
WebSphere® Application Server - Express for IBM i, Version 7.0

Developing and deploying applications

���

Note

Before using this information, be sure to read the general information under “Notices” on page 471.

Compilation date: September 16, 2008

© Copyright International Business Machines Corporation 2008.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . vii

Changes to serve you more quickly . ix

Chapter 1. Overview and new features for developing and deploying applications 1

Assembly tools . 1

Enterprise (Java EE) applications . 1

System applications . 2

Common deployment framework . 2

Business-level applications . 3

Assets . 5

EJB 3.0 deployment overview . 6

Service Data Objects: Resources for learning . 7

Chapter 2. Debugging applications . 9

Debugging components in the IBM Rational Application Developer for WebSphere 10

Chapter 3. Assembling applications . 11

Application assembly and enterprise applications . 12

Assembly tools . 13

Generating code for Web service deployment . 13

Assembling applications: Resources for learning . 14

Chapter 4. Class loading . 17

Class loaders . 17

Configuring class loaders of a server . 21

Class loader collection . 23

Class loader ID . 23

Class loader order . 23

Class loader settings . 23

Configuring application class loaders . 24

Configuring Web module class loaders . 25

Class loading: Resources for learning . 27

Chapter 5. Deploying and administering enterprise applications 29

Enterprise (Java EE) applications . 29

System applications . 30

Common deployment framework . 30

Installing enterprise application files . 31

Installable enterprise module versions . 32

Ways to install enterprise applications or modules 33

Installing enterprise application files with the console 36

Example: Installing an EAR file using the default bindings 60

Example: Installing a Web Services Sample with the console 61

Installing enterprise modules with JSR-88 . 63

Customizing modules using DConfigBeans . 64

Enterprise application collection . 65

Name . 66

Application Status . 66

Startup order . 67

Enterprise application settings . 67

Configuring enterprise application files . 68

Application bindings . 69

© Copyright IBM Corp. 2008 iii

Configuring application startup . 74

Configuring binary location and use . 76

Configuring the use of class loaders by an application 81

Manage modules settings . 85

Mapping modules to servers . 87

Mapping virtual hosts for Web modules . 88

Mapping properties for a custom login or trusted connection configuration 90

Viewing deployment descriptors . 91

Metadata for module settings . 93

Starting or stopping enterprise applications . 94

Disabling automatic starting of applications . 95

Target specific application status . 96

Exporting enterprise applications . 98

Exporting enterprise application files . 99

Exporting DDL files . 100

Updating enterprise application files . 100

Ways to update enterprise application files . 101

Updating enterprise applications with the console 103

Preparing for application update settings . 105

Hot deployment and dynamic reloading . 109

Uninstalling enterprise applications . 116

Removing enterprise files . 117

Deploying and administering applications: Resources for learning 118

Chapter 6. Managing applications through programming 121

Application management . 122

Accessing the application management function . 123

Installing an application through programming . 124

Starting an application through programming . 127

Uninstalling an application through programming . 128

Manipulating additional attributes for a deployed application 131

Sharing sessions for application management . 133

Updating an application through programming . 134

Adding to, updating, or deleting part of an application through programming 136

Editing applications . 138

Preparing a module and adding it to an existing application through programming 140

Preparing and updating a module through programming 143

Deleting a module through programming . 146

Adding a file through programming . 148

Updating a file through programming . 150

Deleting a file through programming . 153

Extending application management operations through programming 155

Chapter 7. Deploying and administering business-level applications 159

Business-level applications . 159

Assets . 162

Composition units . 162

Importing assets . 163

Upload asset settings . 165

Asset settings . 166

Managing assets . 169

Asset collection . 169

Updating assets . 170

Deleting assets . 173

Exporting assets . 173

Creating business-level applications . 174

iv Developing and deploying applications

Creating business-level applications with the console 175

Business-level application settings . 184

Composition unit settings . 186

Example: Creating a business-level application . 187

Starting business-level applications . 188

Stopping business-level applications . 189

Updating business-level applications . 189

Deleting business-level applications . 191

Chapter 8. Administering business-level applications using programming 193

Creating an empty business-level application using programming 195

Importing an asset using programming . 198

Adding a composition unit using programming . 203

Starting a business-level application using programming 210

Stopping a business-level application using programming 213

Checking the status of a business-level application using programming 216

Deleting a business-level application using programming 221

Deleting an asset using programming . 224

Deleting a composition unit using programming . 228

Exporting an asset using programming . 232

Listing assets using programming . 235

Listing composition units using programming . 239

Listing business-level applications using programming 243

Editing a composition unit using programming . 246

Editing an asset using programming . 252

Editing a business-level application using programming 256

Updating an asset using programming . 260

Viewing a composition unit using programming . 264

Viewing an asset using programming . 268

Viewing a business-level application using programming 271

Listing control operations using programming . 275

Chapter 9. Troubleshooting deployment . 281

Application deployment problems . 281

Application deployment troubleshooting tips . 285

A client program does not work . 286

Application startup errors . 287

Application startup problems . 291

Web resource is not displayed . 294

Application uninstallation problems . 296

Chapter 10. Adding logging and tracing to your application 297

Configuring Java logging using the administrative console 298

Java logging . 298

Log level settings . 299

Loggers . 301

Log handlers . 302

Log levels . 302

Log filters . 303

Log formatters . 303

Using loggers in an application . 304

HTTP error, FRCA, and NCSA access log settings 316

Logger.properties file for configuring logger settings 317

Example: Sample security policy for logging . 318

Configuring applications to use Jakarta Commons Logging 319

Jakarta Commons Logging . 320

Contents v

Configurations for the WebSphere Application Server logger 322

Programming with the JRas framework . 325

JRas logging toolkit . 326

JRas Extensions . 328

JRas messages and trace event types . 336

Instrumenting an application with JRas extensions 338

Logging Common Base Events in WebSphere Application Server 345

The Common Base Event in WebSphere Application Server 345

Logging with Common Base Event API and the Java logging API 358

java.util.logging -- Java logging programming interface 367

Logger.properties file . 368

Logging Common Base Events in WebSphere Application Server 369

Chapter 11. Securing Web services applications using the WSS APIs at the message level 371

Securing messages at the request generator using WSS APIs 374

Configuring encryption to protect message confidentiality using the WSS APIs 374

Configuring generator signing information to protect message integrity using the WSS APIs . . . 389

Attaching the generator token using WSS APIs to protect message authenticity 407

Securing messages at the response consumer using WSS APIs 418

Configuring decryption to protect message confidentiality using the WSS APIs 419

Verifying consumer signing information to protect message integrity using WSS APIs 432

Validating the consumer token to protect message authenticity 450

Configuring Web services security using the WSS APIs 459

Web services security APIs . 461

Web services security configuration considerations when using the WSS API 463

Encrypted SOAP headers . 464

Signature confirmation . 466

Appendix. Directory conventions . 469

Notices . 471

Trademarks and service marks . 473

vi Developing and deploying applications

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail

form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax

them to 919-254-5250.

Be sure to include the document name and number, the WebSphere Application Server version you are

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information

in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2008 vii

viii Developing and deploying applications

Changes to serve you more quickly

Print sections directly from the information center navigation

PDF books are provided as a convenience format for easy printing, reading, and offline use. The

information center is the official delivery format for IBM WebSphere Application Server documentation. If

you use the PDF books primarily for convenient printing, it is now easier to print various parts of the

information center as needed, quickly and directly from the information center navigation tree.

To print a section of the information center navigation:

1. Hover your cursor over an entry in the information center navigation until the Open Quick Menu icon

is displayed beside the entry.

2. Right-click the icon to display a menu for printing or searching your selected section of the navigation

tree.

3. If you select Print this topic and subtopics from the menu, the selected section is launched in a

separate browser window as one HTML file. The HTML file includes each of the topics in the section,

with a table of contents at the top.

4. Print the HTML file.

For performance reasons, the number of topics you can print at one time is limited. You are notified if your

selection contains too many topics. If the current limit is too restrictive, use the feedback link to suggest a

preferable limit. The feedback link is available at the end of most information center pages.

Under construction!

The Information Development Team for IBM WebSphere Application Server is changing its PDF book

delivery strategy to respond better to user needs. The intention is to deliver the content to you in PDF

format more frequently. During a temporary transition phase, you might experience broken links. During

the transition phase, expect the following link behavior:

v Links to Web addresses beginning with http:// work

v Links that refer to specific page numbers within the same PDF book work

v The remaining links will not work. You receive an error message when you click them

Thanks for your patience, in the short term, to facilitate the transition to more frequent PDF book updates.

© Copyright IBM Corp. 2008 ix

x Developing and deploying applications

Chapter 1. Overview and new features for developing and

deploying applications

Use the links provided in this topic to learn more about developing applications for deployment on this

product.

What is new for developers

 This topic provides an overview of new and changed features of the programming model and

application serving environment as it pertains to development and test efforts.

Learn about WebSphere applications: Overview and new features

 This topic provides an overview of the programming model.

Accessing the Samples (Samples Gallery)

 The Samples are a good way to become familiar with the programming model.

Assembly tools

WebSphere® Application Server supports assembly tools that you can use to develop, assemble, and

deploy Java™ Platform, Enterprise Edition (Java EE) modules.

The IBM® Rational® Application Developer for WebSphere Software product provides supported assembly

tools.

Although this information center refers to Rational developer products as the assembly tools, you can use

the products to do more than assemble modules. Rational Application Developer is an integrated

development environment that provides development, testing, assembly and deployment capabilities.

Rational Application Developer provides extensive online documentation. Topics on application assembly in

this information center supplement that documentation, focusing on assembling Java EE modules using

the Java EE Perspective of the assembly tools.

Rational Application Developer is available in the WebSphere Application Server disc package with two

licenses. The license for assembly and deployment capabilities does not expire. The license for

development and other capabilities is available on a Trial basis and is only available for a limited time.

The Trial download for Rational Application Developer is available at http://www.ibm.com/developerworks/
downloads/r/rad/.

Note: The assembly tools run on Windows® and Linux® Intel® platforms. Users of WebSphere Application

Server on all platforms must assemble their modules using an assembly tool installed on Windows

or Linux Intel platforms. To install an assembly tool, follow instructions available with the tool.

Enterprise (Java EE) applications

Enterprise applications (or Java EE applications) are applications that conform to the Java Platform,

Enterprise Edition (Java EE) specification. Prior to Java EE 5, the specification name was Java 2 Platform,

Enterprise Edition (J2EE). The term Java EE includes Java EE 5 and J2EE specifications.

Enterprise applications can consist of the following:

v Zero or more EJB modules (packaged in JAR files)

v Zero or more Web modules (packaged in WAR files)

v Zero or more connector modules (packaged in RAR files)

v Zero or more Session Initiation Protocol (SIP) modules (packaged in SAR files)

v Zero or more application client modules

© IBM Corporation 2003 1

v Additional JAR files containing dependent classes or other components required by the application

v Any combination of the above

A Java EE application is represented by, and packaged in, an enterprise archive (EAR) file.

