, optional)

-EntityTypesNotAllowRead

The name of the entity type that should not be read from this repository. (String, optional)

-EntityTypesNotAllowDelete

The name of the entity type that should not be deleted from this repository. (String, optional)

-loginProperties

(String, optional)

-readOnly

Indicates if this is a read only repository. The default value is false. (Boolean, optional)

-repositoriesForGroups

The repository ID where group data is stored. (String, optional)

-supportPaging

Indicates if the repository supports paging or not. (Boolean, optional)

-supportSorting

Indicates if the repository supports sorting or not. (Boolean, optional)

-supportTransactions

Indicates if the repository supports transaction or not. (Boolean, optional)

-isExtIdUnique

Specifies if the external ID is unique or not. (Boolean, optional)

1180 Securing applications and their environment

-supportedExternalName

Indicates if the repository supports external names or not. (Boolean, optional)

-supportAsyncMode

Indicates if the adapter supports async mode or not. The default value is false. (Boolean, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrRe pository {-id id1}

v Using Jython string:

AdminTask.updateIdMgrRe pository (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgr Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrRe pository {-interactive}

v Using Jython string:

AdminTask.updateIdMgrRe pository (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrRe pository ([’-interactive’])

updateIdMgrRepositoryBaseEntry

The updateIdMgr Repository BaseEntry command updates a base entry to the specified repository.

Parameters and return values

-id The ID of the repository. (String, required)

-name

The distinguished name of a base entry. (String, required)

-nameInRepository

The distinguished name in the repository that uniquely identifies the base entry name. (String,

optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrReposi toryBaseEntry {-id id1 name name1}

v Using Jython string:

AdminTask.updateIdMgrRepository BaseEntry (’[-id id1 name name1]’)

v Using Jython list:

AdminTask.updateIdMgrReposi toryBaseEntry ([’-id’, ’id1’, ’name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrRepositoryBaseEntry {-interactive}

v Using Jython string:

AdminTask.updateIdMgrRepositoryBaseEntry (’[-interactive]’)

Chapter 10. Configuring security with scripting 1181

v Using Jython list:

AdminTask.updateIdMgrRepositoryBaseEntry ([’-interactive’])

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

Related reference

Commands for the AdminTask object
Use the AdminTask object to run administrative commands with the wsadmin tool.

IdMgrRealmConfig command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure the member manager realm and realms.

The commands and parameters in the IdMgrRealmConfig group can be used to create and manage your

realm configuration.

The IdMgrRealmConfig command group for the AdminTask object includes the following commands:

v “addIdMgrRealmBaseEntry”

v “createIdMgrRealm” on page 1183

v “deleteIdMgrRealm” on page 1184

v “deleteIdMgrRealmBaseEntry” on page 1184

v “getIdMgrDefaultRealm” on page 1185

v “getIdMgrRepositoriesForRealm” on page 1186

v “getIdMgrRealm” on page 1186

v “listIdMgrRealms” on page 1187

v “listIdMgrRealmBaseEntries” on page 1187

v “renameIdMgrRealm” on page 1188

v “setIdMgrDefaultRealm” on page 1189

v “updateIdMgrRealm” on page 1189

addIdMgrRealmBaseEntry

The addIdMgrRealmBaseEntry command adds a base entry to a specific realm configuration and links

the realm with the repository.

Target Object

None.

Required parameters

-name

Specifies the name of the realm. (String, required)

-baseEntry

Specifies the name of the base entry. (String, optional)

Optional parameters

None

Examples

1182 Securing applications and their environment

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrRealmBaseEntry {-name defaultWIMFileBasedRealm -baseEntry o=sampleFileRepository}

v Using Jython string:

AdminTask.addIdMgrRealmBaseEntry (’[-name defaultWIMFileBasedRealm -baseEntry o=sampleFileRepository]’)

v Using Jython list:

AdminTask.addIdMgrRealmBaseEntry ([’-name’, ’defaultWIMFileBasedRealm’, ’-baseEntry’, ’o=sampleFileRepository’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrRealmBaseEntry {-interactive}

v Using Jython string:

AdminTask.addIdMgrRealmBaseEntry (’[-interactive]’)

createIdMgrRealm

The createIdMgrRealm command creates a realm configuration.

Target Object

None.

Required parameters

-name

Specifies the name of the realm. (String, required)

Optional parameters

-securityUse

Specifies a string that indicates if this virtual realm will be used in security now, later, or never. The

default value is active. Additional values includes: inactive and nonSelectable. (String, optional)

-delimiter

Specifies the delimiter used for this realm. The default value is /. (String, optional)

-allowOperationIfReposDown

Specifies whether the system allows a repository operation such as get or search to complete

successfully, even if repositories in the realm are down. The default value is false. (Boolean, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrRealm {-name realm1 -allowOperationIfReposDown true}

v Using Jython string:

AdminTask.createIdMgrRealm (’[-name realm1 -allowOperationIfReposDown true]’)

v Using Jython list:

AdminTask.createIdMgrRealm ([’-name’, ’realm1’, ’-allowOperationIfReposDown’, ’true’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrRealm {-interactive}

v Using Jython string:

Chapter 10. Configuring security with scripting 1183

AdminTask.createIdMgrRealm (’[-interactive]’)

deleteIdMgrRealm

The deleteIdMgrRealm command deletes the realm configuration that you specified.

Target Object

None.

Required parameters

-name

The realm name. (String, required)

Optional parameters

None.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRealm {-name realm1}

v Using Jython string:

AdminTask.deleteIdMgrRealm (’[-name realm1]’)

v Using Jython list:

AdminTask.deleteIdMgrRealm ([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRealm {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrRealm (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrRealm ([’-interactive’])

deleteIdMgrRealmBaseEntry

The deleteIdMgrRealmBaseEntry command deletes a base entry from a realm configuration that you

specified.

The realm must always contain at least one base entry, thus you cannot remove every entry.

Target Object

None.

Required parameters

-name

Specifies the name of the realm. (String, required)

-baseEntry

Specifies the name of a base entry. (String, required)

1184 Securing applications and their environment

Optional parameters

None.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRealmBaseEntry {-name realm1 -baseEntry entry1}

v Using Jython string:

AdminTask.deleteIdMgrRealmBaseEntry (’[-name realm1 -baseEntry entry1]’)

v Using Jython list:

AdminTask.deleteIdMgrRealmBaseEntry ([’-name’, ’realm1’, ’-baseEntry’, ’entry1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRealmBaseEntry {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrRealmBaseEntry (’[-interactive]’)

getIdMgrDefaultRealm

The getIdMgrDefaultRealm command returns the default realm name.

Target Object

None.

Required parameters

None.

Optional parameters

None.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrDefaultRealm

v Using Jython string:

AdminTask.getIdMgrDefaultRealm()

v Using Jython list:

AdminTask.getIdMgrDefaultRealm()

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrDefaultRealm {-interactive}

v Using Jython string:

AdminTask.getIdMgrDefaultRealm (’[-interactive]’)

Chapter 10. Configuring security with scripting 1185

getIdMgrRepositoriesForRealm

The getIdMgrRepositoriesForRealm command returns repository specific details for the repositories

configured for a specified realm.

Target Object

None.

Required parameters

-name

Specifies the name of the realm. (String, required)

Optional parameters

None.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrRepositoriesForRealm {-name realm1}

v Using Jython string:

AdminTask.getIdMgrRepositoriesForRealm (’[-name realm1]’)

v Using Jython list:

AdminTask.getIdMgrRepositoriesForRealm ([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrRepositoriesForRealm {-interactive}

v Using Jython string:

AdminTask.getIdMgrRepositoriesForRealm (’[-interactive]’)

getIdMgrRealm

The getIdMgrRealm command returns the configuration parameters for the realm that you specified.

Target Object

None.

Required parameters

-name

Specifies the name of the realm. (String, required)

Optional parameters

None.

Examples

Batch mode example usage:

v Using Jacl:

1186 Securing applications and their environment

$AdminTask getIdMgrRealm {-name realm1}

v Using Jython string:

AdminTask.getIdMgrRealm (’[-name realm1]’)

v Using Jython list:

AdminTask.getIdMgrRealm ([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrRealm {-interactive}

v Using Jython string:

AdminTask.getIdMgrRealm (’[-interactive]’)

listIdMgrRealms

The listIdMgrRealms command returns all of the names of the configured realms.

Target Object

None.

Required parameters

None.

Optional parameters

None.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrRealms

v Using Jython string:

AdminTask.listIdMgrRealms()

v Using Jython list:

AdminTask.listIdMgrRealms()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrRealms {-interactive}

v Using Jython string:

AdminTask.listIdMgrRealms (’[-interactive]’)

listIdMgrRealmBaseEntries

The listIdMgrRealmBaseEntries command returns all of the names of the configured realms.

Target Object

None.

Chapter 10. Configuring security with scripting 1187

Required parameters

-name

Specifies the name of the realm. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrRealmBaseEntries {-name realm1}

v Using Jython string:

AdminTask.listIdMgrRealmBaseEntries (’[-name realm1]’)

v Using Jython list:

AdminTask.listIdMgrRealmBaseEntries ([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrRealmBaseEntries {-interactive}

v Using Jython string:

AdminTask.listIdMgrRealmBaseEntries (’[-interactive]’)

renameIdMgrRealm

The renameIdMgrRealm command renames the name of the realm that you specified.

Target Object

None.

Required parameters

-name

Specifies the name of the realm. (String, required)

Optional parameters

None.

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask renameIdMgrRealm {-name realm1}

v Using Jython string:

AdminTask.renameIdMgrRealm (’[-name realm1]’)

v Using Jython list:

AdminTask.renameIdMgrRealm ([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask renameIdMgrRealm {-interactive}

v Using Jython string:

AdminTask.renameIdMgrRealm (’[-interactive]’)

1188 Securing applications and their environment

v Using Jython list:

AdminTask.renameIdMgrRealm ([’-interactive’])

setIdMgrDefaultRealm

The setIdMgrDefaultRealm command sets up the default realm configuration.

Parameters and return values

-name

specifies the name of the realm that is used as a default realm when the caller does not specify any in

context. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrDefaultRealm {-name realm1}

v Using Jython string:

AdminTask.setIdMgrDefaultRealm (’[-name realm1]’)

v Using Jython list:

AdminTask.setIdMgrDefaultRealm ([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrDefaultRealm {-interactive}

v Using Jython string:

AdminTask.setIdMgrDefaultRealm (’[-interactive]’)

updateIdMgrRealm

The updateIdMgrRealm command updates the configuration for a realm that you specify.

Target Object

None.

Required parameters

-name

Specifies the name of the realm. (String, required)

Optional parameters

-securityUse

Specifies a string that indicates if this realm will be used in security now, later, or never. The default

value is active. Additional values includes: inactive and nonSelectable. (String, optional)

-delimiter

specifies the delimiter used for this realm. The default value is /. (String, optional)

-allowOperationIfReposDown

Specifies whether the system allows a repository operation such as get or search to complete

successfully, even if repositories in the realm are down. (Boolean, optional)

Examples

Chapter 10. Configuring security with scripting 1189

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrRealm {-name realm1}

v Using Jython string:

AdminTask.updateIdMgrRealm (’[-name realm1]’)

v Using Jython list:

AdminTask.updateIdMgrRealm ([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrRealm {-interactive}

v Using Jython string:

AdminTask.updateIdMgrRealm (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrRealm ([’-interactive’])

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

Related reference

Commands for the AdminTask object
Use the AdminTask object to run administrative commands with the wsadmin tool.

“IdMgrRepositoryConfig command group for the AdminTask object” on page 1135
You can use the Jython or Jacl scripting languages to configure security. The commands and parameters

in the IdMgrRepositoryConfig group can be used to create and manage the virtual member manager and

LDAP directory properties.

“IdMgrConfig command group for the AdminTask object” on page 1130
You can use the Jython or Jacl scripting languages to configure the virtual member manager with the

wsadmin tool. The commands and parameters in the IdMgrConfig group can be used to create and

manage your entity type configuration.

WIMManagementCommands command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the WIMManagementCommands group can be used to create and manage

groups, members, and users in the virtual member manager.

The WIMManagementCommands command group for the AdminTask object includes the following

commands:

v “createGroup” on page 1191

v “createUser” on page 1192

v “deleteGroup” on page 1193

v “deleteUser” on page 1193

v “duplicateMembershipOfGroup” on page 1194

v “duplicateMembershipOfUser” on page 1194

v “getGroup” on page 1195

v “getMembershipOfGroup” on page 1196

v “getMembershipOfUser” on page 1196

v “getMembersOfGroup” on page 1197

1190 Securing applications and their environment

v “getUser” on page 1197

v “removeMemberFromGroup” on page 1198

v “searchGroups” on page 1198

v “searchUsers” on page 1199

v “updateGroup” on page 1200

v “updateUser” on page 1201

createGroup

The createGroup command creates a new group in the virtual member manager. After the command

completes, the new group will appear in the repository. For LDAP, a group must contain a member. The

memberUniqueName parameter is optional in this case. If you set the memberUniqueName parameter to

the unique name of a group or a user, the group or user will be added as a member of the group.

Parameters and return values

-cn

Specifies the common name for the group that you want to create. This parameter maps to the cn

property in virtual member manager. (String, required)

-description

Specifies additional information about the group that you want to create. This parameter maps to the

description property in a virtual member manager object. (String, optional)

-parent

Specifies the repository in which you want to create the group. This parameter maps to the parent

property in the virtual member manager. (String, optional)

-memberUniqueName

Specifies the unique name value for the user or group that you want to add to the new group. This

parameter maps to the uniqueName property in the virtual member manager. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createGroup {-cn groupA -description a group of admins}

v Using Jython string:

AdminTask.createGroup (’[-cn groupA -description a group of admins]’)

v Using Jython list:

AdminTask.createGroup ([’-cn’, ’groupA’, ’-description’, ’a group of admins’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createGroup {-interactive}

v Using Jython string:

AdminTask.createGroup (’[-interactive]’)

v Using Jython list:

AdminTask.createGroup ([’-interactive’])

Chapter 10. Configuring security with scripting 1191

createUser

The createUser command creates a new user in the default repository or a repository that the parent

command parameter specifies. This command creates a person entity and a login account entity in the

virtual member manager.

Parameters and return values

-uid

Specifies the unique ID for the user that you want to create. Virtual member manager then creates a

uniqueId value and a uniqueName value for the user. This parameter maps to the uid property in the

virutal member manager. (String, required)

-password

Specifies the password for the user. This parameter maps to the password property in the virtual

member manager. (String, required)

-confirmPassword

Specifies the password again to validate how it was entered for the password parameter. This

parameter maps to the password property in virtual member manager. (String, optional)

-cn

Specifes the first name or given name of the user. This parameter maps to the cn property in virutal

member manager. (String, optional)

-surname

Specifies the last name or family name of the user. This parameter maps to the sn property in virtual

member manager. (String, optional)

-ibm-primaryEmail

Specifies the e-mail address of the user. This parameter maps to the ibm-PrimaryEmail property in the

virtual member manager. (String, optional)

-parent

Specifies the repository in which you want to create the user. This parameter maps to the parent

property in the virtual member manager. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createUser {-uid 123 -password tempPass -confirmPassword tempPass -cn Jane -sn

Doe -mail janedoe@ acme.com}

v Using Jython string:

AdminTask.createUser (’[-uid 123 -password tempPass -confirmPassword tempPass -cn Jane

-sn Doe -mail janedoe@ acme.com]’)

v Using Jython list:

AdminTask.createUser ([’-uid’, ’123’, ’-password’, ’tempPass’, ’-confirmPassword’, ’tempPass’,

’-cn’, ’Jane’, ’-sn’, ’Doe’, ’-ibm -mail’, ’janedoe@ acme.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createUser {-interactive}

v Using Jython string:

AdminTask.createUser (’[-interactive]’)

v Using Jython list:

AdminTask.createUser ([’-interactive’])

1192 Securing applications and their environment

deleteGroup

The deleteGroup command deletes a group in the virtual member manager. You cannot use this

command to delete descendants. When this command completes, the group will be deleted from the

repository.

Parameters and return values

-uniqueName

Specifies the unique name value for the group that you want to delete. This parameter maps to the

uniqueName property in virtual member manager. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteGroup {-uniqueName cn=opera tors,cn=users,dc=yourco, dc=com}

v Using Jython string:

AdminTask.deleteGroup (’[-uniqueName cn=ope rators,cn=users,dc=you rco,dc=com]’)

v Using Jython list:

AdminTask.deleteGroup ([’-uniqueName’, ’cn =operators,cn=users,dc =yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteGroup {-interactive}

v Using Jython string:

AdminTask.deleteGroup (’[-interactive]’)

v Using Jython list:

AdminTask.deleteGroup ([’-interactive’])

deleteUser

The deleteUser command deletes a user from the virtual member manager. This includes a person object

and an account object in the non-merged repositories.

Parameters and return values

-uniqueName

Specifies the unique name value for the user that you want to delete. This parameter maps to the

uniqueName property in virtual member manager. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteUser {-uniqueName uid=dmey ers,cn=users,dc=yourco, dc=com}

v Using Jython string:

AdminTask.deleteUser (’[-uniqueName uid= dmeyers,cn=users,dc= yourco,dc=com]’)

v Using Jython list:

AdminTask.deleteUser ([’ -uniqueName’, ’uid=dm eyers,cn=users,dc=yourco, dc=com’])

Interactive mode example usage:

v Using Jacl:

Chapter 10. Configuring security with scripting 1193

$AdminTask deleteUser {-interactive}

v Using Jython string:

AdminTask.deleteUser (’[-interactive]’)

v Using Jython list:

AdminTask.deleteUser ([’-interactive’])

duplicateMembershipOfGroup

Use the duplicate Membership OfGroup command to make a one group a member of all of the same

groups as another group. For example, group A is in group B and group C. To add group D to the same

groups as group A, use the duplicate Membership OfGroup command.

Parameters and return values

-copyToName

Specifies the name of the group to which you want to add the memberships of the group specified in

the copyFromName parameter. (String, required)

-copyFromName

Specifies the name of the group from which you want to copy the group memberships for another

group to use. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask duplicateMember shipOfGroup {-copyToName cn=operators,cn=groups, dc=yourco,dc=com

-copy FromName cn=admins,cn= groups,dc=yourco,dc=com}

v Using Jython string:

AdminTask.duplicateMembers hipOfGroup (’[-copyToName cn=operators,cn=groups, dc=yourco,dc=com

-copy FromName cn=admins,cn=gr oups,dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.duplicateMember shipOfGroup ([’-copyToName’, ’cn=operators,cn=groups, dc=yourco,dc=com’,

’-copy FromName’, ’cn=admins,cn =groups,dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask duplicateMember shipOfGroup {-interactive}

v Using Jython string:

AdminTask.duplicateMember shipOfGroup (’[-interactive]’)

v Using Jython list:

AdminTask.duplicateMember shipOfGroup ([’-interactive’])

duplicateMembershipOfUser

Use the duplicate Membership OfUser command to make a one user a member of all of the same

groups as another user. For example, user 1 is in group B and group C. To add user 2 to the same groups

as user 1, use the duplicate Membership OfUser command.

Parameters and return values

-copyToName

Specifies the name of the user to which you want to add the memberships of the user specified in the

copyFromName parameter. (String, required)

1194 Securing applications and their environment

-copyFromName

Specifies the name of the user from which you want to copy the group memberships for another user

to use. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask duplicateMember shipOfUser {-copyToName uid=meyersd,cn=users,dc =yourco,dc=com

-copy FromName uid=jhart,cn= users,dc=yourco,dc=com}

v Using Jython string:

AdminTask.duplicateMember shipOfUser (’[-copyToName uid=meyersd,cn=users,d c=yourco,dc=com

-copy FromName uid=jhart,cn =users,dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.duplicateMember shipOfUser ([’-copyToName’, ’uid=meyersd,cn=users, dc=yourco,dc=com’,

’-copyFromName’, ’uid= jhart,cn=users,dc=yourco, dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask duplicateMember shipOfUser {-interactive}

v Using Jython string:

AdminTask.duplicateMember shipOfUser (’[-interactive]’)

v Using Jython list:

AdminTask.duplicateMember shipOfUser ([’-interactive’])

getGroup

The getGroup command retrieves the common name and description of a group.

Parameters and return values

-uniqueName

Specifies the unique name value for the group that you want to view. This parameter maps to the

uniqueName property in virtual member manager. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getGroup {-uniqueName cn=operators, cn=groups,dc=yourco,dc=com}

v Using Jython string:

AdminTask.getGroup (’[-uniqueName cn=operators, cn=groups,dc=yourco, dc=com]’)

v Using Jython list:

AdminTask.getGroup ([’ -uniqueName’, ’cn=opera tors,cn=groups,dc=your co,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getGroup {-interactive}

v Using Jython string:

AdminTask.getGroup (’[-interactive]’)

v Using Jython list:

AdminTask.getGroup ([’-interactive’])

Chapter 10. Configuring security with scripting 1195

getMembershipOfGroup

The getMembership OfGroup command retrieves the groups of which a group is a member.

Parameters and return values

-uniqueName

Specifies the unique name value for the group whose group memberships you want to view. This

parameter maps to the uniqueName property in virtual member manager. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getMebmership OfGroup {-uniqueName uid=dmeyers,cn=users, dc=yourco,dc=com}

v Using Jython string:

AdminTask.getMebmership OfGroup (’[-uniqueName uid=dmeyers,cn=users, dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.getMebmership OfGroup ([’-uniqueName’, ’uid=dmeyers,cn=users, dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getMembership OfGroup {-interactive}

v Using Jython string:

AdminTask.getMembership OfGroup (’[-interactive]’)

v Using Jython list:

AdminTask.getMembership OfGroup ([’-interactive’])

getMembershipOfUser

The getMem bership OfUser command retrieves the groups of which a user is a member.

Parameters and return values

-uniqueName

Specifies the unique name value for the user whose group memberships you want to view. This

parameter maps to the uniqueName property in virtual member manager. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getMebmer shipOfUser {-uniqueName uid=dmeyers,cn=users, dc=yourco,dc=com}

v Using Jython string:

AdminTask.getMebmership OfUser (’[-uniqueName uid=dmeyers,cn=users, dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.getMebmership OfUser ([’-uniqueName’, ’uid=dmeyers,cn=users ,dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getMembership OfUser {-interactive}

v Using Jython string:

1196 Securing applications and their environment

AdminTask.getMembership OfUser (’[-interactive]’)

v Using Jython list:

AdminTask.getMembership OfUser ([’-interactive’])

getMembersOfGroup

The getMembers OfGroup command retrieves the members of a group.

Parameters and return values

-uniqueName

Specifies the unique name value for the group whose members you want to view. This parameter

maps to the uniqueName property in virtual member manager. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getMembersOf Group {-uniqueName cn=operators,cn=groups ,dc=yourco,dc=com}

v Using Jython string:

AdminTask.getMembersOf Group [’(-uniqueName cn=operators,cn=groups ,dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.getMembersOf Group [(’-uniqueName’, ’cn=operators,cn=groups ,dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getMembersOfGroup {-interactive}

v Using Jython string:

AdminTask.getMembersOfGroup (’[-interactive]’)

v Using Jython list:

AdminTask.getMembersOfGroup ([’-interactive’])

getUser

The getUser command retrieves information about a user in the virtual member manager.

Parameters and return values

-uniqueName

Specifies the unique name value for the user that you want to view. This parameter maps to the

uniqueName property in the virtual member manager. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask getUser {-user Name uid=dmeyers,cn=us ers,dc=yourco,dc=com}

v Using Jython string:

AdminTask.getUser (’[-use rName uid=dmeyers,cn= users,dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.getUser ([’-use rName’, ’uid=dmeyers,c n=users,dc=yourco,dc=com’])

Interactive mode example usage:

Chapter 10. Configuring security with scripting 1197

v Using Jacl:

$AdminTask getUser {-interactive}

v Using Jython string:

AdminTask.getUser (’[-interactive]’)

v Using Jython list:

AdminTask.getUser ([’-interactive’])

removeMemberFromGroup

The removeMember FromGroup command removes a user or a group from a group.

Parameters and return values

-memberUniqueName

Specifies the unique name value for the user or group that you want to remove from the specified

group. This parameter maps to the uniqueName property in virtual member manager. (String, required)

-groupUniqueName

Specifies the unique name value for the group from which you want to remove the user or group that

you specified with the memberUniqueName paramter. This parameter maps to the uniqueName

property in virtual member manager. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask removeMember FromGroup {-memberUnique Name uid=meyersd,cn= users,dc=yourco,dc=com

-groupUniqueName cn= admins,cn-groups,dc= yourco,dc=com}

v Using Jython string:

AdminTask.removeMemberF romGroup (’[-memberUnique Name uid=meyersd,cn= users,dc=yourco,dc=com

-groupUniqueName cn=a dmins,cn-groups,dc=your co,dc=com]’)

v Using Jython list:

AdminTask.removeMemberFrom Group ([’-memberUniqueName’, ’uid=meyersd,cn=users, dc=yourco,dc=com’,

’-groupUniqueName’, ’cn=admins,cn-groups,dc= yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeMember FromGroup {-interactive}

v Using Jython string:

AdminTask.removeMemberFr omGroup (’[-interactive]’)

v Using Jython list:

AdminTask.removeMemberFr omGroup ([’-interactive’])

searchGroups

Use the searchGroups command to find groups in the virtual member manager that match criteria that

you provide. For example, you can use the searchGroups command to find all of the groups with a

common name that begins with IBM. You can search for any virtual member manager property because the

command is generic.

Parameters and return values

1198 Securing applications and their environment

-cn

The first name or given name of the user. This parameter maps to the cn property in the virtual

member manager. You must set this parameter or the description parameter, but not both. (String,

optional)

-description

Specifies information about the group. This parameter maps to the description entity in a virtual

member manager object. You must set this parameter or the cn parameter, but not both. (String,

optional)

-timeLimit

Specifies the maximum amount of time in milliseconds that the search can run. The default value is no

time limit. (String, optional)

-countLimit

Specifies the maximum number of results that you want returned from the search. By default, all

groups found in the search are returned. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask searchGroups {cn *IBM*}

v Using Jython string:

AdminTask.searchGroups (’[cn *IBM*]’)

v Using Jython list:

AdminTask.searchGroups ([’cn’, ’*IBM*’])

Interactive mode example usage:

v Using Jacl:

$AdminTask searchGroups {-interactive}

v Using Jython string:

AdminTask.searchGroups (’[-interactive]’)

v Using Jython list:

AdminTask.searchGroups ([’-interactive’])

searchUsers

Use the searchUsers command to find users in the virtual member manager that match criteria that you

provide. For example, you can use the searchUsers command to find all of the telephone numbers that

contain 919. You can search for any virtual member manager property because the command is generic.

Parameters and return values

-principalName

Specifies the principal name oft he user that is used as the logon ID for the user in the system. This

parameter maps to the principalName property in virtual member manager. You must specify only one

of the following parameters: principalName, uid, cn, sn, or ibm-primaryEmail. (String, optional)

-uid

Specifies the unique ID value for the user for whom you want to search. This parameter maps to the

uid property in virtual member manage. You must specify only one of the following parameters:

principalName, uid, cn, sn, or ibm-primaryEmail. (String, optional)

Chapter 10. Configuring security with scripting 1199

-cn

Specifies the first name or given name of the user. This parameter maps to the cn property in virtual

member manager. You must specify only one of the following parameters: principalName, uid, cn, sn,

or ibm-primaryEmail. (String, optional)

-sn

Specifies the last name or family name of the user. This parameter maps to the sn property in virtual

member manager. You must specify only one of the following parameters: principalName, uid, cn, sn,

or ibm-primaryEmail. (String, optional)

-ibm-primaryEmail

Specifies the email address of the user. This parameter maps to the ibm-PrimaryEmail property in the

virtual member manager. You must specify only one of the following parameters: principalName, uid,

cn, sn, or ibm-primaryEmail. (String, optional)

-timeLimit

Specifies the maximum amount of time in milliseconds that the search can run. The default is not time

limit. (String, optional)

-countLimit

Specifies the maximum number of results that you want returned from the search. By default, all users

found int he search are returned. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask searchUsers {-principalName */IBM/US*}

v Using Jython string:

AdminTask.searchUsers (’ [-principalName */IBM/US*]’)

v Using Jython list:

AdminTask.searchUsers ([’-principalName’, ’*/IBM/US*’])

Interactive mode example usage:

v Using Jacl:

$AdminTask searchUsers {-interactive}

v Using Jython string:

AdminTask.searchUsers (’[-interactive]’)

v Using Jython list:

AdminTask.searchUsers ([’-interactive’])

updateGroup

The updateGroup command updates the common name or the description of a group.

Parameters and return values

-uniqueName

Specifies the unique name value for the group for which you want to modify the properties. This

parameter maps to the uniqueName property in virtual member manager. (String, required)

-cn

Specifies the new common name used for the group. This parameter maps to the cn property in virtual

member manager. (String, optional)

1200 Securing applications and their environment

-description

Specifies the new information about the group. This parameter maps to the description entity in a

virtual member manager object. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateGroup {-uniqueName cn=opera tors,cn=groups,dc=yourco ,dc=com -cn groupA}

v Using Jython string:

AdminTask.updateGroup (’[-uniqueName cn=oper ators,cn=groups,dc=your co,dc=com -cn groupA]’)

v Using Jython list:

AdminTask.updateGroup ([’ -uniqueName’, ’cn=oper ators,cn=groups,dc=yourco, dc=com’, ’-cn’, ’groupA’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateGroup {-interactive}

v Using Jython string:

AdminTask.updateGroup (’[-interactive]’)

v Using Jython list:

AdminTask.updateGroup ([’-interactive’])

updateUser

The updateUser command updates the following properties: uniqueName, uid, password, cn, sn, or

ibm-primaryEmail.

Parameters and return values

-uniqueName

Specifies the unique name value for the user for which you want to modify the properties. This

parameter maps to the uniqueName property in virtual member manager. (String, required)

-uid

Specifies the new unique ID value for the user. This parameter maps to the uid property in virtual

member manager. (String, optional)

-password

Specifies the new password for the user. This parameter maps to the password property in virtual

member manager. (String, optional)

-confirmPassword

Specifies the password again to validate how it was entered on the password parameter. This

parameter maps to the password property in virtual member manager. (String, optional)

-cn

Specifies the new first name or given name of the user. This parameter maps to the cn property in

virtual member manager. (String, optional)

-surname

Specifies the new last name or family name of the user. This parameter maps to the sn property in

virtual member manager. (String, optional)

-ibm-primaryEmail

Specifies the new e-mail address of the user. This parameter maps to the mail property in virtual

member manager. (String, optional)

Chapter 10. Configuring security with scripting 1201

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask updateUser {-uniqueName uid=dmey ers,cn=users,dc=yourco, dc=com -uid 123}

v Using Jython string:

AdminTask.updateUser (’[-uniqueName uid= dmeyers,cn=users,dc= yourco,dc=com -uid 123]’)

v Using Jython list:

AdminTask.updateUser ([’-uniqueName’, ’uid =dmeyers,cn=users,dc= yourco,dc=com’, ’-uid’, ’123’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateUser {-interactive}

v Using Jython string:

AdminTask.updateUser (’[-interactive]’)

v Using Jython list:

AdminTask.updateUser ([’-interactive’])

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

Related reference

Commands for the AdminTask object
Use the AdminTask object to run administrative commands with the wsadmin tool.

DescriptivePropCommands command group for the AdminTask object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the DescriptivePropCommands group can be used to create, delete, and

manage key manager setting in your configuration.

The DescriptivePropCommands command group for the AdminTask object includes the following

commands:

v “deleteDescriptiveProp”

v “getDescriptiveProp” on page 1203

v “listDescriptiveProp” on page 1203

v “modifyDescriptiveProp” on page 1204

deleteDescriptiveProp

The deleteDescriptiveProp command deletes key manager settings from the configuration.

Target object

None

Parameters and return values

-parentDataType

(String, required)

1202 Securing applications and their environment

-parentClassName

(String, required)

-parentScopeName

(String, optional)

-name

(String, required)

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteDescrip tiveProp {-interactive}

v Using Jython string:

AdminTask.deleteDescrip tiveProp (’[-interactive]’)

v Using Jython list:

AdminTask.deleteDescrip tiveProp ([’-interactive’])

getDescriptiveProp

The getDescriptiveProp command obtains information about key manager settings.

Target object

None

Parameters and return values

-parentDataType

(String, required)

-parentClassName

(String, required)

-parentScopeName

(String, optional)

-name

(String, required)

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask getDescripti veProp {-interactive}

v Using Jython string:

AdminTask.getDescriptiv eProp (’[-interactive]’)

v Using Jython list:

AdminTask.getDescriptive Prop ([’-interactive’])

listDescriptiveProp

The listDescriptiveProp command lists the key managers within a particular management scope.

Target object

Chapter 10. Configuring security with scripting 1203

None

Parameters and return values

-parentDataType

(String, required)

-parentClassName

(String, required)

-parentScopeName

(String, optional)

-displayObjectName

Set the value of this parameter to true to list the key manager objects within the scope. Set the value

of this parameter to false to list the strings that contain the key manager name and management

scope. (Boolean, optional)

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask listDescrip tiveProp {-interactive}

v Using Jython string:

AdminTask.listDescrip tiveProp (’[-interact ive]’)

v Using Jython list:

AdminTask.listDescrip tiveProp ([’-interact ive’])

modifyDescriptiveProp

The modifyDescriptiveProp command modifies the settings of an existing key manager.

Target object

None

Parameters and return values

-parentDataType

(String, required)

-parentClassName

(String, required)

-parentScopeName

(String, optional)

-name

(String, required)

-value

(String, optional)

-type

(String, optional)

-displayNameKey

(String, optional)

-nlsRangeKey

(String, optional)

1204 Securing applications and their environment

-hoverHelpKey

(String, optional)

-range

(String, optional)

-inclusive

(Boolean, optional)

-firstClass

(Boolean, optional)

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask modifyDescrip tiveProp {-interactive}

v Using Jython string:

AdminTask.modifyDescrip tiveProp (’[-interacti ve]’)

v Using Jython list:

AdminTask.modifyDescrip tiveProp ([’-interactiv e’])

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

Related reference

Commands for the AdminTask object
Use the AdminTask object to run administrative commands with the wsadmin tool.

ManagementScopeCommands command group for the AdminTask

object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. Inbound

and outbound management scopes represent opposing directions during the connection handshake

process. The commands and parameters in the ManagementScopeCommands group can be used to

create, delete, and list management scopes.

The ManagementScopeCommands command group for the AdminTask object includes the following

commands:

v “deleteManagementScope”

v “getManagementScope” on page 1206

v “listManagementScopes” on page 1206

deleteManagementScope

The deleteManage mentScope command deletes a management object from the configuration.

Target object

None

Parameters and return values

Chapter 10. Configuring security with scripting 1205

- scopeName

The name that uniquely identifies the management scope. (String, required)

Examples

Batch mode example usage:

Interactive mode example usage:

getManagementScope

The getManagementScope command displays the setting of a management scope object.

Target object

None

Parameters and return values

- scopeName

The name that uniquely identifies the management scope. (String, required)

Examples

Batch mode example usage:

Interactive mode example usage:

listManagementScopes

The listManagementScopes command lists the management scopes in the configuration.

Target object

None

Parameters and return values

- displayObjectName

Set the value to true to display the object names of the management scope. (Boolean, optional)

Examples

Batch mode example usage:

Interactive mode example usage:

1206 Securing applications and their environment

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

Related reference

Commands for the AdminTask object
Use the AdminTask object to run administrative commands with the wsadmin tool.

AuthorizationGroupCommands command group for the AdminTask

object

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the AuthorizationGroupCommands group can be used to create and

manage authorization groups.

The AuthorizationGroupCommands command group for the AdminTask object includes the following

commands:

v “addResourceToAuthorizationGroup”

v “createAuthorizationGroup” on page 1208

v “deleteAuthorizationGroup” on page 1209

v “listAuthorizationGroups” on page 1209

v “listAuthorizationGroupsForGroupID” on page 1210

v “listAuthorizationGroupsForUserID” on page 1211

v “listAuthorizationGroupsOfResource” on page 1211

v “listResourcesOfAuthorizationGroup” on page 1212

v “listResourcesForGroupID” on page 1213

v “listResourcesForUserID” on page 1213

v “mapGroupsToAdminRole” on page 1214

v “mapUsersToAdminRole” on page 1215

v “removeGroupsFromAdminRole” on page 1216

v “removeResourceFromAuthorizationGroup” on page 1217

v “removeUsersFromAdminRole” on page 1218

addResourceToAuthorizationGroup

The addResourceToAuthorizationGroup command adds a resource instance to an existing authorization

group. A resource instance cannot belong to more than one authorization group.

Target object

None

Parameters and return values

- authorizationGroupName

The name of the authorization group. (String, required)

- resourceName

The name of the resource instance that you want to add to an authorization group. (String, required)

 The resourceName parameter should be in the following format:

ResourceType=ResourceName

Chapter 10. Configuring security with scripting 1207

where ResourceType is one of the following values: Application, Server, ServerCluster, Node,

NodeGroup

ResourceName is the name of the resource instance, for example, server1.

The following are example uses of the resourceName parameter:

v Node=node1:Server=server1

This example uniquely identifies server1. node1 is required if another server1 exists on a different

node.

v Application=app1

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask addResourceToAuthorizationGroup {-authorizationGroupName groupName -resourceName Application=app1}

v Using Jython string:

AdminTask.addResourceToAuthorizationGroup(’[-authorizationGroupName groupName -resourceName Application=app1]’)

v Using Jython list:

AdminTask.addResourceToAuthorizationGroup([’-authorizationGroupName’, ’groupName’, ’-resourceName’, ’Application=app1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addResourceToAuthorizationGroup {-interactive}

v Using Jython string:

AdminTask.addResourceToAuthorizationGroup (’[-interactive]’)

v Using Jython list:

AdminTask.addResourceToAuthorizationGroup ([’-interactive’])

createAuthorizationGroup

The createAuthorizationGroup command creates a new authoirzation group. When you create a new

authorization group, no members are associated with it. Also, no user to administrative role mapping for

the authorization table is associated with the authorization group.

Target object

None

Parameters and return values

- authorization GroupName

The name of the authorization group that you want to create. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createAuthorizationGroup {-authorizationGroupName groupName}

v Using Jython string:

AdminTask.createAuthorizationGroup(’[-authorizationGroupName groupName]’)

v Using Jython list:

AdminTask.createAuthorizationGroup([’-authorizationGroupName’, ’groupName’])

1208 Securing applications and their environment

Interactive mode example usage:

v Using Jacl:

$AdminTask createAuthorizationGroup -interactive

v Using Jython string:

AdminTask.createAuthorizationGroup (’[-interactive]’)

v Using Jython list:

AdminTask.createAuthorizationGroup ([’-interactive’])

deleteAuthorizationGroup

The deleteAuthorizationGroup command deletes an existing authorization group. When you delete an

authorization group, the authorization table that corresponds is also deleted.

Target object

None

Parameters and return values

- authorizationGroup Name

The name of the authorization group that you want to delete. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteAuthorizationGroup {-authorizationGroupName groupName}

v Using Jython string:

AdminTask.deleteAuthorizationGroup(’[-authorizationGroupName groupName]’)

v Using Jython list:

AdminTask.deleteAuthorizationGroup([’-authorizationGroupName’, ’groupName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteAuthorizationGroup {-interactive}

v Using Jython string:

AdminTask.deleteAuthorizationGroup (’[-interactive]’)

v Using Jython list:

AdminTask.deleteAuthorizationGroup ([’-interactive’])

listAuthorizationGroups

The listAuthorizationGroupslistAuthoriz ationGroups command lists the existing authorization groups.

Target object

None

Parameters and return values

v Parameters: None

v Returns: A list of short names of all existing authorization groups. (String [])

Chapter 10. Configuring security with scripting 1209

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listAuthorizationGroups

v Using Jython:

AdminTask.listAuthorizationGroups()

Interactive mode example usage:

v Using Jacl:

$AdminTask listAuthorizationGroups {-interactive}

v Using Jython string:

AdminTask.listAuthorizationGroups (’[-interactive]’)

v Using Jython list:

AdminTask.listAuthorizationGroups ([’-interactive’])

listAuthorizationGroupsForGroupID

The listAuthorizationGroupsForGroupID command lists all of the authorization groups to which a given

user group has access. This command lists the authorization groups and the granted roles for each

authorization group. The group ID can be a short name or a fully qualified domain name if the LDAP user

registry is being used. This command will list cell as a group if the user has cell level access.

Target object

None

Parameters and return values

- groupid

The ID of the user group. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listAuthorizationGroupsForGroupID {-groupid userGroupName}

v Using Jython string:

AdminTask.listAuthorizationGroupsForGroupID(’[-groupid userGroupName]’)

v Using Jython list:

AdminTask.listAuthorizationGroupsForGroupID([’-groupid’, ’userGroupName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listAuthorizationGroupsForGroupID {-interactive}

v Using Jython string:

AdminTask.listAuthorizationGroupsForGroupID (’[-interactive]’)

v Using Jython list:

AdminTask.listAuthorizationGroupsForGroupID ([’-interactive’])

1210 Securing applications and their environment

listAuthorizationGroupsForUserID

The listAuthorizationGroupsForUserID command lists all of the authorization groups to which a given

user has access. This command lists the authorization groups and the granted roles for each authorization

group. The user ID and the group ID can be a short name or a fully qualified domain name if the LDAP

user registry is being used. This command will list cell as a group if the user has cell level access.

Target object

None

Parameters and return values

- userid

The ID of the user. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listAuthorizationGroupsForUserID{-userid userName}

v Using Jython string:

AdminTask.listAuthorizationGroupsForUserID(’[-userid userName]’)

v Using Jython list:

AdminTask.listAuthorizationGroupsForUserID([’-userid’, ’userName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listAuthorizationGroupsForUserID {-interactive}

v Using Jython string:

AdminTask.listAuthorizationGroupsForUserID (’[-interactive]’)

v Using Jython list:

AdminTask.listAuthorizationGroupsForUserID ([’-interactive’])

listAuthorizationGroupsOfResource

The listAuthorizationGroupsOfResource command lists authorization groups for a given resource. If the

value of the traverseContainedObjects parameter is false, only the authorization group of the resource is

returned. If the value of the traverseContainedObjects parameter is true, it returns the authorization group

of the resource and the authorization groups of all the parent resources in the containment tree.

Target object

None

Parameters and return values

- resourceName

The name of the resource. (String, required)

 The resourceName parameter must be in the following format:

ResourceType=ResourceName

where ResourceType can be any one of the following values: Application, Server, ServerCluster, Node,

or NodeGroup.

Chapter 10. Configuring security with scripting 1211

ResourceName is the name of the resource instance, for example, server1.

The following are examples of the resourceName parameter:

Node=node1:Server=server

This example uniquely identifies server1. The name of the node is required if a server on a different

node uses the same server name.

Application=app1

- traverseContained Resources

Finds the authorization groups of all the parent resources by traversing the resource containment tree

upwards. The default value is false. (Boolean, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listAuthorizationGroupsOfResource {-resourceName Application=app1}

v Using Jython string:

AdminTask.listAuthorizationGroupsOfResource(’[-resourceName Application=app1]’)

v Using Jython list:

AdminTask.listAuthorizationGroupsOfResource([’-resourceName’, ’Application=app1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listAuthorizationGroupsOfResource {-interactive}

v Using Jython string:

AdminTask.listAuthorizationGroupsOfResource (’[-interactive]’)

v Using Jython list:

AdminTask.listAuthorizationGroupsOfResource ([’-interactive’])

listResourcesOfAuthorizationGroup

The listResourcesOfAuthorizationGroup command lists all of the resources within the given

authorization group.

Target object

None

Parameters and return values

- authorizationGroupName

The name of the authorization group. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listResourcesOfAuthorizationGroup {-authorizationGroupName groupName}

v Using Jython string:

AdminTask.listResourcesOfAuthorizationGroup(’[-authorizationGroupName groupName]’)

v Using Jython list:

1212 Securing applications and their environment

AdminTask.listResourcesOfAuthorizationGroup([’-authorizationGroupName’, ’groupName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listResourcesOfAuthorizationGroup {-interactive}

v Using Jython string:

AdminTask.listResourcesOfAuthorizationGroup (’[-interactive]’)

v Using Jython list:

AdminTask.listResourcesOfAuthorizationGroup ([’-interactive’])

listResourcesForGroupID

The listResourcesForGroupID command lists all the objects that a given group has access to. This

command lists the resources and the granted roles for each resource. The resources that this command

returns include the resources from the authorization groups to which the user group is granted roles and

the resources that are descendants of the resources with in authorization groups to which the user group

is granted access to any role. The group ID can be a short name or fully qualified domain name if a LDAP

user registry is used.

Target object

None

Parameters and return values

- groupid

The ID of the user group. (String, required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listResourcesForGroupID {-groupid userGroupName}

v Using Jython string:

AdminTask.listResourcesForGroupID(’[-groupid userGroupName]’)

v Using Jython list:

AdminTask.listResourcesForGroupID([’-groupid’, ’userGroupName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listResourcesForGroupID {-interactive}

v Using Jython string:

AdminTask.listResourcesForGroupID (’[-interactive]’)

v Using Jython list:

AdminTask.listResourcesForGroupID ([’-interactive’])

listResourcesForUserID

The listResourcesForUserID command lists all the objects that a given user has access to. This

command lists the resources and the granted roles for each resource. The resources that this command

returns include the resources from the authorization groups to which the user is granted roles and the

Chapter 10. Configuring security with scripting 1213

resources that are descendants of the resources with in authorization groups to which the user is granted

access to any role. The user ID can be a short name or fully qualified domain name if a LDAP user

registry is used.

Target object

None

Parameters and return values

- userid

The ID of the user. (String, required).

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listResourcesForUserID {-userid userName }

v Using Jython string:

AdminTask.listResourcesForUserID(’[-userid userName]’)

v Using Jython list:

AdminTask.listResourcesForUserID([’-userid’, ’userName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listResourcesForUserID {-interactive}

v Using Jython string:

AdminTask.listResourcesForUserID (’[-interactive]’)

v Using Jython list:

AdminTask.listResourcesForUserID ([’-interactive’])

Example output:

{deployer=[], operator=[], administrator=[cells/IBM-LP1 6L31HVE8Cell07/clusters/C1| cluster.xml,

 cells/IBM-LP16L 31HVE8Cell07/nodes/IBM-LP16L 31HVE8Node05/servers/cm1|ser ver.xml],

 monitor=[], configurator=[]}

mapGroupsToAdminRole

The mapGroupsToAdminRole command maps group IDs to one or more administrative roles in an

authorization group. The name of the authorization group that you provide determines which authorization

table will be used. If you do not specify an authorization group name, the mapping is done to the cell level

authorization table. The group ID can be a short name or a fully qualified domain name if the LDAP user

registry is used.

Target object

None

Parameters and return values

- authorizationGroup Name

The name of the authorization group. If you do not specify this parameters, the cell level authorization

group is assumed. (String, optional)

1214 Securing applications and their environment

- roleName

The name of the administrative role. (String, required)

- groupids

The list of group IDs that will mapped to the administrative role. (String[], required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask mapGroupsToAdminRole {-authorizationGroupName groupName - roleName administrator -groupids group1}

v Using Jython string:

AdminTask.mapGroupsToAdminRole(’[-authorizationGroupName groupName -roleName administrator -groupids group1]’)

v Using Jython list:

AdminTask.mapGroupsToAdminRole([’-authorizationGroupName’, ’groupName’, ’-roleName’, ’administrator’,

’-groupids’, ’group1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask mapGroupsToAdminRole {-interactive}

v Using Jython string:

AdminTask.mapGroupsToAdminRole (’[-interactive]’)

v Using Jython list:

AdminTask.mapGroupsToAdminRole ([’-interactive’])

mapUsersToAdminRole

The mapUsersToAdminRole command maps user IDs to one or more administrative roles in the

authorization group. The name of the authorization group that you provide determines the authorization

table. If you do not specify the name of the authorization group, the mapping is done to the cell level

authorization table. The user ID can be a short name or fully qualified domain name in case LDAP user

registry is used.

Target object

None

Parameters and return values

- authorizationGroup Name

The name of the authorization group. If you do not specify this parameter, the cell level authorization

group is assumed. (String, optional)

- roleName

The name of the administrative role. (String, required)

- userids

The list of user IDs that will be mapped to the administrative role (String[], required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask mapUsersToAdminRole {-authorizationGroupName groupName - roleName administrator -userids user1}

v Using Jython string:

Chapter 10. Configuring security with scripting 1215

AdminTask.mapUsersToAdminRole(’[-authorizationGroupName groupName -roleName administrator -userids user1]’)

v Using Jython list:

AdminTask.mapUsersToAdminRole([’-authorizationGroupName’, ’groupName’, ’-roleName’, ’administrator’,

’-userids’, ’user1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask mapUsersToAdminRole {-interactive}

v Using Jython string:

AdminTask.mapUsersToAdminRole (’[-interactive]’)

v Using Jython list:

AdminTask.mapUsersToAdminRole ([’-interactive’])

removeGroupsFromAdminRole

The removeGroupsFromAdminRole command removes previously mapped group IDs from

administrative roles in the authorization group. The name of the authorization group that you provide

determines which authorization table is involved. If you do not specify an authorization group name, the

group IDs are removed from the cell level authorization table. The group ID can be a short name or fully

qualified domain name if a LDAP user registry is used.

Target object

None

Parameters and return values

- authorizationGroup Name

The name of the authorization group. If you do not specify this parameter, the cell level authorization

group is assumed. (String, optional)

- roleName

The name of the administrative role. (String, required)

- userids

A list of group IDs that you want to remove from the administrative role. (String[], required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask removeGroupsFromAdminRole {-authorizationGroupName groupName - roleName administrator -groupids group1}

v Using Jython string:

AdminTask.removeGroupsFromAdminRole(’[-authorizationGroupName groupName -roleName administrator -groupids group1]’)

v Using Jython list:

AdminTask.removeGroupsFromAdminRole([’-authorizationGroupName’, ’groupName’, ’-roleName’, ’administrator’,

 ’-groupids’, ’group1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeGroupsFromAdminRole {-interactive}

v Using Jython string:

AdminTask.removeGroupsFromAdminRole (’[-interactive]’)

v Using Jython list:

1216 Securing applications and their environment

AdminTask.removeGroupsFromAdminRole ([’-interactive’])

removeResourceFromAuthorizationGroup

The removeResourceFromAuthorizationGroup command removes resources from an existing

authorization group. If you do not specify the authorization group, it will be determined and the resource

will be removed from that authorization group.

Target object

None

Parameters and return values

- authorizationGroup Name

The name of the authorization group. (String, optional)

- resourceName

The name of the resource instance that you want to remove from the authorization group. (String,

required)

 The resourceName parameter must be in the following format:

ResourceType=ResourceName

where the ResourceType can be any of the following: Application, Server, ServerCluster, Node, or

NodeGroup.

The ResourceName is the name of the resource instance, for example, server1.

The following are examples of the resourceName parameter:

Node=node1:Server=server1

This example uniquely identifies server1. node1 is required if the name of the server exists on multiple

nodes.

Application=app1

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask removeResourceFromAuthorizationGroup {-authorizationGroupName groupName -resourceName Application=app1}

v Using Jython string:

AdminTask.removeResourceFromAuthorizationGroup(’[-authorizationGroupName groupName -resourceName Application=app1]’)

v Using Jython list:

AdminTask.removeResourceFromAuthorizationGroup([’-authorizationGroupName’, ’groupName’, ’-resourceName’,

 ’Application=app1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeResourceFromAuthorizationGroup {-interactive}

v Using Jython string:

AdminTask.removeResourceFromAuthorizationGroup (’[-interactive]’)

v Using Jython list:

AdminTask.removeResourceFromAuthorizationGroup ([’-interactive’])

Chapter 10. Configuring security with scripting 1217

removeUsersFromAdminRole

The removeUsersFromAdminRole command removes previously mapped user IDs from administrative

roles in the authorization group. The name of the authorization group that you provide determines which

authorization table is involved. If you do not specify an authorization group name, the user ID from the cell

level authorization table will be used. The user ID can be a short name or a fully qualified domain name if

a LDAP user registry is used.

Target object

None

Parameters and return values

- authorizationGroup Name

The name of the authorization group. If you do not specify this parameter, the cell level authorization

group is assumed. (String, optional)

- roleName

The name of the administrative role. (String, required)

- userids

A list of user IDs that you want to remove from the administrative role. (String[], required)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask removeUsersFromAdminRole {-authorizationGroupName groupName - roleName administrator -userids user1}

v Using Jython string:

AdminTask.removeUsersFromAdminRole(’[-authorizationGroupName groupName -roleName administrator -userids user1]’)

v Using Jython list:

AdminTask.removeUsersFromAdminRole([’-authorizationGroupName’, ’groupName’, ’-roleName’, ’administrator’,

’-userids’, ’user1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeUsersFromAdminRole {-interactive}

v Using Jython string:

AdminTask.removeUsersFromAdminRole (’[-interactive]’)

v Using Jython list:

AdminTask.removeUsersFromAdminRole ([’-interactive’])

1218 Securing applications and their environment

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

Related reference

Commands for the AdminTask object
Use the AdminTask object to run administrative commands with the wsadmin tool.

ChannelFrameworkManagement command group for the AdminTask

object

You can use the Jython or Jacl scripting languages to configure security. The commands and parameters

in the ChannelFrameworkManagement group can be used to create and manage transport channels and

transport channel chains.

The ChannelFrameworkManagement command group for the AdminTask object includes the following

commands:

v “createChain”

v “deleteChain” on page 1220

v “listChainTemplates” on page 1221

v “listChains” on page 1221

createChain

The createChain command creates a new chain of transport channels that are based on a chain template.

Target object

The instance of the transport channel service under which the new chain is created. (ObjectName,

required)

Required parameters and return values

- template

The chain template on which to base the new chain. (ObjectName, required)

- name

The name of the new chain. (String, required)

- endPoint

The name of the end point to be used by the instance of the TCP inbound channel in the new chain if

the chain is an inbound chain. (ObjectName, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask createChain (cells/ rohitbuildCell01/nodes/rohit buildCellManager01/servers/

 dmgr|server.xml#TransportCha nnelService_1) {-template WebContainer(templates/ chains|webcontainer-chains.xml #Chain_1)

 -name trialChain1}

$AdminTask createChain (cells/ rohitbuildCell01/nodes/rohitb uildCellManager01/servers/dmgr

 |server.xml#TransportChannel Service_1) {-template WebContainer(templates/ chains|webcontainer-chains.xml# Chain_1)

 -name trialChain1 -endPoint (cells/rohitbuild Cell01/nodes/rohitbuildCellMa nager01|serverindex.xml#End Point_3) }

v Using Jython string:

 AdminTask.createChain(’cells/ rohitbuildCell01/nodes/rohitbu ildCellManager01/servers/dmgr|

 server.xml#TransportChannelSer vice_1’, ’[-template "WebConta iner(templates/chains|webconta iner-chains.xml#Chain_1)" -name

 trialChain]’)

Chapter 10. Configuring security with scripting 1219

AdminTask.createChain(’cells/ rohitbuildCell01/nodes/rohit buildCellManager01/servers/dmgr

 |server.xml#TransportChannel Service_1’, ’[-template "WebCo ntainer(templates/chains|webc ontainer-chains.xml#Chain_1)" -name

 trialChain -endPoint "(cells/rohitbuildCell01/nodes/ rohitbuildCellManager01|server index.xml#EndPoint_3)"]’)

v Using Jython list:

AdminTask.createChain(’cells/ rohitbuildCell01/nodes/ rohitbuildCellManager01/serve

 rs/dmgr|server.xml# TransportChannelService_1’, [’-template’, "WebContainer (templates/chains|webcontaine

 r-chains.xml#Chain_1)", ’-name’, ’trialChain’])

AdminTask.createChain(’cells/ rohitbuildCell01/nodes/rohit buildCellManager01/servers/

 dmgr|server.xml#TransportCha nnelService_1’, [’-template’, "WebContainer(templates/chains |webcontainer-chains.xml#Cha in_1)",

 ’-name’, ’trialChain’, ’-endPoint’, "(cells/rohitbu ildCell01/nodes/rohitbuildCe llManager01|serverindex.xml#

 EndPoint_3)"])

Interactive mode example usage:

v Using Jacl:

$AdminTask createChain {-interactive}

v Using Jython string:

AdminTask.createChain (’[-interactive]’)

v Using Jython list:

AdminTask.createChain ([’-interactive’])

deleteChain

The deleteChain command deletes an existing chain and, optionally, the transport channels in the chain.

Target object

The chain to be deleted. (Object name, required)

Required parameters and return values

- deleteChannels

If the value of this attribute is true, non-shared transport channels used by the specified chain will be

deleted. (Boolean, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteChain trialChain1 (cells/rohitbuildCell01/nodes/roh

 itbuildCellManager01/servers/dmgr | server.xml#Chain_1093554462922)

$AdminTask deleteChain trialChain (cells/rohitbuildCell01/nodes/roh

 itbuildCellManager01/servers/dmgr |server.xml#Chain_1093554378078) {-deleteChannels true}

v Using Jython string:

 AdminTask.deleteChain(’trialChain 1(cells/rohitbuildCell01/nodes/roh

 itbuildCellManager01/servers/dmgr| server.xml#TransportChannelSer vice_1)’)

AdminTask.deleteChain(’trialChain1 (cells/rohitbuildCell01/nodes/rohi

 tbuildCellManager01/servers/dmgr| server.xml#TransportChannelService _1)’, ’[-deleteChannels true]’)

v Using Jython list:

AdminTask.deleteChain(’trialChain1 (cells/rohitbuildCell01/nodes/roh

 itbuildCellManager01/servers/dmgr| server.xml#TransportChannelService _1)’)

AdminTask.deleteChain(’trialChain1 (cells/rohitbuildCell01/nodes/rohi

 tbuildCellManager01/servers/dmgr| server.xml#TransportChannelServic e_1)’, [’-deleteChannels’, ’true’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteChain {-interactive}

v Using Jython string:

AdminTask.deleteChain (’[-interactive]’)

v Using Jython list:

1220 Securing applications and their environment

AdminTask.deleteChain ([’-interactive’])

listChainTemplates

The listChain Templates command displays a list of templates that you can use to create chains in this

configuration. All templates have a certain type of transport channel as the last transport channel in the

chain.

Target object

None

Required parameters and return values

- acceptorFilter

The templates returned by this method all have a transport channel instance of the specified type as

the last transport channel in the chain. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listChainTemplates {}

$AdminTask listChainTemplates "-acceptorFilter WebContainer InboundChannel"

v Using Jython string:

AdminTask.listChainTemplates()

AdminTask.listChainTemplates (’[-acceptorFilter WebCont ainerInboundChannel]’)

v Using Jython list:

AdminTask.listChainTemplates()

AdminTask.listChainTemplates ([’-acceptorFilter’, ’WebC ontainerInboundChannel’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listChainTemplates {-interactive}

v Using Jython string:

AdminTask.listChainTemplates (’[-interactive]’)

v Using Jython list:

AdminTask.listChainTemplates ([’-interactive’])

listChains

The listChains command lists all the chains that are configured under a particular instance of the

transport channel service.

Target object

The instance of the transport channel service under which the chains are configured. (ObjectName,

required)

Required parameters and return values

- acceptorFilter

The chains that are returned by this parameter will have a transport channel instance of the type that

you specify as the last transport channel in the chain. (String, optional)

Chapter 10. Configuring security with scripting 1221

- endPointFilter:

The chains returned by this parameter will have a TCP inbound channel using an end point with the

name that you specify.(String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask listChains (cells/ rohitbuildCell01/nodes/rohit buildNode01/servers/server2|

 server.xml#TransportChannel Service_1093445762328)

$AdminTask listChains (cells/ rohitbuildCell01/nodes/rohit buildNode01/servers/server2|

 server.xml#TransportChannel Service_1093445762328) {-acceptorFilter WebConta inerInboundChannel}

$AdminTask listChains (cells/ rohitbuildCell01/nodes/rohit buildNode01/servers/server2|

 server.xml#TransportChannel Service_1093445762328) {-end PointFilter WC_adminhost}

v Using Jython string:

AdminTask.listChains(’(cells/ rohitbuildCell01/nodes/rohit buildNode01/servers/server2|

 server.xml#TransportChannel Service_1093445762328)’)

AdminTask.listChains(’(cells/ rohitbuildCell01/nodes/rohit buildNode01/servers/server2|

 server.xml#TransportChannel Service_1093445762328)’, ’[-acceptorFilter WebContai nerInboundChannel]’)

AdminTask.listChains(’(cells/ rohitbuildCell01/nodes/rohit buildNode01/servers/server2|

 server.xml#TransportChannel Service_1093445762328)’, ’[-endPointFilter WC_adminhost]’)

v Using Jython list:

AdminTask.listChains(’(cells/ rohitbuildCell01/nodes/rohit buildNode01/servers/server2|

 server.xml#TransportChannel Service_1093445762328)’)

AdminTask.listChains(’(cells /rohitbuildCell01/nodes/roh itbuildNode01/servers/server 2

 |server.xml#TransportChanne lService_1093445762328)’, [’-acceptorFilter’, ’WebCon tainerInboundChannel’])

AdminTask.listChains(’(cells /rohitbuildCell01/nodes/roh itbuildNode01/servers/server

 2|server.xml #TransportChanne lService_1093445762328)’, [’-endPointFilter’, ’WC_admi nhost’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listChains {-interactive}

v Using Jython string:

AdminTask.listChains (’[-interactive]’)

v Using Jython list:

AdminTask.listChains ([’-interactive’])

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

Related reference

Commands for the AdminTask object
Use the AdminTask object to run administrative commands with the wsadmin tool.

SpnegoTAICommands group for the AdminTask object (deprecated)

You can use the Jython or Jacl scripting languages to configure security with the wsadmin tool. The

commands and parameters in the SpnegoTAICommands group can be used to create and manage

configurations that are used by the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)

trust association interceptor (TAI).

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

1222 Securing applications and their environment

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

The SpnegoTAICommands command group for the AdminTask object includes the following commands:

v “addSpnegoTAIProperties”

v “deleteSpnegoTAIProperties” on page 1224

v “modifySpnegoTAIProperties” on page 1225

v “showSpnegoTAIProperties” on page 1226

v “createKrbConfigFile” on page 1226

addSpnegoTAIProperties

The addSpnego TAI Properties command adds properties in the configuration of the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for the

application server.

Target object

None

Parameters and return values

-spnId

This is the SPN identifier for the group of custom properties that are to be defined with this command.

If you do not specify this parameter, an unused SPN identifier is assigned. (String, optional)

-host

Specifies the host name portion in the SPN used by the SPNEGO TAI to establish a Kerberos secure

context. (String, required)

-filter

Defines the filtering criteria used by the class specified with the above attribute. If no filter is specified,

all HTTP requests are subject to SPNEGO authentication. (String, optional)

-filterClass

Specifies the name of the Java class used by the SPNEGO TAI to select which HTTP requests will be

subject to SPNEGO authentication. If no filter class is specified, the default filter class,

com.ibm.ws.security.spnego.HTTPHeaderFilter, is used. (String, optional)

-noSpnegoPage

Specifies the URL of a resource that contains the content the SPNEGO TAI will include in the HTTP

response to be displayed by the (browser) client application if it does not support SPNEGO

authentication. (String, optional).

 If you do not specify the noSpnegoPage attribute then the default is used:

"<html><head><title> SPNEGO authentication is not supported. </title></head>" +

"<body>SPNEGO authe ntication is not supported on this client.</body> </html>";

-ntlmTokenPage

Specifies the URL of a resource that contains the content the SPNEGO TAI will include in the HTTP

response to be displayed by the (browser) client application when the SPNEGO token received by the

interceptor after the challenge-response handshake contains a NT LAN manager (NTLM) token

instead of the expected SPNEGO token. (String, optional).

 If you do not specify the ntlmTokenPage attribute then the default is used:

"<html><head><title> An NTLM Token was received.</title> </head>" + "<body>Your bro wser configuration

is correct, but you have not logged into a supported Windows Domain." + "<p>Please login to the application

using the normal login page.</html>";

Chapter 10. Configuring security with scripting 1223

-trimUserName

Specifies whether (true) or not (false) the SPNEGO TAI is to remove the suffix of the principal user

name, starting from the @ that precedes the Kerberos realm name. If this attribute is set to true, the

suffix of the principal user name is removed. If this attribute is set to false, the suffix of the principal

name is retained. The default value used is true. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask addSpnegoTAIProp erties -host myhost.ibm.com -filter user-agent%=IE 6

v Using Jython string:

AdminTask.addSpnegoTAIProp erties (’[-host myhost.ibm. com -filter user-agent%=IE 6]’)

v Using Jython list:

AdminTask.addSpnegoTAIProp erties ([’-host’, ’myhost. ibm.com’, ’-filter’, ’user -agent%=IE’, ’6’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addSpnegoTAI Properties -interactive

v Using Jython string:

AdminTask.addSpnegoTAIPro perties (’[-interactive]’)

v Using Jython list:

AdminTask.addSpnegoTAIPro perties [’-interactive’])

deleteSpnegoTAIProperties

The deleteSpnego TAIProperties command deletes properties in the configuration of the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere

Application Server.

Target object

None

Parameters and return values

-spnId

The SPN identifier for the group of custom properties that are to be deleted with this command. If you

do not specify this parameter, all SPNEGO TAI custom properties are deleted. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask deleteSpnegoT AIProperties {-spnId 2}

v Using Jython string:

AdminTask.deleteSpnegoT AIProperties (’[-spnId 2]’)

v Using Jython list:

AdminTask.deleteSpnegoTAI Properties ([’-spnId’, ’2’])

Interactive mode example usage:

v Using Jacl:

1224 Securing applications and their environment

$AdminTask deleteSpnegoTAI Properties -interactive

v Using Jython string:

AdminTask.deleteSpnegoTAI Properties (’[-interactive]’)

v Using Jython list:

AdminTask.deleteSpnegoTAI Properties [’-interactive’])

modifySpnegoTAIProperties

The modifySpnego TAIProperties command modifies the properties in the configuration of the Simple

and Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for

WebSphere Application Server.

Target object

None

Parameters and return values

-spnId

The SPN identifier for the group of custom properties that are to be defined with this command.

(String, required)

-host

Specifies the host name portion in the SPN used by the SPNEGO TAI to establish a Kerberos secure

context. (String, optional)

-filter

Defines the filtering criteria used by the class specified with the above attribute. (String, optional)

-filterClass

Specifies the name of the Java class used by the SPNEGO TAI to select which HTTP requests will be

subject to SPNEGO authentication. If no class is specified, all HTTP requests will be subject to

SPNEGO authentication. (String, optional)

-noSpnegoPage

Specifies the URL of a resource that contains the content the SPNEGO TAI will include in the HTTP

response to be displayed by the (browser) client application if it does not support SPNEGO

authentication. (String, optional)

-ntlmTokenPage

Specifies the URL of a resource that contains the content the SPNEGO TAI will include in the HTTP

response to be displayed by the (browser) client application when the SPNEGO token received by the

interceptor after the challenge-response handshake contains a NT LAN manager (NTLM) token

instead of the expected SPNEGO token. (String, optional)

-trimUserName

Specifies whether (true) or not (false) the SPNEGO TAI is to remove the suffix of the principal user

name, starting from the ″@″ that precedes the Kerberos realm name. If this attribute is set to true, the

suffix of the principal user name is removed. If this attribute is set to false, the suffix of the principal

name is retained. The default value used is true. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask modifySpnegoTAI PROPERTIES -spnId 1 -filter host==myhost.company.com

v Using Jython string:

AdminTask.modifySpnegoTAI PROPERTIES (’[-spnId 1 -filter host==myhost.com pany.com]’)

Chapter 10. Configuring security with scripting 1225

v Using Jython list:

AdminTask.modifySpnegoTAI PROPERTIES ([’-spnId’, ’1’, ’-filter’, ’host==my host.company.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask modifySpnegoTAI Properties -interactive

v Using Jython string:

AdminTask.modifySpnegoTAI Properties (’[-interactive]’)

v Using Jython list:

AdminTask.modifySpnegoTAI Properties [’-interactive’])

showSpnegoTAIProperties

The showSpnego TAI Properties command displays the properties in the configuration of the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere

Application Server.

Target object

None

Parameters and return values

-spnId

The service principal name (SPN) identifier for the group of custom properties that are to be displayed

with this command. If you do not specify this parameter, all SPNEGO TAI custom properties are

displayed. (String, optional)

Examples

Batch mode example usage:

v Using Jacl:

$AdminTask showSpnegoTAI Properties -spnId 1

v Using Jython string:

AdminTask.showSpnegoTAI Properties (’[-spnId 1]’)

v Using Jython list:

AdminTask.showSpnegoTAI Properties ([’-spnId’, ’1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask showSpnegoTAI Properties -interactive

v Using Jython string:

AdminTask.showSpnegoTAI Properties (’[-interact ive]’)

v Using Jython list:

AdminTask.showSpnegoTAI Properties [’-interact ive’])

createKrbConfigFile

The createKrb ConfigFile command creates the Kerberos configuration file for use with the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere

Application Server.

Target object

1226 Securing applications and their environment

None

Parameters and return values

-krbPath

Provides the fully qualified file system location of the Kerberos configuration (krb5.ini or krb5.conf) file.

(String, required)

-realm

Provides the Kerberos realm name. The value of this attribute is used by the SPNEGO TAI to form the

Kerberos service principal name for each of the hosts specified with the property

com.ibm.ws.security.spnego.SPN<id>.hostname (String, required)

-kdcHost

Provides the host name of the Kerberos Key Distribution Center (KDC). (String, required)

-kdcPort

Provides the port number of the KDC. The default value, if not specified, is 88. (String, optional)

-dns

Provides the default domain name service (DNS) that is used to produce a fully qualified host name.