System applications

A system application is a Java Platform, Enterprise Edition (Java EE) enterprise application that is central

to a WebSphere Application Server product.

Examples of system applications include isclite, managementEJB and filetransfer.

Because a system application is an important part of a WebSphere Application Server product, a system

application is deployed when the product is installed and is updated only through a product fix or upgrade.

For some system applications, such as filetransfer, users cannot change the metadata for the system

application, unless the metadata assigns users and groups for security purposes. For these applications,

non-security related metadata such as its Java EE bindings or extensions must be updated through a

product fix or upgrade.

System applications are not shown in the list of installed applications on the console Enterprise

Applications page, or through wsadmin and Java application programming interfaces, to prevent users

from accidentally stopping, updating or removing the system applications.

Note that Java EE Samples are not system applications even though they are provided as part of a

WebSphere Application Server product. Similarly, applications that support changes to their metadata are

not system applications.

Common deployment framework

The common deployment framework enables you to implement plug-ins that add steps to default Java

Platform, Enterprise Edition (Java EE) application management operations such as install, uninstall, edit

and update.

Using the framework, you can implement management operations on specific types of deployable

contents. For example, the deployable contents might include EAR, WAR, JAR or other Java EE modules

and the management operations might include install and uninstall. Each operation is divided into a

number of steps. For example, the install operation has steps for EJBDeploy and JavaServer Pages (JSP)

compilation, among others. Using the common deployment framework, you can add steps to the default

logic for Java EE operations.

The product supports framework plug-ins that extend deployment of EAR files. An EAR file has operations

such as createEarWrapper, installApplication, uninstallApplication and editApplication. Using a framework

plug-in, you can add steps to default install operations that support, for example, creating additional

configuration artifacts in a configuration session, modifying an input EAR file using code generation, or

additional validating of input parameters.

To extend application management operations using the framework, a plug-in must do the following:

v Implement each step.

A step runs logic that performs an operation. A step can access the deployment context and the

deployable object. The deployment context provides information such as the operation name, the

configuration session identifier, the temporary location for creating temporary files, operations

parameters, and the like. A step is added by the extension provider.

v Implement an extension provider that adds each implemented step.

An extension provider is a class that provides steps for an operation on a given type, the EAR file type.

v Register the plug-in with a WebSphere Application Server server.

2 Developing and deploying applications

The plug-in is implemented as an Eclipse plug-in and is placed in app_server_root/plugins directory.

Add the extension point for the extension provider in the META-INF/plugin.xml file within the plug-in JAR

file.

For an example of these steps, refer to “Extending application management operations through

programming” on page 155.

Business-level applications

A business-level application is an administration model that provides the entire definition of an application

as it makes sense to the business. A business-level application is a WebSphere configuration artifact,

similar to a server or cluster, that is stored in the product configuration repository.

v Business-level application characteristics

v Comparisons to Java EE applications

Business-level application characteristics

A business-level application has the following characteristics:

v A business-level application is an administration model of the definition of an enterprise-level application

that consists of WebSphere and non-WebSphere artifacts. The business-level application might not

explicitly manage the lifecycle of every artifact. It is a model for defining an application.

v A business-level application does not represent or contain application binary files. It is a configuration

that lists one or more composition units, which represent the application binary files. A business-level

application uses the binary files to run the application business logic. Administration of binary files is

separate from administration of the application definition.

v A business-level application supports recursive composition by reference that facilitates hierarchical

assembly of business-level applications and individual deployed artifacts within or outside a WebSphere

product. The composition at its lowest level consists of configured instances of application binary files

that run in a specific runtime environment such as an application server. Installable packages or

archives, such as Java archives (JAR) or enterprise archive (EAR) files, typically deliver the business

logic that these configured instances represent to corresponding runtime platforms.

The following diagram shows the composition model for business-level applications:

Composition
Application

EJB
module

Configuration

Library Web
module

Enterprise
application

Business Logic

EJB JAR

Java
library

WAR EAR

Application
Application

A business-level application does not introduce new programming, runtime, or packaging models:

Chapter 1. Overview and new features: Developing and deploying 3

v You do not need to change your application business logic. The business-level application function does

not introduce new application programming interfaces (APIs).

v You do not need to change your application runtime settings. The product supports all of the runtime

characteristics, such as security, class loading and isolation, required by individual programming models

to which business components are written.

v You do not need to change your application packaging. There is no specific unique packaging model

that provides a business-level application definition.

Typically, you first create an empty business-level application and then add composition units to it. The

business-level application name must be unique within a cell. The business level application itself has

minimal configuration data associated with it, solely the list of composition units, but individual composition

units might save application-specific configuration data.

A business-level application is defined in the product configuration repository under app_server_root/cells/
cell_name/blas/business_level_application_name/bver/BASE/bla.xml.

Comparisons to Java EE applications

Business-level applications can consist of or aggregate Java Platform, Enterprise Edition (Java EE)

applications and modules with non-Java EE artifacts. The contents of Java EE applications integrate with

business-level application concepts for deployment and management of applications. Existing Java EE

application management APIs continue to work after you add Java EE application or modules to a

business-level application. The business-level application management API accepts Java EE contents and

configurations and delegates to existing Java EE management APIs. Control operations such as starting

and stopping a Java EE composition unit are delegated to ApplicationManager MBean on application

servers that start and stop Java EE applications.

 Table 1. Java EE concepts compared to business-level application concepts

Java EE concept

Business-level application

concept Description

EAR or stand-alone

module for

deployment

Asset Java EE application contents are assets.

Java EE application

created at the end of

application install

Composition unit A Java EE application is in an enterprise archive (EAR)

file. The product saves the EAR file in the product

repository as a composition unit.

Java EE modules

within the EAR file

Deployable units in the asset Each module in the EAR file is a deployable unit that you

can install on independent deployment targets. The EAR

file is still managed as a single asset in its entirety.

4 Developing and deploying applications

Table 1. Java EE concepts compared to business-level application concepts (continued)

Java EE concept

Business-level application

concept Description

Java EE application

installation using the

administrative

console,

programming, or

wsadmin commands

Multiple business-level

application management

commands

During Java EE application

deployment, you can specify the

name of the business-level

application to include the Java

EE application. If the

business-level application name

is not set, the product creates a

default business-level

application with the same name

as the Java EE application

name. The product adds a

composition unit with the same

name as the Java EE

application name under the

business-level application. You

can deploy multiple Java EE

applications under a single

business-level application.

You can make a Java EE application a business-level

application and add it to another business-level application:

1. Install the Java EE application (EAR file) using the

enterprise application installation console wizard,

programming, or wsadmin. Keep the default selection

to create a business-level application that has the

same name as the Java EE application.

2. Create an empty business-level application.

3. Add the EAR file business-level application to the

empty business-level application. The EAR file

business-level application is a composition unit of the

containing business-level application.

Or, you can make a Java EE application an asset and add

it to another business-level application:

1. Import an EAR file as an asset. It has an asset type

aspect of Java EE ear.

2. Create an empty business-level application.

3. Add the Java EE application asset to the business-level

application. The EAR file asset is a composition unit of

the containing business-level application.

4. Collect targets for each deployable unit (Java EE

module).

Uninstall Java EE

application

Multiple business-level

application management

commands

You delete the Java EE application composition unit from

the business-level application:

1. Remove the composition unit for the Java EE

application from the business-level application.

2. If the EAR file is an asset, delete the asset.

Start the Java EE

application.

Start the composition unit. Starting a business-level application starts any Java EE

application in it.

Stop the Java EE

application.

Stop the composition unit. Stopping a business-level application stops any Java EE

application in it.

Assets

An asset represents one or more application binary files that are stored in an asset repository. Typical

assets include application business logic such as Java Platform, Enterprise Edition (Java EE) archives,

library files, and other resource files.

An asset repository stores the binary files for the asset. The product configuration repository provides a

default asset repository.

Assets in the configuration repository are managed by the product management domain. The configuration

repository stores asset binary files in app_server_root/config/cells/cell_name/assets/asset_name/aver/
BASE/bin/.

An asset name must be unique within a cell, the product administrative domain.

The product creates an asset.xml file when an asset is registered with the product configuration. The file

contains information about the asset such as its name, destination location, and dependencies on other

assets.

Chapter 1. Overview and new features: Developing and deploying 5

You must register files as assets before you can add them to one or more business-level applications. At

the time of asset registration, you can import the physical application files into the product configuration

repository or you can specify an external location where the asset resides.

EJB 3.0 deployment overview

Learn about the Enterprise JavaBeans (EJB) 3.0 deployment model, including to Just-In-Time (JIT)

deployment.

All Java Platform, Enterprise Edition (Java EE) application server products have some form of EJB

deployment phase where your application is customized to run in that particular application server

implementation. Typically, this is accomplished by an application server-specific deployment tool, which

generates code to bridge your EJB interface and implementation code to the application server’s EJB

container implementation. Some application server products’ deploy tools alter the bytecodes of your

application classes rather than using code generation, but the end result is similar.

In WebSphere Application Server, the bridging is accomplished by generating code that wraps your EJB

implementation classes, connecting them to the product EJB container, which in turn allows the EJB

container to host your enterprise beans and provide services to them. If one or more of your enterprise

beans has defined remote interfaces, additional code is generated to provide the remote function.

Historically, EJB deployment in the WebSphere product has been performed by the EJBDeploy tool that is

included with product and packaged with WebSphere product-oriented development tools.

The EJBDeploy tool introspects your EJB external interfaces, generates the wrapper code as .java files,

then compiles it using the javac compiler to produce .class files, which are then packaged in your EJB

module with your application code. The EJBDeploy tool also runs the rmic tool against the remote EJB

interfaces in the application, producing additional stub and tie class files that interact with the Remote

Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) Object Request Broker (ORB), providing

remote object support. Typically, you run the EJBDeploy tool either when you install the application on the

product or sometime before you install the application from the command-line tool or within a development

tool.

Just-In-Time deployment

The EJB 3.0 support in WebSphere Application Server adds a new feature called Just-In-Time

Deployment. With Just-In-Time Deployment, the EJB container dynamically generates the wrapper, stub,

and tie classes in-memory as needed when the application is running. Additionally, the Web container and

application client containers dynamically generate the stub class required for remote EJB invocations.