(String, required)

-keytabPath

Provides the file system location of the Kerberos keytab file. (String, required)

-encryption

Identifies the list of supported encryption types, separated by a space. The specified value is used for

the default_tkt_enctypes and default_tgs_enctypes. The default encryption types, if not specified, are

des-cbc-md5 and rc4-hmac. (String, optional)

Examples

Interactive mode example usage:

v Using Jacl:

$AdminTask createKrbCo nfigFile -interactive

v Using Jython string:

AdminTask.createKrbCon figFile (’[-interactive]’)

v Using Jython list:

AdminTask.createKrbCon figFile [’-interactive’])

Related tasks

Using the AdminTask object for scripted administration
Use the AdminTask object to access a set of administrative commands that provide an alternative way to

access the configuration commands and the running object management commands.

Related reference

Commands for the AdminTask object
Use the AdminTask object to run administrative commands with the wsadmin tool.

The Kerberos configuration file

The Kerberos configuration properties, krb5.ini or krb5.conf files, must be configured on every

WebSphere Application Server instance in a cell in order to use the Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application Server.

Note:

Chapter 10. Configuring security with scripting 1227

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

The default Kerberos configuration file name for Windows is krb5.ini,. For other platforms is the default

Kerberos configuration file name is krb5.conf,. The default location for the Kerberos configuration file is

shown below:

 Operating System Default Location

Windows c:\winnt\krb5.ini

Note: If the krb5.ini file is not located in the c:\winnt directory it might be

located in c:\windows directory.

Linux /etc/krb5.conf

other UNIX-based /etc/krb5/krb5.conf

z/OS /etc/krb5/krb5.conf

i5/OS /QIBM/UserData/OS400/NetworkAuthentication/krb5.conf

Note: If you don’t use the default location and Kerberos configuration file name, then you have to update

*.krb5ConfigFile properties in the soap.client.prop, ipc.client.props and sas.client.props files. Also,

if the client programmatic login uses the WSKRBLogin module, you must also set the

java.security.krb5.conf JVM property.

For SPNEGO TAI, if you don’t use the default location and Kerberos configuration file name, then

you must specify the java.security.krb5.conf JVM property.

The WebSphere runtime code searches for the Kerberos configuration file in the order as follows:

1. The file referenced by the Java property java.security.krb5.conf

2. <java.home>/lib/security/krb5.conf

3. c:\winnt\krb5.ini on Microsoft Windows platforms

4. /etc/krb5/krb5.conf on UNIX platforms

5. /etc/krb5.conf on Linux™ platforms.

Use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory from the Qshell command line.

3. At the wsadmin prompt, enter the following command:

$AdminTask createKrbConfigFile

You can use the following parameters with this command:

 Option Description

<krbPath> This parameter is required. It provides the fully qualified

file system location of the Kerberos configuration (krb5.ini

or krb5.conf) file.

1228 Securing applications and their environment

Option Description

<realm> This parameter is required. It provides the Kerberos realm

name. The value of this attribute is used by the SPNEGO

TAI to form the Kerberos service principal name for each

of the hosts specified with the property

com.ibm.ws.security.spnego.SPN<id>.hostName.

<kdcHost> This parameter is required. It provides the host name of

the Kerberos Key Distribution Center (KDC).

<kdcPort> This parameter is optional. It provides the port number of

the KDC. The default value, if not specified, is 88.

<dns> This parameter is required. It provides the default domain

name service (DNS) that is used to produce a fully

qualified host name.

<keytabPath> This parameter is required. It provides the file system

location of the Kerberos keytab file.

<encryption> This parameter is optional. It identifies the list of

supported encryption types, separated by a space. The

specified value is used for the default_tkt_enctypes and

default_tgs_enctypes. The default encryption types, if not

specified, are des-cbc-md5 and rc4-hmac.

In the following example, the wsadmin command creates the krb5.ini file in the c:\winnt directory. The

default Kerberos keytab file is also in c:\winnt. The actual Kerberos realm name is

WSSEC.AUSTIN.IBM.COM and the KDC host name is host1.austin.ibm.com.

wsadmin>$AdminTask createKrbConfigFile {-krbPath

c:\winnt\krb5.ini -realm WSSEC.AUSTIN.IBM.COM -kdcHost host1.austin.ibm.com

 -dns austin.ibm.com -keytabPath c:\winnt\krb5.keytab}

The wsadmin command above creates a krb5.ini file as follows:

[libdefaults]

 default_realm = WSSEC.AUSTIN.IBM.COM

 default_keytab_name = FILE:c:\winnt\krb5.keytab

 default_tkt_enctypes = des-cbc-md5 rc4-hmac

 default_tgs_enctypes = des-cbc-md5 rc4-hmac

[realms]

 WSSEC.AUSTIN.IBM.COM = {

 kdc = host1.austin.ibm.com:88

 default_domain = austin.ibm.com

}

[domain_realm]

 .austin.ibm.com = WSSEC.AUSTIN.IBM.COM

Note:

v A Kerberos keytab file contains a list of keys that are analogous to user passwords. It is

important for hosts to protect their Kerberos keytab files by storing them on the local disk. The

krb5.conf file permission must be 644, which means that you can read and write the file;

however, members of the group that the file belongs to, and all others can only read the file.

v If the run time cannot read the default_tkt_enctypes or default_tgs_enctypes entries in the

krb5.ini file, their values are missing, or their values are not supported, the DES-CBC-MD5 value

is used by default.

The krb5.conf configuration file supports trigraphs to represent the {, }, [, and] characters. These

characters depend on the language set. The natively generated keytabs cannot be read by the Kerberos

client. If you have difficulty configuring SPNEGO TAI with the native krb5.conf or krb5.keytab files,

complete one of the following scenarios to address the trigraphs issue:

Chapter 10. Configuring security with scripting 1229

v Replace the trigraphs in the krb5.conf file with the characters that they represent.

v Use the krb5.conf file that is generated by WebSphere Application Server.

v Use a Microsoft Windows or a key distribution center (KDC) generated keytab file.

Kerberos configuration settings, the Kerberos key distribution center (KDC) name, and realm settings for

the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI)

are provided in the Kerberos configuration file or through java.security.krb5.kdc and

java.security.krb5.realm system property files.

SPNEGO Web authentication configuration commands

Use wsadmin commands to configure, unconfigure, validate, or display Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) in the security configuration.

Configure SPNEGO Web authentication

Note: You must first have a workable Kerberos configuration file and a Kerberos keytab file. Read about

“Creating a Kerberos configuration file” on page 247 and for more information.

Use the configureSpnego command to configure SPNEGO as a Web authenticator in the security

configuration.

At the wsadmin prompt, enter the following command for help:

Wsadmin>$AdminTask help configureSpnego

You can use the following parameters with the configureSpnego command:

 Option Description

<enabled> This parameter is optional. It enables SPNEGO Web

authentication.

<dynamicReload> This parameter is optional. It enables dynamic reload of

SPNEGO Web authentication filters.

<allowAppAuthMethodFallback> This parameter is optional. It allows fall back to the

application authentication mechanism.

<krb5Config> This parameter is required. It supplies the directory

location and file name of the configuration (krb5.ini or

krb5.conf) file.

<krb5Keytab> This parameter is optional. It supplies the directory

location and file name of the Kerberos keytab file. If you

do not specify this parameter, the default keytab in the

Kerberos configuration file is used.

Unconfigure SPNEGO Web authentication

Use the unconfigureSpnego command to unconfigure SPNEGO Web authentication in the security

configuration.

At the wsadmin prompt, enter the following command for help:

wsadmin>$AdminTask help unconfigureSpnego

1230 Securing applications and their environment

Show SPNEGO Web authentication

Use the showSPNEGO command to display the SPNEGO Web authentication in the security configuration.

At the wsadmin prompt, enter the following command for help:

wsadmin>$AdminTask help showSpnego

Validate Kerberos configuration

Use the validateKrbConfig command to validate the Kerberos configuration data either in the global

security file security.xml or specified as an input parameter.

At the wsadmin prompt, enter the following command for help:

wsadmin>$AdminTask help validateKrbConfig

You can use the following parameters with the validateKrbConfig command:

 Option Description

<checkConfigOnly> Checks the Kerberos configuration without validating, You

must use global security for this check.

<useGlobalSecurityConfig> Uses the Global Security configuration data, security.xml,

instead of input parameters.

<validateKrbRealm> Validates the Kerberos realm against the default Kerberos

realm in the Kerberos configuration file (krb5.ini or

krb5.conf).

<serverId> Specifies the server identity that is used for internal

process communications.

<serverIdPassword> Specifies the password that is used for the server identity.

<krb5Spn> Specifies the Kerberos service principal name in the

Kerberos keytab file.

<krb5Config > This parameter is required. It supplies the directory

location and file name of the configuration (krb5.ini or

krb5.conf) file.

<krb5Keytab> This parameter is optional. It supplies the directory

location and file name of the Kerberos keytab file. If you

do not specify this parameter, the default keytab in the

Kerberos configuration file is used.

<krb5Realm > This parameter is required. It specifies the value for the

Kerberos realm name.

SPNEGO Web authentication filter commands

Use wsadmin commands to add, modify, delete, or show Simple and Protected GSS-API Negotiation

Mechanism (SPNEGO) Web authentication filters in the security configuration.

Add SPNEGO web authentication filter

Use the addSpnegoFilter command to add a new SPNEGO Web authentication filter in the security

configuration.

At the wsadmin prompt, enter the following command for help:

Chapter 10. Configuring security with scripting 1231

wsadmin>$AdminTask help addSpnegoFilter

You can use the following parameters with the addSpnegoFilter command:

 Option Description

<hostName> This parameter is required. Use to supply a fully-qualified

host name.

<krb5Realm> This parameter is not required. Use to supply a Kerberos

realm name. If the krb5Realm parameter is not specified,

the default Kerberos realm name in the Kerberos

configuration file is used.

<filterCriteria> This parameter is not required. Use to supply the HTTP

request filter rules. If the filterCriteria parameter is not

specified, all of the HTTP requests are authenticated by

SPNEGO.

<filterClass> This parameter is not required. Use to supply the HTTP

request filter rules. If the filterClass parameter is not

specified, the default filter class,

com.ibm.ws.security.spnego.HTTPHeaderFilter, is used.

<trimUserName> This parameter is not required. Use to indicate whether

the Kerberos realm name is to be removed from the

Kerberos principal name.

<enabledGssCredDelegate> This parameter is not required. Use to indicate whether to

extract and place the client GSS delegation credential in

the subject. The default value is true.

<spnegoNotSupportedPage> This parameter is not required. Use to supply the uniform

resource identifier (URI) of the resource with a response

to be used when SPNEGO is not supported. If this

parameter is not specified, the default SPNEGO not

supported error page is used.

<ntlmTokenReceivedPage> This parameter is not required. Use to supply the URI of

the resource with a response to be used when an NT

LAN manager (NTLM) token is received. If this parameter

is not specified, the default NTLM token received error

page is used.

The following is an example of the addSpnegoFilter command:

wsadmin>$AdminTask addSpnegoFilter {

 -hostName ks.austin.ibm.com

 -krb5Realm WSSEC.AUSTIN.IBM.COM}

Modify SPNEGO web authentication filter

Use the modifySpnegoFilter command to modify SPNEGO filter attributes in the security configuration.

At the wsadmin prompt, enter the following command for help:

wsadmin>$AdminTask help modifySpnegoFilter

1232 Securing applications and their environment

You can use the following parameters with the modifySpnegoFilter command:

 Option Description

<hostName> This parameter is required. Use to supply a long host

name. The hostname is an identifier, so you can not

modify the hostname.

<krb5Realm> This parameter is not required. Use to supply a Kerberos

realm name. If the krb5Realm parameter is not specified,

the default Kerberos realm name in the Kerberos

configuration file is used.

<filterCriteria> This parameter is not required. Use to supply the HTTP

request filter rules. If the filterCriteria parameter is not

specified, all of the HTTP requests are authenticated by

SPNEGO.

Note: Read about “Enabling and configuring SPNEGO

Web authentication using the administrative console” on

page 284 for more information about filter criteria.

<filterClass> This parameter is not required. Use to supply the HTTP

request filter rules. If the filterClass is not specified, the

default filter class,

com.ibm.ws.security.spnego.HTTPHeaderFilter, is used.

<trimUserName> This parameter is not required. Use to indicate whether

the Kerberos realm name is to be removed from the

Kerberos principal name.

<enabledGssCredDelegate> This parameter is not required. Use to indicate whether to

extract and place the client GSS delegation credential in

the subject. The default value is true.

<spnegoNotSupportedPage> This parameter is not required. Use to supply the URI of

the resource with a response to be used when SPNEGO

is not supported. If this parameter is not specified, the

default SPNEGO not supported error page is used.

<ntlmTokenReceivedPage> This parameter is not required. Use to supply the URI of

the resource with a response to be used when an NTLM

token is received. If this parameter is not specified, the

default NTLM token received error page is used.

The following is an example of the modifySpnegoFilter command:

wsadmin>$AdminTask modifySpnegoFilter {

 -hostName ks.austin.ibm.com

 -krb5Realm WSSEC.AUSTIN.IBM.COM}

Delete SPNEGO web authentication filter

Use the deleteSpnegoFilter command to remove SPNEGO a Web authentication filter from the security

configuration. If a host name is not specified, all of the SPNEGO Web authentication filters are removed.

At the wsadmin prompt, enter the following command for help:

wsadmin>$AdminTask help deleteSpnegoFilter

Chapter 10. Configuring security with scripting 1233

You can use the following parameter with the deleteSpnegoFilter command:

 Option Description

<hostname> This parameter is required. If the hostname is not

specified, all of the SPNEGO Web authentication filters

are deleted.

The following is an example of the deleteSpnegoFilter command:

wsadmin> $AdminTask deleteSpnegoFilter {-hostName ks.austin.ibm.com}

Show SPNEGO web authentication filter

Use the showSpnegoFilter command to display a SPNEGO Web authentication filter in the security

configuration. If a host name is not specified, all of the SPNEGO filters are displayed.

At the wsadmin prompt, enter the following command for help:

wsadmin>$AdminTask help showSpnegoFilter

You can use the following parameter with the showSpnegoFilter command:

 Option Description

<hostname> This parameter is optional. If a long host name is not

specified, all of the SPNEGO Web authentication filters

are displayed.

The following is an example of the showSpnegoFilter command:

 wsadmin> $AdminTask showSpnegoFilter {-hostName ks.austin.ibm.com}

Kerberos authentication commands

Use wsadmin commands to create, modify or delete Kerberos as the authentication mechanism for

WebSphere Application Server.

Create Kerberos authentication mechanism

Note:

The following items are required before you attempt to use the createKrbAuthMechanism

command to create the KRB5 authentication mechanism security object field in the security

configuration file:

v If you do not already have a Kerberos configuration file (krb5.ini or krb5.conf), use the

createkrbConfigFile command task to create the Kerberos configuration file. Read about

“Creating a Kerberos configuration file” on page 247 for more information.

v You must have a Kerberos keytab file (krb5.keytab) that contains a Kerberos service principal

name (SPN), <service name>/<fully qualified hostname>@KerberosRealm, for each machine that

run WebSphere application servers. The service name can be anything; the default value is WAS.

For example, if you have two application server machines, host1.austin.ibm.com and

host2.austin.ibm.com, the Kerberos keytab file must contain the <service name>/
host1.austin.ibm.com and service name>/host2.austin.ibm.com SPNs and their Kerberos keys.

Use the createKrbAuthMechanism command to create the KRB5 authentication mechanism security

object field in the security configuration file.

1234 Securing applications and their environment

At the wsadmin prompt, enter the following command:

$AdminTask help createKrbAuthMechanism

You can use the following parameters with the createKrbAuthMechanism command:

 Option Description

<krb5Realm> This parameter is optional. It indicates the Kerberos realm

name. If you do not specify this parameter, the default

Kerberos realm in the Kerberos configuration file is used.

<krb5Config> This parameter is required. It indicates the directory

location and file name of the configuration (krb5.ini or

krb5.conf) file.

<krb5Keytab> This parameter is optional. It indicates the directory

location and file name of the Kerberos keytab file. If you

do not specify this parameter, the default keytab in the

Kerberos configuration file is used.

<serviceName> This parameter is required. It indicates the Kerberos

service name. The default Kerberos service name is WAS.

<trimUserName> This parameter is optional. It removes the suffix of the

principal user name, starting from the “@” that precedes

the Kerberos realm name. This parameter is optional. The

default value is true.

<enabledGssCredDelegate> This parameter is not required. Use to indicate whether to

extract and place the client GSS delegation credential in

the subject. The default value is true.

Note: If this parameter is true, and the runtime cannot

extract the GSS delegation credential, the runtime logs a

warning message.

<allowKrbAuthForCsiInbound> This parameter is optional. It enables Kerberos

authentication mechanism for Common Secure

Interoperability (CSI) inbound. The default value is true.

<allowKrbAuthForCsiOutbound> This parameter is required. It enables Kerberos

authentication mechanism for CSI outbound. The default

value is true.

The following is an example of the createKrbAuthMechanism command:

wsadmin>$AdminTask createKrbAuthMechanism {

 -krb5Realm WSSEC.AUSTIN.IBM.COM

 -krb5Config C:\\WINNT\\krb5.ini

 -krb5Keytab C:\\WINNT\\krb5.keytab

 -serviceName WAS }

Modify Kerberos authentication mechanism

Use the modifyKrbAuthMechanism command to make changes to the KRB5 authentication mechanism

security object field in the security configuration file.

At the wsadmin prompt, enter the following command:

wsadmin>$AdminTask help modifyKrbAuthMechanism

Chapter 10. Configuring security with scripting 1235

You can use the following parameters with the modifyKrbAuthMechanism command:

 Option Description

<krb5Realm> This parameter is optional. It indicates the Kerberos realm

name. If you do not specify this parameter, the default

Kerberos realm in the Kerberos configuration file is used.

<krb5Config> This parameter is required. It indicates the directory

location and file name of the configuration (krb5.ini or

krb5.conf) file.

<krb5Keytab> This parameter is optional. It indicates the directory

location and file name of the Kerberos keytab file. If you

do not specify this parameter, the default keytab in the

Kerberos configuration file is used.

<serviceName> This parameter is required. It indicates the Kerberos

service name. The default Kerberos service name is WAS.

<trimUserName> This parameter is optional. It removes the suffix of the

principal user name, starting from the “@” that precedes

the Kerberos realm name. This parameter is optional. The

default value is true.

<enabledGssCredDelegate> This parameter is not required. Use to indicate whether to

extract and place the client GSS delegation credential in

the subject. The default value is true.

Note: If this parameter is true, and the runtime cannot

extract the GSS delegation credential, the runtime logs a

warning message.

<allowKrbAuthForCsiInbound> This parameter is optional. It enables Kerberos

authentication mechanism for Common Secure

Interoperability (CSI) inbound. The default value is true.

<allowKrbAuthForCsiOutbound> This parameter is optional. It enables Kerberos

authentication mechanism for CSI outbound. The default

value is true.

The following is an example of the modifyKrbAuthMechanism command:

wsadmin>$AdminTask modifyKrbAuthMechanism {

 -krb5Realm WSSEC.AUSTIN.IBM.COM

 -krb5Config C:\\WINNT\\krb5.ini

 -krb5Keytab C:\\WINNT\\krb5.keytab

 -serviceName WAS }

Delete Kerberos authentication mechanism

Use the deleteKrbAuthMechanism command to remove the KRB5 authentication mechanism security

object field in the security configuration file.

At the wsadmin prompt, enter the following command:

wsadmin>$AdminTask help deleteKrbAuthMechanism

The following is an example of the deleteKrbAuthMechanism command:

 wsadmin>$AdminTask deleteKrbAuthMechanism

Set active authentication mechanism

Use the setActiveAuthMechanism command to set the active authentication mechanism attribute in the

security configuration.

1236 Securing applications and their environment

At the wsadmin prompt, enter the following command:

wsadmin>$AdminTask help setActiveAuthMechanism

You can use the following parameter with the setActiveAuthMechanism command:

 Option Description

<authMechanismType> This parameter is not required. It indicates the

authentication mechanism type. The default is KRB5.

The following is an example of the setActiveAuthMechanism command:

wsadmin> $AdminTask setActiveAuthMechanism {-authMechanismType KRB5 }

Chapter 10. Configuring security with scripting 1237

1238 Securing applications and their environment

Chapter 11. Tuning, hardening, and maintaining

After installing WebSphere Application Server, there are several considerations for tuning, strengthening,

and maintaining your security configuration.

About this task

The following topics are covered in this section:

v Tuning security configurations You can tune your security configuration to balance performance with

function. You can achieve this balance following considerations for tuning general security, Common

Secure Interoperability version 2 (CSIv2), Lightweight Directory Access Protocol (LDAP) authentication,

Web authentication, and authorization. For more information on tuning security, see “Tuning security

configurations.”

v Hardening security configurations Several methods exist that you can use to protect your infrastructure

and applications from different forms of attack. For more information on hardening your security, see

“Hardening security configurations” on page 1244.

v Securing passwords in files Password encryption and encoding can add protect to passwords existing in

files. For more information on encoding and encrypting passwords, see “Securing passwords in files” on

page 1245.

Tuning security configurations

You can tune security to balance performance with function. You can achieve this balance following

considerations for tuning general security, Common Secure Interoperability version 2 (CSIv2), Lightweight

Directory Access Protocol (LDAP) authentication, Web authentication, and authorization.

About this task

Performance issues typically involve trade-offs between function and speed. Usually, the more function

and the more processing that are involved, the slower the performance. Consider what type of security is

necessary and what you can disable in your environment. For example, if your application servers are

running in a Virtual Private Network (VPN), consider whether you can disable Secure Sockets Layer

(SSL). If you have a lot of users, can they be mapped to groups and then associated to your Java

Platform, Enterprise Edition (Java EE) roles? These questions are things to consider when designing your

security infrastructure.

v Consider the following recommendations for tuning general security.

– Consider disabling Java 2 security manager if you know exactly what code is put onto your server

and you do not need to protect process resources. Remember that in doing so, you put your local

resources at some risk.

– Consider increasing the cache and token timeout if you feel your environment is secure enough. By

increasing these values, you have to re-authenticate less often. This action supports subsequent

requests to reuse the credentials that already are created. The downside of increasing the token

timeout is the exposure of having a token hacked and providing the hacker more time to hack into

the system before the token expires. You can use security cache properties to determine the initial

size of the primary and secondary hashtable caches, which affect the frequency of rehashing and the

distribution of the hash algorithms.

See the article “Authentication cache settings” on page 89 for a list of these properties.

– Consider changing your administrative connector from Simple Object Access Protocol (SOAP) to

Remote Method Invocation (RMI) because RMI uses stateful connections while SOAP is completely

stateless. Run a benchmark to determine if the performance is improved in your environment.

– Use the wsadmin script to complete the access IDs for all the users and groups to speed up the

application startup. Complete this action if applications contain many users or groups, or if

© Copyright IBM Corp. 2008 1239

applications are stopped and started frequently. WebSphere Application Server maps user and group

names to unique access IDs in the authorization table. The exact format of the access ID depends

on the repository. The access ID can only be determined during and after application deployment.

Authorization tables created during assembly time do not have the proper access IDs. See

Commands for the AdminApp object for more information about how to update access IDs.

– Consider tuning the Object Request Broker (ORB) because it is a factor in enterprise bean

performance with or without security enabled. Refer to the ORB tuning guidelines topic.

– If using SSL, enable the SSL session tracking mechanism option as described in the article, Session

management settings.

– In some cases, using the unrestricted Java Cryptography Extension (JCE) policy file can improve

performance. Refer to the article, Tuning Web services security.

– Distributing the workload to multiple Java virtual machines (JVMs) instead of a single JVM on a

single machine can improve the security performance because there is less contention for

authorization decisions.

v Consider the following steps to tune Common Secure Interoperability version 2 (CSIv2).

– Consider using Secure Sockets Layer (SSL) client certificates instead of a user ID and password to

authenticate Java clients. Because you are already making the SSL connection, using mutual

authentication adds little overhead while it removes the service context that contains the user ID and

password completely.

– If you send a large amount of data that is not very security sensitive, reduce the strength of your

ciphers. The more data you have to bulk encrypt and the stronger the cipher, the longer this action

takes. If the data is not sensitive, do not waste your processing with 128-bit ciphers.

– Consider putting only an asterisk (*) in the trusted server ID list (meaning trust all servers) when you

use identity assertion for downstream delegation. Use SSL mutual authentication between servers to

provide this trust. Adding this extra step in the SSL handshake performs better than having to fully

authenticate the upstream server and check the trusted list. When an asterisk (*) is used, the identity

token is trusted. The SSL connection trusts the server through client certificate authentication.

– Ensure that stateful sessions are enabled for CSIv2. This is the default, but requires authentication

only on the first request and on any subsequent token expirations.

– If you are communicating only with WebSphere Application Server Version 5 or higher servers, make

the Active Authentication Protocol CSI, instead of CSI and SAS. This action removes an interceptor

invocation for every request on both the client and server sides.

Note: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

v Consider the following steps to tune Lightweight Directory Access Protocol (LDAP) authentication.

1. In the administration console, click Security > Global security.

2. Under User account repository, click the Available realm definitions drop-down list, select

Standalone LDAP registry and click Configure.

3. Select the Ignore case for authorization option in the standalone LDAP registry configuration,

when case-sensitivity is not important.

4. Select the Reuse connection option.

5. Use the cache features that your LDAP server supports.

6. Choose either the IBM Tivoli Directory Server or SecureWay directory type, if you are using an IBM

Tivoli Directory Server. The IBM Tivoli Directory Server yields improved performance because it is

programmed to use the new group membership attributes to improve group membership searches.

However, authorization must be case insensitive to use IBM Tivoli Directory Server.

7. Choose either iPlanet Directory Server (also known as Sun ONE) or Netscape as the directory if you

are an iPlanet Directory user. Using the iPlanet Directory Server directory can increase performance

in group membership lookup. However, use Role only for group mechanisms.

v Consider the following steps to tune Web authentication.

1240 Securing applications and their environment

– Increase the cache and token timeout values if you feel your environment is secure enough. The

Web authentication information is stored in these caches and as long as the authentication

information is in the cache, the login module is not invoked to authenticate the user. This supports

subsequent requests to reuse the credentials that are already created. A disadvantage of increasing

the token timeout is the exposure of having a token stolen and providing the thief more time to hack

into the system before the token expires.

– Enable single sign-on (SSO). To configure SSO, click Security > Global security. Under Web

security, click Single sign-on (SSO).

SSO is only available when you configure LTPA as the authentication mechanism in the

Authentication mechanisms and expiration panel. Although you can select Simple WebSphere

Authentication Mechanism (SWAM) as the authentication mechanism on the Authentication

mechanisms and expiration panel, SWAM is deprecated in Version 7.0 and does not support SSO.

When you select SSO, a single authentication to one application server is enough to make requests

to multiple application servers in the same SSO domain. Some situations exist where SSO is not a

desirable and you do not want to use it in those situations.

– Disable or enabling the Web Inbound Security Attribute Propagation option on the Single sign-on

(SSO) panel if the function is not required. In some cases, having the function enabled can improve

performance. This improvement is most likely for higher volume cases where a considerable number

of user registry calls reduces performance. In other cases, having the feature disabled can improve

performance. This improvement is most likely when the user registry calls do not take considerable

resources.

– The following two custom properties might help to improve performance when security attribute

propagation is enabled:

- com.ibm.CSI.propagateFirstCallerOnly

When this custom property is set to true the first caller in the propagation token that stays on the

thread is logged when security attribute propagation is enabled. Without setting this property, all of

the caller switches are logged, which can affect performance.

- com.ibm.CSI.disablePropagationCallerList

When this custom property is set to true the ability to add a caller or host list in the propagation

token is completely disabled. This function is beneficial when the caller or host list in the

propagation token is not needed in the environment.

v Consider the following steps to tune authorization.

– Map your users to groups in the user registry. Associate the groups with your Java Platform,

Enterprise Edition (Java EE) roles. This association greatly improves performance when the number

of users increases.

– Judiciously assign method-permissions for enterprise beans. For example, you can use an asterisk

(*) to indicate all the methods in the method-name element. When all the methods in enterprise

beans require the same permission, use an asterisk (*) for the method-name to indicate all methods.

This indication reduces the size of deployment descriptors and reduces the memory that is required

to load the deployment descriptor. It also reduces the search time during method-permission match

for the enterprise beans method.

– Judiciously assign security-constraints for servlets. For example, you can use the *.jsp URL pattern

to apply the same authentication data constraints to indicate all JavaServer Pages (JSP) files. For a

given URL, the exact match in the deployment descriptor takes precedence over the longest path

match. Use the *.jsp, *.do, *.html extension match if no exact matches exist and longest path

matches exist for a given URL in the security constraints.

v Use new tuning parameters when using Java 2 security. The new tuning parameters can improve

performance significantly, and introduce a new concept called Read-only Subject, which enables a new

cache for J2C Auth Subjects when using container-managed auth data aliases. If the J2C auth subject

does not need to be modified after it is created, the following new tuning parameters can be used to

improve Java 2 Security performance:

– com.ibm.websphere.security.auth.j2c.cacheReadOnlyAuthDataSubjects=true

Chapter 11. Tuning, hardening, and maintaining 1241

– com.ibm.websphere.security.auth.j2c.readOnlyAuthDataSubjectCacheSize=50 (This is the maximum

number of subjects in the hashtable of the cache. Once the cache reaches this size, some of the

entries are purged. For better performance, this size should be equal to the number of unique

subjects (cache based on uniqueness of user principal + auth data alias + managed connection

factory instance) when role-based security and Java 2 security are used together).

v Use new tuning parameters to improve the performance of Security Attribute Propagation. The new

tuning parameters can be set through custom properties in the administrative console to reduce the

extra overhead of Security Attribute Propagation:

– com.ibm.CSI.disablePropagationCallerList=true

– com.ibm.CSI.propagateFirstCallerOnly=true (use if you want to track the first caller only).

Results

You always have a trade off between performance, feature, and security. Security typically adds more

processing time to your requests, but for a good reason. Not all security features are required in your

environment. When you decide to tune security, create a benchmark before making any change to ensure

that the change is improving performance.

What to do next

In a large scale deployment, performance is very important. Running benchmark measurements with

different combinations of features can help you to determine the best performance versus the benefit of

configuration for your environment. Continue to run benchmarks if anything changes in your environment,

to help determine the impact of these changes.

Secure Sockets Layer performance tips

Use this page to learn about Secure Sockets Layer (SSL) performance tips. Be sure to consider that

performance issues typically involve trade-offs between function and speed. Usually, the more function and

the more processing that are involved, the slower the performance.

The following are two types of Secure Sockets Layer (SSL) performance:

v Handshake

v Bulk encryption and decryption

When an SSL connection is established, an SSL handshake occurs. After a connection is made, SSL

performs bulk encryption and decryption for each read-write. The performance cost of an SSL handshake

is much larger than that of bulk encryption and decryption.

To enhance SSL performance, decrease the number of individual SSL connections and handshakes.

Decreasing the number of connections increases performance for secure communication through SSL

connections, as well as non-secure communication through simple Transmission Control Protocol/Internet

Protocol (TCP/IP) connections. One way to decrease individual SSL connections is to use a browser that

supports HTTP 1.1. Decreasing individual SSL connections can be impossible if you cannot upgrade to

HTTP 1.1.

Another common approach is to decrease the number of connections (both TCP/IP and SSL) between two

WebSphere Application Server components. The following guidelines help to verify the HTTP transport of

the application server is configured so that the Web server plug-in does not repeatedly reopen new

connections to the application server:

v Verify that the maximum number of keep alives are, at minimum, as large as the maximum number of

requests per thread of the Web server (or maximum number of processes for IBM HTTP Server on

UNIX). Make sure that the Web server plug-in is capable of obtaining a keep alive connection for every

possible concurrent connection to the application server. Otherwise, the application server closes the

connection after a single request is processed. Also, the maximum number of threads in the Web

1242 Securing applications and their environment

container thread pool should be larger than the maximum number of keep alives, to prevent the keep

alive connections from consuming the Web container threads.

Note: HTTP Transports have been deprecated. For instructions on how to set a maximum keep alive

value for channel based configurations, see HTTP transport channel settings.

v Increase the maximum number of requests per keep alive connection. The default value is 100, which

means the application server closes the connection from the plug-in after 100 requests. The plug-in then

has to open a new connection. The purpose of this parameter is to prevent denial of service attacks

when connecting to the application server and preventing continuous send requests to tie up threads in

the application server.

v Use a hardware accelerator if the system performs several SSL handshakes.

Hardware accelerators currently supported by WebSphere Application Server only increase the SSL

handshake performance, not the bulk encryption and decryption. An accelerator typically only benefits

the Web server because Web server connections are short-lived. All other SSL connections in

WebSphere Application Server are long-lived.

The IBM Cryptographic Coprocessor is not supported for use with WebSphere Application Server.

However, you can use the IBM Cryptographic Coprocessor to improve SSL performance for other

products, such as IBM HTTP Server for iSeries, which is powered by Apache.

v Use an alternative cipher suite with better performance.

The performance of a cipher suite is different with software and hardware. Just because a cipher suite

performs better in software does not mean a cipher suite will perform better with hardware. Some

algorithms are typically inefficient in hardware, for example, Data Encryption Standard (DES) and

triple-strength DES (3DES); however, specialized hardware can provide efficient implementations of

these same algorithms.

The performance of bulk encryption and decryption is affected by the cipher suite used for an individual

SSL connection. The following chart displays the performance of each cipher suite. The test software

calculating the data was Java Secure Socket Extension (JSSE) for both the client and server software,

which used no cryptographic hardware support. The test did not include the time to establish a

connection, but only the time to transmit data through an established connection. Therefore, the data

reveals the relative SSL performance of various cipher suites for long running connections.

Before establishing a connection, the client enables a single cipher suite for each test case. After the

connection is established, the client times how long it takes to write an integer to the server and for the

server to write the specified number of bytes back to the client. Varying the amount of data had

negligible effects on the relative performance of the cipher suites.

0

100

200

300

400

SSL_RSA_WITH_RC4_128_MD5

SSL_RSA_WITH_RC4_128_SHA

SSL_RSA_WITH_DES_CBC_SHA

SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_RSA_WITH_DES_CBC_SHA

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_DSS_WITH_DES_CBC_SHA

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_WITH_NULL_MD5

SSL_RSA_WITH_NULL_SHA

NONE(TCP/IP no SSL)

Chapter 11. Tuning, hardening, and maintaining 1243

An analysis of the above data reveals the following:

v Bulk encryption performance is only affected by what follows the WITH in the cipher suite name. This is

expected since the portion before the WITH identifies the algorithm used only during the SSL

handshake.

v MD5 and Secure Hash Algorithm (SHA) are the two hash algorithms used to provide data integrity. MD5

is generally faster than SHA, however, SHA is more secure than MD5.

v DES and RC2 are slower than RC4. Triple DES is the most secure, but the performance cost is high

when using only software.

v The cipher suite providing the best performance while still providing privacy is

SSL_RSA_WITH_RC4_128_MD5. Even though SSL_RSA_EXPORT_WITH_RC4_40_MD5 is

cryptographically weaker than RSA_WITH_RC4_128_MD5, the performance for bulk encryption is the

same. Therefore, as long as the SSL connection is a long-running connection, the difference in the

performance of high and medium security levels is negligible. It is recommended that a security level of

high be used, instead of medium, for all components participating in communication only among

WebSphere Application Server products. Make sure that the connections are long running connections.

Tuning security

Use the following procedures to tune the performance, without compromising your security settings.

About this task

Enabling security decreases performance. The following tuning parameters provide ways to minimize this

performance impact.

v Disable security on any application servers that do not need security. You can disable security in the

administrative console by clicking Security > Global security and deselecting the Enable

administrative security option.

v Fine-tune the Authentication cache timeout value on the Authentication mechanisms and expiration

panel in the administrative console. For more information, see the “Global security settings” on page 42

topic.

v Configure the security cache properties. For more information, see the “Authentication cache settings”

on page 89 topic.

v Enable the Enable SSL ID tracking option on the Session management panel in the administrative

console. For more information, see the Session management settings topic.

v Improve the performance of Web services security by downloading a Java Cryptography Extension

(JCE) unlimited jurisdiction policy file that does not have restrictions on cryptography strength. For more

information, see the Tuning Web services security for Version 7.0 applications topic.

v Read the Secure Sockets Layer performance tips and “Tuning security configurations” on page 1239

topics for more information.

Hardening security configurations

There are several methods that you can use to protect the WebSphere Application Server infrastructure

and applications from different forms of attack. Several different techniques can help with multiple forms of

attack. Sometimes a single attack can leverage multiple forms of intrusion to achieve the end goal.

About this task

For example, in the simplest case, network sniffing can be used to obtain passwords and those passwords

can then be used to mount an application-level attack. The following issues are discussed in IBM

WebSphere Developer Technical Journal: WebSphere Application Server V5 advanced security and

system hardening:

v Take preventative measures to protect the infrastructure.

v Make applications less vulnerable to attack.

1244 Securing applications and their environment

http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html

v At a minimum, ensure administrative security is enabled in all WebSphere processes. This protects

access to the administrative ConfigService interface and managed beans (MBeans) that enables control

over the WebSphere process if it is compromised.

v Ensure Secure Sockets Layer (SSL) is used whenever possible, and mutual SSL whenever possible.

However, mutual SSL requires all clients to supply a trusted personal certificate in order to connect.

v Remove any unnecessary certificate authority (CA) signer certificates from your trust stores.

v Change default keystore passwords during or after profile creation using the AdminTask

changeMultipleKeyStorePasswords command.

v Change your Lightweight Third-Party Authentication (LTPA) keys periodically. By default, this occurs

automatically every 12 weeks. If you want to disable this automatic regeneration, remember to manually

generate a new set of keys on occasion.

v Common Secure Interoperability version 2 (CSIv2) inbound Basic authentication is supported in this

release of WebSphere Application Server. This means that the authentication process is optional.

Consider changing the authentication default to ’required’.

Securing passwords in files

Password encoding and encryption deters the casual observation of passwords in server configuration and

property files.

About this task

The following topics can be used to add protection for passwords located in files:

v Password encoding and encryption Passwords are automatically encoded with a simple masking

algorithm in various WebSphere Application Server ASCII configuration files. Additionally, you can

manually encode passwords in properties files that are used by Java clients and by administrative

commands for WebSphere Application Server. For more information on password encoding and

encryption, see “Password encoding and encryption.”

v Encoding passwords in files WebSphere Application Server contains some encoded passwords that are

not encrypted. The PropFilePasswordEncoder utility is included to encode these passwords. For more

information on encoding passwords in a file, see “Encoding passwords in files” on page 1248.

v Enabling custom password encryption You need to protect passwords that are contained in your

WebSphere Application Server configuration. You can added protection by creating a custom class for

encrypting the passwords. For more information on custom password encryption, see “Enabling custom

password encryption” on page 1255.

Password encoding and encryption

Password encoding deters the casual observation of passwords in server configuration and property files.

By default, passwords are automatically encoded with a simple masking algorithm in various WebSphere

Application Server ASCII configuration files. Additionally, you can manually encode passwords in properties

files that are used by Java clients and by administrative commands for WebSphere Application Server.

The default encoding algorithm is referred to as XOR. An alternate OS400 encoding algorithm can be used

with WebSphere Application Server for i5/OS that exploits native validation list (*VLDL) objects only. With

the OS400 algorithm, passwords are stored in an encrypted form within a validation list. The configuration

files contain indexes to the stored passwords instead of the masked passwords, as is done with the XOR

algorithm.

Encoded passwords use the following syntax:

{algorithm}encoded_password

Chapter 11. Tuning, hardening, and maintaining 1245

where {algorithm} is a tag that specifies the algorithm that is used to encode the password, which is either

XOR or OS400. The encoded_password variable is the encoded value of the password. When a server or

client needs to decode a password, it uses the tag to determine what algorithm to use and then uses that

algorithm to decode the encoded password.

Java clients use passwords from the sas.client.props file, which is in the profile_root/properties

directory.

To use password encoding with Java clients, the passwords must be manually encoded in the

sas.client.props file using the PropFilePasswordEncoder tool.

The administrative commands for WebSphere Application Server use passwords from the

soap.client.props file, which is also located in the profile_root/properties directory, for SOAP connections.

Some administrative commands optionally use passwords from the sas.client.props file in the

profile_root/properties for Remote Method Invocation (RMI) connections. To use password encoding with

administrative commands, you must manually encode the passwords in the soap.client.props and

sas.client.props files using the PropFilePasswordEncoder tool.

Note: Whether you select to use the OS400 encoding algorithm or the default encoding algorithm,

encoding is not sufficient to fully protect passwords. Native security is the primary mechanism for

protecting passwords that are used in the configuration and property files for WebSphere

Application Server.

Issues to consider when you use the OS400 password encoding algorithm

The following issues are important for you to consider before deciding to use the OS400 password

encoding algorithm:

v You must set the QRETSVRSEC operating system value to 1 to use on the system that hosts the Java

client application or WebSphere Application Server. With this setting, WebSphere Application Server can

retrieve the encrypted passwords from the validation list.

Note: The QRETSVRSEC system value affects access to the encrypted data in all of the validation lists

on your operating system. Do not use the OS400 password encoding algorithm if this setting is

not consistent with your security policy for your operating system.

v You can use the OS400 algorithm with server instances only when all of the server instances within the

administrative domain for WebSphere Application Server reside on the same i5/OS system. Consider

the following related issues:

– Administrative domains for WebSphere Application Server can extend across multiple i5/OS systems.

You can use the OS400 password algorithm only when all of the servers within an administrative

domain reside on the same i5/OS system.

– Server configuration XML files contain encoded passwords. If the passwords that are contained in

the XML files are encoded using the OS400 encoding algorithm, those encodings are valid only for

the Application Server profiles on the same i5/OS system on which the passwords were originally

encoded. Copies of configuration files that contain passwords that are encoded using the OS400

encoding algorithm cannot be used to configure servers on other i5/OS systems.

– All server instances within an administrative domain must be configured to use the same native

validation list (*VLDL) object.

v For Java clients, you can use the OS400 password algorithm on any i5/OS system. However, option 1

must be installed on the system that hosts the Java client.

v If an error occurs while a password is encoded using the OS400 encoding algorithm, the XOR encoding

algorithm is used to encode the password. An error might occur if an administrator manually creates the

validation list object and grants insufficient authority to the validation list object for the i5/OS QEJB user

profile.

1246 Securing applications and their environment

Object and file security

This topic discusses the various objects and files that contain sensitive information and need to be

protected.

Secure integrated file system files

In addition to enterprise beans and servlets, WebSphere Application Server accesses integrated file

system stream files. The following files might contain sensitive information. It is recommended that you

give these files close consideration to ensure that unauthorized access is not granted.

v In the /properties subdirectory of your profile, the following files can contain user IDs and passwords:

– sas.client.props

– soap.client.props

– sas.stdclient.properties

– sas.tools.properties

– wsserver.key

By default, the /properties subdirectory is located in the profile_root directory. Each of the previous files

is shipped with *PUBLIC authority set to *EXCLUDE. The QEJBSVR user profile is granted *RW

authority to these files. Additional protection is available through password encoding. For more

information, see “Password encoding and encryption” on page 1245.

v In the /etc subdirectory if your profile, protect all of the key (KDB) files and trust (JKS) files that you

create for your WebSphere Application Server profile.

For the JKS files, the QEJBSVR user profiles should have *R authority and *PUBLIC should have

*EXCLUDE authority.

For the KDB files, the user profile that the Web server is running under should have *RX authority and

*PUBLIC should have *EXCLUDE authority.

Secure database resources for WebSphere Application Server

WebSphere Application Server uses tables to persist data for user applications such as enterprise beans

persistence and servlet session data. You have several options for controlling which user profiles are

allowed access to this user data. For more information, see Database access security.

Secure WebSphere Application Server files

When you enable WebSphere Application Server security, the server user profile and password are placed

into server configuration files, which should be maintained in a secure way using operating system

security. Additionally, you can password protect some WebSphere Application Server resources. These

passwords are also placed in server configuration files. The server automatically encodes passwords to

deter casual observation, but password encoding alone is not sufficient protection.

The following files are located in the /config subdirectory of your profile and they can contain user

identifiers and passwords:

v cells/cell_name/security.xml

v cells/cell_name/nodes/node_name/resources.xml

v cells/cell_name/nodes/node_name/servers/server_name/server.xml

For example, for the default profile, the server_name is server1.

The server user profile and password are used for authenticating the server when it initializes. This

authentication is required for the following reasons:

v The user ID and password are used as the system identity for the server when an enterprise bean

security is deployed to use SYSTEM_IDENTITY for method delegation. In this case, the user ID and

password are used when method calls are made from one enterprise bean to another.

Chapter 11. Tuning, hardening, and maintaining 1247

v The user ID and password are used to authenticate servers for inter-server communication. Because

security for these files can be compromised, use a non-default user profile for the server identity and

password. The default user profile is QEJBSVR. If you use the local OS user registry, you might choose

to create and use a user profile that has no special authorities. For more information, see Running

application servers under specific user profiles.

Secure user profiles for WebSphere Application Server

When WebSphere Application Server is first installed, by default, it uses the following user profiles:

QEJB This profile provides access to some administrative data, including passwords.

QEJBSVR

This profile provides the context in which your WebSphere Application Server runs. For security or

administrative purposes, you might want to create other user profiles under which to run various

parts of WebSphere Application Server. For more information, see Running application servers

under specific user profiles.

Related tasks

Chapter 12, “Troubleshooting security configurations,” on page 1259
The following topics help to troubleshoot specific problems that are related to configuring and enabling

security configurations.

Encoding passwords in files

The purpose of password encoding is to deter casual observation of passwords in server configuration and

property files. Use the PropFilePasswordEncoder utility to encode passwords stored in properties files.

WebSphere Application Server does not provide a utility for decoding the passwords. Encoding is not

sufficient to fully protect passwords. Native security is the primary mechanism for protecting passwords

used in WebSphere Application Server configuration and property files.

About this task

WebSphere Application Server contains several encoded passwords in files that are not encrypted.

WebSphere Application Server provides the PropFilePasswordEncoder utility, which you can use to

encode passwords. The purpose of password encoding is to deter casual observation of passwords in

server configuration and property files. The PropFilePasswordEncoder utility does not encode passwords

that are contained within XML or XMI files. Instead, WebSphere Application Server automatically encodes

the passwords in these files. XML and XMI files that contain encoded passwords include the following:

 Table 59. XML and XMI files that contain encoded passwords

File name Additional information

profile_root/config/cells/cell_name

/security.xml

The following fields contain encoded

passwords:

v LTPA password

v JAAS authentication data

v User registry server password

v LDAP user registry bind password

v Keystore password

v Truststore password

v Cryptographic token device password

war/WEB-INF/ibm_web_bnd.xml Specifies the passwords for the default basic

authentication for the resource-ref bindings

within all the descriptors, except in the Java

cryptography architecture

1248 Securing applications and their environment

Table 59. XML and XMI files that contain encoded passwords (continued)

File name Additional information

ejb jar/META-INF/ibm_ejbjar_bnd.xml Specifies the passwords for the default basic

authentication for the resource-ref bindings

within all the descriptors, except in the Java

cryptography architecture

client jar/META-INF/ibm-appclient_bnd.xml Specifies the passwords for the default basic

authentication for the resource-ref bindings

within all the descriptors, except in the Java

cryptography architecture

ear/META-INF/ibm_application_bnd.xml Specifies the passwords for the default basic

authentication for the run as bindings within all

the descriptors

profile_root/config/cells/cell_name

/nodes/node_name/servers/security.xml

The following fields contain encoded

passwords:

v Keystore password

v Truststore password

v Cryptographic token device password

v Session persistence password

profile_root/config/cells/cell_name

/nodes/node_name/servers/server1/resources.xml

The following fields contain encoded

passwords:

v WAS40Datasource password

v mailTransport password

v mailStore password

v MQQueue queue mgr password

ibm-webservices-bnd.xmi

ibm-webservicesclient-bnd.xmi

You use the PropFilePasswordEncoder utility to encode the passwords in properties files. These files

include:

 Table 60. The PropFilePasswordEncoder utility - Partial File List

File name Additional information

profile_root/properties/sas.client.props Specifies the passwords for the following files:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

profile_root/properties/sas.tools.properties

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

profile_root/properties/sas.stdclient.properties Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

profile_root/properties/wsserver.key

profile_root/profiles/AppSrvXX/properties/sib.client.ssl.properties Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

profile_root/UDDIReg/scripts/UDDIUtilityTools.properties Specifies passwords for:

v trustStore.password

Chapter 11. Tuning, hardening, and maintaining 1249

To encode a password again in one of the previous files, complete the following steps:

1. Access the file using a text editor and type over the encoded password. The new password is shown

is no longer encoded and must be re-encoded.

2. Use the PropFilePasswordEncode script in the profile_root/bin/ directory to encode the password

again.

If you are encoding files that are not SAS properties files, type PropFilePasswordEncoder ″file_name″

password_properties_list

″file_name″ is the name of the SAS properties file and password_properties_list is the name of the

properties to encode within the file.

Note: Only the password should be encoded in this file by using the PropFilePasswordEncoder tool.

Use the PropFilePasswordEncoder tool to encode WebSphere Application Server password files

only. The utility cannot encode passwords that are contained in XML files or other files that contain

open and close tags.

The following is an example of how to use the PropFilePasswordEncoder tool:

PropFilePasswordEncoder C:\WASV6\WebSphere\AppServer\profiles\AppSrv\properties

\sas.client.props com.ibm.ssl.keyStorePassword,com.ibm.ssl.trustStorePassword

where:

PropFilePasswordEncoder is the name of the utility that you are running from the profile_root/profiles/
profile_name/bin directory.

C:\WASV6\WebSphere\AppServer\profiles\AppSrv\properties\sas.client.props is the name of the file

that contains the passwords to encode,

com.ibm.ssl.keyStorePassword is a password to encode in the file, and

com.ibm.ssl.trustStorePassword is a second password to encode in the file.

Results

If you reopen the affected files, the passwords are encoded. WebSphere Application Server does not

provide a utility for decoding the passwords.

Manually encoding passwords in properties files

To use password encoding with WebSphere Application Server administrative commands and Java clients,

passwords must be manually encoded in the soap.client.props and sas.client.props files using the

PropFilePasswordEncoder tool.

Before you begin

To run the script, your user profile must have *ALLOBJ authority.

About this task

Use the PropFilePasswordEncoder utility to encode the passwords in properties files. The

PropFilePasswordEncoder utility is a Qshell script. Complete the following steps to manually encode the

passwords:

1. Sign on the server with a user profile that has all object (*ALLOBJ) special authority.

2. Run the Start Qshell (STRQSH) command on a command line to start the Qshell environment.

3. Use the PropFilePasswordEncoder utility to encode the passwords.

For example, to encode the passwords for properties in the sas.client.props file for the default

WebSphere Application Server profile (in a default installation), enter the following command:

profile_root/bin/PropFilePasswordEncoder

 -profileName server1

 profile_root/properties/sas.client.props -SAS

1250 Securing applications and their environment

For example, to encode the passwords for properties in the soap.client.props file for the default

standalone application server profile, enter the following command:

profile_root/bin/PropFilePasswordEncoder

 -profileName server1

 profile_root/properties/soap.client.props

 com.ibm.SOAP.loginPassword,com.ibm.ssl.keyStorePassword,

 com.ibm.ssl.trustStorePassword

For more information on the sas.client.props utility, see the “PropFilePasswordEncoder command

reference.”

Results

The passwords are encoded in the soap.client.props and sas.client.props files.

What to do next

See “Restoring or replacing damaged validation list objects” on page 1254 for information on how to

restore or replace a damaged validation list object.

PropFilePasswordEncoder command reference

The PropFilePasswordEncoder command encodes passwords that are located in plain text property files.

This command encodes both Secure Authentication Server (SAS) property files and non-SAS property

files. After you encode the passwords, a decoding command does not exist.

To encode passwords, you must run this command from the directory:

To run this script, your user profile must have *ALLOBJ authority.

Syntax

Parameters

The following option is available for the PropFilePasswordEncoder command:

fileName

This required parameter specifies the name of the file in which passwords are encoded.

passwordPropertiesList

This parameter is required if you are encoding passwords in property files other than the

sas.client.props file. Specify one or more password properties that you want to encode. The password

properties list should be delimited by commas.

-SAS

This parameter is required if you are encoding passwords in the sas.client.props file.

-profileName

This parameter is optional. The profile value specifies an application server profile name. The script

uses the password encoding algorithm that it retrieves from the specified profile. If you do not specify

this parameter, the script uses the default profile.

-noBackup

This parameter is optional and the default. The script does not create a backup file. The default value

can be altered by adding following Java System Property:

"-Dcom.ibm.websphere.security.util.createBackup=true".

-Backup

This parameter is optional. The script creates a backup file, <file_name>.bak, which contains

passwords in clear text.

Chapter 11. Tuning, hardening, and maintaining 1251

-help or -?

If you specify this parameter, the script ignores all other parameters and displays usage text.

The following command encodes the passwords in the soap.client.props file for the default stand-alone

application server profile:

app_server_root/bin/PropFilePasswordEncoder

 profile_root/default/properties/soap.client.props

com.ibm.SOAP.loginPassword,com.ibm.ssl.keyStorePassword,com.ibm.ssl.trustStorePassword

Note: These commands are displayed on multiple lines for illustrative purposes only.

Enabling the non-default OS/400 password encoding algorithm

The purpose of password encoding is to deter casual observation of passwords in server configuration and

property files.

Before you begin

Make sure all server profiles within the administration console reside on the same i5/OS system.

About this task

By default, passwords are automatically encoded with a simple masking algorithm in various ASCII

configuration files for WebSphere Application Server. You can manually encode passwords in properties

files that are used by Java clients and by Application Server administrative commands.

For a description of the OS400 encoding algorithm, see “Password encoding and encryption” on page

1245. To enable the OS400 password encoding algorithm for a WebSphere Application Server profile,

complete these steps:

1. Set the os400.security.password properties to turn on the OS400 password encoding algorithm and to

specify which the validation list object to use.

Use the same validation list object for all WebSphere Application Server profiles. However, it is not

recommended if you do not back up the objects and data for all profiles simultaneously. Consider your

backup and restore policy when you decide what validation list object to use for each WebSphere

Application Server profile.

To set the properties, complete one of these steps:

v Use the -os400passwords and -validationlist options for the manageprofiles -create utility, which is

located in the app_server_root/bin directory, to set the properties when creating the profile. To

create a WebSphere Application Server profile named prod, and to enable that profile for the OS400

encoding algorithm using the /QSYS.LIB/QUSRSYS.LIB/WAS.VLDL validation list object, you can

complete the following steps:

a. Run the Start Qshell (STRQSH) command on the i5/OS command line.

b. In Qshell, run the following command:

app_server_root/bin/manageprofiles

-create -profileName prod -startingPort 10150

-templatePath default -os400passwords

-validationlist /QSYS.LIB/QUSRSYS.LIB/WAS.VLDL

The previous command is on multiple lines for illustration purposes only.

v Set the Java system properties in the setupCmdLine Qshell script of the WebSphere Application

Server profile. To enable the OS400 password encoding algorithm, edit the profile_root/bin/
setupCmdLine script using the following steps:

a. Set the os400.security.password.encoding.algorithm property to OS400. The default setting is

XOR.

b. Set the os400.security.password.validation.list.object property to the absolute name of the

validation list that you need to use. The default setting is /QSYS.LIB/QUSRSYS.LIB/EJSADMIN.VLDL.

1252 Securing applications and their environment

c. Save the file.

2. Grant the QEJB user profile run authority (*X) to the library that contains the validation list. If QEJB

already has the minimum required authority (*X) to access the library, then proceed to the next step.

a. Use the Display Authority (DSPAUT) to check for the minimum required authority if the validation

list is created in the /QSYS.LIB/WSADMIN.LIB file.

For example:

DSPAUT OBJ(’/QSYS.LIB/WSADMIN.LIB’)

b. Use the Change Authority (CHGAUT) command to grant run authority to the QEJB profile only if

the QEJB profile does not already have this authority.

For example:

CHGAUT OBJ(’/QSYS.LIB/WSADMIN.LIB’) USER(QEJB) DTAAUT(*X)

3. Create a native validation list object (*VLDL). This step is optional for server profiles. The validation list

object is created when the server is started. For remote profiles, create the validation list if the

validation list does not already exist on the system that hosts the remote profile. Also, consider your

backup and restore policy when you decide what validation list object to use with each remote profile.

Note: When you use the OS400 password encoding algorithm, the Java client is not required to reside

on the same i5/OS system as the WebSphere Application Server profile that the client

accesses.

To create a validation list object, perform the following steps with an i5/OS user profile that has

*ALLOBJ special authority:

a. Sign on the server with a user profile that has the *ALLOBJ special authority.

b. Use the Create Validation List (CRTVLDL) command to create the validation list object.

For example, to create the WSVLIST validation list object in the WSADMIN.LIB library, use the

following command:

CRTVLDL VLDL(WSADMIN/WSVLIST)

c. Grant the QEJB user profile *RWX authority to the validation list object. For example, to grant

*RWX authority to the WSVLIST validation list object in the WSADMIN library , use the following

command:

CHGAUT OBJ(’/QSYS.LIB/WSADMIN.LIB/WSVLIST.VLDL’) USER(QEJB) DTAAUT(*RWX)

4. Use the Change System Value (CHGSYSVAL) command to set the QRETSVRSEC system value to 1.

For example:

CHGSYSVAL SYSVAL(QRETSVRSEC) VALUE(’1’)

5. For server profile, start or restart the server and wait until the server is ready for service before

attempting to manually encode passwords in properties files that belong to the profile.

Results

You have enabled the OS400 password encoding algorithm.

What to do next

After completing the previous steps and restarting the server, you can manually encode passwords in

properties files. See “Manually encoding passwords in properties files” on page 1250 for more information.

Changing encoding algorithm from OS400 to XOR

Use these steps to change your encoding algorithm from OS400 to XOR.

Chapter 11. Tuning, hardening, and maintaining 1253

Before you begin

WebSphere Application Server supports both the OS400 and the XOR encoding algorithms. The default

encoding algorithm is XOR. For more conceptual information on these algorithms, see “Password

encoding and encryption” on page 1245.

About this task

There might be instances where you need to use the OS400 encoding algorithm. See “Enabling the

non-default OS/400 password encoding algorithm” on page 1252.

If you use the OS400 encoding algorithm, but change the os400.security.password.encoding.algorithm

property value to XOR as described in the first step, then all of the passwords remain encoded with the

OS400 algorithm. However, after you restart the server, when you make changes to the passwords

through the administrative console, the passwords are encoded using the XOR algorithm.

The following steps describe how to change your encoding algorithm from OS400 to XOR:

1. Set the os400.security.password.encoding.algorithm property to XOR for each WebSphere Application

Server profile that uses the Validation list object.

2. Stop all of the servers.

3. Edit the configuration files and change all of the encoded passwords to their unencoded values.

4. Edit the properties files and change all of the encoded passwords to their clear text values.

Results

You have changed your encoding algorithm from OS400 to XOR.

What to do next

After you completing these steps, you can encode the passwords in the properties files. See “Manually

encoding passwords in properties files” on page 1250 for more information.

Restoring or replacing damaged validation list objects

Periodically, you should save your validation list objects with the other configuration data objects that are

used by WebSphere Application Server. Use this task if you need to restore or replace a damaged

validation list object.

About this task

You can share validation lists between multiple WebSphere Application Server profiles. For example, if you

have two profiles of WebSphere Application Server, default and prod, both profiles can use the

/QSYS.LIB/QUSRSYS.LIB/EJSADMIN.VLDL validation list.

To restore or replace a damaged validation list object, complete the following steps:

1. Replace the encoded passwords with the unencoded value of the password for all of the WebSphere

Application Server profiles that use the validation list object. To replace the password values, complete

the following steps:

a. Stop each of the servers.

b. Set the os400.security.password.validation.list.object property for all of the servers to the absolute

name of the new validation list that you want to use. You can use an existing validation list object

or specify a new object. For new validation list objects, create them manually or use the objects

that are created automatically when the server is restarted. For more information on manually

creating validation list objects, see “Manually encoding passwords in properties files” on page

1250.

1254 Securing applications and their environment

c. Edit the configuration files and set each encoded password to the appropriate clear text value.

2. Edit the sas.client.props and soap.client.props files and set each encoded password to the

appropriate unencoded value before manually encoding the passwords.

3. Restart the servers for all of the WebSphere Application Server profiles whose validation list objects

that are replaced.

Results

After restarting the server, you have successfully replaced a damaged validation list object.

What to do next

For additional information on backing up your data objects, see “Backing up security configuration files” on

page 1257.

Enabling custom password encryption

You need to protect passwords that are contained in your WebSphere Application Server configuration.

After creating your server profile, you can added protection by creating a custom class for encrypting the

passwords.

Before you begin

Create your custom class for encrypting passwords. For more information, see “Plug point for custom

password encryption” on page 809.

About this task

Complete the following steps to enable custom password encryption.

1. Add the following system properties for every server and client process. For server processes, update

the server.xml file for each process. Add these properties as a genericJvmArgument argument

preceded by a -D prefix.

com.ibm.wsspi.security.crypto.customPasswordEncryptionClass=

 com.acme.myPasswordEncryptionClass

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=true

Note: If the custom encryption class name is

com.ibm.wsspi.security.crypto.CustomPasswordEncryptionImpl, it is automatically enabled when

this class is present in the classpath. Do not define the system properties that are listed

previously when the custom implementation has this package and class name. To disable

encryption for this class, you must specify

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false as a system

property.

2. Add the Java archive (JAR) file containing the implementation class to the app_server_root/classes

directory so that the WebSphere Application Server runtime can load the file.

3. Restart all server processes.

4. Edit each configuration document that contains a password and save the configuration. All password

fields are then run through the WSEncoderDecoder utility, which calls the plug point when it is

enabled. The {custom:alias} tags are displayed in the configuration documents. The passwords, even

though they are encrypted, are still Base64-encoded. They seem similar to encoded passwords, except

for the tags difference.

5. Encrypt any passwords that are in client-side property files using the PropsFilePasswordEncoder

(.bat or .sh) utility. This utility requires that the properties listed previously are defined as system

properties in the script to encrypt new passwords instead of encoding them.

Chapter 11. Tuning, hardening, and maintaining 1255

6. To decrypt passwords from client Java virtual machines (JVMs), add the properties listed previously as

system properties for each client utility.

7. Ensure that all nodes have the custom encryption classes in their class paths prior to enabling this

function.

Results

Custom password encryption is enabled.

What to do next

If custom password encryption fails or is no longer required, see “Disabling custom password encryption.”

Disabling custom password encryption

If custom password encryption fails or is no longer required, perform this task to disable custom password

encryption.

Before you begin

Enable custom password encryption.

About this task

Complete the following steps to disable custom password encryption.

1. Change the com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled property to be false in

the security.xml file, but leave the com.ibm.wsspi.security.crypto.customPasswordEncryptionClass

property configured. Any passwords in the model that still have the {custom:alias} tag are decrypted

by using the customer password encryption class.

2. If an encryption key is lost, any passwords that are encrypted with that key cannot be retrieved. To

recover a password, retype the password in the password field in plaintext and save the document.

The new password must be written out using encoding with the {xor} tag with scripting or from the

administrative console.

com.ibm.wsspi.security.crypto.customPasswordEncryptionClass=

 com.acme.myPasswordEncryptionClass

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false

3. Restart all processes to make the changes effective.

4. Edit each configuration document that contains an encrypted password and save the configuration. All

password fields are then run through the WSEncoderDecoder utility, which calls the plug point in the

presence of the {custom:alias} tag. The {xor} tags display in the configuration documents again after

the documents are saved.

5. Decrypt and encode any passwords that are in client-side property files using the

PropsFilePasswordEncoder (.bat or .sh) utility. If the encryption class is specified, but custom

encryption is disabled, running this utility converts the encryption to encoding and causes the {xor}

tags to display again.

6. Disable custom password encryption from the client Java virtual machines (JVMs) by adding the

system properties listed previously to all client scripts. This action enables the code to decrypt

passwords, but this action is not used to encrypt them again. The {xor} algorithm becomes the default

for encoding. Leave the custom password encryption class defined for a time in case any encrypted

passwords still exist in the configuration.

Results

Custom password encryption is disabled.

1256 Securing applications and their environment

Backing up security configuration files

Back up your security configuration files to prevent the loss of information due to a potential system failure.

About this task

Consider backing up the following security information:

v Back up your user profiles.

When you use local OS security, back up your user profiles, using the normal save procedures for user

profiles. For more information, see the Backup and Recovery Guide by searching for ″Saving group and

user profiles″ in the iSeries information center.

For information about the Directory Services Product (LDAP server), see the iSeries information center.

For information about Lotus Domino, see the Lotus Domino reference library.

v Back up your security property files.

Security settings are saved in several properties files. By default, these properties are located in the

profile_root/properties directory. The default standalone profile name is default. If you define

additional WebSphere Application Server profiles, there are additional properties files located in the

directories for those profiles.

The following command saves all of the properties in the /SAS subdirectory:

SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’)

OBJ((’profile_root/properties/sas*’))

This previous command is on two lines for illustrative purposes only. Enter it as one continuous line

You can save security property files while WebSphere Application Server is running.

v Back up your HTTP configuration.

The following information applies to IBM HTTP Server. If you are using Lotus Domino HTTP Server, see

the Notes.net Documentation Library.

Changes to the HTTP configuration are often made to enable WebSphere Application Server to serve

servlets and JavaServer Pages (JSP) file requests and to enable WebSphere Application Server

security. Consider saving your HTTP configuration as a part of your WebSphere Application Server

backup and recovery. The IBM HTTP Server configurations are stored as members of the QATMHTTPC

file in the QUSRSYS library. HTTP server instances are members of the QATMHINSTC file in the

QUSRSYS library. The following example commands back up these files:

SAVOBJ OBJ(QUSRSYS/QATMHTTPC)

SAVOBJ OBJ(QUSRSYS/QATMHINSTC)

v Back up your key files.

The key files contain certificates that are used by the security infrastructure for WebSphere Application

Server. These certificates are also used for HTTPS transport between servers. Save all of the files in

the profile_root/etc directory. Key files are contained in the profile_root/etc directory, but

administrators might create and store these files in other directories.

v Back up your validation lists.

Passwords are stored as encrypted data in validation list objects when you use the OS/400 password

encoding algorithm. The default validation list is /QSYS.LIB/QUSRSYS.LIB/EJSADMIN.VLDL, but you can

change it in the administrative console by specifying it as a system property for the application server.

For more information, see Administering application servers.

What to do next

For more information on backup and recovery strategies, see the following references:

v iSeries Information Center

v iSeries Backup and Recovery Version 5

Chapter 11. Tuning, hardening, and maintaining 1257

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html
http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html
http://www.ibm.com/developerworks/lotus/documentation/domino/
http://www.notes.net/notesua.nsf?OpenDatabase
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/rzaiu/sc415304.pdf

v Security: Resources for learning

1258 Securing applications and their environment

Chapter 12. Troubleshooting security configurations

The following topics help to troubleshoot specific problems that are related to configuring and enabling

security configurations.

About this task

Refer to Security components troubleshooting tips for instructions on how to troubleshoot errors that are

related to security.

Refer to SPNEGO TAI troubleshooting tips for instructions on how to troubleshoot errors that are related to

diagnosing Simple and Protected GSS-API Negotiation (SPNEGO) trust association interceptor (TAI)

problems and exceptions.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

v Errors when configuring or enabling security

v Errors after enabling security

v Access problems after enabling security

v Errors after configuring or enabling Secure Sockets Layer

v Single sign-on configuration troubleshooting tips

v Enterprise Identity Mapping troubleshooting tips

v Authorization provider troubleshooting tips

v Password decoding troubleshooting tips

Security components troubleshooting tips

This document explains basic resources and steps for diagnosing security-related issues in WebSphere

Application Server.

Basic resources and steps for diagnosing security-related issues in WebSphere Application Server include:

v What “Log files” on page 1260 to look at and what to look for in them.

v What to look at and what to look for “Using SDSF” on page 1261.

v “General approach for troubleshooting security-related issues” on page 1262 to isolating and resolving

security problems.

v When and how to “Trace security” on page 1266.

v An overview and table of “CSIv2 CORBA minor codes” on page 1267.

The following security-related problems are addressed elsewhere in the information center:

v Errors and access problems after enabling security

After enabling security, a degradation in performance is realized. For more information about using

unrestricted policy files, see the Enabling security for the realm section of the Securing applications and

their environment PDF book.

v Errors after enabling SSL, or SSL-related error messages

v Errors trying to configure and enable security

© Copyright IBM Corp. 2008 1259

If none of these steps solves the problem, check to see if the problem is identified and documented using

the links in Diagnosing and fixing problems: Resources for learning.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

For an overview of WebSphere Application Server security components such as Secure Authentication

Services (SAS) and how they work in a distributed or an iSeries environment, refer to the Securing

applications and their environment PDF book.

Note: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Log files

When troubleshooting the security component, browse the Java Virtual Machine (JVM) logs for the server

that hosts the resource you are trying to access. The following is a sample of messages you would expect

to see from a server in which the security service has started successfully:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/aServerID

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.registry.nt.

NTLocalDomainRegistryImpl has been initialized

SecurityCompo A CWSCJ0202A: Admin application initialized successfully

SecurityCompo A CWSCJ0203A: Naming application initialized successfully

SecurityCompo A CWSCJ0204A: Rolebased authorizer initialized successfully

SecurityCompo A CWSCJ0205A: Security Admin mBean registered successfully

SecurityCompo A CWSCJ0243A: Security service started successfully

SecurityCompo A CWSCJ0210A: Security enabled true

The following is an example of messages from a server which cannot start the security service, in this

case because the administrative user ID and password given to communicate with the user registry is

wrong, or the user registry itself is down or misconfigured:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/aServerID

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.

registry.nt.NTLocalDomainRegistryImpl has been initialized

Authenticatio E CWSCJ4001E: Login failed for badID/<null>

javax.security.auth.login.LoginException: authentication failed: bad user/password

1260 Securing applications and their environment

The following is an example of messages from a server for which Lightweight Directory Access Protocol

(LDAP) has been specified as the security mechanism, but the LDAP keys have not been properly

configured:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: LTPA

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/anID

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.registry.nt.