Effectively, this means that you do not need to process EJB 3.0 modules, Web modules that invoke EJB

3.0 beans, or client modules that invoke EJB 3.0 beans, through the EJBDeploy tool prior to running them

in WebSphere.

createEJBStubs tool

Even though the Just-In-Time Deployment feature, in many cases, dynamically generates the RMI-IIOP

stub classes that are required for invocation of remote EJB interfaces, there remain some cases where

these stub classes are not dynamically generated. For EJB 3.0 clients not running inside a Web container,

EJB container, or client container, that is upgraded to EJB 3.0 level, you must generate the stub classes

with the createEJBStubs tool, then make the generated stubs available in the client environment’s

classpath. Typically you would accomplish this by copying the generated stubs to the location where the

client’s business interface class resides.

To summarize, the createEJBStubs tool must be used to generate client-side stubs for the following

environments:

6 Developing and deploying applications

v ″Bare″ Java Standard Edition (SE) clients, where a Java SE Java Virtual Machine (JVM) is the client

environment.

v WebSphere Application Server container environments prior to Version 7 that do not have the Feature

Pack for EJB 3.0 applied.

v Non-WebSphere Application Server environments.

For more information about packaging your EJB module, see the topic, ″EJB 3.0 module packaging

overview.″

Service Data Objects: Resources for learning

Use the following links to find relevant supplemental information about the service data object and various

other functions that can be used with it. The information resides on IBM and non-IBM Internet sites, whose

sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to this product but is useful

all or in part for understanding the product. When possible, links are provided to technical papers and

Redbooks® that supplement the broad coverage of the release documentation with in-depth examinations

of particular product areas.

Service Data Objects

For an introduction to Service Data Objects, refer to:

v Introduction to Service Data Objects

For an overview of the Service Data Objects specification, refer to:

v Service Data Objects

A good place to start to learn about the Eclipse Modeling Framework is:

v EMF Eclipse Modeling Framework

Information about XSD to SDO/EMF mapping for Version 6 can be found at:

v XML Schema to Ecore Mapping

Web application presentation layer technologies

For a brief overview of JavaServer Faces, refer to:

v Java Sun J2EE 1.4 tutorial

Good places to start to learn about JavaServer Pages Standard Tag Library are:

v JavaServer Pages Standard Tag Library

v A JSTL primer, Part 1: The expression language

Chapter 1. Overview and new features: Developing and deploying 7

http://www-106.ibm.com/developerworks/java/library/j-sdo/
http://www.ibm.com/developerworks/library/specification/ws-sdo/
http://www.eclipse.org/emf/
http://dev.eclipse.org/viewcvs/indextools.cgi/%7Echeckout%7E/emf-home/docs/overviews/XMLSchemaToEcoreMapping.pdf
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/products/jsp/jstl/index.jsp
http://www-106.ibm.com/developerworks/java/library/j-jstl0211.html

8 Developing and deploying applications

Chapter 2. Debugging applications

To debug your application, you must use a development environment like the IBM Rational Application

Developer for WebSphere to create a Java project. You must then import the program that you want to

debug into the project.

About this task

By following the steps below, you can import the WebSphere Application Server examples into a Java

project. Two debugging styles are available:

v Step-by-step debugging mode prompts you whenever the server calls a method on a Web object. A

dialog lets you step into the method or skip it. In the dialog, you can turn off step-by-step mode when

you are finished using it.

v Breakpoints debugging mode lets you debug specific parts of programs. Add breakpoints to the part of

the code that you must debug and run the program until one of the breakpoints is encountered.

Breakpoints actually work with both styles of debugging. Step-by-step mode just lets you see which Web

objects are being called without having to set up breakpoints ahead of time.

You do not need to import an entire program into your project. However, if you do not import all of your

program into the project, some of the source might not compile. You can still debug the project. Most

features of the debugger work, including breakpoints, stepping, and viewing and modifying variables. You

must import any source that you want to set breakpoints in.

The inspect and display features in the source view do not work if the source has build errors. These

features let you select an expression in the source view and evaluate it.

 1. Create a Java Project by opening the New Project dialog.

 2. Select Java from the left side of the dialog and Java Project in the right side of the dialog.

 3. Click Next and specify a name for the project, for example, WASExamples.

 4. Click Finish to create the project.

 5. Select the new project, choose File > Import > File System, then Next to open the import file

system dialog.

 6. Browse the directory for files.

Go to the following directory: profile_root/installedApps/node_name/DefaultApplication.ear/
DefaultWebApplication.war.

 7. Select DefaultWebApplication.war in the left side of the Import dialog and then click Finish. This

imports the JavaServer Pages files and Java source for the examples into your project.

 8. Add any JAR files needed to build to the Java Build Path.

Select Properties from the right-click menu. Choose the Java Build Path node and then select the

Libraries tab. Click Add External JARs to add the following JAR files:

v profile_root/installedApps/node_name/DefaultApplication.ear/Increment.jar.

When you have added this JAR file, select it and use the Attach Source function to attach the

Increment.jar file because it contains both the source and class files.

v app_server_root/lib/j2ee.jar

v app_server_root/plugins//com.ibm.ws.runtime.jar

v app_server_root/plugins/com.ibm.ws.webcontainer.jar

Click OK when you have added all of the JARs.

 9. You can set some breakpoints in the source at this time if you like, however, it is not necessary as

step-by-step mode will prompt you whenever the server calls a method on a Web object.

Step-by-step mode is explained in more detail below.

© Copyright IBM Corp. 2008 9

10. To start debugging, you need to start the WebSphere Application Server in debug mode and make

note of the JVM debug port. The default value of the JVM debug port is 7777.

11. When the server is started, switch to the debug perspective by selecting Window > Open

Perspective > Debug. You can also enable the debug launch in the Java Perspective by choosing

Window > Customize Perspective and selecting the Debug and Launch checkboxes in the Other

category.

12. Select the workbench toolbar Debug pushbutton and then select WebSphere Application Server

Debug from the list of launch configurations. Click the New pushbutton to create a new configuration.

13. Give your configuration a name and select the project to debug (your new WASExamples project).

Change the port number if you did not start the server on the default port (7777).

14. Click Debug to start debugging.

15. Load one of the examples in your browser. For example: http://your.server.name:9080/hitcount

What to do next

To learn more about debugging, launch the The IBM Rational Application Developer for WebSphere, select

Help > Help Contents and choose the Debugger Guide bookshelf entry. To learn about known

limitations and problems that are associated with the IBM Rational Application Developer for WebSphere,

see the IBM Rational Application Developer for WebSphere release notes. For current information

available from IBM Support on known problems and their resolution, see the IBM Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the Must gather documents page for information to gather to send to IBM

Support.

Debugging components in the IBM Rational Application Developer for

WebSphere

The IBM Rational Application Developer for WebSphere, included with the WebSphere Application Server

on a separately-installable CD, includes debugging functionality that is built on the Eclipse workbench.

Documentation for the IBM Rational Application Developer for WebSphere is provided with that product. To

learn more about the debug components, launch the IBM Rational Application Developer for WebSphere,

select Help > Help Contents and choose the Developing > Debugging applications bookshelf entries.

The IBM Rational Application Developer for WebSpheret includes the following:

The WebSphere Application Server debug adapter

which allows you to debug Web objects that are running on WebSphere Application Server and

that you have launched in a browser. These objects include enterprise beans, JavaServer Pages

files, and servlets.

The JavaScript™ debug adapter

which enables server-side JavaScript debugging.

The Compiled language debugger

which allows you to detect and diagnose errors in compiled-language applications.

The Java development tools (JDT) debugger

which allows you to debug Java code.

All of the debug components in the IBM Rational Application Developer for WebSphere can be used for

debugging locally and for remote debugging. To learn more about the debug components, launch the IBM

Rational Application Developer for WebSphere, select Help > Help Contents and choose the Developing

> Debugging applications bookshelf entries.

10 Developing and deploying applications

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather

Chapter 3. Assembling applications

Application assembly consists of creating Java Platform, Enterprise Edition (Java EE) modules that can be

deployed onto application servers. The modules are created from code artifacts such as Web application

archives (WAR files), resource adapter archives (RAR files), enterprise bean (EJB) JAR files, and

application client archives (JAR files). This packaging and configuring of code artifacts into enterprise

application modules (EAR files) or stand-alone Web modules is necessary for deploying the modules onto

an application server.

Before you begin

This topic assumes that you have developed code artifacts that you want to deploy onto an application

server and have unit tested the code artifacts in your favorite integrated development environment. Code

artifacts that you might assemble into deployable Java EE modules include the following:

v Enterprise beans

v Servlets, JavaServer Pages (JSP) files and other Web components

v Resource adapter (connector) implementations

v Application clients

v Session Initiation Protocol (SIP) modules (SAR files)

v Other supporting classes and files

To assemble your code artifacts into deployable Java EE modules, you can use a supported assembly

tool. The product supports IBM Rational Application Developer for WebSphere Software for developing,

assembling, and deploying Java EE modules.

About this task

You assemble code artifacts into Java EE modules in order to deploy the code artifacts onto an application

server. When you assemble code artifacts, you package and configure the code artifacts into deployable

Java EE applications and modules, edit annotations or deployment descriptors, and map databases as

needed. Unless you assemble your code artifacts into Java EE modules, you cannot run them successfully

on an application server.

This topic describes how to assemble Java EE code artifacts into deployable modules using an assembly

tool. Alternatively, you can use a rapid deployment tool to quickly assemble and deploy Java 2 Platform,

Enterprise Edition (J2EE) 1.3 or 1.4 code artifacts. Refer to ″Rapid deployment of J2EE applications″ for

details.

1. Start an assembly tool.

2. Optional: Read the online documentation for the assembly tool.

3. Configure the assembly tool for work on Java EE modules.

4. Migrate J2EE 1.4 or earlier projects or code artifacts created with the Application Server Toolkit,

Assembly Toolkit, Application Assembly Tool (AAT) or a different tool.

To migrate files, use the Migration wizard or import the files to the assembly tool.

5. Create an enterprise application project to which you can add archive files. You can create an

enterprise application project separately or when you create archive files such as the following:

v Create a Web project.

v Create an enterprise bean (EJB) project.

v Create an application client.

v Create a resource adapter (connector) project.

6. Edit the annotations or deployment descriptors as needed. You can edit annotations or deployment

descriptors for enterprise application, Web, application client, and enterprise bean (EJB) modules.

© IBM Corporation 2002 11

Topics in Rational Application Developer documentation provide extensive information on editing

annotations or deployment descriptors.

7. Optional: Generate enterprise bean (EJB) to relational database (RDB) mappings for EJB 2.1 or earlier

modules.

8. Verify the archive files.

9. Generate code for deployment for Web services-enabled modules or for enterprise applications that

use Web service modules.

What to do next

After assembling your applications, use a systems management tool to deploy the EAR or WAR files onto

the application server. “Ways to install enterprise applications or modules” on page 33 lists systems

management tools available for deploying Java EE modules on an application server. The systems

management tool follows the security and deployment instructions defined in the annotations or

deployment descriptors, and enables you to modify bindings specified within an assembly tool. The tool

locates the required external resources that the application uses, such as enterprise beans and databases.

Package your application so that the EAR file contains necessary modules only. Modules can include

metadata for the modules such as information on annotations, deployment descriptors, bindings, and IBM

extensions.

Use the administrative console at installation to complete the security instructions defined in the

annotations or deployment descriptors and to locate required external resources, such as enterprise beans

and databases. You can add configuration properties and redefine binding properties defined in an

assembly tool.

Application assembly and enterprise applications

Application assembly is the process of creating an enterprise archive (EAR) file containing all files related

to an application. This configuration and packaging prepares the application for deployment onto an

application server.

EAR files are comprised of the following archives:

v Enterprise bean JAR files (known as EJB modules)

v Web archive (WAR) files (known as Web modules)

v Application client JAR files (known as client modules)

v Resource adapter archive (RAR) files (known as resource adapter modules)

v SAR files (known as Session Initiation Protocol (SIP) modules)

Ensure that modules are contained in an EAR file so that they can be deployed onto the server. The

exceptions are WAR modules, which you can deploy individually. Although WAR modules can contain

regular Java archive (JAR) files, they cannot contain the other module types described previously.

The assembly process includes the following actions:

v Selecting all of the files to include in the module.

v Creating an annotation or deployment descriptor containing instructions for module deployment on the

application server.

You can use the graphical interface of Rational Application Developer assembly tools to generate the

annotation or deployment descriptor. You can also edit annotations or descriptors directly in your favorite

XML editor.

v Packaging modules into a single EAR file, which contains one or more files in a compressed format.

As part of the assembly process, you might also set environment-specific binding information. These

bindings are defaults for an administrator to use when installing the application through the administrative

12 Developing and deploying applications

console. Further, you might define IBM extensions to the Java Platform, Enterprise Edition (Java EE)

specifications, such as to allow servlets to be served by class name. To ensure portability to other

application servers, these extensions are saved in an XML file that is separate from the standard

annotation or deployment descriptor.

Assembly tools

WebSphere Application Server supports assembly tools that you can use to develop, assemble, and

deploy Java Platform, Enterprise Edition (Java EE) modules.

The IBM Rational Application Developer for WebSphere Software product provides supported assembly

tools.

Although this information center refers to Rational developer products as the assembly tools, you can use

the products to do more than assemble modules. Rational Application Developer is an integrated

development environment that provides development, testing, assembly and deployment capabilities.

Rational Application Developer provides extensive online documentation. Topics on application assembly in

this information center supplement that documentation, focusing on assembling Java EE modules using

the Java EE Perspective of the assembly tools.

Rational Application Developer is available in the WebSphere Application Server disc package with two

licenses. The license for assembly and deployment capabilities does not expire. The license for

development and other capabilities is available on a Trial basis and is only available for a limited time.

The Trial download for Rational Application Developer is available at http://www.ibm.com/developerworks/
downloads/r/rad/.

Note: The assembly tools run on Windows and Linux Intel platforms. Users of WebSphere Application

Server on all platforms must assemble their modules using an assembly tool installed on Windows

or Linux Intel platforms. To install an assembly tool, follow instructions available with the tool.

Generating code for Web service deployment

Before deploying Web services-enabled modules or any enterprise application archive (EAR) files that

contain Web services-enabled module onto an application server, you must generate deployment code for

the application.

Before you begin

This article assumes you have assembled a module enabled with Web services, added it to an application,

saved the application, and verified the application. It also assumes that you have started and configured

an assembly tool.

About this task

You can use an assembly tool to generate deployment code for the Web services-enabled module or for

the EAR file that contains the Web services-enabled module.

1. If you have turned automatic validation off, manually validate any modules that use Web services with

the JSR109 Web services validator before generating deployment code for them. If validating your

module results in compilation errors or validation errors, fix the errors before generating deployment

code. However, if validating your module results in warning or information messages, you can generate

deployment code.

2. In the Project Explorer view of the assembly tool, right-click on the Web services-enabled module

(WAR, enterprise bean JAR, or application client JAR file) for which you want to generate code for

deployment.

Chapter 3. Assembling applications 13

http://www.ibm.com/developerworks/webservices/library/ws-jsrart/

3. Click Deploy. Alternatively, you can generate deployment code for Web services-enabled modules

using the deployment tool for Web services (wsdeploy) from a command prompt.

4. If messages indicate that automatic file overwriting is not enabled, click Yes to All so the generated

files are added to the module.

5. If errors such as Unbound classpath variable: WAS_50_PLUGINDIR display in the Tasks list, change

the Java build path libraries properties to define that variable to be the WebSphere Application Server

installation directory.

Results

Code is generated into the folder where your Web services-enable module is located. Problems with the

generation of code result in a window that displays error messages.

What to do next

Install the Java Platform, Enterprise Edition (Java EE) application on your server machine. You can install

the application onto a server using the administrative console. Before installing the application, you might

need to set class paths.

Assembling applications: Resources for learning

Additional information and guidance on assembling applications is available on various Internet sites.

Use the following links to find relevant supplemental information about the application assembly and using

an assembly tool. The information resides on IBM and non-IBM Internet sites, whose sponsors control the

technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information about:

v “Programming instructions and examples”

v “Programming specifications” on page 15

v “Administration” on page 15

Programming instructions and examples

v Rational Application Developer V7 Programming Guide, SG24-7501-00, http://www.redbooks.ibm.com/
abstracts/sg247501.html?Open

v Rational developer community, http://www.ibm.com/developerworks/rational/

v WebSphere Application Server - Express V6 Developers Guide and Development Examples,

http://www.redbooks.ibm.com/abstracts/sg246500.html

v IBM WebSphere Developer Technical Journal: Using Rational Developer to create a simple Web service

and use it in a Web application, http://www.ibm.com/developerworks/websphere/techjournal/
0506_parkin/0506_parkin.html

v Java EE Tutorials, http://java.sun.com/javaee/reference/tutorials/

v Recommended reading list: J2EE and WebSphere Application Server, http://www.ibm.com/
developerworks/websphere/library/techarticles/0305_issw/recommendedreading.html

v Automated Deployment of Enterprise Application Updates: Part 1 - Basic concepts,

http://websphere.sys-con.com/read/47889.htm

14 Developing and deploying applications

Programming specifications

v Specifications and API documentation

Administration

v IBM WebSphere Developer Technical Journal: System management for WebSphere Application Server

V6 -- Part 1 Overview of system management enhancements, http://www.ibm.com/developerworks/
websphere/techjournal/0501_williamson/0501_williamson.html

v IBM WebSphere Developer Technical Journal: System management for WebSphere Application Server

V6 -- Part 5: Flexible options for updating deployed applications, http://www.ibm.com/developerworks/
websphere/techjournal/0510_apte/0510_apte.html

v WebSphere Application Server V6.1: System Management Configuration Handbook, SG24-7304-00,

http://www.redbooks.ibm.com/abstracts/SG247304.html?Open

Chapter 3. Assembling applications 15

16 Developing and deploying applications

Chapter 4. Class loading

Class loaders are part of the Java virtual machine (JVM) code and are responsible for finding and loading

class files. Class loaders enable applications that are deployed on servers to access repositories of

available classes and resources. Application developers and deployers must consider the location of class

and resource files, and the class loaders used to access those files, to make the files available to

deployed applications. Class loaders affect the packaging of applications and the runtime behavior of

packaged applications of deployed applications.

Before you begin

This topic describes how to configure class loaders for application files or modules that are installed on an

application server.

To better understand class loaders in WebSphere Application Server, read “Class loaders.” The topic

“Class loading: Resources for learning” on page 27 refers to additional sources.

About this task

Configure class loaders for application files or modules that are installed on an application server using the

administrative console. You configure class loaders to ensure that deployed application files and modules

can access the classes and resources that they need to run successfully.

1. If an installed application module uses a resource, create a resource provider that specifies the

directory name of the resource drivers.

Do not specify the resource Java archive (JAR) file names. All JAR files in the specified directory are

added into the class path of the WebSphere Application Server extensions class loader. If a resource

driver requires a native library (.dll or .so file), specify the name of the directory that contains the

library in the native path of the resource configuration.

2. Specify class-loader values for an application server.

3. Specify class-loader values for an installed enterprise application.

4. Specify the class-loader mode for an installed Web module.

5. If your deployed application uses shared library files, associate the shared library files with your

application. Use a library reference to associate a shared library file with your application.

a. If you have not done so already, define shared libraries for library files that your applications need.

b. Define a library reference for each shared library that your application uses.

What to do next

After configuring class loaders, ensure that your application performs as desired. To diagnose and fix

problems with class loaders, refer to Troubleshooting class loaders.

Class loaders

Class loaders find and load class files. Class loaders enable applications that are deployed on servers to

access repositories of available classes and resources. Application developers and deployers must

consider the location of class and resource files, and the class loaders used to access those files, to make

the files available to deployed applications.

This topic provides the following information about class loaders in WebSphere Application Server:

v “Class loaders used and the order of use” on page 18

v “Class-loader isolation policies” on page 19

v “Class-loader modes” on page 21

© Copyright IBM Corp. 2008 17

Class loaders used and the order of use

The product runtime environment uses the following class loaders to find and load new classes for an

application in the following order:

1. The bootstrap, extensions, and CLASSPATH class loaders created by the Java virtual machine

The bootstrap class loader uses the boot class path (typically classes in jre/lib) to find and load

classes. The extensions class loader uses the system property java.ext.dirs (typically jre/lib/ext) to find

and load classes. The CLASSPATH class loader uses the CLASSPATH environment variable to find

and load classes.

The CLASSPATH class loader loads the Java Platform, Enterprise Edition (Java EE) application

programming interfaces (APIs) provided by the WebSphere Application Server product in the j2ee.jar

file. Because this class loader loads the Java EE APIs, you can add libraries that depend on the Java

EE APIs to the class path system property to extend a server class path. However, a preferred method

of extending a server class path is to add a shared library.

2. A WebSphere extensions class loader

The WebSphere extensions class loader loads the WebSphere Application Server classes that are

required at run time. The extensions class loader uses a ws.ext.dirs system property to determine the

path that is used to load classes. Each directory in the ws.ext.dirs class path and every Java archive

(JAR) file or ZIP file in these directories is added to the class path used by this class loader.

The WebSphere extensions class loader also loads resource provider classes into a server if an

application module installed on the server refers to a resource that is associated with the provider and

if the provider specifies the directory name of the resource drivers.

3. One or more application module class loaders that load elements of enterprise applications running in

the server

The application elements can be Web modules, enterprise bean (EJB) modules, resource adapter

archives (RAR files), and dependency JAR files. Application class loaders follow Java EE class-loading

rules to load classes and JAR files from an enterprise application. The product enables you to

associate shared libraries with an application.