NTLocalDomainRegistryImpl has been initialized

SecurityServe E CWSCJ0237E: One or more vital LTPAServerObject configuration

attributes are null or not available. The attributes and values are password :

LTPA password does exist, expiration time 30, private key <null>, public key <null>,

and shared key <null>.

A problem with the Secure Sockets Layer (SSL) configuration might lead to the following message. Ensure

that the keystore location and keystore passwords are valid. Also, ensure the keystore has a valid

personal certificate and that the personal certificate public key or certificate authority (CA) root has been

extracted on put into the truststore.

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/aServerId

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

SASRas E CWWSA0026E: [SecurityTaggedComponentAssistorImpl.register]

Exception connecting object to the ORB. Check the SSL configuration to ensure

 that the SSL keyStore and trustStore properties are set properly. If the problem

persists, contact support for assistance. org.omg.CORBA.OBJ_ADAPTER:

ORB_CONNECT_ERROR (5) - couldn’t get Server Subcontract minor code:

4942FB8F completed: No

Using SDSF

When troubleshooting the security component, use System Display and Search Facility (SDSF) to browse

logs for the server that hosts the resource you are trying to access. The following sample of messages

helps you see from a server in which the security service has started successfully:

 +BBOM0001I com_ibm_authMechanisms_type_OID: No OID for this mechanism.

 +BBOM0001I com_ibm_security_SAF_unauthenticated: WSGUEST.

 +BBOM0001I com_ibm_security_SAF_EJBROLE_Audit_Messages_Suppress: 0.

 +BBOM0001I com_ibm_ws_logging_zos_errorlog_format_cbe: NOT SET, 280

 DEFAULT=0.

 +BBOM0001I com_ibm_CSI_performClientAuthenticationRequired: 0.

 +BBOM0001I com_ibm_CSI_performClientAuthenticationSupported: 1.

 +BBOM0001I com_ibm_CSI_performTransportAssocSSLTLSRequired: 0.

 +BBOM0001I com_ibm_CSI_performTransportAssocSSLTLSSupported: 1.

 +BBOM0001I com_ibm_CSI_rmiInboundPropagationEnabled: 1.

 +BBOM0001I com_ibm_CSI_rmiOutboundLoginEnabled: 0.

 +BBOM0001I com_ibm_CSI_rmiOutboundPropagationEnabled: 1.

 +BBOM0001I security_assertedID_IBM_accepted: 0.

 +BBOM0001I security_assertedID_IBM_sent: 0.

Chapter 12. Troubleshooting security configurations 1261

+BBOM0001I security_disable_daemon_ssl: NOT SET, DEFAULT=0.

 +BBOM0001I security_sslClientCerts_allowed: 0.

 +BBOM0001I security_sslKeyring: NOT SET.

 +BBOM0001I security_zOS_domainName: NOT SET.

 +BBOM0001I security_zOS_domainType: 0.

 +BBOM0001I security_zSAS_ssl_repertoire: SY1/DefaultIIOPSSL.

 +BBOM0001I security_EnableRunAsIdentity: 0.

 +BBOM0001I security_EnableSyncToOSThread: 0.

 +BBOM0001I server_configured_system_name: SY1.

 +BBOM0001I server_generic_short_name: BBOC001.

 +BBOM0001I server_generic_uuid: 457

 *** Message beginning with BBOO0222I apply to Java within ***

 *** WebSphere Application Server Security ***

 +BBOO0222I: SECJ6004I: Security Auditing is disabled.

 +BBOO0222I: SECJ0215I: Successfully set JAAS login provider 631

 configuration class to com.ibm.ws.security.auth.login.Configuration.

 +BBOO0222I: SECJ0136I: Custom 632

 Registry:com.ibm.ws.security.registry.zOS.SAFRegistryImpl has been initialized

 +BBOO0222I: SECJ0157I: Loaded Vendor AuthorizationTable: 633

 com.ibm.ws.security.core.SAFAuthorizationTableImpl

General approach for troubleshooting security-related issues

When troubleshooting security-related problems, the following questions are very helpful:

Does the problem occur when security is disabled?

This question is a good litmus test to determine that a problem is security related. However, just

because a problem only occurs when security is enabled does not always make it a security

problem. More troubleshooting is necessary to ensure the problem is really security-related.

Did security seem to initialize properly?

A lot of security code is visited during initialization. So you can see problems there first if the

problem is configuration related.

 The following sequence of messages that are generated in the SystemOut.log indicate normal

code initialization of an application server. This sequence varies based on the configuration, but

the messages are similar:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: BIRKT20/pbirk

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.registry.nt.

NTLocalDomainRegistryImpl has been initialized

SecurityCompo A CWSCJ0202A: Admin application initialized successfully

SecurityCompo A CWSCJ0203A: Naming application initialized successfully

SecurityCompo A CWSCJ0204A: Rolebased authorizer initialized successfully

SecurityCompo A CWSCJ0205A: Security Admin mBean registered successfully

SecurityCompo A CWSCJ0243A: Security service started successfully

SecurityCompo A CWSCJ0210A: Security enabled true

The following sequence of messages generated in the SDSF active log indicate normal code

initialization of an application server. Non-security messages have been removed from the

sequence that follows. This sequence will vary based on the configuration, but the messages are

similar:

1262 Securing applications and their environment

Trace: 2005/05/06 17:27:31.539 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: printProperties

 SourceId: com.ibm.ws390.orb.CommonBridge

 Category: AUDIT

 ExtendedMessage: BBOJ0077I java.security.policy =

 /WebSphere/V6R1M0/AppServer/profiles/default/pr

 Trace: 2005/05/06 17:27:31.779 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: printProperties

 SourceId: com.ibm.ws390.orb.CommonBridge

 Category: AUDIT

 ExtendedMessage: BBOJ0077I java.security.auth.login.config =

 /WebSphere/V6R1M0/AppServer/profiles/default/pr

 Trace: 2005/05/06 17:27:40.892 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.SecurityDM

 SourceId: com.ibm.ws.security.core.SecurityDM

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0231I: The Security component’s FFDC

 Diagnostic Module com.ibm.ws.security.core.Secur

 red successfully: true.

 Trace: 2005/05/06 17:27:40.892 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0231I: The Security component’s FFDC

 Diagnostic Module com.ibm.ws.security.core.Securit

 d successfully: true.

 Trace: 2005/05/06 17:27:41.054 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.audit.AuditServiceImpl

 SourceId: com.ibm.ws.security.audit.AuditServiceImpl

 Category: AUDIT

 ExtendedMessage: BBOO0222I: SECJ6004I: Security Auditing is disabled.

 Trace: 2005/05/06 17:27:41.282 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0309I: Java 2 Security is disabled.

 Trace: 2005/05/06 17:27:41.282 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0309I: Java 2 Security is disabled.

 Trace: 2005/05/06 17:27:42.239 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.auth.login.Configuration

 SourceId: com.ibm.ws.security.auth.login.Configuration

 Category: AUDIT

 ExtendedMessage: BBOO0222I: SECJ0215I: Successfully set JAAS login

 provider configuration class to com.ibm.ws.securit

 Configuration.

 Trace: 2005/05/06 17:27:42.253 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0212I: WCCM JAAS configuration information

 successfully pushed to login provider clas

 Trace: 2005/05/06 17:27:42.254 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0212I: WCCM JAAS configuration information

 successfully pushed to login provider class.

 Trace: 2005/05/06 17:27:42.306 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0240I: Security service initialization

 completed successfully

 Trace: 2005/05/06 17:27:42.306 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

Chapter 12. Troubleshooting security configurations 1263

error message: BBOO0222I: SECJ0240I: Security service initialization

 completed successfully

 Trace: 2005/05/06 17:27:42.952 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.objectpool.ObjectPoolService

 SourceId: com.ibm.ws.objectpool.ObjectPoolService

 Category: INFO

 ExtendedMessage: BBOO0222I: OBPL0007I: Object Pool Manager service

 is disabled.

 Trace: 2005/05/06 17:27:53.512 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.registry.UserRegistryImpl

 SourceId: com.ibm.ws.security.registry.UserRegistryImpl

 Category: AUDIT

 ExtendedMessage: BBOO0222I: SECJ0136I: Custom

 Registry:com.ibm.ws.security.registry.zOS.SAFRegistryImpl

 has been init

 Trace: 2005/05/06 17:27:55.229 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.role.PluggableAuthorizationTableProxy

 SourceId: com.ibm.ws.security.role.PluggableAuthorizationTableProxy

 Category: AUDIT

 ExtendedMessage: BBOO0222I: SECJ0157I: Loaded Vendor

 AuthorizationTable: com.ibm.ws.security.core.SAFAuthorizationTab

 Trace: 2005/05/06 17:27:56.481 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0243I: Security service started successfully

 Trace: 2005/05/06 17:27:56.481 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0243I: Security service started successfully

 Trace: 2005/05/06 17:27:56.482 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0210I: Security enabled true

 Trace: 2005/05/06 17:27:56.483 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0210I: Security enabled true

Is there a stack trace or exception printed in the system log file?

A single stack trace tells a lot about the problem. What code initiated the code that failed? What is

the failing component? Which class did the failure actually come from? Sometimes the stack trace

is all that is needed to solve the problem and it can pinpoint the root cause. Other times, it can

only give us a clue, and can actually be misleading. When support analyzes a stack trace, they

can request additional trace if it is not clear what the problem is. If it seems to be security-related

and the solution cannot be determined from the stack trace or problem description, you are asked

to gather the following trace specification: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled

from all processes involved.

Is this a distributed security problem or a local security problem?

v If the problem is local, that is the code involved does not make a remote method invocation,

then troubleshooting is isolated to a single process. It is important to know when a problem is

local versus distributed because the behavior of the object request broker (ORB), among other

components, is different between the two. When a remote method invocation takes place, an

entirely different security code path is entered.

v When you know that the problem involves two or more servers, the techniques of

troubleshooting change. You need to trace all the servers involved simultaneously so that the

trace shows the client and server sides of the problem. Make sure the timestamps on all

machines match as closely as possible so that you can find the request and reply pair from two

different processes. Enable both Secure Authentication Services (SAS) or z/SAS and Security

trace using the trace specification: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

For more information on enabling trace, see Enabling trace.

1264 Securing applications and their environment

For more information on enabling trace, see Working with Trace.
Is the problem related to authentication or authorization?

Most security problems fall under one of these two categories. Authentication is the process of

determining who the caller is. Authorization is the process of validating that the caller has the

proper authority to invoke the requested method. When authentication fails, typically this failure is

related to either the authentication protocol, authentication mechanism or user registry. When

authorization fails, this is usually related to the application bindings from assembly and deployment

and to the caller’s identity who is accessing the method and the roles that are required by the

method.

Is this a Web or EJB request?

 Web requests have a completely different code path than Enterprise JavaBeans (EJB) requests.

Different security features exist for Web requests than for EJB requests, requiring a completely

different body of knowledge to resolve. For example, when using the Lightweight Third-Party

Authentication (LTPA) authentication mechanism, the single sign-on feature (SSO) is available for

Web requests but not for EJB requests. Web requests involve HTTP header information that is not

required by EJB requests due to the protocol differences. Also, the Web container or servlet

engine is involved in the entire process. Any of these components can be involved in the problem

and all require consideration during troubleshooting, based on the type of request and where the

failure occurs.

Secure EJB requests heavily involve the ORB and Naming components since they flow over the

RMI/IIOP protocol. In addition, when Workload Manager (WLM) is enabled, other behavior

changes in the code can be observed. All of these components interact closely for security to work

properly in this environment. At times, trace in any or all of these components might be necessary

to troubleshoot problems in this area.

The trace specification to begin with is SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

ORB trace is also very beneficial when the SAS/Security trace does not seem to pinpoint the

problem.

Does the problem seem to be related to the Secure Sockets Layer (SSL)?

 SSL is a totally distinct separate layer of security. Troubleshooting SSL problems is usually

separate from troubleshooting authentication and authorization problems, and you have many

considerations. Usually, SSL problems are first-time setup problems because the configuration can

be difficult. Each client must contain the signer certificate of the server. During mutual

authentication, each server must contain the client’s signer certificate. Also, there can be protocol

differences (SSLv3 vs. Transport Layer Security (TLS)), and listener port problems related to stale

Interoperable Object References (IORs), that is IORs from a server, that reflect the port prior to the

server restarting.

For SSL problems, sometimes you get a request for an SSL trace to determine what is happening

with the SSL handshake. The SSL handshake is the process that occurs when a client opens a

socket to a server. If anything goes wrong with the key exchange, cipher exchange, and so on, the

handshake fails and the socket is not valid. Tracing JSSE (the SSL implementation that is used in

WebSphere Application Server) involves the following steps:

v Set the following system property on the client and server processes: -Djavax.net.debug=true.

For the server, add the system property to the generic JVM arguments property of the JVM

settings page. For more information on this task, refer to Java virtual machine settings section

of the Administering applications and their environment PDF book.

v Turn on ORB trace as well.

v Recreate the problem.

The SystemOut.log of both processes contain the JSSE trace. You can find trace similar to the

following example:

SSLConnection: install <com.ibm.sslite.e@3ae78375>

>> handleHandshakeV2 <com.ibm.sslite.e@3ae78375>

>> handshakeV2 type = 1

>> clientHello: SSLv2.

SSL client version: 3.0

...

Chapter 12. Troubleshooting security configurations 1265

...

...

JSSEContext: handleSession[Socket[addr=null,port=0,localport=0]]

<< sendServerHello.

SSL version: 3.0

SSL_RSA_WITH_RC4_128_MD5

HelloRandom

...

...

...

<< sendCertificate.

<< sendServerHelloDone.

>> handleData <com.ibm.sslite.e@3ae78375>

>> handleHandshake <com.ibm.sslite.e@3ae78375>

>> handshakeV3 type = 16

>> clientKeyExchange.

>> handleData <com.ibm.sslite.e@3ae78375>

>> handleChangeCipherSpec <com.ibm.sslite.e@3ae78375>

>> handleData <com.ibm.sslite.e@3ae78375>

>> handleHandshake <com.ibm.sslite.e@3ae78375>

>> handshakeV3 type = 20

>> finished.

<< sendChangeCipherSpec.

<< sendFinished.

Trace security

The classes that implement WebSphere Application Server security are:

v com.ibm.ws.security.*

v com.ibm.websphere.security.*

v com.ibm.WebSphereSecurityImpl.*

v SASRas

v com.ibm.ws.wim.* for tracing with a Virtual Member Manager (VMM) repository

To view detailed information on the run time behavior of security, enable trace on the following

components and review the output:

v com.ibm.ws.security.*=all=enabled:com.ibm.WebSphereSecurityImpl.*=

all=enabled:com.ibm.websphere.security.*=all=enabled. This trace statement collects the trace for the

security runtime.

v com.ibm.ws.console.security.*=all=enabled. This trace statement collects the trace for the security

center administrative console.

v SASRas=all=enabled. This trace statement collects the trace for SAS (low-level authentication logic).

v com.ibm.ws.wim.*=all=enabled:com.ibm.websphere.wim.*=all=enabled. This trace statement collects the

trace for VMM.
Fine tuning Security traces:

If a subset of packages need to be traced, specify a trace specification more detailed than

com.ibm.ws.security.*=all=enabled. For example, to trace just dynamic policy code, you can

specify com.ibm.ws.security.policy.*=all=enabled. To disable dynamic policy trace, you can specify

com.ibm.ws.security.policy.*=all=disabled.

Configuring CSIv2, or SAS Trace Settings

Situations arise where reviewing trace for the CSIv2 or SAS authentication protocols can assist in

troubleshooting difficult problems. This section describes how to enable to CSIv2 and SAS trace.

Enabling Client-Side CSIv2 and SAS Trace

To enable CSIv2 and SAS trace on a pure client, the following steps need to be taken:

v Edit the file TraceSettings.properties in the /WebSphere/AppServer/properties

directory. For example, edit profile_root/properties/TraceSettings.properties.

v In this file, change traceFileName= to point to the path in which you want the output file

created. For example, traceFileName=profile_root/logs/sas_client.

v n this file, add the trace specification string: SASRas=all=enabled. Any additional trace

strings can be added on separate lines.

1266 Securing applications and their environment

v Point to this file from within your client application. On the Java command line where

you launch the client, add the following system property:

-DtraceSettingsFile=TraceSettings.properties.

Note: Do not give the fully qualified path to the TraceSettings.properties file. Make

sure that the TraceSettings.properties file is in your class path.
Enabling Server-Side CSIv2 and SAS Trace

To enable SAS trace in an application server, complete the following:

v Add the trace specification, SASRas=all=enabled, to the server.xml file or add it to the

Trace settings within the WebConsole GUI.

v Typically it is best to also trace the authorization security runtime in addition to the

authentication protocol runtime. To do this, use the following two trace specifications in

combination: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

v When troubleshooting a connection type problem, it is beneficial to trace both CSIv2

and SAS or CSIv2 and z/SAS and the ORB. To do this, use the following three trace

specifications:

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled:ORBRas=all=enabled.

v In addition to adding these trace specifications, for ORB trace there are a couple of

system properties that also need to be set. Go to the ORB settings in the GUI and add

the following two properties: com.ibm.CORBA.Debug=true and

com.ibm.CORBA.CommTrace=true.

CSIv2 CORBA minor codes

Whenever exceptions occur within the security code on either the client or server, the eventual exception

becomes a Common Object Request Broker Architecture (CORBA) exception. Any exception that occurs

gets embedded in a CORBA exception because the CORBA architecture is used by the security service

for its own inter-process communication. CORBA exceptions are generic and indicate a problem in

communication between two components. CORBA minor codes are more specific and indicate the

underlying reason that a component could not complete a request.

The following shows the CORBA minor codes that a client can expect to receive after running a

security-related request such as authentication. It also includes the CORBA exception type that the minor

code appears in.

The following exception shows an example of a CORBA exception where the minor code is 49424300 and

indicates Authentication Failure. Typically, a descriptive message is also included in the exception to assist

in troubleshooting the problem. Here, the detailed message is: ″Exception caught invoking

authenticateBasicAuthData from SecurityServer for user jdoe. Reason:

com.ibm.WebSphereSecurity.AuthenticationFailedException″ which indicates that the authentication failed

for user jdoe.

The completed field in the exception indicates whether the method was completed or not. In the case of a

NO_PERMISSION, never invoke the message; therefore it is always completed:No. Other exceptions that

are caught on the server side can have a completed status of ″Maybe″ or ″Yes″.

org.omg.CORBA.NO_PERMISSION: Caught WSSecurityContextException in

WSSecurityContext.acceptSecContext(),

reason: Major Code[0] Minor Code[0] Message[Exception caught invoking

authenticateBasicAuthData from SecurityServer for user jdoe. Reason:

com.ibm.WebSphereSecurity.AuthenticationFailedException] minor code: 49424300

completed: No

at com.ibm.ISecurityLocalObjectBaseL13Impl.PrincipalAuthFailReason.

map_auth_fail_to_minor_code(PrincipalAuthFailReason.java:83)

 at com.ibm.ISecurityLocalObjectBaseL13Impl.CSIServerRI.receive_request

 (CSIServerRI.java:1569)

 at com.ibm.rmi.pi.InterceptorManager.iterateReceiveRequest

Chapter 12. Troubleshooting security configurations 1267

(InterceptorManager.java:739)

 at com.ibm.CORBA.iiop.ServerDelegate.dispatch(ServerDelegate.java:398)

 at com.ibm.rmi.iiop.ORB.process(ORB.java:313)

 at com.ibm.CORBA.iiop.ORB.process(ORB.java:1581)

 at com.ibm.rmi.iiop.GIOPConnection.doWork(GIOPConnection.java:1827)

 at com.ibm.rmi.iiop.WorkUnitImpl.doWork(WorkUnitImpl.java:81)

 at com.ibm.ejs.oa.pool.PooledThread.run(ThreadPool.java:91)

 at com.ibm.ws.util.CachedThread.run(ThreadPool.java:149)

The following table shows the CORBA minor codes which a client can expect to receive after running a

security-related request such as authentication. It also includes the CORBA exception type that the minor

code would appear in.

 Table 61.

Minor code name Minor code

value (in

hex)

Exception type (all in

the package of

org.omg.CORBA .*)

Minor code description Retry performed (when

authenticationRetryEnabled =

true)

AuthenticationFailed 49424300 NO_PERMISSION This code is a generic

authentication failed error. It

does not give any details about

whether or not the user ID or

password is valid. Some user

registries can choose to use

this type of error code, others

can choose to use the next

three types that are more

specific.

Yes

InterceptLocateException 494210B8 INTERNAL This indicates a problem when

processing an incoming locate

request.

No

InvalidUserid 49424301 NO_PERMISSION This code occurs when the

registry returns bad user ID.

Yes

InvalidPassword 49424302 NO_PERMISSION This code occurs when the

registry returns a bad

password.

Yes

InvalidSecurityCredentials 49424303 NO_PERMISSION This is a generic error

indicating that the credentials

are bad for some reason. It

might be that the right attributes

are not set.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

InvalidRealm 49424304 NO_PERMISSION This code occurs when the

REALM in the token received

from the client does not match

the server’s current realm.

No

ValidationFailed 49424305 NO_PERMISSION A validation failure occurs when

a token is sent from the client

or server to a target server but

the token format or the

expiration is not valid.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

CredentialTokenExpired 49424306 NO_PERMISSION This code is more specific

about why the validation failed.

In this case, the token has an

absolute lifetime and the

lifetime has expired. Therefore,

it is no longer a valid token and

cannot be used.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

InvalidCredentialToken 49424307 NO_PERMISSION This is more specific about why

the validation failed. In this

case, the token cannot be

decrypted or the data within the

token is not readable.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

SessionDoesNotExist 49424308 NO_PERMISSION This indicates that the CSIv2

session does not exist on the

server. Typically, a retry occurs

automatically and successfully

creates a new session.

Yes

1268 Securing applications and their environment

Table 61. (continued)

Minor code name Minor code

value (in

hex)

Exception type (all in

the package of

org.omg.CORBA .*)

Minor code description Retry performed (when

authenticationRetryEnabled =

true)

SessionConflictingEvidence 49424309 NO_PERMISSION This indicates that a session

already exists on the server

that matches the context_id

sent over by the client.

However, the information

provided by the client for this

EstablishContext message is

different from the information

originally provided to establish

the session.

Yes

SessionRejected 4942430A NO_PERMISSION This indicates that the session

referenced by the client has

been previously rejected by the

server.

Yes

SecurityServerNotAvailable 4942430B NO_PERMISSION This error occurs when the

server cannot contact the local

or remote security server in

order to authenticate or

validate.

No

InvalidIdentityToken 4942430C NO_PERMISSION This error indicates that identity

cannot be obtained from the

identity token when Identity

Assertion is enabled.

No

IdentityServerNotTrusted 4942430D NO_PERMISSION This indicates that the server ID

of the sending server is not on

the target server’s trusted

principal list.

No

InvalidMessage 4942430E NO_PERMISSION This indicates that the CSIv2

message format is not valid for

the receiving server.

No

AuthenticationNotSupported 49421090 NO_PERMISSION This error occurs when a

mechanism does not support

authentication (very rare).

No

InvalidSecurityMechanism 49421091 NO_PERMISSION This is used to indicate that the

specified security mechanism is

not known.

No

CredentialNotAvailable 49421092 NO_PERMISSION This indicates a credential is

not available when it is

required.

No

SecurityMechanismNotSupported 49421093 NO_PERMISSION This error occurs when a

security mechanism that is

specified in the CSIv2 token is

not implemented on the server.

No

ValidationNotSupported 49421094 NO_PERMISSION This error occurs when a

mechanism does not support

validation, such as LocalOS.

This error does not occur since

the LocalOS credential is not a

forwardable credential,

therefore, validation never

needs to be called on this

credential.

No

CredentialTokenNotSet 49421095 NO_PERMISSION This is used to indicate that the

token inside the credential is

null.

No

ServerConnectionFailed 494210A0 COMM_FAILURE This error is used when a

connection attempt fails.

Yes (via ORB retry)

CorbaSystemException 494210B0 INTERNAL This code is a generic CORBA

specific exception in system

code.

No

JavaException 494210B1 INTERNAL This is a generic error that

indicated that an unexpected

Java exception occurred.

No

Chapter 12. Troubleshooting security configurations 1269

Table 61. (continued)

Minor code name Minor code

value (in

hex)

Exception type (all in

the package of

org.omg.CORBA .*)

Minor code description Retry performed (when

authenticationRetryEnabled =

true)

ValueIsNull 494210B2 INTERNAL This code is used to indicate

that a value or parameter that

passed in is null.

No

EffectivePolicyNotPresent 494210B3 INTERNAL This indicates that an effective

policy object for CSIv2 is not

present. This object is used to

determine what security

configuration features are

specified.

No

NullPointerException 494210B4 INTERNAL This code is used to indicate

that a NullPointerException is

caught in the runtime.

No

ErrorGettingClassInstance 494210B5 INTERNAL This indicates a problem

loading a class dynamically.

No

MalFormedParameters 494210B6 INTERNAL This indicates parameters are

not valid.

No

DuplicateSecurityAttributeType 494210B7 INTERNAL This indicates a duplicate

credential attribute that is

specified during the

set_attributes operation.

No

MethodNotImplemented 494210C0 NO_IMPLEMENT This indicates that a method

invoked is not implemented.

No

GSSFormatError 494210C5 BAD_PARAM This code indicates that a

Generic Security Services

(GSS) encoding or decoding

routine has created an

exception.

No

TagComponentFormatError 494210C6 BAD_PARAM This code indicates that a tag

component cannot be read

properly.

No

InvalidSecurityAttributeType 494210C7 BAD_PARAM This code indicates an attribute

type specified during the

set_attributes operation is not a

valid type.

No

SecurityConfigError 494210CA INITIALIZE This code indicates a problem

exists between the client and

server configuration.

No

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Security configuration and enablement errors

Use this information to troubleshoot problems with configuring or enabling security.

What kind of error are you seeing?

v “″LTPA password not set. validation failed″ message displayed as error in the administrative console

after saving administrative or application security settings ” on page 1271

v “WebSphere Application Server Version 6 is not working correctly with Enterprise Workload Manager

(EWLM)” on page 1271

v If you successfully configured security, but are now having problems accessing Web resources or the

administrative console, refer to Errors or access problems after enabling security.

v “NMSV0610I: A NamingException is being thrown from a javax.naming.Context implementation” on page

1271

1270 Securing applications and their environment

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E&q=mustgather

v “When administrative security is enabled but application security is not enabled, the performance servlet

displays authorization errors and cannot provide statistics” on page 1272

v “″Name value is invalid″ displays when migrating users and groups after the JACC provider for Tivoli is

configured” on page 1272

v “A Sun JDK can not read a PKCS12 keystore created by the Application Server” on page 1272

For general tips on diagnosing and resolving security-related problems, see the topic Troubleshooting the

security component.

″LTPA password not set. validation failed″ message displayed as error in the

administrative console after saving administrative or application security settings

This error can be caused if, when configuring WebSphere Application Server security, LTPA is selected as

the authentication mechanism and the LTPA password field is not set. To resolve this problem:

v Select Security > Global security > Authentication mechanisms and expiration .

v Complete the password and confirm password fields.

v Click OK.

v Try setting administrative or application security again.

WebSphere Application Server Version 6 is not working correctly with Enterprise

Workload Manager™ (EWLM)

To use WebSphere Application Server Version 6 with EWLM, you must manually update the WebSphere

Application Server server.policy files. For example:

grant codeBase "file:/<EWLM_Install_Home>/classes/ARM/arm4.jar" {

 permission java.security.AllPermission;

};

Otherwise, you might encounter a Java 2 security exception for violating the Java 2 security permission.

For more information on configuring server.policy files, refer to the server.policy file permissions section in

the Developing and deploying applications PDF book.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

NMSV0610I: A NamingException is being thrown from a javax.naming.Context

implementation

If you use CSIv2 inbound authentication, basic authentication is required, and Java clients running with

com.ibm.CORBA.validateBasicAuth=true might fail with the following exception:

If you use CSIv2 inbound authentication, basic authentication is required, and Java™

clients running with com.ibm.CORBA.validateBasicAuth=true might fail with the

following exception:

NMSV0610I: A NamingException is being thrown from a javax.naming.Context

 implementation. Details follow:

Context implementation: com.ibm.ws.naming.jndicos.CNContextImpl

Context method: lookupExt

Context name: TestaburgerNode01Cell/nodes/TestaburgerNode01/servers/server1

Target name: SecurityServer

Other data: ""

Exception stack trace: javax.naming.NoPermissionException: NO_PERMISSION

exception caught. Root exception is org.omg.CORBA.NO_PERMISSION:

Chapter 12. Troubleshooting security configurations 1271

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E&q=mustgather

vmcid: 0x49421000 minor code: 92 completed: No

...

SECJ0395E: Could not locate the SecurityServer at host/port:9.42.72.27/9100

to validate the userid and password entered. You may need to specify valid

securityServerHost/Port in (WAS_INSTALL_ROOT)/properties/sas.client.props file.

To fix this problem, modify the com.ibm.CORBA.validateBasicAuth=false property in the client’s

sas.clients.props file, which is located in WAS_HOME/profiles/<profile-name>/properties, and then run

the client.

When administrative security is enabled but application security is not enabled,

the performance servlet displays authorization errors and cannot provide statistics

In WebSphere Application Server Version 6.1, when administrative security is enabled, the administration

service is locked down. However, if application security is not enabled, an authentication challenge does

not occur for incoming requests and, consequently, credentials do not exist for the performance servlet to

access the administration service.

If administrative security is enabled, you also must enable application security for the performance servlet

to process incoming requests.

″Name value is invalid″ displays when migrating users and groups after the JACC

provider for Tivoli is configured

When you use the migrateEAR utility to migrate the changes that were made to console users and groups

after the JACC provider for Tivoli Access Manager is configured, the following configuration error displays

in the systemOut.log file.

<specialSubjects> name value is invalid

The migrateEAR utility migrates the user and group data that is contained in the admin-authz.xml file.

However, the migrateEAR utility does not convert the XML tags that are listed in the admin-authz.xml file if

the pdwas-admin group is added to the administrator access control list (ACL) in Tivoli Access Manager

prior to migration.

To resolve this error, enter the following command in padadmin to check whether the pdwas-admin group

is in the administrator ACL before you migrate:

acl show

_WebAppServer_deployedResources_Roles_administrator_admin-authz_ACL

The following result should display:

ACL Name:

_WebAppServer_deployedResources_Roles_administrator_admin-authz_ACL

Description: Created by the Tivoli Access Manager

for Websphere Application Server Migration Tool.

Entries:

User sec_master TcmdbsvaBR1

Group pdwas-admin T[WebAppServer]i

If the pdwas-admin group is not listed, then enter the following command in pdadmin to modify the ACL to

add the pdwas-admin group:

acl modify

_WebAppServer_deployedResources_Roles_administrator_admin

-authz_ACL set gruop pdwas-admin T [WebAppServer]i

A Sun JDK can not read a PKCS12 keystore created by the Application Server

A Sun JDK is not able to read a PKCS12 keystore created by the Application Server. The reason for this is

that the PKCS12 implementation used by the IBM SDK and the Application Server is different than the

1272 Securing applications and their environment

implementation used by the Sun JDK. The difference causes problems when a Sun JDK is used to read

the default trustore, trust.p12, or keystore, key.P12 created by the Application Server.

Because the truststore can not be read by the Sun JDK, you must first extract the certificates from the

trustore using an IBM SDK. You can then import these certificates into a keystore that the Sun JDK can

recognize correctly, such as a JKS keystore.

Security enablement followed by errors

Use this information if you are experiencing errors after security is enabled.

What kind of error are you seeing?

v Authentication error accessing a Web page

v Authorization error accessing a Web page

v “Authentication fails when code pages differ between the client and the server” on page 1274

v Error Message: CWSCJ0314E: Current Java 2 security policy reported a potential violation

v CWMSG0508E: The JMS Server security service was unable to authenticate user ID: error displayed

in SystemOut.log when starting an application server

v Error Message: CWSCJ0237E: One or more vital LTPAServerObject configuration attributes are

null or not available after enabling security and starting the application server

v An AccessControlException is reported in the SystemOut.log

v Error Message: CWSCJ0336E: Authentication failed for user {0} because of the following

exception {1}

v “Error Message: SECJ0352E: Could not get the users matching the pattern {0} because of the following

exception {1}” on page 1277

v “Generate keys error when using the Profile Management tool to create a new profile” on page 1278

For general tips on diagnosing and resolving security-related problems, see the topic Troubleshooting the

security component.

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in Troubleshooting help from IBM. Before opening a problem report, see the

Support page:

v http://www.ibm.com/servers/eserver/support/iseries/allproducts/index.html

Authentication error accessing a Web page

Possible causes for authentication errors include:

v Incorrect user name or passwords. Check the user name and password and make sure that they are

correct.

v Security configuration error : User registry type is not set correctly. Check the user registry

property in administrative security settings in the administrative console. Verify that the user registry

property is the intended user registry.

v Internal program error. If the client application is a Java standalone program, this program might not

gather or send credential information correctly.

If the user registry configuration, user ID, and password appear correct, use the WebSphere Application

Server trace to determine the cause of the problem. To enable security trace, use the

com.ibm.ws.security.*=all=enabled trace specification.

Authorization error accessing a Web page

If a user who is supposed to have access to a resource does not, a configuration step is probably missing.

For more information on configuring access to resources, review the chapter Authorizing access to

administrative roles in the Securing applications and their environment PDF book.

Chapter 12. Troubleshooting security configurations 1273

http://www.ibm.com/servers/eserver/support/iseries/allproducts/index.html

Specifically:

v Check the required roles for the accessed Web resource.

v Check the authorization table to make sure that the user, or the groups to which the user belongs, is

assigned to one of the required roles.

v View required roles for the Web resource in the deployment descriptor of the Web resource.

v View the authorization table for the application that contains the Web resource, using the administrative

console.

v Test with a user who is granted the required roles, to see if the user can access the problem resources.

v If the user is required to have one or more of the required roles, use the administrative console to

assign that user to required roles, stop, and restart the application.

If the user is granted required roles, but still fails to access the secured resources, enable security trace,

using com.ibm.ws.security.*=all=enabled as the trace specification. Collect trace information for further

resolution.

Authentication fails when code pages differ between the client and the server

When a client uses a code page that is different from the server, and non-US-ASCII characters are used

for the user ID and password during basic authentication, the login does not succeed. The HTTP header

does not include the encoding method information that is necessary to translate the encoded data, so the

server does not know how to decode the information correctly.

Use a login form that relies on POST parameters, which are in the HTML body text. The encoding for the

text is sent by the browser and so is capable of being decoded properly.

Note: Web services customers are not able to use form login to resolve this problem. Users must ensure

there is consistency in the code pages between the client and the server.

Error Message: CWSCJ0314E: Current Java 2 security policy reported a potential

violation on server

If you find errors on your server similar to:

Error Message: CWSCJ0314E: Current Java 2 Security policy reported a potential violation of

Java 2 Security Permission. Please refer to Problem Determination Guide for further information.

{0}Permission/:{1}Code/:{2}{3}Stack Trace/:{4}Code Base Location/:{5}

The Java security manager checkPermission method has reported a SecurityException exception .

The reported exception might be critical to the secure system. Turn on security trace to determine the

potential code that might have violated the security policy. Once the violating code is determined, verify if

the attempted operation is permitted with respect to Java 2 Security, by examining all applicable Java 2

security policy files and the application code.

A more detailed report is enabled by either configuring RAS trace into debug mode, or specifying a Java

property.

v Check the trace enabling section for instructions on how to configure Reliability Availability Serviceability

(RAS) trace into debug mode, or

v Specify the following property in the Application Servers > server_name > ProcessDefinition > Java

Virtual Machine panel from the administrative console in the Generic JVM arguments panel:

– Add the java.security.debug run-time flag

– Valid values:

access

Print all debug information including required permission, code, stack, and code base

location.

stack Print debug information including required permission, code, and stack.

failure Print debug information including required permission, and code.

1274 Securing applications and their environment

For a review of Java security policies, see the Java 2 Security documentation at http://java.sun.com/j2se/
1.3/docs/guide/security/index.html.

Tip: If the application is running with a Java Mail application programming interface (API), this message

might be benign. You can update the installed Enterprise Application root/META-INF/was.policy file to grant

the following permissions to the application:

v permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

v permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Error message: CWMSG0508E: The JMS Server security service was unable to

authenticate user ID:″ error displayed in SystemOut.log when starting an

application server

This error can result from installing the Java Message Service (JMS) API sample and then enabling

security. You can follow the instructions in the Configure and Run page of the corresponding JMS sample

documentation to configure the sample to work with WebSphere Application Server security.

You can verify the installation of the message-driven bean sample by launching the installation program,

selecting Custom, and browsing the components which are already installed in the Select the features you

like to install panel. The JMS sample is shown as Message-Driven Bean Sample, under Embedded

Messaging.

You can also verify this installation by using the administrative console to open the properties of the

application server that contains the samples. Select MDBSamples and click uninstall.

Error message: CWSCJ0237E: One or more vital LTPAServerObject configuration

attributes are null or not available after enabling security and starting the

application server

This error message can result from selecting Lightweight Third Party Authentication (LTPA) as the

authentication mechanism, but not generating the LTPA keys. The LTPA keys encrypt the LTPA token.

To resolve this problem:

1. Click Security > Global security > Authentication > Authentication mechanisms and expiration>

LTPA

2. Enter a password, which can be anything.

3. Enter the same password in Confirm Password.

4. Click Apply.

5. Click Generate Keys.

6. Click Save.

The AccessControlException exception, is reported in the SystemOut.log

The problem is related to the Java 2 security feature of WebSphere Application Server, the API-level

security framework that is implemented in WebSphere Application Server. An exception similar to the

following example displays. The error message and number can vary.

CWSRV0020E: [Servlet Error]-[validator]: Failed to load servlet:

java.security.AccessControlException: access denied

(java.io.FilePermission

app_server_root/systemApps/isclite.ear/isclite.war/WEB-INF/validation.xml read)

For an explanation of Java 2 security, how and why to enable or disable it, how it relates to policy files,

and how to edit policy files, see the Java 2 security topic in the Securing applications and their

environment PDF book.The topic explains that Java 2 security is not only used by this product, but

Chapter 12. Troubleshooting security configurations 1275

http://java.sun.com/j2se/1.3/docs/guide/security/index.html
http://java.sun.com/j2se/1.3/docs/guide/security/index.html

developers can also implement it for their business applications. Administrators might need to involve

developers, if this exception is created when a client tries to access a resource that is hosted by

WebSphere Application Server.

Possible causes of these errors include:

v Syntax errors in a policy file.

v Syntax errors in permission specifications in the ra.xml file that is bundled in a .rar file. This case

applies to resource adapters that support connector access to CICS® or other resources.

v An application is missing the specified permission in a policy file, or in permission specifications in

ra.xml file bundled in a .rar file.

v The class path is not set correctly, preventing the permissions for the resource.xml file for Service

Provider Programming Interface (SPI) from being correctly created.

v A library called by an application, or the application, is missing a doPrivileged block to support access to

a resource.

v Permission is specified in the wrong policy file.

To resolve these problems:

v Check all of the related policy files to verify that the permission shown in the exception, for example

java.io.FilePermission, is specified.

v Look for a related ParserException exception in the SystemOut.log file which reports the details of the

syntax error.

CWSCJ0189E: Caught ParserException while creating template for application policy

profile_root/config/cells/cell_name/nodes/node_name/app.policy

Where:

– cell_name represents the name of your cell.

– profile_name represents the name of your profile.

– node_name represents the name of your node.

The exception is com.ibm.ws.security.util.ParserException: line 18: expected ’;’, found ’grant’

v Look for a message similar to: CWSCJ0325W: The permission permission specified in the policy

file is unresolved.

v Check the call stack to determine which method does not have the permission. Identify the class path of

this method. If it is hard to identify the method, enable the Java2 security Report.

– Configuring RAS trace by specifying com.ibm.ws.security.core.*=all=enabled, or specifying a Java

property.java.security.debug property. Valid values for the java.security.debug property are:

access

Print all debug information including: required permission, code, stack, and code base

location.

stack Print debug information including: required permission, code, and stack.

failure Print debug information including: required permission and code.
– The report shows:

Permission

The missing permission.

Code Which method has the problem.

Stack Trace

Where the access violation occurred.

CodeBaseLocation

The detail of each stack frame.

Where:

- app1 represents the name of your application.

- app_server_root represents the installation root directory for WebSphere Application Server -

Express.

- profile_root represents the location and name of a particular profile in your system.

- profile1 or profile_name represents the name of your profile.

- server1 or server_namerepresents the name of your application server.

1276 Securing applications and their environment

v If the method is SPI, check the resources.xml file to ensure that the class path is correct.

v To confirm that all of the policy files are loaded correctly, or what permission each class path is granted,

enable the trace with com.ibm.ws.security.policy.*=all=enabled. All loaded permissions are listed in

the trace.log file. Search for the app.policy, was.policy and ra.xml files. To check the permission list for a

class path, search for Effective Policy for classpath.

v If there are any syntax errors in the policy file or the ra.xml file, correct them with the policy tool. Avoid

editing the policy manually, because syntax errors can result. For additional information about using this

tool, refer to the section Using PolicyTool to edit policy files in the Developing and deploying

applications PDF book.

v If a permission is listed as Unresolved, it does not take effect. Verify that the specified permission name

is correct.

v If the class path that is specified in the resource.xml file is not correct, correct it.

v If a required permission does not exist in either the policy files or the ra.xml file, examine the application

code to see if you need to add this permission. If so, add it to the proper policy file or the ra.xml file.

v If the permission is not granted outside of the specific method that is accessing this resource, modify

the code needs to use a doPrivileged block.

v If this permission does exist in a policy file or a ra.xml file and the permission was loaded correctly, but

the class path still does not have the permission in its list, the location of the permission might not be

correct. Read the Java 2 security chapter in the Securing applications and their environment PDF book

carefully to determine in which policy file or ra.xml file to specify that permission.

Tip: If the application is running with the Java Mail API, you can update the installed Enterprise Application

root/META-INF/was.policy file to grant the following permissions to the application:

v permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

v permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Error Message: CWSCJ0336E: Authentication failed for user {0} because of the

following exception {1}

This error message results if the user ID that is indicated is not found in the Lightweight Directory Access

Protocol (LDAP) user registry. To resolve this problem:

1. Verify that your user ID and password are correct.

2. Verify that the user ID exists in the registry.

3. Verify that the base distinguished name (DN) is correct.

4. Verify that the user filter is correct.

5. Verify that the bind DN and the password for the bind DN are correct. If the bind DN and password are

not specified, add the missing information and retry.

6. Verify that the host name and LDAP type are correct.

Consult with the administrator of the user registry if the problem persists.

Error Message: SECJ0352E: Could not get the users matching the pattern {0}

because of the following exception {1}

This authentication failure message displays when an external user account repository is corrupted or

unavailable, and WebSphere Application Server is unable to authenticate the user name in the repository.

Generally, authentication error messages are followed by additional information that indicates the nature or

root cause of the problem, such as:

Make sure the users matching the pattern exist in the registry. Contact your service representative if the problem persists.

This additional information might not provide a clear user action if the user account repository is corrupted

or the user loses connectivity between WebSphere Application Server and an external user account

repository. The external user account repository, which is referred to as a repository in this document,

might be a Lightweight Directory Access Protocol (LDAP) product.

Chapter 12. Troubleshooting security configurations 1277

To resolve this problem, you might need to re-install the repository and verify that it installs successfully by

testing the connection.

Note: Proceed with the following steps only if you have ensured that all WebSphere Application

Server-related configuration settings are accurate.

Complete the following steps to resolve the issue:

1. Restart both the repository and WebSphere Application Server.

2. Test the connection to the repository. If the connection attempt still fails, it might be necessary to

re-install the repository.

3. If diagnostics are provided with the repository, run them to avoid having to re-install the repository.

Note: If the previous steps do not fix the problem, you might need to re-install the repository. Before

proceeding, generate a complete list of all the configured users and groups; you will need to

re-populate these fields after the re-installation.

4. If necessary, re-install the corrupted repository.

5. Populate the users and groups from your list into the newly installed repository.

6. Restart both the repository and WebSphere Application server.

7. In the administrative console, navigate to Security > Global security, and select the appropriate user

account repository. For example, select Standalone LDAP registry if you are using a standalone

Lightweight Directory Access Protocol repository.

8. Click Test connection to ensure that WebSphere Application Server can connect to the repository.

Generate keys error when using the Profile Management tool to create a new

profile

When you create a new profile using either the Profile Management tool or the command-line

manageprofiles utility, an error message displays that indicates either partial success or failure. The error

message, which is located in the install_dir/logs/manageprofiles/profile_name_create.log file, might point to

an error in either the generateKeysforSingleProfile task or the generateKeysForCellProfile task.

The Profile Creation tool and the manageprofiles utility invoke several tasks. The

generateKeysForSingleProfile task is invoked when you create a stand-alone application server or a

deployment manager profile. The generateKeysForCellProfile task is invoked when you create a cell

profile. Both of these tasks are the first tasks to invoke the wsadmin commands. Although the log indicates

an error in one of these tasks, the error might actually result from a wsadmin command failure and not an

error in the security tasks.

To determine the actual cause of the problem, review the information that is provided in the following log

files:

v install_dir/logs/manageprofiles/profile_name_create.log file indicates the error code of the failure

v install_dir/logs/manageprofiles/profile_name/keyGeneration.log file

v install_dir/logs/manageprofiles/profile_name/wsadminListener.log file

Access problems after enabling security

Use this information if you are experiencing access problems after enabling security.

What kind of error are you seeing?

v “I cannot access all or part of the administrative console or use the wsadmin tool after enabling security”

on page 1279

v “I cannot access a Web page after enabling security” on page 1279

v “Authentication error accessing a Web page” on page 1273

v “Authorization error accessing a Web page” on page 1273

1278 Securing applications and their environment

v “The client cannot access an enterprise bean after enabling security” on page 1280

v “Client program never gets prompted when accessing secured enterprise bean” on page 1282

v “Cannot stop an application server, node manager, or node after enabling security” on page 1282

v “The AccessControlException exception, is reported in the SystemOut.log” on page 1275

v “After enabling single sign-on, I cannot logon to the administrative console” on page 1282

v “Access problems after enabling security” on page 1278

v “A Name NotFoundException error occurs when initially connecting to the federated repositories.” on

page 1282

For general tips on diagnosing and resolving security-related problems, see the topic “Security

components troubleshooting tips” on page 1259.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see Troubleshooting help from IBM.

I cannot access all or part of the administrative console or use the wsadmin tool

after enabling security

v If you cannot access the administrative console, or view and update certain objects, look in the

SystemOut log of the application server which hosts the administrative console page for a related error

message.

v You might not have authorized your ID for administrative tasks. This problem is indicated by errors such

as:

– [8/2/02 10:36:49:722 CDT] 4365c0d9 RoleBasedAuth A CWSCJ0305A: Role based authorization

check failed for security name MyServer/myUserId, accessId MyServer/S-1-5-21-882015564-
4266526380-2569651501-1005 while invoking method getProcessType on resource Server and

module Server.

– Exception message: ″CWWMN0022E: Access denied for the getProcessType operation on Server

MBean″

– When running the command: wsadmin -username j2ee -password j2ee: CWWAX7246E: Cannot

establish ″SOAP″ connection to host ″BIRKT20″ because of an authentication failure. Ensure

that user and password are correct on the command line or in a properties file.

To grant an ID administrative authority, from the administrative console, click System Administration >

Console Users and validate that the ID is a member. If the ID is not a member, add the ID with at least

monitor access privileges, for read-only access.

v Verify that the enable_trusted_application flag is set to true. To check the enable_trusted_application

flag value using the administrative console, click Security > Global security. Under Additional

properties, click Custom properties > EnableTrustedApplications.

I cannot access a Web page after enabling security

When secured resources are not accessible, probable causes include:

v Authentication errors - WebSphere Application Server security cannot identify the ID of the person or

process. Symptoms of authentication errors include:

On a Netscape browser:

– Authorization failed. Retry? message is displayed after an attempt to log in.

– Accepts any number of attempts to retry login and displays Error 401 message when Cancel is

clicked to stop retry.

– A typical browser message displays: Error 401: Basic realm=’Default Realm’.

On an Internet Explorer browser:

– Login prompt displays again after an attempt to log in.

– Allows three attempts to retry login.

– Displays Error 401 message after three unsuccessful retries.
v Authorization errors - The security function has identified the requesting person or process as not

authorized to access the secured resource. Symptoms of authorization errors include:

– Netscape browser: ″Error 403: AuthorizationFailed″ message is displayed.

Chapter 12. Troubleshooting security configurations 1279

– Internet Explorer:

- ″You are not authorized to view this page″ message is displayed.

- ″HTTP 403 Forbidden″ error is also displayed.
v SSL errors - WebSphere Application Server security uses Secure Sockets Layer (SSL) technology

internally to secure and encrypt its own communication, and incorrect configuration of the internal SSL

settings can cause problems. Also you might have enabled SSL encryption for your own Web

application or enterprise bean client traffic which, if configured incorrectly, can cause problems

regardless of whether WebSphere Application Server security is enabled.

– SSL-related problems are often indicated by error messages that contain a statement such as:

ERROR: Could not get the initial context or unable to look up the starting

context.Exiting. followed by javax.net.ssl.SSLHandshakeException

The client cannot access an enterprise bean after enabling security

If the client access to an enterprise bean fails after security is enabled:

v Review the steps for securing and granting access to resources.

v Browse the server JVM logs for errors relating to enterprise bean access and security. Look up any

errors in the message table.

Errors similar to Authorization failed for /UNAUTHENTICATED while invoking resource

securityName:/UNAUTHENTICATED;accessId:UNAUTHENTICATED not granted any of the required roles

roles indicate that:

– An unprotected servlet or JavaServer Pages (JSP) file accessed a protected enterprise bean. When

an unprotected servlet is accessed, the user is not prompted to log in and the servlet runs as

UNAUTHENTICATED. When the servlet makes a call to an enterprise bean that is protected, the

servlet fails.

To resolve this problem, secure the servlet that is accessing the protected enterprise bean. Make

sure that the runAs property for the servlet is set to an ID that can access the enterprise bean.

– An unauthenticated Java client program is accessing an enterprise bean resource that is protected.

This situation can happen if the file that is read by the sas.client.props properties file that is used

by the client program does not have the securityEnabled flag set to true.

To resolve this problem, make sure that the sas.client.props file on the client side has its

securityEnabled flag set to true.

Errors similar to Authorization failed for valid_user while invoking resource securityName:/
username;accessId:xxxxxx not granted any of the required roles roles indicate that a client

attempted to access a secured enterprise bean resource, and the supplied user ID is not assigned the

required roles for that enterprise bean.

– Check that the required roles for the enterprise bean resource are accessed. View the required roles

for the enterprise bean resource in the deployment descriptor of the Web resource.

– Check the authorization table and make sure that the user or the group that the user belongs to is

assigned one of the required roles. You can view the authorization table for the application that

contains the enterprise bean resource using the administrative console.

If org.omg.CORBA.NO_PERMISSION exceptions occur when programmatically logging on to access a secured

enterprise bean, an authentication exception has occurred on the server. Typically the CORBA exception is

triggered by an underlying com.ibm.WebSphereSecurity.AuthenticationFailedException. To determine the

actual cause of the authentication exception, examine the full trace stack:

1. Begin by viewing the text following WSSecurityContext.acceptSecContext(), reason: in the exception.

Typically, this text describes the failure without further analysis.

2. If this action does not describe the problem, look up the Common Object Request Broker Architecture

(CORBA) minor code. The codes are listed in the article titled Troubleshooting the security components

reference.

For example, the following exception indicates a CORBA minor code of 49424300. The explanation of

this error in the CORBA minor code table reads:

authentication failed error

1280 Securing applications and their environment

In this case the user ID or password supplied by the client program is probably not valid:

org.omg.CORBA.NO_PERMISSION: Caught WSSecurityContextException in

WSSecurityContext.acceptSecContext(), reason: Major Code[0] Minor Code[0]

Message[Exception caught invoking authenticateBasicAuthData from SecurityServer

for user jdoe. Reason: com.ibm.WebSphereSecurity.AuthenticationFailedException]

minor code: 49424300 completed:

No at com.ibm.ISecurityLocalObjectBaseL13Impl.PrincipalAuthFailReason.map_auth_fail_to_minor_code

(PrincipalAuthFailReason.java:83)

A CORBA INITIALIZE exception with CWWSA1477W: SECURITY CLIENT/SERVER CONFIGURATION MISMATCH error

embedded, is received by client program from the server.

This error indicates that the security configuration for the server differs from the client in some fundamental

way. The full exception message lists the specific mismatches. For example, the following exception lists

three errors:

Exception received: org.omg.CORBA.INITIALIZE:

CWWSA1477W: SECURITY CLIENT/SERVER CONFIG MISMATCH:

The client security configuration (sas.client.props or outbound settings in

administrative console) does not support the server security configuration for

the following reasons:

ERROR 1: CWWSA0607E: The client requires SSL Confidentiality but the server does not

 support it.

ERROR 2: CWWSA0610E: The server requires SSL Integrity but the client does not

 support it.

ERROR 3: CWWSA0612E: The client requires client (e.g., userid/password or token),

 but the server does not support it.

 minor code: 0

 completed: No at

com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor.getConnectionKey

(SecurityConnectionInterceptor.java:1770)

In general, resolving the problem requires a change to the security configuration of either the client or the

server. To determine which configuration setting is involved, look at the text following the CWWSA error

message. For more detailed explanations and instructions, look in the message reference, by selecting the

Reference view of the information center navigation and expanding Messages in the navigation tree.

In these particular cases:

v In ERROR 1, the client is requiring SSL confidentiality but the server does not support SSL

confidentiality. Resolve this mismatch in one of two ways. Either update the server to support SSL

confidentiality or update the client so that it no longer requires it.

v In ERROR 2, the server requires SSL integrity but the client does not support SSL integrity. Resolve this

mismatch in one of two ways. Either update the server to support SSL integrity or update the client so

that it no longer requires it.

v In ERROR 3, the client requires client authentication through a user id and password, but the server

does not support this type of client authentication. Either the client or the server needs to change the

configuration. To change the client configuration, modify the SAS.CLIENT.PROPS file for a pure client or

change the outbound configuration for the server in the Security administrative console. To change the

configuration for the target server, modify the inbound configuration in the Security administrative

console.

Similarly, an exception like org.omg.CORBA.INITIALIZE: JSAS0477W: SECURITY CLIENT/SERVER CONFIG

MISMATCH: appearing on the server trying to service a client request indicates a security configuration

mismatch between client and server. The steps for resolving the problem are the same as for the

JSAS1477W exceptions previously described.

Chapter 12. Troubleshooting security configurations 1281

Client program never gets prompted when accessing secured enterprise bean

Even though it seems that security is enabled and an enterprise bean is secured, occasions can occur

when the client runs the remote method without prompting. If the remote method is protected, an

authorization failure results. Otherwise, run the method as an unauthenticated user.

Possible reasons for this problem include:

v The server with which you are communicating might not have security enabled. Check with the

WebSphere Application Server administrator to ensure that the server security is enabled. Access the

security settings from within the Security section of the administrative console.

v The client does not have security enabled in the sas.client.props file. Edit the sas.client.props file

to ensure the property com.ibm.CORBA.securityEnabled is set to true.

v The client does not have a ConfigURL specified. Verify that the property com.ibm.CORBA.ConfigURL is

specified on the command line of the Java client, using the -D parameter.

v The specified ConfigURL does not have a valid URL syntax, or the sas.client.props that is pointed to

cannot be found. Verify that the com.ibm.CORBA.ConfigURL property is valid. Check the Java

documentation for a description of URL formatting rules. Also, validate that the file exists at the specified

path.

v The client configuration does not support message layer client authentication (user ID and password).

Verify that the sas.client.props file has one of the following properties set to true:

– com.ibm.CSI.performClientAuthenticationSupported=true

– com.ibm.CSI.performClientAuthenticationRequired=true
v The server configuration does not support message layer client authentication, which consists of a user

ID and password. Check with the WebSphere Application Server administrator to verify that user ID and

password authentication is specified for the inbound configuration of the server within the System

Administration section of the administrative console administration tool.

Cannot stop an application server, node manager, or node after enabling security

If you use command-line utilities to stop WebSphere Application Server processes, apply additional

parameters after enabling security to provide authentication and authorization information.

Use the ./stopServer -help command to display the parameters to use.

Use the following command options after enabling security:

v ./stopServer serverName -username name -password password

v ./stopNode -username name -password password

v ./stopManager -username name -password password

After enabling single sign-on, I cannot logon to the administrative console

This problem occurs when single sign-on (SSO) is enabled, and you attempt to access the administrative

console using the short name of the server, for example http://myserver:port_number/ibm/console. The

server accepts your user ID and password, but returns you to the logon page instead of the administrative

console.

To correct this problem, use the fully qualified host name of the server, for example http://
myserver.mynetwork.mycompany.com:9060/ibm/console.

A Name NotFoundException error occurs when initially connecting to the

federated repositories.

When the server attempts an indirect lookup on the java:comp/env/ds/wimDS name and makes its initial

EJB connection to the federated repositories, the following error message displays in the SystemOut.log

file:

NMSV0612W: A NameNotFound Exception

1282 Securing applications and their environment

The NameNotFoundException error is caused by the reference binding definition for the jdbc/wimDS Java

Naming and Directory interface (JNDI) name in the ibm-ejb-jar-bnd.xmi file. You can ignore this warning

message. The message does not display when the wimDS database repository is configured.

Secure Sockets Layer errors

You might encounter various problems after configuring or enabling Secure Sockets Layer (SSL). You may

not be able to stop the deployment manager after configuring the SSL. You may not be able to access

resource using HTTPS. The client and the server may not be able to negotiate the proper level of security.

The problems mentioned here are only a few of the possibilities. Solving these problems is imperative to

the successful operation of WebSphere Application Server.

What type of problem are you having?

v

v “javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired level of

security. Reason: handshake failure”

v “javax.net.ssl.SSLHandshakeException: unknown certificate” on page 1284

v “javax.net.ssl.SSLHandshakeException: bad certificate” on page 1284

v “org.omg.CORBA.INTERNAL: EntryNotFoundException or NTRegistryImp E CWSCJ0070E: No privilege

id configured for: error when programmatically creating a credential” on page 1285

v “″Catalog″ tablet is blank (no item displayed) in GUI application client” on page 1285

v “Modifying SSL Configurations after migration using -scriptCompatibility true” on page 1285

javax.net.ssl.SSLHandshakeException - The client and server could not negotiate

the desired level of security. Reason: handshake failure

If you see a Java exception stack similar to the following example:

[Root exception is org.omg.CORBA.TRANSIENT: CAUGHT_EXCEPTION_WHILE_CONFIGURING_

SSL_CLIENT_SOCKET: CWWJE0080E: javax.net.ssl.SSLHandshakeException - The client

and server could not negotiate the desired level of security. Reason: handshake

failure:host=MYSERVER,port=1079 minor code: 4942F303 completed: No] at

com.ibm.CORBA.transport.TransportConnectionBase.connect

(TransportConnectionBase.java:NNN)

Some possible causes are:

v Not having common ciphers between the client and server.

v Not specifying the correct protocol.

To correct these problems:

1. Review the SSL settings. In the administrative console, click Security > SSL certificate and key

management. Under Configuration settings, click Manage endpoint security configurations >

endpoint_configuration_name. Under Related items, click SSL configurations >

SSL_configuration_name. You can also browse the file manually by viewing the app_server_root/
properties/sas.client.props file.

2. Check the property that is specified by the com.ibm.ssl.protocol file to determine which protocol is

specified.

3. Check the cipher types that are specified by the com.ibm.ssl.enabledCipherSuites interface. You might

want to add more cipher types to the list. To see which cipher suites are currently enabled, click

Quality of protection settings (QoP), and look for the Cipher Suites property.

4. Correct the protocol or cipher problem by using a different client or server protocol and cipher

selection. Typical protocols are SSL or SSLv3.

5. Make the cipher selection 40-bit instead of 128-bit. For Common Secure Interoperability Version 2

(CSIv2), set both of the following properties to false in the sas.client.props file, or set security

level=medium in the administrative console settings:

v com.ibm.CSI.performMessageConfidentialityRequired=false

v com.ibm.CSI.performMessageConfidentialitySupported=false

Chapter 12. Troubleshooting security configurations 1283

javax.net.ssl.SSLHandshakeException: unknown certificate

If you see a Java exception stack similar to the following example, it might be caused by not having the

personal certificate for the server in the client truststore file:

ERROR: Could not get the initial context or unable to look up the starting context.

Exiting. Exception received: javax.naming.ServiceUnavailableException: A

communication failure occurred while attempting to obtain an initial context using

the provider url: "corbaloc:iiop:localhost:2809". Make sure that the host and port

information is correct and that the server identified by the provider url is a

running name server. If no port number is specified, the default port number 2809

is used. Other possible causes include the network environment or workstation

network configuration. [Root exception is org.omg.CORBA.TRANSIENT:

CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET: CWWJE0080E:

javax.net.ssl.SSLHandshakeException - The client and server could not

negotiate the desired level of security. Reason: unknown

certificate:host=MYSERVER,port=1940 minor code: 4942F303 completed: No]

To correct this problem:

1. Check the client truststore file to determine if the signer certificate from the server personal certificate

is there. For a self-signed server personal certificate, the signer certificate is the public key of the

personal certificate. For a certificate authority (CA)-signed server personal certificate, the signer

certificate is the root CA certificate of the CA that signed the personal certificate.

2. Add the server signer certificate to the client truststore file.

javax.net.ssl.SSLHandshakeException: bad certificate

A Java exception stack error might display if the following situations occur:

v A personal certificate exists in the client keystore that is used for SSL mutual authentication.

v The signer certificate is not extracted into the server truststore file, and thus the server cannot trust the

certificate whenever the SSL handshake is made.

The following message is an example of the Java exception stack error:

ERROR: Could not get the initial context or unable to look

up the starting context. Exiting.

Exception received: javax.naming.ServiceUnavailableException:

A communication failure occurred while attempting to obtain an

initial context using the provider url: "corbaloc:iiop:localhost:2809".

Make sure that the host and port information is correct and that the

server identified by the provider url is a running name

server. If no port number is specified, the default port number 2809

is used. Other possible causes include the network environment or

workstation network configuration.

[Root exception is org.omg.CORBA.TRANSIENT: CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_

CLIENT_SOCKET: CWWJE0080E: javax.net.ssl.SSLHandshakeException - The client and

server could not negotiate the desired level of security. Reason:

bad certificate: host=MYSERVER,port=1940 minor code: 4942F303 completed: No]

To verify this problem, check the server truststore file to determine if the signer certificate from the client

personal certificate is there. For a self-signed client personal certificate, the signer certificate is the public

key of the personal certificate. For a certificate authority-signed client personal certificate, the signer

certificate is the root CA certificate of the CA that signed the personal certificate.

To correct this problem, add the client signer certificate to the server truststore file.

1284 Securing applications and their environment

org.omg.CORBA.INTERNAL: EntryNotFoundException or NTRegistryImp E

CWSCJ0070E: No privilege id configured for: error when programmatically

creating a credential

If you encounter the following exception in a client application attempting to request a credential from a

WebSphere Application Server using SSL mutual authentication:

ERROR: Could not get the initial context or unable to look up the starting context.

Exiting. Exception received: org.omg.CORBA.INTERNAL: Trace from server: 1198777258

at host MYHOST on port 0 >>org.omg.CORBA.INTERNAL: EntryNotFoundException minor

code: 494210B0 completed:

No at com.ibm.ISecurityLocalObjectBaseL13Impl.PrincipalAuthFailReason.

map_auth_fail_to_minor_code(PrincipalAuthFailReason.java:99)

or a simultaneous error from the WebSphere Application Server that resembles:

[7/31/02 15:38:48:452 CDT] 27318f5 NTRegistryImp E CWSCJ0070E: No privilege id

configured for: testuser

The cause might be that the user ID sent by the client to the server is not in the user registry for that

server.

To confirm this problem, check that an entry exists for the personal certificate that is sent to the server.

Depending on the user registry mechanism, look at the native operating system user ID or Lightweight

Directory Access Protocol (LDAP) server entries.

To correct this problem, add the user ID to the user registry entry (for example, operating system, LDAP

directory, or other custom registry) for the personal certificate identity.

″Catalog″ tablet is blank (no item displayed) in GUI application client

This error message occurs when you install an ActiveX client sample application that uses the

PlantsByWebSphere Active X to EJB Bridge.

The cause is that the server certificate is not in the client trustore that is specified in the client.ssl.props

file. Although the ″com.ibm.ssl.enableSignerExchangePrompt″ signer property might be set to true, the

auto-exchange prompt only supports a command-line prompt. If the sample application relies on a

graphical user interface and does not provide access to a command prompt, for example using standard in

and standard out, the auto-exchange prompt does not function.

Note: The applet client under the Client Technology Samples does not have access to the command

prompt and it cannot see the auto-exchange prompt. Thus, the applet client cannot rely on the

auto-exchange prompt feature.

To correct this problem, retrieve the certificate manually using the retrieveSigners utility.

Modifying SSL Configurations after migration using -scriptCompatibility true

After migrating using scriptCompatibility true, all attributes of the SSL configurations cannot be edited

through the administrative console. In particular, the hardware cryptography settings cannot be displayed

or edited.

By using the scriptCompatibility true flag, the SSL configurations are not migrated to the new format for

support in the 6.1 release. New capabilities were added that are not supported when the configurations

are not migrated to the latest format.

To solve this problem, create new SSL configuration definitions to replace those in the pre 6.1 format or

continue to edit those configurations using scripting.

Chapter 12. Troubleshooting security configurations 1285

Single sign-on configuration troubleshooting tips

Several common problems can occur when you configure single sign-on (SSO) between a WebSphere

Application Server and a Domino server. Some such problems are: Failure to save the Domino Web SSO

configuration, authentication failures when accessing a protected resource, and SSO failures when

accessing a protected resource. You can take some actions to correct these error situations and restore

the SSO.

v Failure to save the Domino Web SSO configuration document

The client must find Domino server documents for the participating SSO Domino servers. The Web

SSO configuration document is encrypted for the servers that you specify. The home server that is

indicated by the client location record must point to a server in the Domino domain where the

participating servers reside. This pointer ensures that lookups can find the public keys of the servers.

If you receive a message stating that one or more of the participating Domino servers cannot be found,

then those servers cannot decrypt the Web SSO configuration document or perform SSO.

When the Web SSO configuration document is saved, the status bar indicates how many public keys

are used to encrypt the document by finding the listed servers, authors, and administrators in the

document.

v Failure of the Domino server console to load the Web SSO configuration document at Domino HTTP

server startup

During configuration of SSO, the server document is configured for Multi-Server in the Session

Authentication field. The Domino HTTP server tries to find and load a Web SSO configuration

document during startup. The Domino server console reports the following information if a valid

document is found and decrypted: HTTP: Successfully loaded Web SSO Configuration.

If a server cannot load the Web SSO configuration document, SSO does not work. In this case, a

server reports the following message: HTTP: Error Loading Web SSO configuration. Reverting to

single-server session authentication.

Verify that only one Web SSO configuration document is in the Web configurations view of the Domino

directory and in the $WebSSOConfigs hidden view. You cannot create more than one document, but

you can insert additional documents during replication.

If you can verify only one Web SSO configuration document, consider another condition. When the

public key of the server document does not match the public key in the ID file, this same error message

can display. In this case, attempts to decrypt the Web SSO configuration document fail and the error

message is generated.

This situation can occur when the ID file is created multiple times, but the Server document is not

updated correctly. Usually, an error message is displayed on the Domino server console stating that the

public key does not match the server ID. If this situation occurs, SSO does not work because the

document is encrypted with a public key for which the server does not possess the corresponding

private key.

To correct a key-mismatch problem:

1. Copy the public key from the server ID file and paste it into the Server document.

2. Create the Web SSO configuration document again.

v Authentication fails when accessing a protected resource.

If a Web user is repeatedly prompted for a user ID and password, SSO is not working because either

the Domino or the WebSphere Application Server security server cannot authenticate the user with the

Lightweight Directory Access Protocol (LDAP) server. Check the following possibilities:

– Verify that the LDAP server is accessible from the Domino server machine. Use the TCP/IP ping

utility to check TCP/IP connectivity and to verify that the host machine is running.

– Verify that the LDAP user is defined in the LDAP directory. Use the idsldapsearch utility to confirm

that the user ID exists and that the password is correct. For example, you can run the following

command, entered as a single line:

You can use the OS/400 Qshell, a UNIX shell, or a Windows DOS prompt

% ldapsearch -D "cn=John Doe, ou=Rochester, o=IBM, c=US" -w mypassword

-h myhost.mycompany.com -p 389 -b "ou=Rochester, o=IBM, c=US" (objectclass=*)

1286 Securing applications and their environment

The percent character (%) indicates the prompt and is not part of the command. A list of directory

entries is expected. Possible error conditions and causes are contained in the following list:

- No such object: This error indicates that the directory entry referenced by either the user’s

distinguished name (DN) value, which is specified after the -D option, or the base DN value, which

is specified after the -b option, does not exist.

- Credentials that are not valid: This error indicates that the password is not valid.

- Cannot contact the LDAP server: This error indicates that the host name or the port specified for

the server is not valid or that the LDAP server is not running.

- An empty list means that the base directory that is specified by the -b option does not contain any

directory entries.
– If you are using the user’s short name or user ID instead of the distinguished name, verify that the

directory entry is configured with the short name. For a Domino directory, verify the Short

name/UserID field of the Person document. For other LDAP directories, verify the userid property of

the directory entry.