4. Zero or more Web module class loaders

By default, Web module class loaders load the contents of the WEB-INF/classes and WEB-INF/lib

directories. Web module class loaders are children of application class loaders. You can specify that an

application class loader load the contents of a Web module rather than the Web module class loader.

Java class loaders

WebSphere extensions
class loader

Application module class loader Application module class loader

Web module class loader Web module class loader

Each class loader is a child of the previous class loader. That is, the application module class loaders are

children of the WebSphere extensions class loader, which is a child of the CLASSPATH Java class loader.

Whenever a class needs to be loaded, the class loader usually delegates the request to its parent class

loader. If none of the parent class loaders can find the class, the original class loader attempts to load the

class. Requests can only go to a parent class loader; they cannot go to a child class loader. If the

WebSphere extensions class loader is requested to find a class in a Java EE module, it cannot go to the

application module class loader to find that class and a ClassNotFoundException error occurs. After a

18 Developing and deploying applications

class is loaded by a class loader, any new classes that it tries to load reuse the same class loader or go

up the precedence list until the class is found.

Class-loader isolation policies

The number and function of the application module class loaders depend on the class-loader policies that

are specified in the server configuration. Class loaders provide multiple options for isolating applications

and modules to enable different application packaging schemes to run on an application server.

Two class-loader policies control the isolation of applications and modules:

 Class-loader policy Description

Application Application class loaders load EJB modules, dependency JAR files, embedded resource

adapters, and application-scoped shared libraries. Depending on the application

class-loader policy, an application class loader can be shared by multiple applications

(Single) or unique for each application (Multiple). The application class-loader policy

controls the isolation of applications that are running in the system. When set to Single,

applications are not isolated. When set to Multiple, applications are isolated from each

other.

WAR By default, Web module class loaders load the contents of the WEB-INF/classes and

WEB-INF/lib directories. The application class loader is the parent of the Web module class

loader. You can change the default behavior by changing the Web application archive

(WAR) class-loader policy of the application.

The WAR class-loader policy controls the isolation of Web modules. If this policy is set to

Application, then the Web module contents also are loaded by the application class loader

(in addition to the EJB files, RAR files, dependency JAR files, and shared libraries). If the

policy is set to Module, then each Web module receives its own class loader whose parent

is the application class loader.

Note: The console and the underlying deployment.xml file use different names for WAR

class-loader policy values. In the console, the WAR class-loader policy values are

Application or Module. However, in the underlying deployment.xml file where the policy is

set, the WAR class-loader policy values are Single instead of Application, or Multiple

instead of Module. Application is the same as Single, and Module is the same as

Multiple.

Note: WebSphere Application Server class loaders never load application client modules.

For each application server in the system, you can set the application class-loader policy to Single or

Multiple. When the application class-loader policy is set to Single, then a single application class loader

loads all EJB modules, dependency JAR files, and shared libraries in the system. When the application

class-loader policy is set to Multiple, then each application receives its own class loader that is used for

loading the EJB modules, dependency JAR files, and shared libraries for that application.

An application class loader loads classes from Web modules if the application’s WAR class-loader policy is

set to Application. If the application’s WAR class-loader policy is set to Module, then each WAR module

receives its own class loader.

The following example shows that when the application class-loader policy is set to Single, a single

application class loader loads all of the EJB modules, dependency JAR files, and shared libraries of all

applications on the server. The single application class loader can also load Web modules if an application

has its WAR class-loader policy set to Application. Applications that have a WAR class-loader policy set

to Module use a separate class loader for Web modules.

Server’s application class-loader policy: Single

Application’s WAR class-loader policy: Module

Application 1

Chapter 4. Class loading 19

Module: EJB1.jar

 Module: WAR1.war

 MANIFEST Class-Path: Dependency1.jar

 WAR Classloader Policy = Module

Application 2

 Module: EJB2.jar

 MANIFEST Class-Path: Dependency2.jar

 Module: WAR2.war

 WAR Classloader Policy = Application

WebSphere extensions class loader

Application class loader

WAR class loader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

WAR1.war

Classpath:
Ejb1.jar
Dependency1.jar
Ejb2.jar
Dependency2.jar
WAR2.war (WEB-INF/classes, ...)

The following example shows that when the application class-loader policy of an application server is set

to Multiple, each application on the server has its own class loader. An application class loader also loads

its Web modules if the application WAR class-loader policy is set to Application. If the policy is set to

Module, then a Web module uses its own class loader.

Server’s application class-loader policy: Multiple

Application’s WAR class-loader policy: Module

Application 1

 Module: EJB1.jar

 Module: WAR1.war

 MANIFEST Class-Path: Dependency1.jar

 WAR Classloader Policy = Module

Application 2

 Module: EJB2.jar

 MANIFEST Class-Path: Dependency2.jar

 Module: WAR2.war

 WAR Classloader Policy = Application

20 Developing and deploying applications

WebSphere extensions class loader

Application class loader Application class loader

WAR class loader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

WAR1.war

Classpath:
Ejb1.jar
Dependency1.jar

Classpath:
Ejb2.jar
Dependency2.jar
WAR2.war (WEB-INF/classes, ...)

Class-loader modes

The class-loader delegation mode, also known as the class loader order, determines whether a class

loader delegates the loading of classes to the parent class loader. The following values for class-loader

mode are supported:

 Class-loader mode Description

Parent first

Also known as Classes

loaded with parent

class loader first.

The Parent first class-loader mode causes the class loader to delegate the loading of

classes to its parent class loader before attempting to load the class from its local class

path. This value is the default for the class-loader policy and for standard JVM class

loaders.

Parent last

Also known as Classes

loaded with local

class loader first or

Application first.

The Parent last class-loader mode causes the class loader to attempt to load classes

from its local class path before delegating the class loading to its parent. Using this policy,

an application class loader can override and provide its own version of a class that exists in

the parent class loader.

The following settings determine the mode of a class loader:

v If the application class-loader policy of an application server is Single, the server-level mode value

defines the mode for an application class loader.

v If the application class-loader policy of an application server is Multiple, the application-level mode

value defines the mode for an application class loader.

v If the WAR class-loader policy of an application is Module, the module-level mode value defines the

mode for a WAR class loader.

Configuring class loaders of a server

You can configure the application class loaders for an application server. Class loaders enable applications

that are deployed on the application server to access repositories of available classes and resources.

Chapter 4. Class loading 21

Before you begin

This topic assumes that an administrator created an application server on a WebSphere Application Server

product.

About this task

Configure the class loaders of an application server to set class-loader policy and mode values which

affect all applications that are deployed on the server. Use the administrative console to configure the

class loaders.

1. Click Servers → Server Types → WebSphere application servers → server_name to access an

application server settings page.

2. Specify the application class-loader policy for the application server.

The application class-loader policy controls the isolation of applications that run in the system (on the

server). An application class loader groups enterprise bean (EJB) modules, shared libraries, resource

adapter archives (RAR files), and dependency Java archive (JAR) files associated to an application.

Dependency JAR files are JAR files that contain code which can be used by both enterprise beans

and servlets. The application class-loader policy controls whether an application class loader can be

shared by multiple applications or is unique for each application.

Use the application server settings page to specify the application class-loader policy for the server:

 Option Description

Single Applications are not isolated from each other. Uses a

single application class loader to load all of the EJB

modules, shared libraries, and dependency JAR files in

the system.

Multiple Applications are isolated from each other. Gives each

application its own class loader to load the EJB modules,

shared libraries, and dependency JAR files of that

application.

3. Specify the application class-loader mode for the application server.

The application class loading mode specifies the class-loader mode when the application class-loader

policy is Single.

On the application server settings page, select either of the following values:

 Option Description

Classes loaded with parent class loader first Causes the class loader to delegate the loading of

classes to its parent class loader before attempting to

load the class from its local class path. Classes loaded

with parent class loader first is the default value for

class loading mode.

This value is also known as parent first.

Classes loaded with local class loader first (parent

last)

Causes the class loader to attempt to load classes from

its local class path before delegating the class loading to

its parent. Using this policy, an application class loader

can override and provide its own version of a class that

exists in the parent class loader.

4. Specify the class-loader mode for the class loader.

a. On the application server settings page, click Java and Process Management → Class loader to

access the Class loader page.

b. On the Class loader page, click New to access the settings page for a class loader.

22 Developing and deploying applications

c. On the class loader settings page, specify the class loader order.

The Classes loaded with parent class loader first value causes the class loader to delegate

the loading of classes to its parent class loader before attempting to load the class from its local

class path.

The Classes loaded with local class loader first (parent last) value causes the class loader

to attempt to load classes from its local class path before delegating the class loading to its parent.

d. Click OK.

An identifier is assigned to a class-loader instance. The instance is added to the collection of class

loaders shown on the Class loader page.

What to do next

Save the changes to the administrative configuration.

Class loader collection

Use this page to manage class-loader instances on an application server. A class loader determines

whether an application class loader or a parent class loader finds and loads Java class files for an

application.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → server_name → Java and Process Management → Class loader.

Class loader ID

Specifies a string that is unique to the server identifying the class-loader instance. The product assigns the

identifier.

Class loader order

Specifies whether the class loader searches in the parent class loader or in the application class loader

first to load a class. The standard for development kit class loaders and WebSphere Application Server

class loaders is Classes loaded with parent class loader first (Parent first). By specifying Classes

loaded with local class loader first (Parent last), your application can override classes contained in

the parent class loader, but this action can potentially result in ClassCastException or LinkageErrors if you

have mixed use of overridden classes and non-overridden classes.

Class loader settings

Use this page to configure a class loader for applications that reside on an application server.

To view this administrative console page, click Servers → Server Types → WebSphere application

servers → server_name → Java and Process Management → Class loader → class_loader_ID.

Class loader ID

Specifies a string that is unique to the server identifying the class-loader instance. The product assigns the

identifier.

 Data type String

Class loader order

Specifies whether the class loader searches in the parent class loader or in the application class loader

first to load a class. The standard for development kit class loaders and WebSphere Application Server

class loaders is Classes loaded with parent class loader first. By specifying Classes loaded with

local class loader first (parent last), your application can override classes contained in the parent

Chapter 4. Class loading 23

class loader, but this action can potentially result in ClassCastException or LinkageErrors if you have

mixed use of overridden classes and non-overridden classes.

The options are Classes loaded with parent class loader first and Classes loaded with local class

loader first (parent last). The default is to search in the parent class loader before searching in the

application class loader to load a class.

For your application to use the default configuration of Jakarta Commons Logging in this product, set this

application class loader order to Classes loaded with parent class loader first. For your application to

override the default configuration of Jakarta Commons Logging, your application must provide the

configuration in a form supported by Jakarta Commons Logging and this class loader order must be set to

Classes loaded with local class loader first (parent last). Also, to override the default

configuration, set the class loader order for each Web module in your application so that the correct logger

factory loads.