– If Domino authentication fails when using an LDAP directory other than a Domino directory, verify the

configuration settings of the LDAP server in the Directory assistance document in the Directory

assistance database. Also verify that the Server document refers to the correct Directory assistance

document. The following LDAP values that are specified in the Directory Assistance document must

match the values specified for the user registry in the WebSphere Application Server administrative

domain:

- Domain name

- LDAP host name

- LDAP port

- Base DN

Additionally, the rules that are defined in the Directory assistance document must refer to the base

distinguished name (DN) of the directory that contains the directory entries of the users.

You can trace Domino server requests to the LDAP server by adding the following line to the server

notes.ini file:

webauth_verbose_trace=1

After restarting the Domino server, trace messages are displayed in the Domino server console as

Web users attempt to authenticate to the Domino server.

v Authorization failure when accessing a protected resource.

After authenticating successfully, if an authorization error message is displayed, security is not

configured correctly. Check the following possibilities:

– For Domino databases, verify that the user is defined in the access-control settings for the database.

Refer to the Domino administrative documentation for the correct way to specify the user’s DN. For

example, for the DN cn=John Doe, ou=Rochester, o=IBM, c=US, the value on the access-control list

must be set as John Doe/Rochester/IBM/US.

– For resources that are protected by WebSphere Application Server, verify that the security

permissions are set correctly.

- If granting permissions to selected groups, make sure that the user attempting to access the

resource is a member of the group. For example, you can verify the members of the groups by

using the following Web site to display the directory contents: Ldap://myhost.mycompany.com:389/
ou=Rochester, o=IBM, c=US??sub

- If you changed the LDAP configuration information (host, port, and base DN) in a WebSphere

Application Server administrative domain since the permissions were set, the existing permissions

are probably not valid and need to be recreated.

v SSO failure when accessing protected resources.

If a Web user is prompted to authenticate with each resource, SSO is not configured correctly. Check

the following possibilities:

1. Configure both WebSphere Application Server and the Domino server to use the same LDAP

directory. The HTTP cookie that is used for SSO stores the full DN of the user, for example, cn=John

Doe, ou=Rochester, o=IBM, c=US, and the domain name service (DNS) domain.

Chapter 12. Troubleshooting security configurations 1287

2. Define Web users by hierarchical names if the Domino directory is used. For example, update the

User name field in the Person document to include names of this format as the first value: John

Doe/Rochester/IBM/US.

3. Specify the full DNS server name, not just the host name or TCP/IP address for Web sites issued to

Domino servers and WebSphere Application Servers that are configured for SSO. For browsers to

send cookies to a group of servers, the DNS domain must be included in the cookie, and the DNS

domain in the cookie must match the Web address. This requirement is why you cannot use cookies

across TCP/IP domains.

4. Configure both Domino and the WebSphere Application Server to use the same DNS domain. Verify

that the DNS domain value is exactly the same, including capitalization. You need the name of the

DNS domain in which WebSphere Application Server is configured. For additional information about

configuring DNS domains for SSO, refer to the Single sign-on topic in the Securing applications and

their environment PDF book.

5. Verify that the clustered Domino servers have the host name populated with the full DNS server

name in the server document. By using the full DNS server name, Domino Internet Cluster Manager

(ICM) can redirect to cluster members using SSO. If this field is not populated, by default, ICM

redirects Web addresses to clustered Web servers by using the host name of the server only. ICM

cannot send the SSO cookie because the DNS domain is not included in the Web address. To

correct the problem:

a. Edit the Server document.

b. Click Internet Protocols > HTTP tab.

c. Enter the full DNS name of the server in the Host names field.
6. If a port value for an LDAP server is specified for a WebSphere Application Server administrative

domain, edit the Domino Web SSO configuration document and insert a backslash character (\) into

the value of the LDAP Realm field before the colon character (:). For example, replace

myhost.mycompany.com:389 with myhost.mycompany.com\:389.

v Users are not logged out after the HTTP session timer expires.

If users of WebSphere Application Server log onto an application and sit idle longer than the specified

HTTP session timeout value, the user information is not invalidated and user credentials stay active until

LTPA token timeout occurs.

After you apply PK25740, complete the following steps to log out users from the application after the

HTTP session has expired.

1. In the administrative console, click Security > Global security.

2. Under Custom properties, click New.

3. In the Name field, enter com.ibm.ws.security.web.logoutOnHTTPSessionExpire.

4. In the Values field, enter true.

5. Click Apply and Save to save the changes to your configuration.

6. Resynchronize and restart the server.

Enterprise Identity Mapping troubleshooting tips

The following information provides troubleshooting information for Enterprise Identity Mapping (EIM)

configuration or connection factory configuration.

AdminControl service is not available

 Symptom The following message is displayed:

Message: WASX7017E: Exception received while running

file ″/QIBM/ProdData/OS400/Java400/cfgIdToken.jacl″;

exception information:

com.ibm.ws.scripting.ScriptingException: AdminControl

service not available.

1288 Securing applications and their environment

Explanation The application server or deployment manager of the

WebSphere Application Server profile is not started, or the

wsadmin option -conntype NONE is specified.

Configuration-related messages returned by the sample application to your Web

browser session

 Symptom The following message is displayed:

Message:

com.ibm.as400.access.AS400SecurityException: User ID

is not known.

Explanation The EIM does not contain a mapping for the user ID that

is used to log in to the sample application.

Symptom The following message is displayed:

Message: com.ibm.as400.access.ServerStartupException:

Password encryption indicator is not valid.

Explanation The target iSeries server is not configured for Enterprise

Identity Mapping (EIM).

Symptom The following message is displayed:

Message: java.net.ConnectException: A remote host

refused an attempted connect operation.

Explanation The target server is not an iSeries server.

Symptom The following message is displayed:

Message: The lookup for the connection factory failed.

Either the connector is not configured, or the servlet

resource reference (JNDI name) is not set correctly in the

web.xml file. The servlet expects the resource reference in

the web.xml file to be eis/
IdentityToken_Shared_Reference.

Explanation Either the connector is not configured, or the servlet

resource reference (JNDI name) is not set correctly in the

web.xml file. The servlet expects the resource reference in

the web.xml file to be eis/
IdentityToken_Shared_Reference.

Symptom The following message is displayed:

Message: The JAAS Subject object was not passed to the

Java 2 Connector (J2C) connector because WebSphere

Application Server security is not correctly configured for

the servlet.

Explanation WebSphere Application Server administrative security is

not enabled.

Symptom The following message is displayed:

Message: javax.resource.ResourceException:

com.ibm.eim.jndi.DomainJNDI:method_name: failed to

connect to initial directory context.

Chapter 12. Troubleshooting security configurations 1289

Explanation This message is caused by one of the following issues:

v The authentication data entry that is configured for the

connection factory contains an incorrect Lightweight

Directory Access Protocol (LDAP) distinguished name.

v The authentication data entry that is configured for the

connection factory contains an incorrect LDAP

password.

v The LDAP host name that is configured for the

connection factory is incorrect.

v The LDAP port that is configured for the connection

factory is incorrect.

v The LDAP server is not started.

v The Enterprise Identity Mapping (EIM) domain name

that is configured for the connection factory is incorrect.

v The EIM parent name that is configured for the

connection factory is incorrect.

Symptom The following message is displayed:

Message: javax.resource.ResourceException: Input URL is

null or not valid.

Explanation An LDAP host name is not configured for the connection

factory.

Symptom The following message is displayed:

Message:

com.ibm.as400.access.AS400SecurityException: An

unknown problem occurred.

Explanation The target iSeries server is not joined to the EIM domain

that is configured for the connection factory, or the EIM

source registry name is incorrect.

Perform the following steps to enable trace for EIM:

Note: This trace is only available for idTokenRA.JCA15.rar.

1. From the administrative console, select Servers > Application Servers > server_name > Change

Log Details Levels.

2. Click the Runtime tab.

3. Select Save runtime changes to configuration as well.

4. Remove any previous entries in the text field, and type the following:

com.ibm.jca.idtoken.*=all: com.ibm.eim.token.*=all

5. Click Apply and save the changes.

Security authorization provider troubleshooting tips

This article describes the issues you might encounter using a Java Authorization Contract for Containers

(JACC) authorization provider. Tivoli Access Manager is bundled with WebSphere Application Server as an

authorization provider. However, you also can plug in your own authorization provider.

Tivoli Access Manager as a Java Authorization Contract for Containers

authorization provider

You might encounter the following issues when using Tivoli Access Manager as a JACC authorization

provider:

v The configuration of JACC might fail.

1290 Securing applications and their environment

v The server might fail to start after configuring JACC.

v The application might not deploy properly.

v The startServer command might fail after you have configured Tivoli Access Manager or a clean

uninstall did not take place after unconfiguring JACC.

v An ″HPDIA0202w An unknown user name was presented to Access Manager″ error might occur.

v An ″HPDAC0778E The specified user’s account is set to invalid″ error might occur.

v An WASX7017E: Exception received while running file ″InsuranceServicesSingle.jacl″ error might occur.

v “Access denied exceptions accessing applications when using JACC” on page 1293

External providers for Java Authorization Contract for Containers authorization

provider

You might encounter the following issues when you use an external provider for JACC authorization:

v An ″HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL entry″ error might

occur.

The configuration of JACC might fail

If you have problems configuring JACC, check the following items:

v Ensure that the parameters are correct. For example, you do not want a number after

TAM_Policy_server_hostname:7135, but you do want be a number after

TAM_Authorization_server_hostname:7136 (for example, TAM_Authorization_server_hostname:7136:1).

v If a message such as “server can’t be contacted” is displayed, it is possible that the host names or port

numbers of the Tivoli Access Manager servers are incorrect, or that the Tivoli Access Manager servers

have not started.

v Ensure that the password for the sec_master user is correct.

v Check the SystemOut.log file and search for the AMAS string to see if any error messages are present.

The server might fail to start after configuring JACC

If the server does not start after JACC is configured, check the following items:

v Ensure that WebSphere Application Server and Tivoli Access Manager use the same Lightweight

Directory Access Protocol (LDAP) server.

v If the message “Policy Director Authentication failed″ is displayed, ensure that the:

– WebSphere Application Server LDAP server ID is the same as the “Administrator user” in the Tivoli

Access Manager JACC configuration panel.

– Verify that the Tivoli Access Manager Administrator distinguished name (DN) is correct.

– Verify that the password of the Tivoli Access Manager administrator has not expired and is valid.

– Ensure that the account is valid for the Tivoli Access Manager administrator.

v If a message such as socket can’t be opened for xxxx (where xxxx is a number) is displayed, take

the following actions:

1. Go to the profile_root/etc/tam directory.

2. Change xxxx to an available port number in the amwas.commomconfig.properties file. If the node

failed to start, change xxx to an available port number in the amwas*cellName_nodeName_.properties

file. If the Application Server failed to start, change xxxx in the

amwas*cellname_nodeName_serverName.properties file.

Chapter 12. Troubleshooting security configurations 1291

The application might not deploy properly

When you click Save, the policy and role information is propagated to the Tivoli Access Manager policy.

This process might take some time to finish. If the save fails, you must uninstall the application and then

reinstall it.

To access an application after it is installed, you must wait 30 seconds, by default, to start the application

after you save.

The startServer command might fail after you configure Tivoli Access Manager or

a clean uninstall did not take place after unconfiguring JACC.

If the cleanup for JACC unconfiguration or start server fails after JACC is configured, take the following

actions:

v Remove Tivoli Access Manager properties files from WebSphere Application Server.

The following files must be removed.

profile_root/etc/pd/PolicyDirector/PDPerm.properties

profile_root/etc/pd/PolicyDirector/PdPerm.ks

profile_root/etc/tam/*

v Use a utility to clear the security configuration and return the system to the state it was in before you

configure the JACC provider for Tivoli Access Manager. The utility removes all of the

PDLoginModuleWrapper entries as well as the Tivoli Access Manager authorization table entry from the

security.xml file, effectively removing the JACC provider for Tivoli Access Manager. Backup the

security.xml file before running this utility.

Enter the following commands:

java -Djava.version=1.5 -classpath

"app_server_root/lib/AMJACCProvider.jar:CLASSPATH"

com.tivoli.pd.as.jacc.cfg.CleanSecXML fully_qualified_path/security.xml

An ″HPDIA0202w An unknown user name was presented to Access Manager″ error

might occur

You might encounter the following error message if you try to use an existing user in a Local Directory

Access Protocol (LDAP) user registry with Tivoli Access Manager:

AWXJR0008E Failed to create a PDPrincipal for principal mgr1.:

AWXJR0007E A Tivoli Access Manager exception was caught. Details are:

"HPDIA0202W An unknown user name was presented to Access Manager."

This problem might be caused by the host name exceeding predefined limits with Tivoli Access Manager

when it is configured against MS Active Directory. In WebSphere Application Server, the maximum length

of the host name can not exceed 46 characters.

Check that the host name is not fully qualified. Configure the machine so that the host name does not

include the host domain.

To correct this error, complete the following steps:

1. On the command line, type the following information to get a Tivoli Access Manager command prompt:

pdadmin -a administrator_name -p administrator_password

The pdadmin administrator_name prompt is displayed. For example:

pdadmin -a administrator1 -p passw0rd

2. At the pdadmin command prompt, import the user from the LDAP user registry to Tivoli Access

Manager by typing the following information:

user import user_name cn=user_name,o=organization_name,c=country

For example:

1292 Securing applications and their environment

user import jstar cn=jstar,o=ibm,c=us

After importing the user to Tivoli Access Manager, you must use the user modify command to set the user

account to valid. The following syntax shows how to use this command:

user modify user_name account-valid yes

For example:

user modify jstar account-valid yes

For information on how to import a group from LDAP to Tivoli Access Manager, see the Tivoli Access

Manager documentation.

An ″HPDAC0778E The specified user’s account is set to invalid″ error might occur

You might encounter the following error message after you import a user to Tivoli Access Manager and

restart the client:

AWXJR0008E Failed to create a PDPrincipal for principal mgr1.:

AWXJR0007E A Tivoli Access Manager exception was caught.

Details are: "HPDAC0778E The specified user’s account is set to invalid."

To correct this error, use the user modify command to set the user account to valid. The following syntax

shows how to use this command:

user modify user_name account-valid yes

For example:

user modify jstar account-valid yes

An ″HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL

entry″ error might occur

You might encounter an error similar to the following message when you propagate the security policy

information from the application to the provider using the wsadmin propagatePolicyToJACCProvider

command:

AWXJR0035E An error occurred while attempting to add member,

 cn=agent3,o=ibm,c=us, to role AgentRole

HPDJA0506E Invalid argument: Null or zero-length user name field for

 the ACL entry

To correct this error, create or import the user, that is mapped to the security role to the Tivoli Access

Manager. For more information on propagating the security policy information, see the documentation for

your authorization provider.

An WASX7017E: Exception received while running file

″InsuranceServicesSingle.jacl″ error might occur

After the JACC provider and Tivoli Access Manager are enabled, when attempting to install the application,

which is configured with security roles using the wsadmin command, the following error might occur:

WASX7017E: Exception received while running file "InsuranceServicesSingle.jacl";

exception information: com.ibm.ws.scripting.ScriptingException: WASX7111E:

Cannot find a match for supplied option:

"[RuleManager, , , cn=mgr3,o=ibm,c=us|cn=agent3,o=ibm,c=us, cn=ManagerGro

up,o=ibm,c=us|cn=AgentGroup,o=ibm,c=us]" for task "MapRolesToUsers

The $AdminApp MapRolesToUsers task option is no longer valid when Tivoli Access Manager is used as

the authorization server. To correct the error, change MapRolesToUsers to TAMMapRolesToUsers.

Access denied exceptions accessing applications when using JACC

In the case of Tivoli Access Manager, you might see the following error message.

Chapter 12. Troubleshooting security configurations 1293

AWXJR0044E: The access decision for Permission, {0}, was denied because either the

PolicyConfiguration or RoleConfiguration objects did not get created successfully at

application installation time. RoleConfiguration exists = {false}, PolicyConfiguration

exists = {false}."

If the access denied exceptions are not expected for the application, check the SystemOut.log files to see

if the security policy information was correctly propagated to the provider.

If the security policy information for the application is successfully propagated to the provider, the audit

statements with the message key SECJ0415I appear. However, if there was a problem propagating the

security policy information to the provider (for example: network problems, JACC provider is not available),

the SystemOut.log files contain the error message with the message keys SECJ0396E (during install) or

SECJ0398E (during modification). The installation of the application is not stopped due to a failure to

propagate the security policy to the JACC provider. Also, in the case of failure, no exception or error

messages appear during the save operation. When the problem causing this failure is fixed, run the

propagatePolicyToJaccProvider tool to propagate the security policy information to the provider without

reinstalling the application. For more information about this task, see the Propagating security policy of

installed applications to a JACC provider using wsadmin scripting topic in the Securing applications and

their environment PDF book.

Password decoding troubleshooting tips

If the password encoding is corrupted and you cannot decode a password, you can complete one of the

following tasks.

v If the password is contained in a server configuration file, edit the file and set the password to the clear

text value. After changing the value, restart the server.

v If the password is contained in the sas.client.props file or the soap.client.props file, edit the file and

set the password to the appropriate clear text value. After changing the value, use the

PropFilePasswordEncoder utility to encode the password. For more information on the

PropFilePasswordEncoder utility, see the“PropFilePasswordEncoder command reference” on page

1251.

The profile-specific setupCmdLine QShell script contains a property that you can use to obtain trace

information when using the OS400 algorithm with Java clients and administrative commands for

WebSphere Application Server. To obtain the trace, set the os400.security.password.debug property to

true. The trace is printed to standard output.

SPNEGO trust association interceptor (TAI) troubleshooting tips

(deprecated)

Presented here is a list of trouble shooting tips useful in diagnosing Simple and Protected GSS-API

Negotiation (SPNEGO) TAI problems and exceptions.

Note:

In WebSphere Application Server Version 6.1, a trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and

authenticate HTTP requests for secured resources was introduced. In WebSphere Application

Server 7.0, this function is now deprecated. SPNEGO Web authentication has taken its place to

provide dynamic reload of the SPNEGO filters and to enable fallback to the application login

method.

The IBM Java Generic Security Service (JGSS) and IBM Simple and Protected GSS-API Negotiation

(SPNEGO) providers use a Java virtual machine (JVM) custom property to control trace information. The

SPNEGO TAI uses the JRas facility to allow an administrator to trace only specific classes. The following

important trace specifications or JVM custom properties should be used to debug the TAI using tracing.

1294 Securing applications and their environment

Table 62. SPNEGO TAI trace specifications

Trace Use

com.ibm.security.jgss.debug Set this JVM Custom Property to all to trace through JGSS code.

Messages appear in the trace.log file, and SystemOut.log.

com.ibm.security.krb5.Krb5Debug Set this JVM Custom Property to all to trace through the

Kerberos5-specific JGSS code. Messages appear in the trace.log file, and

SystemOut.log.

com.ibm.ws.security.spnego.* Set this trace on using the administrative console > troubleshooting >

Logging and Tracing > server1 > Change Log Detail Levels >

com.ibm.ws.security.spnego.*. Messages appear in the trace.log file.

Problem: WebSphere Application Server and the Active Directory (AD) Domain

Controller’s time are not synchronized within 5 minutes.

 Symptom [2/24/06 13:12:46:093 CST] 00000060 Context 2 com.ibm.ws.security.spnego.Context

 begin GSSContext accepted

[2/24/06 13:12:46:093 CST] 00000060 Context E com.ibm.ws.security.spnego.Context

 begin

CWSPN0011E: An invalid SPNEGO token has been encountered while authenticating a

 HttpServletRequest:

0000: 60820160 06062b06 01050502 a1820154 `.. ̀ ..+.T

0010: 30820150 a0030a01 01a10b06 092a8648 0..P*.H

0020: 82f71201 0202a282 013a0482 01366082 :.. .6`.

0030: 01320609 2a864886 f7120102 0203007e .2.. *.H.~

0040: 82012130 82011da0 03020105 a1030201 ..!0

0050: 1ea41118 0f323030 36303232 34313931 200 6022 4191

0060: 3234365a a5050203 016b48a6 03020125 246ZkH. ...%

0070: a9161b14 57535345 432e4155 5354494e WSSE C.AU STIN

0080: 2e49424d 2e434f4d aa2d302b a0030201 .IBM .COM .-0+

0090: 00a12430 221b0448 5454501b 1a773230 ..$0 "..H TTP. .w20

00a0: 30337365 63646576 2e617573 74696e2e 03se cdev .aus tin.

00b0: 69626d2e 636f6dab 81aa1b81 a76f7267 ibm. com.org

00c0: 2e696574 662e6a67 73732e47 53534578 .iet f.jg ss.G SSEx

00d0: 63657074 696f6e2c 206d616a 6f722063 cept ion, maj or c

00e0: 6f64653a 2031302c 206d696e 6f722063 ode: 10, min or c

00f0: 6f64653a 2033370a 096d616a 6f722073 ode: 37. .maj or s

0100: 7472696e 673a2044 65666563 74697665 trin g: D efec tive

0110: 20746f6b 656e0a09 6d696e6f 72207374 tok en.. mino r st

0120: 72696e67 3a20436c 69656e74 2074696d ring : Cl ient tim

0130: 65204672 69646179 2c204665 62727561 e Fr iday , Fe brua

0140: 72792032 342c2032 30303620 61742031 ry 2 4, 2 006 at 1

0150: 3a31323a 34352050 4d20746f 6f20736b :12: 45 P M to o sk

0160: 65776564 ewed

User Action The preferred way to resolve this issue is to synchronize the WebSphere Application Server system time to

within 5 minutes of the AD server’s time. A best practice is to use a time server to keep all systems

synchronized. You can also add or adjust the clockskew parameter in the Kerberos configuration file.

Note: The default for the clockskew parameter is 300 seconds (or 5 minutes).

Problem: No factory available to create a name for mechanism 1.3.6.1.5.5.2.

 Problem Getting an exception: No factory available to create a name for mechanism 1.3.6.1.5.5.2. There is no factory

available to process the creation of a name for the specific mechanism.

Symptom [4/8/05 22:51:24:542 EDT] 5003e481 SystemOut O [JGSS_DBG_PROV] Provider

 IBMJGSSProvider version 1.01 does not support mech 1.3.6.1.5.5.2

[4/8/05 22:51:24:582 EDT] 5003e481 ServerCredent >

 com.ibm.ws.security.spnego.ServerCredential initialize ENTRY

SPNEGO014: Kerberos initialization Failure: org.ietf.jgss.GSSException, major code: 2,

 minor code: 0

 major string: Unsupported mechanism

 minor string: No factory available to create name for mechanism 1.3.6.1.5.5.2

 at com.ibm.security.jgss.i18n.I18NException.throwGSSException

 (I18NException.java:30)

 at com.ibm.security.jgss.GSSManagerImpl.a(GSSManagerImpl.java:36)

 at com.ibm.security.jgss.GSSCredentialImpl.add(GSSCredentialImpl.java:217)

 at com.ibm.security.jgss.GSSCredentialImpl.<init>(GSSCredentialImpl.java:264)

User Action Check the java.security file to ensure it contains the IBMSPNEGO security provider and that the provider is

defined correctly. The java.security file should contain a line similar to:

security.provider.6=com.ibm.security.jgss.mech.spnego.IBMSPNEGO

Chapter 12. Troubleshooting security configurations 1295

Problem: Getting an exception as the JGSS library is trying to process the

SPNEGO token.

 Symptom The following error is displayed as the JGSS library is trying to process the SPNEGO token.

Error authenticating request. Reporting to client

Major code = 11, Minor code = 31

org.ietf.jgss.GSSException, major code: 11, minor code: 31

 major string: General failure, unspecified at GSSAPI level

 minor string: Kerberos error while decoding and verifying token:

 com.ibm.security.krb5.internal.KrbException, status code: 31

 message: Integrity check on decrypted field failed

Description This exception is the result of encoding the ticket using one key and attempting to decode it using a different

key. There are number of possible reasons for this condition:

1. The Kerberos keytab file has not been copied to the server machine after it has been regenerated.

2. The Kerberos configuration points to the wrong Kerberos keytab file.

3. The Kerberos service principal name (SPN) has been defined to the Active Directory more than once. You

have another userid defined with the same SPN or defined with the same SPN with a port defined also. The

following example demonstrates how this condition can occur:

SAME SPN but different user ids

setspn -a HTTP/myHost.austin.ibm.com user1

 setspn -a HTTP/myHost.austin.ibm.com user2

SAME SPN and same user ids, one without a port number, one with a port number

setspn -a HTTP/myHost.austin.ibm.com user

 setspn -a HTTP/myHost.austin.ibm.com:9080 user

User Action If the problem is with the Kerberos keytab file, then regenerate the keytab file. If the problem is with multiple

SPN definitions, then remove the extra or conflicting SPN, confirm that the SPN is no longer registered with the

Active Directory, and then add the SPN. The Active Directory may need to be searched for other entries with

SPNs defined that clash with the SPN.

To confirm that the SPN is not registered, the command:

setspn –l userid

should return with the following response:

Cannot find account userid

Problem: Single sign-on is not occurring.

 Symptom When tracing is enabled, the following message appears:

[2/27/06 14:28:04:191 CST] 00000059 SpnegoHandler <

 com.ibm.ws.security.spnego.SpnegoHandler handleRequest: Received a

 non-SPNEGO Authorization Header RETURN

1296 Securing applications and their environment

Description The client is returning an NT LAN manager (NTLM) response to the authorize challenge, not a SPNEGO token.

This condition can be occur due to any of the following reasons:

v The client has not been configured properly.

v The client is not using a supported browser. For example, when using Microsoft Internet Explorer 5.5, SP1

responds with a non-SPNEGO authentication header.

v The user has not logged into the Active Directory domain, or into a trusted domain, or the client used does not

support integrated authentication with Windows – in this case, the SPNEGO TAI is working properly.

v The user is accessing a service defined on the same machine upon which the client is running (local host).

Microsoft Internet Explorer resolves the host name of the URL to http://localhostsomeURL instead of a fully

qualified name.

v The SPN is not found in the Active Directory. The SPN must be of the format HTTP/server.realm.com. The

command to add the SPN is

setspn –a HTTP/server.realm.com userid

v The Kerberos service principal name (SPN) has been defined to the Active Directory more than once. You

have either another user ID defined with the same SPN or another userid defined with the same SPN with a

port number defined. The following categories describe these conditions:

Same SPN but with differing user IDs

– setspn -a HTTP/myappserver.austin.ibm.com user1

– setspn -a HTTP/myappserver.austin.ibm.com user2

Same SPN and same user IDs, one with a port number defined

– setspn -a HTTP/myappserver.austin.ibm.com user3

– setspn -a HTTP/myappserver.austin.ibm.com:9080 user3

User Action If the SPN is defined incorrectly as HTTP/server.realm.com@REALM.COM with the addition of @REALM.COM, then

delete the user, redefine the user, and redefine the SPN.

If the problem is with the Kerberos keytab file, then regenerate the keytab file.

If the problem is with either category of multiple SPN definitions, then remove the extra or conflicting SPN,

confirm that the SPN is no longer registered with the Active Directory, and then add the SPN. You can search

the Active Directory for other SPN entries that are causing multiple SPN definitions. The following commands are

useful to determine multiple SPN definitions:

setspn ?L userid

Returns the message, cannot find account userid, if the SPN is not registered.

setspn -L

Displays the SPNs that exist.

Problem: Credential Delegation is not working.

 Symptom An invalid option is detected. When tracing is enabled, the following message is displayed:

com.ibm.security.krb5.KrbException, status code: 101 message: Invalid option in

ticket request

Description The Kerberos configuration file is not properly configured.

User Action Ensure that neither renewable, nor proxiable are set to true.

Problem: Unable to get SSO working using RC4-HMAC encryption.

 Symptom Examine the following message in the trace that you receive when trace is turned on:

com.ibm.security.krb5.internal.crypto.KrbCryptoException, status code: 0

 message: Checksum error; received checksum does not match computed checksum

Chapter 12. Troubleshooting security configurations 1297

Description RC4-HMAC encryption is not supported with a Microsoft Windows 2000 Kerberos key distribution center (KDC).

To confirm this condition, examine the trace and identify where the exception is thrown. The content of the

incoming ticket should be visible in the trace. Although the incoming ticket is encrypted, the SPN for the service

is readable. If a Microsoft Windows 2000 KDC is used and the system is configured to use RC4-HMAC, the

string representing the ticket for userid@REALM (instead of the expected HTTP/hostname.realm@REALM) is

displayed. For example, this is beginning of the ticket received from a Microsoft Windows 2000 KDC:

0000: 01 00 6e 82 04 7f 30 82 04 7b a0 03 02 01 05 a1 ..n...0.........

0010: 03 02 01 0e a2 07 03 05 00 20 00 00 00 a3 82 03

0020: a5 61 82 03 a1 30 82 03 9d a0 03 02 01 05 a1 0a .a...0..........

0030: 1b 08 45 50 46 44 2e 4e 45 54 a2 18 30 16 a0 03 ...REALM.COM.0..

0040: 02 01 01 a1 0f 30 0d 1b 0b 65 70 66 64 77 61 73 0...userid

0050: 75 6e 69 74 a3 82 03 6e 30 82 03 6a a0 03 02 01 .a.f...n0..j....

The realm is REALM.COM. The service name is userid. A correctly formed ticket for the same SPN is:

0000: 01 00 6e 82 04 56 30 82 04 52 a0 03 02 01 05 a1 ..n..V0..R......

0010: 03 02 01 0e a2 07 03 05 00 20 00 00 00 a3 82 03

0020: 82 61 82 03 7e 30 82 03 7a a0 03 02 01 05 a1 0a .a...0..z.......

0030: 1b 08 45 50 46 44 2e 4e 45 54 a2 2a 30 28 a0 03 ..REALM.COM.0...

0040: 02 01 02 a1 21 30 1f 1b 04 48 54 54 50 1b 17 75 0...HTTP..u

0050: 73 31 30 6b 65 70 66 77 61 73 73 30 31 2e 65 70 serid.realm.com.

0060: 66 64 2e 6e 65 74 a3 82 03 39 30 82 03 35 a0 03 ...n.....90..5..

User Action To correct the problem, either use the Single data encryption standard (DES) or use a Microsoft Windows 2003

Server for a KDC. Remember to regenerate the SPN, and the Kerberos keytab file.

Problem: User receives the following message when accessing a protected URL

through the SPNEGO SSO.

 Symptom Examine the following message:

Bad Request

Your browser sent a request that this server could not understand.

Size of request header field exceeds server limit.

Authorization: Negotiate YII......

Description This message is generated by the Apache/IBM HTTP Server. This server is indicating that the authorization

header returned by the user’s browser is too large. The long string that follows the word Negotiate (in the error

message above) is the SPNEGO token. This SPNEGO token is a wrapper of the Microsoft Windows Kerberos

token. Microsoft Windows includes the user’s PAC information in the Kerberos token. The more security groups

that the user belongs to, the more PAC information is inserted in the Kerberos token, and the larger the

SPNEGO becomes. IBM HTTP Server 2.0 (also Apache 2.0 and IBM HTTP Server 6.0) limit the size of any

acceptable HTTP header to be 8K. In Microsoft Windows domains having many groups, and with user

membership in many groups, the size of the user’s SPNEGO token may exceed the 8K limit.

User Action If possible, reduce the number of security groups the user is a member of. IBM HTTP Server 2.0.47 cumulative

fix PK01070 allows for HTTP header sizes up to and beyond the Microsoft limit of 12K. WebSphere Application

Server Version 6.0 users can obtain this fix in fixpack 6.0.0.2.

Note: Non-Apache based Web servers may require differing solutions.

Problem: Even with JGSS tracing disabled, some KRB_DBG_KDC messages

appear in the SystemOut.log.

 Symptom Examine the SystemOut.log and note the some KRB_DBG_KDC messages appear

there even with JGSS tracing disabled.

Description While most of the JGSS tracing is controlled by the com.ibm.security.jgss.debug

property, a small set of messages are controlled by the

com.ibm.security.krb5.Krb5Debug property. The com.ibm.security.krb5.Krb5Debug

property has a default value to put some messages to the SystemOut.log

User Action .To remove all KRB_DBG_KDC messages from the SystemOut.log, set the JVM

property as follows:

-Dcom.ibm.security.krb5.Krb5Debug=none

Problem: When an application contains a custom HTTP 401 error page, the

SPNEGO TAI-generated HTTP response page is not displayed in a browser.

 Symptom When an application contains a custom HTTP 401 error page, the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor

(TAI)-generated HTTP response page is not displayed in a browser.

1298 Securing applications and their environment

Description When an application contains a custom HTTP 401 error page, the SPNEGO

TAI-generated HTTP response page is not displayed in a browser. The custom HTTP

401 error page is displayed instead.

User Action You can customize your HTTP 401 page to include information concerning how to

configure your browser to use SPNEGO. For more information, see “Configuring the

client browser to use SPNEGO TAI (deprecated)” on page 317 and “SPNEGO TAI

custom properties configuration (deprecated)” on page 312.

Problem: HTTP Post parameters are lost during interaction with the SPNEGO TAI,

when stepping down to userid/password login.

 Symptom Note that HTTP Post parameters are lost during interaction with the SPNEGO TAI, when stepping down to

userid/password login.

″Stepping down to userid/password login″ means that the Microsoft Internet Explorer tries to respond initially with

a SPNEGO token. If this response is unsuccessful, then the Microsoft Internet Explorer tries to respond with a

NTLM token that is obtained through a userid/password challenge.

Description The Microsoft Internet Explorer maintains state during a user’s request. If a request was given the response of

an ″HTTP 401 Authenticate Negotiate″, and the browser responds with a NTLM token obtained through a

userid/password challenge, the browser resubmits the request. If this second request is given a response of an

HTML page containing a redirection to the same URL but with new arguments (via Javascript) then the browser

does not resubmit the POST parameters.

Note: To avoid this problem, it is critical to NOT perform the automatic redirection. If the user clicks on a link,

the problem does not occur.

Chapter 12. Troubleshooting security configurations 1299

User Action The browser responds to the Authenticate/Negotiate challenge with an NTLM token, not an SPNEGO token. The

SPNEGO TAI sees the NTLM, and returns back a HTTP 403 response, along with the HTML page. When the

browser runs the Javascript redirTimer function, any POST of GET parameters that were present on the original

request are lost.

By leveraging the SPN<id>.NTLMTokenReceivedPage property, an appropriate message page can be returned

to the user. The default message that is returned (in the absence of a user defined property) is:

"<html><head><title>An NTLM Token was Received.</title></head>"

 + "<body>Your browser configuration is correct, but you have not logged into

 a supported Windows Domain."

 + "<p>Please login to the application using the normal login page.</html>";

Using the SPN<id>.NTLMTokenReceivedPage property, you can customize the exact response. It is critical that

the returned HTML not perform a redirection.

When the SPNEGO TAI has been configured to use the shipped default HTTPHeaderFilter class as the

SPN<id>.filterClass, then the SPN<id>.filter can be used to allow the second request to flow directly to the

normal WebSphere Application Server security mechanism. In this way, the user experiences the normal

authentication mechanism.

An example of such a configuration follows showing the required SPNEGO TAI properties necessary and the

HTML file content.