 Data type String

Default Parent first

Configuring application class loaders

You can set values that control the class-loading behavior of an installed enterprise application. Class

loaders enable an application to access repositories of available classes and resources.

Before you begin

This topic assumes that you installed an application on an application server.

About this task

Configure the class loaders of an enterprise application to set class-loader policy and mode values for this

application.

An application class loader groups enterprise bean (EJB) modules, shared libraries, resource adapter

archives (RAR files), and dependency Java archive (JAR) files associated to an application. Dependency

JAR files are JAR files that contain code which can be used by both enterprise beans and servlets.

An application class loader is the parent of a Web application archive (WAR) class loader. By default, a

Web module has its own WAR class loader to load the contents of the Web module. The WAR

class-loader policy value of an application class loader determines whether the WAR class loader or the

application class loader is used to load the contents of the Web module.

Use the administrative console to configure the class loaders.

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

1. Click Applications → Application Types → WebSphere enterprise applications → application_name

→ Class loading and update detection to access the settings page for an application class loader.

2. Specify whether to reload application classes when the application or its files are updated.

By default, class reloading is not enabled. Select Override class reloading settings for Web and

EJB modules to choose to reload application classes. You might specify different values for EJB

modules and for Web modules such as servlets and JavaServer Pages (JSP) files.

24 Developing and deploying applications

3. Specify the number of seconds to scan the application’s file system for updated files.

The value specified for Polling interval for updated files takes effect only if class reloading is

enabled. The default is the value of the reloading interval attribute in the IBM extension

(META-INF/ibm-application-ext.xmi) file of the enterprise application (EAR file). You might specify

different values for EJB modules and for Web modules such as servlets and JSP files.

To enable reloading, specify an integer value that is greater than zero (for example, 1 to 2147483647).

To disable reloading, specify zero (0).

4. Specify the class loader order for the application.

The application class loader order specifies whether the class loader searches in the parent class

loader or in the application class loader first to load a class. The default is to search in the parent class

loader before searching in the application class loader to load a class.

Select either of the following values for Classes loader order:

 Option Description

Classes loaded with parent class loader first Causes the class loader to search in the parent class

loader first to load a class. This value is the standard for

Development Kit class loaders and WebSphere

Application Server class loaders.

Classes loaded with local class loader first (parent

last)

Causes the class loader to search in the application class

loader first to load a class. By specifying Classes loaded

with local class loader first (parent last), your

application can override classes contained in the parent

class loader.

Note: Specifying the Classes loaded with local class

loader first (parent last) value might result in

LinkageErrors or ClassCastException messages if you

have mixed use of overridden classes and non-overridden

classes.

5. Specify whether to use a single or multiple class loaders to load Web application archives (WAR files)

of your application.

By default, Web modules have their own WAR class loader to load the contents of the

WEB-INF/classes and WEB-INF/lib directories. The default WAR class loader value is Class loader

for each WAR file in application, which uses a separate class loader to load each WAR file. Setting

the value to Single class loader for application causes the application class loader to load the

Web module contents as well as the EJB modules, shared libraries, RAR files, and dependency JAR

files associated to the application. The application class loader is the parent of the WAR class loader.

Select either of the following values for WAR class loader policy:

 Option Description

Class loader for each WAR file in application Uses a different class loader for each WAR file.

Single class loader for application Uses a single class loader to load all of the WAR files in

your application.

6. Click OK.

What to do next

Save the changes to the administrative configuration.

Configuring Web module class loaders

You can set values that control the class-loading behavior of an installed Web module.

Chapter 4. Class loading 25

Before you begin

This topic assumes that you installed a Web module on an application server.

About this task

Configure the class loader order value of an installed Web module. By default, a Web module has its own

Web application archive (WAR) class loader to load the contents of the Web module, which are in the

WEB-INF/classes and WEB-INF/lib directories.

An application class loader is the parent of a WAR class loader. The WAR class-loader policy value of an

application class loader determines whether the WAR class loader or the application class loader is used

to load the contents of the Web module.

The default WAR class loader policy value is Class loader for each WAR file in application. If the

policy is set to Class loader for each WAR file in application, then each Web module receives its own

class loader whose parent is the application class loader. If the policy is set to Single class loader for

application on the settings page of an application class loader, then the application class loader loads the

Web module contents as well as the enterprise bean (EJB) modules, shared libraries, resource adapter

archives (RAR files), and dependency Java archive (JAR) files associated to an application. Thus, the

configuration of the parent application class loader affects the WAR class loader.

Use the administrative console to configure the application and WAR class loaders.

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

1. If you have not done so already, configure the application class loader.

Settings such as Override class reloading settings for Web and EJB modules, Polling interval for

updated files and WAR class loader policy can affect Web module class loading.

If WAR class loader policy is set to Class loader for each WAR file in application, then the Web

module receives its own class loader and the WAR class-loader policy of the Web module defines the

mode for a WAR class loader. If the policy is set to Single class loader for application, then the

application class loader loads the Web module contents.

2. Specify the class loader order for the installed Web module.

The Web module class-loader mode specifies whether the class loader searches in the parent

application class loader or in the WAR class loader first to load a class. The default is to search in the

parent application class loader before searching in the WAR class loader to load a class.

26 Developing and deploying applications

Select either of the following values for Class loader order:

 Option Description

Classes loaded with parent class loader first Causes the class loader to search in the parent

application class loader first to load a class. This is the

standard for Development Kit class loaders and

WebSphere Application Server class loaders.

Note: If classes and resources needed by the Web

module cannot be accessed by the application class

loader, but can be accessed by the WAR class loader,

specify Classes loaded with local class loader first

(parent last). If the application class loader cannot find

a class, the class loader delegates the request to find the

class to its parent, the WebSphere Application Server

extensions class loader. If the WebSphere Application

Server extensions class loader cannot find the class, the

class loader delegates the request to its parent, the

bootstrap, extensions, and CLASSPATH class loaders

created by the Java virtual machine. Requests can only

go to a parent class loader; they cannot go to a child

class loader. Thus, if Classes loaded with parent class

loader first is specified, the WAR class loader never

receives a request to load a class.

Classes loaded with local class loader first (parent

last)

Causes the class loader to search in the WAR class

loader first to load a class. By specifying Classes loaded

with local class loader first (parent last), your

WAR class loader can override classes contained in the

parent application class loader.

Note: Specifying the Classes loaded with local class

loader first (parent last) value might result in

LinkageErrors or ClassCastException messages if you

have mixed use of overridden classes and non-overridden

classes.

3. Click OK.

What to do next

Save the changes to the administrative configuration.

Class loading: Resources for learning

Additional information and guidance on class loading is available on various Internet sites.

Use the following links to find relevant supplemental information about class loaders. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information about:

v “Programming model and decisions” on page 28

v “Programming instructions and examples” on page 28

v “Programming specifications” on page 28

Chapter 4. Class loading 27

Programming model and decisions

v Demystifying class loading problems, Part 1: An introduction to class loading and debugging tools -

Learn how class loading works and how your JVM can help you sort out class loading problems

(developerWorks, November 2005), http://www.ibm.com/developerworks/java/library/j-dclp1/
?S_TACT=106AH10W&S_CMP=NC

v Demystifying class loading problems, Part 2: Basic class loading exceptions - An in-depth look at some

simple class loading quirks and conundrums (developerWorks, December 2005), http://www.ibm.com/
developerworks/java/library/j-dclp2.html?S_TACT=105AGX10&S_CMP=NC

v Demystifying class loading problems, Part 3: Tackling more unusual class loading problems -

Understand class loading and quash subtle exceptions (developerWorks, December 2005),

http://www.ibm.com/developerworks/java/library/j-dclp3/?S_TACT=105AGX10&S_CMP=NC

v J2EE Class Loading Demystified (developerWorks, August 2002), http://www.ibm.com/developerworks/
websphere/library/techarticles/0112_deboer/deboer.html

v Java programming dynamics, Part 1: Classes and class loading - A look at classes and what goes on

as they’re loaded by a JVM (developerWorks, April 2003), http://www.ibm.com/developerworks/java/
library/j-dyn0429/

Programming instructions and examples

v WebSphere Application Server V6.1: System Management Configuration Handbook, SG24-7304-00,

http://www.redbooks.ibm.com/abstracts/SG247304.html?Open

v IBM WebSphere Developer Technical Journal: Co-hosting multiple versions of J2EE applications,

http://www.ibm.com/developerworks/websphere/techjournal/0405_poddar/0405_poddar.html

Programming specifications

v Specifications and API documentation

28 Developing and deploying applications

Chapter 5. Deploying and administering enterprise

applications

Deploying an enterprise application file consists of installing an application file on a server configured to

hold installable Java Platform, Enterprise Edition (Java EE) modules.

Before you begin

Before installing an enterprise application or other installable module on an application server, you must

develop the module, assemble the module, and configure the target server . Before choosing a

deployment target for the module, ensure that the target version is compatible with your module.

About this task

During installation, you can configure the module enough to enable it to run on the server. After

installation, you can configure the module further, start or stop the application, and otherwise manage its

activity.

The topics in this section describe how to deploy and administer applications or modules using the

administrative console. You can also use scripting or administrative programs (JMX).

v Install Java EE application files on an application server.

v Edit the administrative configuration for an application.

v Optional: View the deployment descriptor for an application or module.

v Start and stop enterprise applications.

v Export enterprise applications.

v Export a file in a Java EE application or module.

v Export DDL files.

v Update a Java EE application or module.

v Uninstall enterprise applications.

v Remove a file from a Java EE application or module.

What to do next

After making changes to administrative configurations of your applications in the administrative console,

ensure that you save the changes.

Enterprise (Java EE) applications

Enterprise applications (or Java EE applications) are applications that conform to the Java Platform,

Enterprise Edition (Java EE) specification. Prior to Java EE 5, the specification name was Java 2 Platform,

Enterprise Edition (J2EE). The term Java EE includes Java EE 5 and J2EE specifications.

Enterprise applications can consist of the following:

v Zero or more EJB modules (packaged in JAR files)

v Zero or more Web modules (packaged in WAR files)

v Zero or more connector modules (packaged in RAR files)

v Zero or more Session Initiation Protocol (SIP) modules (packaged in SAR files)

v Zero or more application client modules

v Additional JAR files containing dependent classes or other components required by the application

v Any combination of the above

A Java EE application is represented by, and packaged in, an enterprise archive (EAR) file.

© Copyright IBM Corp. 2008 29

System applications

A system application is a Java Platform, Enterprise Edition (Java EE) enterprise application that is central

to a WebSphere Application Server product.

Examples of system applications include isclite, managementEJB and filetransfer.

Because a system application is an important part of a WebSphere Application Server product, a system

application is deployed when the product is installed and is updated only through a product fix or upgrade.

For some system applications, such as filetransfer, users cannot change the metadata for the system

application, unless the metadata assigns users and groups for security purposes. For these applications,

non-security related metadata such as its Java EE bindings or extensions must be updated through a

product fix or upgrade.

System applications are not shown in the list of installed applications on the console Enterprise

Applications page, or through wsadmin and Java application programming interfaces, to prevent users

from accidentally stopping, updating or removing the system applications.

Note that Java EE Samples are not system applications even though they are provided as part of a

WebSphere Application Server product. Similarly, applications that support changes to their metadata are

not system applications.

Common deployment framework

The common deployment framework enables you to implement plug-ins that add steps to default Java

Platform, Enterprise Edition (Java EE) application management operations such as install, uninstall, edit

and update.

Using the framework, you can implement management operations on specific types of deployable

contents. For example, the deployable contents might include EAR, WAR, JAR or other Java EE modules

and the management operations might include install and uninstall. Each operation is divided into a

number of steps. For example, the install operation has steps for EJBDeploy and JavaServer Pages (JSP)

compilation, among others. Using the common deployment framework, you can add steps to the default

logic for Java EE operations.

The product supports framework plug-ins that extend deployment of EAR files. An EAR file has operations

such as createEarWrapper, installApplication, uninstallApplication and editApplication. Using a framework

plug-in, you can add steps to default install operations that support, for example, creating additional

configuration artifacts in a configuration session, modifying an input EAR file using code generation, or

additional validating of input parameters.

To extend application management operations using the framework, a plug-in must do the following:

v Implement each step.

A step runs logic that performs an operation. A step can access the deployment context and the

deployable object. The deployment context provides information such as the operation name, the

configuration session identifier, the temporary location for creating temporary files, operations

parameters, and the like. A step is added by the extension provider.

v Implement an extension provider that adds each implemented step.

An extension provider is a class that provides steps for an operation on a given type, the EAR file type.

v Register the plug-in with a WebSphere Application Server server.

The plug-in is implemented as an Eclipse plug-in and is placed in app_server_root/plugins directory.

Add the extension point for the extension provider in the META-INF/plugin.xml file within the plug-in JAR

file.

30 Developing and deploying applications

For an example of these steps, refer to “Extending application management operations through

programming” on page 155.

Installing enterprise application files

As part of deploying an application, you install application files on a server configured to hold installable

modules.

Before you begin

Before you can install your Java Platform, Enterprise Edition (Java EE) application files on an application

server, you must assemble modules as needed.

Also, before you install the files, configure the target application server. As part of configuring the server,

determine whether your application files can be installed to your deployment targets.

About this task

You can install the following modules on a server:

v Enterprise archive (EAR)

v Enterprise bean (EJB)

v Web archive (WAR)

v Session Initiation Protocol (SIP) module (SAR)

v Resource adapter (connector or RAR)

v Application client modules

Application client files can be installed in a WebSphere Application Server configuration but cannot be run

on a server.

Complete the following steps to install your files.

1. Determine which method to use to install your application files. The product provides several ways to

install modules.

2. Install the application files using

v Administrative console

v wsadmin scripts

v Java administrative programs that use Java Management Extensions (JMX) application

programming interfaces (APIs)

v Java programs that define a Java EE DeploymentManager object in accordance with Java EE

Application Deployment specification (JSR-88)

3. Start the deployed application files using

v Administrative console

v wsadmin startApplication

v Java programs that use ApplicationManager or AppManagement MBeans

v Java programs that define a Java EE DeploymentManager object in accordance with Java EE

Application Deployment specification (JSR-88)

What to do next

Save the changes to your administrative configuration.

Next, test the application. For example, point a Web browser at the URL for a deployed application

(typically http://hostname:9060/Web_module_name, where hostname is your valid Web server and 9060 is

the default port number) and examine the performance of the application. If the application does not

perform as desired, edit the application configuration, then save and test it again.

Chapter 5. Deploying and administering enterprise applications 31

Installable enterprise module versions

The contents of a Java Platform, Enterprise Edition (Java EE) module affect whether you can install the

module on a deployment target. A deployment target is a server on a WebSphere Application Server

product.

Installable application modules

Select only appropriate deployment targets for a module. You must install an application, enterprise bean

(EJB) module, Session Initiation Protocol (SIP) module (SAR), or Web module on a Version 7.x target

under any of the following conditions:

v The module supports Java Platform, Enterprise Edition (Java EE) 5.

v The module calls a 7.x runtime application programming interface (API).

v The module uses a 7.x product feature.

If a module supports Java 2 Platform, Enterprise Edition (J2EE) 1.4, then you must install the module on a

Version 6.x or 7.x deployment target. Modules that call a 6.1.x API or use a 6.1.x feature can be installed

on a 6.1.x or 7.x deployment target. Modules that call a 6.0.x API or use a 6.0.x feature can be installed

on a 6.0.x, 6.1.x or 7.x deployment target. Modules that require 6.1.x feature pack functionality can be

installed on a 7.x deployment target or on a 6.1.x deployment target that has been enabled with that

feature pack.

Selecting options such as Precompile JavaServer Pages files, Use binary configuration, Deploy Web

services or Deploy enterprise beans during application installation indicates that the application uses

6.1.x product features. You cannot deploy such applications on a 5.x or 6.0.x deployment target. You must

deploy such applications on a 6.1.x or 7.x deployment target.

You can install an application or module developed for a Version 5.x product on a 5.x, 6.x or 7.x

deployment target.

Note: You must package container-managed persistence (CMP) or bean-managed persistence (BMP)

entity beans in an EJB 2.1 or earlier module. You cannot install an EJB 3.0 module that contains

CMP or BMP entity beans. Installation fails when a CMP or BMP entity bean is packaged in an EJB

3.0 module. You can install EJB 2.1 or earlier modules on a 5.x, 6.x or 7.x deployment target.

Installable RAR files

You can install a standalone resource adapter (connector) module, or RAR file, developed for a Version

5.x product to a 5.x, 6.x or 7.x deployment target, provided the module does not call any 6.x or 7.x runtime

APIs. If the module calls a 6.x API, then you must install the module on a 6.x or 7.x deployment target. If

the module calls a 7.x API, then you must install the module on a 7.x deployment target.

Deployment targets

A 5.x deployment target is a server on a WebSphere Application Server Version 5 product.

A 6.x deployment target is a server on a WebSphere Application Server Version 6 product.

A 7.x deployment target is a server on a WebSphere Application Server Version 7 product.

 Table 2. Compatible deployment target versions for 5.x, 6.x and 7.x modules

Module type Module Java

support

Module calls 6.x or

7.x runtime APIs or

uses 6.x or 7.x

features?

Client versions that

can install module

Deployment target

versions

32 Developing and deploying applications

Table 2. Compatible deployment target versions for 5.x, 6.x and 7.x modules (continued)

Application, EJB,

Web, or client

J2EE 1.3 No 5.x, 6.x or 7.x 5.x, 6.x or 7.x

Application, EJB,

Web, or client

J2EE 1.3 Yes 6.x for 6.x or 7.x APIs

or features

7.x for 7.x APIs or

features

6.x or 7.x

You must install

modules that call

6.1.x runtime APIs or

use 6.1.x features on

a 6.1.x or 7.x

deployment target.

You can install

modules that call

6.0.x runtime APIs or

use 6.0.x features on

any 6.x or 7.x

deployment target.

Application, EJB,

SAR, Web, or client

J2EE 1.4 Yes or No 6.x or 7.x 6.x or 7.x

Application, EJB,

SAR, Web, or client

Java EE 5 Yes or No 7.x 7.x

Resource adapter JCA 1.0 No 5.x, 6.x or 7.x 5.x, 6.x or 7.x

Resource adapter JCA 1.0 Yes 6.x or 7.x 6.x or 7.x

You must install

modules that call

6.1.x runtime APIs on

a 6.1.x or 7.x

deployment target.

You can install

modules that call

6.0.x runtime APIs on

any 6.x or 7.x

deployment target.

Resource adapter JCA 1.5 Yes or No 6.x or 7.x 6.x or 7.x

You must install

modules that call

6.1.x runtime APIs on

a 6.1.x or 7.x

deployment target.

You can install

modules that call

6.0.x runtime APIs on

any 6.x or 7.x

deployment target.

Ways to install enterprise applications or modules

The product provides several ways to install Java Platform, Enterprise Edition (Java EE) application files.

Installable files include enterprise archive (EAR), enterprise bean (EJB), Web archive (WAR), Session

Initiation Protocol (SIP) module (SAR), resource adapter (connector or RAR), and application client

modules. They can be installed on a server. Application client files can be installed in a WebSphere

Application Server configuration but cannot be run on a server.

Chapter 5. Deploying and administering enterprise applications 33

Table 3. Ways to install application files

Option Method Modules Comments Starting after install

Administrative

console install wizard

See “Installing

enterprise application

files with the console”

on page 36.

Click Applications →

New application →

New Enterprise

Application in the

console navigation

tree and follow

instructions in the

wizard.

Files for all of the

following modules:

v EAR

v EJB

v WAR

v SAR

v RAR

v Application client

Provides one of the

easier ways to install

application files. See

“Preparing for

application installation

settings” on page 42

for guidance.

For applications that

do not require

changes to the default

bindings, after you

specify the application

file, expand Choose

to generate default

bindings and

mappings, select

Generate default

bindings, click the

Summary step, and

then click Finish.

Click Start on the

Enterprise

applications page

accessed by clicking

Applications →

Application Types →

WebSphere

enterprise

applications in the

console navigation

tree.

wsadmin scripts Invoke AdminApp

object install

commands in a script

or at a command

prompt.

Files for all of the

following modules:

v EAR

v EJB

v WAR

v SAR

v RAR

v Application client

″Getting started with

scripting″ in the Using

the administrative

clients PDF provides

an overview of

wsadmin.

v Invoke the

AdminApp

startApplication

command.

v Invoke the

startApplication

method on an

ApplicationManager

MBean using

AdminControl.

Java application

programming

interfaces

Install programs by

completing the steps

in ″Installing an

application through

programming″ in the

Using the

administrative clients

PDF.

All EAR files Use MBeans to install

the application.

″Managing

applications through

programming″ in the

Using the

administrative clients

PDF provides an

overview of Java

MBean programming.

Start the application

by calling the

startApplication

method on a proxy.

34 Developing and deploying applications

Table 3. Ways to install application files (continued)

Option Method Modules Comments Starting after install

Rapid deployment

tools

Refer to topics under

Rapid deployment of

J2EE applications.

Briefly, do the

following:

1. Update your J2EE

application files.

2. Set up the rapid

deployment

environment.

3. Create a free-form

project.

4. Launch a rapid

deployment session.

5. Drop your updated

application files into

the free-form project.

J2EE modules at the

J2EE 1.3 or 1.4

specification levels,

including EAR files

and the following

stand-alone modules:

v EJB

v WAR

v SAR

v RAR

v Application client

The rapid deployment

tools do not support

the Java EE 5.0 or

J2EE 1.2 specification

levels.