****** SPNEGO TAI Property Name ****** ****** HTML File Content ******

com.ibm.ws.security.spnego.SPN1.hostName server.wasteched30.torolab.ibm.com

com.ibm.ws.security.spnego.SPN1.filterClass com.ibm.ws.security.spnego.HTTPHeaderFilter

com.ibm.ws.security.spnego.SPN1.filter request-url!=noSPNEGO

com.ibm.ws.security.spnego.SPN1.NTLMTokenReceivedPage File:///C:/temp/NTLM.html

Note: Observe that the filter property instructs the SPNEGO TAI to NOT intercept any HTTP request that

contains the string “noSPNEGO”.

Here is an example of a generating a helpful response.

<html>

<head>

<title>NTLM Authentication Received </title>

<script language="javascript">

 var purl=""+document.location;

if (purl.indexOf("noSPNEGO")<0) {

 if(purl.indexOf(’?’)>=0) purl+="&noSPNEGO";

 else purl+="?noSPNEGO";

 }

</script>

</head>

<body>

<p>An NTLM token was retrieved in response to the SPNEGO challenge. It is likely that

you are not logged into a Windows domain.

Click on the following link to get the requested website.

<script language="javascript">

 document.write("");

 document.write("Open the same page using the normal authentication

 mechanism.");

 document.write("
");

</script>

You will not automatically be redirected.

</body>

</html>

1300 Securing applications and their environment

Appendix. Directory conventions

References in product information to app_server_root, profile_root, and other directories infer specific

default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations - IBM i

These file paths are default locations. You can install the product and other components in any directory

where you have write access. You can create profiles in any valid directory where you have write access.

Multiple installations of WebSphere Application Server products or components require multiple locations.

app_client_root

The default installation root directory for the Java EE WebSphere Application Client is the

/QIBM/ProdData/WebSphere/AppClient/V7/client directory.

app_client_user_data_root

The default Java EE WebSphere Application Client user data root is the /QIBM/UserData/
WebSphere/AppClient/V7/client directory.

app_client_profile_root

The default Java EE WebSphere Application Client profile root is the /QIBM/UserData/WebSphere/
AppClient/V7/client/profiles/profile_name directory.

app_server_root

The default installation root directory for WebSphere Application Server - Express is the

/QIBM/ProdData/WebSphere/AppServer/V7/Express directory.

cip_app_server_root

The default installation root directory is the /QIBM/ProdData/WebSphere/AppServer/V7/Express/
cip/cip_uid directory for a customized installation package (CIP) produced by the Installation

Factory.

 A CIP is a WebSphere Application Server - Express product bundled with optional maintenance

packages, an optional configuration archive, one or more optional enterprise archive files, and

other optional files and scripts.

cip_profile_root

The default profile root directory is the /QIBM/UserData/WebSphere/AppServer/V7/Express/cip/
cip_uid/profiles/profile_name directory for a customized installation package (CIP) produced by the

Installation Factory.

cip_user_data_root

The default user data root directory is the /QIBM/UserData/WebSphere/AppServer/V7/Express/cip/
cip_uid directory for a customized installation package (CIP) produced by the Installation Factory.

if_root This directory represents the root directory of the IBM WebSphere Installation Factory. Because

you can download and unpack the Installation Factory to any directory on the file system to which

you have write access, this directory’s location varies by user. The Installation Factory is an

Eclipse-based tool which creates installation packages for installing WebSphere Application Server

in a reliable and repeatable way, tailored to your specific needs.

iip_root

This directory represents the root directory of an integrated installation package (IIP) produced by

the IBM WebSphere Installation Factory. Because you can create and save an IIP to any directory

on the file system to which you have write access, this directory’s location varies by user. An IIP is

an aggregated installation package created with the Installation Factory that can include one or

more generally available installation packages, one or more customized installation packages

(CIPs), and other user-specified files and directories.

© IBM Corporation 2005, 2007 1301

java_home

The following directories are the root directories for all supported Java Virtual Machines (JVMs).

 JVM Directory

Classic JVM /QIBM/ProdData/Java400/jdk6

32–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit

64–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

plugins_profile_root

The default Web server plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V7/
webserver/profiles/profile_name directory.

plugins_root

The default installation root directory for Web server plug-ins is the /QIBM/ProdData/WebSphere/
Plugins/V7/webserver directory.

plugins_user_data_root

The default Web server plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V7/
webserver directory.

product_library
product_lib

This is the product library for the installed product. The product library for each Version 7.0

installation on the system contains the program and service program objects (similar to .exe, .dll,

.so objects) for the installed product. The product library name is QWAS7x (where x is A, B, C,

and so on). The product library for the first WebSphere Application Server Version 7.0 product

installed on the system is QWAS7A. The app_server_root/properties/product.properties file contains

the value for the product library of the installation, was.install.library, and is located under the

app_server_root directory.

profile_root

The default directory for a profile named profile_name for WebSphere Application Server - Express

is the /QIBM/UserData/WebSphere/AppServer/V7/Express/profiles/profile_name directory.

shared_product_library

The shared product library, which contains all of the objects shared by all installations on the

system, is QWAS7. This library contains objects such as the product definition, the subsystem

description, the job description, and the job queue.

updi_root

The default installation root directory for the Update Installer for WebSphere Software is the

/QIBM/ProdData/WebSphere/UpdateInstaller/V7/updi directory.

user_data_root

The default user data directory for WebSphere Application Server - Express is the

/QIBM/UserData/WebSphere/AppServer/V7/Express directory.

 The profiles and profileRegistry subdirectories are created under this directory when you install the

product.

web_server_root

The default web server path is /www/web_server_name.

1302 Securing applications and their environment

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and verification of

operation in conjunction with other products, except those expressly designated by IBM, is the user’s

responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries,

in writing, to:

 IBM Director of Intellectual Property & Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 USA

© Copyright IBM Corp. 2008 1303

1304 Securing applications and their environment

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business

Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked

terms are marked on their first occurrence in this information with a trademark symbol (® or

™), these

symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law trademarks in other countries. For

a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site

(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2008 1305

http://www.ibm.com/legal/copytrade.shtml

	Contents
	How to send your comments
	Changes to serve you more quickly
	Chapter 1. Overview and new features for securing applications and their environment
	Security planning overview

	Chapter 2. Task overview: Securing resources
	Chapter 3. Setting up and enabling security
	Migrating, coexisting, and interoperating – Security considerations
	Interoperating with previous product versions
	Migrating custom user registries
	Migrating trust association interceptors
	Migrating Common Object Request Broker Architecture programmatic login to Java Authentication and Authorization Service (CORBA and JAAS)
	Migrating from the CustomLoginServlet class to servlet filters
	Migrating Java 2 security policy
	Migrating with Tivoli Access Manager for authentication enabled
	Migrating Java thin clients that use the password encoding algorithm

	Enabling security
	Administrative security
	Application security
	Java 2 security
	Java 2 security policy files
	Access control exception

	Enabling security for the realm
	Global security settings
	Specify extent of protection wizard settings
	Security custom properties
	Security custom property collection
	Security custom property settings

	Testing security after enabling it
	The Security Configuration Wizard

	Chapter 4. Configuring multiple security domains
	Multiple security domains
	Creating new multiple security domains
	Deleting multiple security domains
	Copying multiple security domains
	Configuring inbound trusted realms for multiple security domains
	Configure security domains
	Name
	Description
	Assigned Scopes
	Application Security:
	Enable application security
	Java 2 security:
	Use global security settings
	Customize for this domain
	
	Use Java 2 security to restrict application access to local resources
	Warn if applications are granted custom permissions
	Restrict access to resource authentication data
	User Realm:
	Trust Association:
	Interceptors
	Enable trust association
	SPNEGO Web Authentication:
	RMI/IIOP Security:
	CSIv2 inbound communications
	CSIv2 outbound communications
	JAAS Application logins
	Use global and domain-specific logins
	JAAS System Logins:
	System Logins
	JAAS J2C Authentication Data:
	Use global and domain-specific entries
	Authentication Mechanism Attributes:
	Authorization Provider:
	Custom properties
	Web Services Bindings

	External realm name
	External realm name

	Trust all realms
	Trust all realms (including those external to this cell)
	Trust realms as indicated below
	Add External Realm...

	Security domains collection
	Maximum rows
	Retain filter criteria
	Copy selected domain
	Copy global security

	Authentication cache settings
	Enable authentication cache
	Cache timeout:
	Initial cache size:
	Maximum cache size
	Use basic authentication cache keys (password one-way hashed):
	Use custom cache keys:

	Chapter 5. Authenticating users
	Selecting a registry or repository
	Standalone custom registries
	Configuring local operating system registries
	Local operating system settings
	Local operating system wizard settings

	Configuring Lightweight Directory Access Protocol user registries
	Standalone LDAP registry settings
	Standalone LDAP registry wizard settings
	Advanced Lightweight Directory Access Protocol user registry settings
	Configuring Lightweight Directory Access Protocol search filters
	Using specific directory servers as the LDAP server
	Adding users to the Lightweight Directory Access Protocol user registry
	Locating a user’s group memberships in Lightweight Directory Access Protocol
	Configuring multiple LDAP servers for user registry failover
	Testing an LDAP server for user registry failover
	Deleting LDAP endpoints using wsadmin
	Updating LDAP binding information

	Configuring standalone custom registries
	Standalone custom registry settings
	Standalone custom registry wizard settings
	FileRegistrySample.java file
	Developing the UserRegistry interface for using custom registries

	Managing the realm in a federated repository configuration
	Realm configuration settings
	Federated repositories limitations
	Changing the password for a repository under a federated repositories configuration
	Using a single built-in, file-based repository in a new configuration under Federated repositories
	Configuring a single built-in, file-based repository in a new configuration under federated repositories using wsadmin
	Changing a federated repository configuration to include a single built-in, file-based repository only
	Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under Federated repositories
	Changing a federated repository configuration to include a single, Lightweight Directory Access Protocol repository only
	Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository configuration
	Configuring a single built-in, file-based repository and one or more Lightweight Directory Access Protocol repositories in a federated repository configuration
	Manually configuring a Lightweight Directory Access Protocol repository in a federated repository configuration
	Configuring Lightweight Directory Access Protocol in a federated repository configuration
	Adding an external repository in a federated repository configuration
	Configuring a property extension repository in a federated repository configuration
	Configuring an entry mapping repository in a federated repository configuration
	Configuring supported entity types in a federated repository configuration
	Managing repositories in a federated repository configuration
	Increasing the performance of the federated repository configuration
	Using custom adapters for federated repositories
	Establishing custom adapters for federated repositories
	Configuring custom adapters for federated repositories using wsadmin
	Configuring Lightweight Directory Access Protocol entity types in a federated repository configuration
	Configuring group attribute definition settings in a federated repository configuration
	Configuring member attributes in a federated repository configuration
	Configuring dynamic member attributes in a federated repository configuration

	Local operating system registries
	Standalone Lightweight Directory Access Protocol registries
	Dynamic groups and nested group support
	Security failover among multiple LDAP servers

	Federated repositories

	Selecting an authentication mechanism
	Lightweight Third Party Authentication
	Lightweight Third Party Authentication key sets and key set groups

	Configuring the Lightweight Third Party Authentication mechanism
	Authentication mechanisms and expiration
	Generating Lightweight Third Party Authentication keys
	Exporting Lightweight Third Party Authentication keys
	Importing Lightweight Third Party Authentication keys
	Disabling automatic generation of Lightweight Third Party Authentication keys
	Managing LTPA keys from multiple WebSphere Application Server cells
	Changing the number of active LTPA keys

	Kerberos (KRB5) authentication mechanism support for security
	Configuring Kerberos as the authentication mechanism using the administrative console
	Kerberos authentication
	Creating a Kerberos configuration file
	Creating a Kerberos service principal and keytab file
	Mapping of a client Kerberos principal name to the WebSphere user registry ID

	Configuring a Java client for Kerberos authentication
	RSA token authentication mechanism
	Configuring the RSA token authentication mechanism
	RSA token authentication settings
	RSA token certificate use

	Simple WebSphere authentication mechanism (deprecated)
	Message layer authentication

	Trust associations
	Integrating third-party HTTP reverse proxy servers
	Trust association settings
	Enable trust association

	Trust association interceptor collection
	Interceptor class name

	Trust association interceptor settings
	Interceptor class name

	Single sign-on
	Single sign-on using LTPA cookies
	Enterprise Identity Mapping
	Global single sign-on principal mapping

	Implementing single sign-on to minimize Web user authentications
	Creating a single sign-on for HTTP requests using SPNEGO Web authentication
	Single sign-on for HTTP requests using SPNEGO Web authentication
	Enabling and configuring SPNEGO Web authentication using the administrative console
	Configuring the client browser to use SPNEGO
	Creating SPNEGO tokens for J2EE, .NET, Java, Web service clients for HTTP requests

	Creating a single sign-on for HTTP requests using the SPNEGO TAI (deprecated)
	Single sign-on for HTTP requests using SPNEGO TAI (deprecated)
	Creating a Kerberos service principal and keytab file that is used by the WebSphere Application Server SPNEGO TAI (deprecated)
	Configuring WebSphere Application Server and enabling the SPNEGO TAI (deprecated)
	Configuring the client browser to use SPNEGO TAI (deprecated)
	Configuring JVM custom properties, filtering HTTP requests, and enabling SPNEGO TAI in WebSphere Application Server (deprecated)
	Mapping Kerberos client principal name to WebSphere user registry ID for SPNEGO TAI (deprecated)
	Single sign-on capability with SPNEGO TAI - checklist (deprecated)
	Filtering HTTP requests for SPNEGO TAI (deprecated)

	Configuring single sign-on capability with Enterprise Identity Mapping
	Verifying Enterprise Identity Mapping identity token connection factory prerequisite applications
	Configuring Enterprise Identity Mapping
	Configuring the Enterprise Identity Mapping identity token connection factory
	Manually configuring the connection factory
	Automatically configuring the connection factory
	Deploying the Enterprise Identity Mapping sample application

	Configuring single sign-on capability with Tivoli Access Manager or WebSEAL
	Single sign-on settings
	com.tivoli.pd.jcfg.PDJrteCfg utility for Tivoli Access Manager single sign-on
	com.tivoli.pd.jcfg.SvrSslCfg utility for Tivoli Access Manager single sign-on
	Creating a trusted user account in Tivoli Access Manager
	Configuring WebSEAL for use with WebSphere Application Server
	Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Application Server
	Configuring single sign-on using trust association
	Configuring single sign-on using trust association interceptor ++
	Configuring global sign-on principal mapping

	Configuring administrative authentication
	Java Authentication and Authorization Service
	Java Authentication and Authorization Service authorization

	Using the Java Authentication and Authorization Service programming model for Web authentication
	Developing custom login modules for a system login configuration
	Customizing application login with Java Authentication and Authorization Service
	Developing programmatic logins with the Java Authentication and Authorization Service
	Programmatic login
	Configuring programmatic logins for Java Authentication and Authorization Service
	Customizing an application login to perform an identity assertion
	Customizing a server-side Java Authentication and Authorization Service authentication and login configuration
	Enabling identity assertion with trust validation

	Performing identity mapping for authorization across servers in different realms
	Configuring inbound identity mapping
	Example: Custom login module for inbound mapping

	Configuring outbound mapping to a different target realm
	Example: Using the WSLogin configuration to create a basic authentication subject
	Example: Sample login configuration for RMI_OUTBOUND

	Security attribute propagation
	Default authentication token

	Propagating security attributes among application servers
	Using the default authorization token
	Using the default propagation token
	Using the default single sign-on token with default or custom token factory

	Configuring the authentication cache
	Configuring Common Secure Interoperability Version 2 (CSIV2) inbound and outbound communication settings
	Configuring Common Secure Interoperability Version 2 inbound communications
	Common Secure Interoperability Version 2 inbound communications settings

	Configuring Common Secure Interoperability Version 2 outbound communications
	Configuring session management
	Common Secure Interoperability Version 2 outbound communications settings

	Configuring inbound transports
	Common Secure Interoperability Version 2 transport inbound settings
	Secure Authentication Service inbound transport settings

	Configuring outbound transports
	Common Secure Interoperability Version 2 outbound transport settings
	Secure Authentication Service outbound transport settings

	Configuring inbound messages
	Configuring outbound messages
	Common Secure Interoperability Version 2 and Security Authentication Service (SAS) client configuration
	Authentication protocol settings for a client configuration
	

	Example 1: Configuring basic authentication and identity assertion
	Example 2: Configuring basic authentication, identity assertion, and client certificates
	Example 3: Configuring client certificate authentication and RunAs system
	Example 4: Configuring TCP/IP transport using a virtual private network

	Authentication protocol for EJB security
	Authentication protocol support
	Common Secure Interoperability Version 2 features
	Identity assertion to the downstream server
	Identity assertions with trust validation
	Message layer authentication

	Chapter 6. Authorizing access to resources
	Authorization technology
	Administrative roles and naming service authorization
	Administrative roles for business level applications

	Role-based authorization
	Administrative roles
	Authorization providers
	JACC support in WebSphere Application Server
	JACC providers
	JACC policy context handlers
	JACC policy context identifiers (ContextID) format
	JACC policy propagation
	JACC registration of the provider implementation classes
	Role-based security with embedded Tivoli Access Manager
	Tivoli Access Manager integration as the JACC provider
	Tivoli Access Manager security for WebSphere Application Server
	Security Annotations

	Delegations

	Authorizing access to J2EE resources using Tivoli Access Manager
	Using the built-in authorization provider
	External authorization provider settings
	External Java Authorization Contract for Containers provider settings

	Enabling an external JACC provider
	Configuring the JACC provider for Tivoli Access Manager using the administrative console
	Administering security users and roles with Tivoli Access Manager
	Configuring Tivoli Access Manager groups
	Configuring additional authorization servers
	Logging Tivoli Access Manager security
	Interfaces that support JACC
	Enabling the JACC provider for Tivoli Access Manager
	Enabling embedded Tivoli Access Manager
	Disabling embedded Tivoli Access Manager client using the administrative console
	Forcing the unconfiguration of the Tivoli Access Manager JACC provider
	Propagating security policies and roles for previously deployed applications

	Authorizing access to administrative roles
	Administrative user roles settings and CORBA naming service user settings
	User (Administrative user roles)
	User (CORBA naming service users)
	Role (Administrative user roles)
	Role (CORBA naming service users)
	Login status (Administrative user roles)

	Administrative group roles and CORBA naming service groups
	Group (CORBA naming service groups)
	Role (CORBA naming service groups)
	Group (Administrative group roles)
	Role (Administrative group roles)

	Assigning users to naming roles
	Propagating administrative role changes to Tivoli Access Manager
	migrateEAR utility for Tivoli Access Manager
	Assigning users from a foreign realm to the admin-authz.xml

	Fine-grained administrative security
	New Administrative Authorization Group
	Name
	Resources

	Administrative Authorization Group collection
	Name
	New
	Delete

	Creating a fine-grained administrative authorization group using the administrative console
	Editing a fine-grained administrative authorization group using the administrative console
	Fine-grained administrative security in heterogeneous and single-server environments
	Example: Using fine-grained security

	Chapter 7. Securing communications
	Secure communications using Secure Sockets Layer
	Secure Sockets Layer configurations
	Trust manager control of X.509 certificate trust decisions
	Key manager control of X.509 certificate identities
	Example: Enabling certificate revocation checking with the default IbmPKIX trust manager

	Keystore configurations
	Dynamic outbound selection of Secure Sockets Layer configurations
	Central management of Secure Sockets Layer configurations
	Secure Sockets Layer node, application server, and cluster isolation
	Default chained certificate configuration
	Secure installation for client signer retrieval
	Certificate expiration monitoring

	Dynamic configuration updates
	Certificate management using iKeyman
	Certificate management
	Using the retrieveSigners command to enable server to server trust

	Creating a Secure Sockets Layer configuration
	SSL certificate and key management
	Configuration settings
	Use Federal Information Processing Standard (FIPS) algorithms
	Dynamically update the runtime when SSL configuration changes occur

	SSL configurations for selected scopes
	Name
	Direction
	SSL configuration
	Update certificate alias list
	Manage certificates
	Certificate alias in key store

	SSL configurations collection
	Name

	SSL configuration settings
	Name
	Trust store name
	Key store name
	Get certificate aliases
	Default server certificate alias
	Default client certificate alias
	Management scope

	Certificate authority (CA) client configuration
	Name
	Implementation class
	CA server host name
	Port
	User name
	Password
	Confirm password
	Number of times to poll
	Polling interval when requesting certificates
	Custom properties

	Certificate authority (CA) client configuration collections
	Name
	Implementation class
	Management Scope

	Create chained personal certificate
	Recovering deleted certificates
	Renewing a certificate
	Revoke a CA certificate
	Using a CA client to create a personal certificate to be used as the default personal certificate
	Create a CA certificate
	Developing the WSPKIClient interface for communicating with a certificate authority
	Creating a custom trust manager configuration
	Trust and key managers settings
	Trust managers collection
	Trust managers settings
	Example: Developing a custom trust manager for custom SSL trust decisions

	Creating a custom key manager
	Example: Developing a custom key manager for custom Secure Sockets Layer key selection

	Associating a Secure Sockets Layer configuration dynamically with an outbound protocol and remote secure endpoint
	Programmatically specifying an outbound SSL configuration using JSSEHelper API
	Associating Secure Sockets Layer configurations centrally with inbound and outbound scopes
	Selecting an SSL configuration alias directly from an endpoint configuration
	Enabling Secure Sockets Layer client authentication for a specific inbound endpoint
	Manage endpoint security configurations
	Dynamic inbound and outbound endpoint SSL configurations collection
	Dynamic outbound endpoint SSL configuration settings

	Quality of protection (QoP) settings
	Client authentication
	Protocol
	Predefined JSSE provider
	Select provider
	Custom JSSE provider
	Custom provider
	Cipher suite groups
	Update selected ciphers
	Selected ciphers
	Add
	Remove

	ssl.client.props client configuration file

	Create a CA client
	Delete a CA client
	View or modify a CA client
	Creating a keystore configuration for a preexisting keystore file
	Recreating the .kdb keystore internal password record
	Configuring a hardware cryptographic keystore
	Managing keystore configurations remotely
	Keystores and certificates collection
	Keystore usages
	Name
	Description
	Path

	Key store settings
	Name
	Description
	Management scope
	Path
	Control region user
	Servant region user
	Password [new keystore] | Change password [existing keystore]
	Confirm password
	Type
	Read only
	Remotely managed
	Initialize at startup
	Enable cryptographic operations on hardware device

	Key managers collection
	Name
	Class name
	Algorithm

	Key managers settings
	Name
	Standard
	Provider
	Algorithm
	Custom
	Class name

	Creating a self-signed certificate
	Replacing an existing self-signed certificate

	Creating a certificate authority request
	Certificate request settings
	File for certificate request
	Key label
	Key size
	Requested by
	Fingerprint (SHA Digest)
	Signature algorithm

	Personal certificates collection
	Alias
	Issued by
	Issued to
	Serial number
	Expiration

	Self-signed certificates settings
	Alias
	Version
	Key size
	Common name
	Serial number
	Validity period
	Organization
	Organization unit
	Locality
	State/Province
	Zip code
	Country or region
	Validity period
	Issued to
	Issued by
	Fingerprint (SHA Digest)
	Signature algorithm

	Personal certificate requests collection
	Key label
	Requested by

	Personal certificate requests settings
	File for certificate request
	Key label
	Key size
	Common name
	Organization
	Organizational unit
	Locality
	State or province
	Zip code
	Country or region

	Extract certificate request
	Key label
	File for certificate request

	Receiving a certificate issued by a certificate authority
	Export certificate to a keystore file or a managed keystore
	Import certificate from a key file or managed keystore
	Receive certificate from CA

	Replace a certificate
	Old certificate
	Replace with
	Delete old certificate after replacement
	Delete old signers

	Extracting a signer certificate from a personal certificate
	Extract certificate
	Certificate alias to extract
	Certificate file name
	Data type

	Extract signer certificate
	File name
	Data type

	Retrieving signers using the retrieveSigners utility at the client
	Changing the signer auto-exchange prompt at the client

	Retrieving signers from a remote SSL port
	Retrieve from port
	Host
	Port
	SSL configuration for outbound connection
	Alias
	Retrieved signer information
	Serial number
	Issued to
	Issued by
	Fingerprint (SHA Digest)
	Expiration

	Adding a signer certificate to a keystore
	Add signer certificate settings
	Alias
	File name
	Data type

	Signer certificates collection
	Alias
	Issued to
	Fingerprint (SHA digest)
	Expiration

	Signer certificate settings
	Alias
	Version
	Key size
	Serial number
	Validity period
	Issued to
	Issued by
	Fingerprint (SHA Digest)
	Signature algorithm

	Adding a signer certificate to the default signers keystore
	Exchanging signer certificates
	Keystores and certificates exchange signers
	[keystore] personal certificates
	[keystore] signers
	Add
	Remove

	Configuring certificate expiration monitoring
	Manage certificate expiration settings
	Start now
	Expiration notification threshold
	Enable checking
	Scheduled time of day to check for expired certificates
	Check by calendar
	Weekday
	Repeat interval
	Check by number of days
	Next start date
	Expiration check notification
	Automatically replace expiring self-signed certificates and chained certificates
	Delete expiring certificates and signers after replacement

	Notifications
	Notification name
	Message log
	Send E-mail
	List of E-mail Addresses

	Notifications settings
	Notification name
	Message log
	Email sent to notification list
	Email address to add
	Add
	Remove
	Outgoing mail (SMTP) server

	Key management for cryptographic uses
	Creating a key set configuration
	Active key history collection
	Key alias reference

	Add key alias reference settings
	Alias reference
	Password
	Confirm password

	Key sets collection
	Key set name
	Key store
	Key alias prefix name

	Key sets settings
	Key set name
	Key alias prefix name
	Key password
	Confirm password
	Key generator class name
	Maximum number of keys referenced
	Key store
	Generates key pair

	Creating a key set group configuration
	Example: Retrieving the generated keys from a key set group
	Example: Developing a key or key pair generation class for automated key generation
	Key set groups collection
	Key set group name
	Automatically generate keys

	Key set groups settings
	Key set group name
	Key sets
	Add
	Remove
	Automatically generate keys
	Scheduled time for generation
	Generate on a specific day
	Weekday
	Repeat interval
	Generate at an interval
	Next start date

	Chapter 8. Developing extensions to the WebSphere security infrastructure
	Developing standalone custom registries
	Creating a classes subdirectory in your profile for custom classes
	Example: Standalone custom registries
	Result.java file
	UserRegistry.java files

	Implementing custom password encryption
	Developing applications that use programmatic security
	Protecting system resources and APIs (Java 2 security)
	Using PolicyTool to edit policy files
	Configuring Java 2 security policy files
	Configuring static policy files

	Developing with programmatic security APIs for Web applications
	getRemoteUser and getAuthType methods
	Example: Using a programmatic security model for a Web application
	Web authentication settings

	Developing with programmatic APIs for EJB applications
	Example: Enterprise bean application code

	Customizing Web application login
	Example: Form login
	Developing servlet filters for form login processing
	Example: Using servlet filters to perform pre-login and post-login processing during form login
	Configuring servlet filters

	Secure transports with JSSE and JCE programming interfaces
	Configuring Federal Information Processing Standard Java Secure Socket Extension files
	Implementing tokens for security attribute propagation
	Implementing a custom propagation token
	Example: com.ibm.wsspi.security.token.PropagationToken implementation
	Example: Custom propagation token login module

	Implementing a custom authorization token
	Example: com.ibm.wsspi.security.token.AuthorizationToken implementation
	Example: custom AuthorizationToken login module

	Implementing a custom single sign-on token
	Example: A com.ibm.wsspi.security.token.SingleSignonToken implementation
	Example: A custom single sign-on token login module
	Example: An HTTP cookie retrieval

	Implementing a custom authentication token
	Example: A com.ibm.wsspi.security.token.AuthenticationToken implementation
	Example: A custom authentication token login module

	Propagating a custom Java serializable object

	Enabling a plugpoint for custom password encryption
	Plug point for custom password encryption

	Chapter 9. Auditing the security infrastructure
	Enabling the security auditing subsystem
	Security Auditing detail
	Enable security auditing
	Audit subsystem failure action
	Primary auditor user name
	Enable verbose auditing

	Context object fields

	Creating security auditing event type filters
	Auditable security events
	Event type filter settings
	Name
	Enabled
	Events to associate with an audit filter
	Event outcomes to associate with an audit filter

	Event type filters collection
	Name
	Enable
	Events and outcomes

	Example: Generic Event Interface
	Context objects for security auditing
	Context object fields

	Configuring security audit subsystem failure notifications
	Audit monitor collection
	Enable monitoring
	Monitor notification
	Notification name
	Message log
	Send E-mail
	List of e-mail addresses

	Audit notification settings
	Notification name
	Message log
	Send secure e-mails
	E-mail sent to the notification list
	E-mail address to add
	Outgoing mail (SMTP) server

	Configuring the default audit service providers for security auditing
	Audit service provider collection
	Name
	Type
	Event formatting module class name

	Audit service provider settings
	Name
	Third party emitter class name
	Audit file location
	Audit file size
	Maximum number of audit log files
	Event formatting module class name
	Selectable filters
	Enabled filters
	Custom properties

	Example: Base Generic Emitter Interface

	Configuring a third party audit service providers for security auditing
	Example: Base Generic Emitter Interface

	Configuring audit event factories for security auditing
	Audit event factory configuration collection
	Name
	Type
	Class name

	Audit event factory settings
	Name
	Type
	IBM audit event factory
	Third party audit event factory
	Class name
	Audit service provider
	Selectable filters
	Enabled filters
	Custom properties

	Example: Generic Event Factory Interface

	Protecting your security audit data
	Encrypting your security audit records
	Signing your security audit records
	Audit encryption keystores and certificates collection
	Name
	Path

	Audit record encryption configuration settings
	Enable encryption
	Audit keystore containing the encryption certificate
	Certificate in keystore
	Create a new certificate in the selected keystore

	Audit record signing configuration settings
	Enable signing
	Managed keystore containing the signing certificate
	Certificate in keystore
	Create a new certificate in the selected keystore

	Audit record keystore settings
	Name
	Path
	Password
	Confirm Password
	Type

	Using the audit reader
	Example: Audit Event Outcome Codes

	Chapter 10. Configuring security with scripting
	Enabling and disabling security using scripting
	Enabling and disabling Java 2 security using scripting
	Configuring multiple security domains using scripting
	Configuring security domains using scripting
	Configuring local operating system user registries using scripting
	Configuring custom user registries using scripting
	Configuring JAAS login modules using scripting
	Configuring Common Secure Interoperability authentication using scripting
	Configuring trust association using scripting
	Mapping resources to security domains using scripting
	Removing resources from security domains using scripting
	Removing security domains using scripting
	Removing user registries using scripting
	SecurityDomainCommands command group for the AdminTask object
	SecurityConfigurationCommands command group for the AdminTask object
	SecurityRealmInfoCommands command group for the AdminTask object
	NamingAuthzCommands command group for the AdminTask object
	Utility scripts

	Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility
	Securing communications using the wsadmin tool
	Creating an SSL configuration at the node scope using scripting
	Automating SSL configurations using scripting
	Updating default key store passwords using scripting
	Configuring certificate authority client objects using the wsadmin tool
	Administering certificate authority clients using the wsadmin tool
	Setting a certificate authority certificate as the default certificate using the wsadmin tool
	Creating certificate authority (CA) personal certificates using the wsadmin tool
	Revoking certificate authority personal certificates using the wsadmin tool
	CAClientCommands command group for the AdminTask object
	Creating self-signed certificates using scripting
	keyManagerCommands command group for the AdminTask object
	KeyStoreCommands command group for the AdminTask object
	SSLConfigCommands command group for the AdminTask object
	SSLConfigGroupCommands group for the AdminTask object
	TrustManagerCommands command group for the AdminTask object
	KeySetCommands command group for the AdminTask object
	KeyReferenceCommands command group for the AdminTask object
	KeySetGroupCommands command group for the AdminTask object
	DynamicSSLConfigSelections command group for the AdminTask object
	PersonalCertificateCommands command group for the AdminTask object
	WSCertExpMonitorCommands command group for the AdminTask object
	SignerCertificateCommands command group for the AdminTask object
	CertificateRequestCommands command group of the AdminTask object

	Enabling authentication in the file transfer service using scripting
	Propagating security policy of installed applications to a JACC provider using wsadmin scripting
	JACCUtilityCommands command group for the AdminTask object

	Configuring custom adapters for federated repositories using wsadmin
	Disabling embedded Tivoli Access Manager client using wsadmin
	Configuring security auditing using scripting
	Configuring audit service providers using scripting
	Configuring audit event factories using scripting
	Configuring auditable events using scripting
	Enabling security auditing using scripting
	Configuring security audit notifications using scripting
	Encrypting security audit data using scripting
	Signing security audit data using scripting
	AuditKeyStoreCommands command group for the AdminTask object
	AuditEmitterCommands for the AdminTask object
	AuditSigningCommands command group for the AdminTask object
	AuditEncryptionCommands command group for the AdminTask object
	AuditEventFactoryCommands for the AdminTask object
	AuditFilterCommands command group for the AdminTask object
	AuditNotificationCommands command group for the AdminTask object
	AuditPolicyCommands command group for the AdminTask object
	AuditEventFormatterCommands command group for the AdminTask object
	AuditReaderCommands command group for the AdminTask object

	SSLMigrationCommands command group for the AdminTask object
	IdMgrConfig command group for the AdminTask object
	IdMgrRepositoryConfig command group for the AdminTask object
	IdMgrRealmConfig command group for the AdminTask object
	WIMManagementCommands command group for the AdminTask object
	DescriptivePropCommands command group for the AdminTask object
	ManagementScopeCommands command group for the AdminTask object
	AuthorizationGroupCommands command group for the AdminTask object
	ChannelFrameworkManagement command group for the AdminTask object
	SpnegoTAICommands group for the AdminTask object (deprecated)
	The Kerberos configuration file
	SPNEGO Web authentication configuration commands
	SPNEGO Web authentication filter commands
	Kerberos authentication commands

	Chapter 11. Tuning, hardening, and maintaining
	Tuning security configurations
	Secure Sockets Layer performance tips
	Tuning security

	Hardening security configurations
	Securing passwords in files
	Password encoding and encryption
	Object and file security

	Encoding passwords in files
	Manually encoding passwords in properties files
	PropFilePasswordEncoder command reference
	Enabling the non-default OS/400 password encoding algorithm
	Changing encoding algorithm from OS400 to XOR
	Restoring or replacing damaged validation list objects

	Enabling custom password encryption
	Disabling custom password encryption

	Backing up security configuration files

	Chapter 12. Troubleshooting security configurations
	Security components troubleshooting tips
	Security configuration and enablement errors
	Security enablement followed by errors
	Access problems after enabling security
	Secure Sockets Layer errors
	Single sign-on configuration troubleshooting tips
	Enterprise Identity Mapping troubleshooting tips
	Security authorization provider troubleshooting tips
	Password decoding troubleshooting tips
	SPNEGO trust association interceptor (TAI) troubleshooting tips (deprecated)

	Appendix. Directory conventions
	Notices
	Trademarks and service marks