Rapid deployment

tools offer the

following advantages:

v You do not need to

assemble your J2EE

application files prior

to deployment.

v You do not need to

use other installation

tools mentioned in

this table to deploy

the files.

Use any of the above

options to start the

application. Clicking

Start on the

Enterprise

applications page is

the easiest option.

Java programs Code programs that

use Java EE

DeploymentManager

(JSR-88) methods.

All Java EE modules,

including EAR files

and the following

stand-alone modules:

v EJB

v WAR

v SAR

v RAR

v Application client

v Uses Java EE

Application

Deployment

Specification

(JSR-88).

v Can customize

modules using

DConfigBeans.

Call the Java EE

DeploymentManager

(JSR-88) start method

in a program to start

the deployed modules

when the module’s

running environment

initializes.

Note: In the Version 6.1 Feature Pack for Web services and Feature Pack for EJB 3.0, the default is to

scan pre-Java EE 5 Web application modules to identify JAX-WS services and to scan pre-Java EE

5 Web application modules and EJB modules for service clients during application installation. For

Version 7.0, the default is not to scan pre-Java EE 5 modules for annotations during application

installation or server startup. To preserve backward compatibility with either or both feature packs,

you can define Java virtual machine custom properties on servers to request scanning during

application installation and server startup.

v You can define these custom properties using the console. Click Servers → Server Types →

WebSphere application servers → server name → Java and Process Management → Process

definition → Java virtual machine → Custom properties. To request scanning for Feature Pack

for Web services modules, set the com.ibm.websphere.webservices.UseWSFEP61ScanPolicy

custom property to true. To request scanning for Feature Pack for EJB 3.0 modules, set the

com.ibm.websphere.ejb.UseEJB61FEPScanPolicy custom property to true. The default value for

each of these custom properties is false. You must change the setting on each server that

requires a change in the default.

v You can specify values for these custom properties in the META-INF/MANIFEST.MF file of a

module. Values specified in the META-INF/MANIFEST.MF file always take precedence over a

server-level setting.

v When using the launchClient tool to run the application client, you need to define these custom

properties using the -CCD option. For example, launchClient app.ear -CCD-
CCDcom.ibm.websphere.ejb.UseEJB61FEPScanPolicy=true.

Chapter 5. Deploying and administering enterprise applications 35

Installing enterprise application files with the console

Installing Java Platform, Enterprise Edition (Java EE) application files consists of placing assembled

enterprise application, Web, enterprise bean (EJB), or other installable modules on a server or cluster

configured to hold the files. Installed files that start and run properly are considered deployed.

Before you begin

Before installing enterprise application files, ensure that you are installing your application files onto a

compatible deployment target. If the deployment target is not compatible, select a different target.

Optionally, determine whether the application that you are installing uses library files that other deployed

applications also use. You can define a shared library for each of these shared files. Using shared libraries

reduces the number of library file copies on your workstation or server.

About this task

To install new enterprise application files to a WebSphere Application Server configuration, you can use

the following options:

v Administrative console

v wsadmin scripts

v Java MBean programs

v Java programs that call Java EE DeploymentManager (JSR-88) methods

This topic describes how to use the administrative console to install an application, EJB component,

Session Initiation Protocol (SIP) module (SAR), or Web module.

Note: After you start performing the steps below, click Cancel to exit if you decide not to install the

application. Do not simply move to another administrative console page without first clicking Cancel

on an application installation page.

1. Click Applications → New application → New Enterprise Application in the console navigation tree.

2. On the first Preparing for application installation page:

a. Specify the full path name of the source enterprise application file (.ear file otherwise known as an

EAR file).

The EAR file that you are installing can be either on the client machine (the machine that runs the

Web browser) or on the server machine (the machine to which the client is connected). If you

specify an EAR file on the client machine, then the administrative console uploads the EAR file to

the machine on which the console is running and proceeds with application installation.

You can also specify a stand-alone Web application archive (WAR), SAR, or Java archive (JAR)

file for installation.

If the EAR file resides on the server machine, and the server is an iSeries® server, ensure that

user profile QEJBSVR has *R authority to the EAR file and at least *X authority to all the

directories in the path containing the EAR file.

b. Click Next.

3. On the second Preparing for application installation page:

a. Select whether to view all installation options.

Fast Path - Prompt only when additional information is required

Displays the module mapping step as well as any steps that require you to specify needed

information to install the application successfully.

Detailed - Show all installation options and parameters

Displays all installation options.

b. Select whether to generate default bindings.

36 Developing and deploying applications

Select Generate default bindings to have the product supply default values for incomplete Java

Naming and Directory (JNDI) and other bindings in the application. The product does not change

existing bindings.

You do not need to specify JNDI values for EJB bean, local home, remote home, or business

interfaces of EJB 3.0 modules. The product assigns container default values during run time.

Similarly, for any EJB reference within an EJB 3.0, Web 2.4, or Web 2.5 module, you do not need

to specify JNDI values because the product resolves the targets automatically during run time.

Even when you select Generate default bindings, the product does not generate default values

for those JNDI values but it does generate default values for other bindings such as virtual host.

You can customize default values used in generating default bindings. “Preparing for application

installation binding settings” on page 42 describes available customizations and provides sample

bindings.

c. Click Next. If security warnings are displayed, click Continue. The Install New Application pages

are displayed. If you chose to generate default bindings, you can proceed to the Summary step.

“Example: Installing an EAR file using the default bindings” on page 60 provides sample steps.

4. Specify values for installation options as needed.

You can click on a step number to move directly to that panel instead of clicking Next. The contents of

the application or module that you are installing determines which panels are available.

 Panel Description

Select installation options On the Select installation options panel, provide values for the settings specific

to the product. Default values are used if you do not specify a value.

Map modules to servers On the Map modules to servers panel, specify deployment targets where you

want to install the modules contained in your application. Modules can be installed

on the same deployment target or dispersed among several deployment targets.

Each module must be mapped to a target server.

On single-server products, a deployment target can be an application server or

Web server.

Provide options to compile

JSPs

If the Precompile JavaServer Pages files setting is enabled on the Select

installation options panel and your application uses JavaServer Pages (JSP)

files, then you can specify JSP compiler options on the Provide options to

compile JSPs panel.

Provide JNDI names for beans On the Provide JNDI names for beans panel, specify a JNDI name for each

enterprise bean in every EJB 2.1 and earlier module. You must specify a JNDI

name for every enterprise bean defined in the application. For example, for the

EJB module MyBean.jar, specify MyBean.

As to EJB 3.0 modules, you can specify JNDI names, local home JNDI names,

remote home JNDI names, or no JNDI names. If you do not specify a value, the

product provides a default value.

Bind EJB business On the Bind EJB business panel, you can specify business interface JNDI

names for EJB 3.0 modules. If you specified a JNDI name for a bean on the

Provide JNDI names for beans panel, do not specify a business interface JNDI

name on this panel for the same bean. If you do not specify the JNDI name for a

bean, you can optionally specify a business interface JNDI name. When you do

not specify a business interface JNDI name, the product provides a container

default.

Map default data sources for

modules containing 1.x entity

beans

If your application uses EJB modules that contain Container Managed Persistence

(CMP) beans that are based on the EJB 1.x specification, for Map default data

sources for modules containing 1.x entity beans, specify a JNDI name for the

default data source for the EJB modules. The default data source for the EJB

modules is optional if data sources are specified for individual CMP beans.

Chapter 5. Deploying and administering enterprise applications 37

Panel Description

Map EJB references to beans On the Map EJB references to beans panel, if your application defines EJB

references, you can specify JNDI names for enterprise beans that represent the

logical names specified in EJB references.

If the EJB reference is from EJB 3.0, Web 2.4, or Web 2.5 module, the JNDI

name is optional. For earlier modules, each EJB reference defined in the

application must be bound to an EJB file.

If Allow EJB reference targets to resolve automatically is enabled, the JNDI

name is optional for all modules. The product provides a container default value or

automatically resolves the EJB reference for incomplete bindings.

Map resource references to

resources

If your application defines resource references, for Map resource references to

resources, specify JNDI names for the resources that represent the logical names

defined in resource references. You can optionally specify login configuration

name and authentication properties for the resource. After specifying

authentication properties, click OK to save the values and return to the mapping

step. You can optionally specify extended data source properties to enable a data

source that uses heterogeneous pooling to connect to a DB2® database. Each

resource reference defined in the application must be bound to a resource defined

in your WebSphere Application Server configuration before clicking on Finish on

the Summary panel.

Map virtual hosts for Web

modules

If your application uses Web modules, for Map virtual hosts for Web modules,

select a virtual host from the list that should map to a Web module defined in the

application. The port number specified in the virtual host definition is used in the

URL that is used to access artifacts such as servlets and JSP files in the Web

module. Each Web module must have a virtual host to which it maps. Not

specifying all needed virtual hosts will result in a validation error displaying after

you click Finish on the Summary panel.

Map security roles to users or

groups

If the application has security roles defined in its deployment descriptor then, for

Map security roles to users or groups, specify users and groups that are

mapped to each of the security roles. Select Role to select all of the roles or

select individual roles. For each role, you can specify whether predefined users

such as Everyone or All authenticated users are mapped to it. To select specific

users or groups from the user registry:

1. Select a role and click Lookup users or Lookup groups.

2. On the Lookup users or groups panel displayed, enter search criteria to extract

a list of users or groups from the user registry.

3. Select individual users or groups from the results displayed.

4. Click OK to map the selected users or groups to the role selected on the Map

security roles to users or groups panel.

Map RunAs roles to users If the application has Run As roles defined in its deployment descriptor, for Map

RunAs roles to users, specify the Run As user name and password for every

Run As role. Run As roles are used by enterprise beans that must run as a

particular role while interacting with another enterprise bean. Select Role to select

all of the roles or select individual roles. After selecting a role, enter values for the

user name, password, and verify password and click Apply.

Ensure all unprotected 1.x

methods have the correct level

of protection

If your application contains EJB 1.x CMP beans that do not have method

permissions defined for some of the EJB methods, for Ensure all unprotected

1.x methods have the correct level of protection, specify if you want to leave

such methods unprotected or assign protection with deny all access.

Bind listeners for

message-driven beans

If your application contains message driven enterprise beans, for Bind listeners

for message-driven beans, provide a listener port name or an activation

specification JNDI name for every message driven bean.

38 Developing and deploying applications

Panel Description

Map default data sources for

modules containing 2.x entity

beans

If your application uses EJB modules that contain CMP beans that are based on

the EJB 2.x specification, for Map default data sources for modules containing

2.x entity beans, specify a JNDI name for the default data source and the type of

resource authorization to be used for the default data source for the EJB modules.

You can optionally specify a login configuration name and authentication

properties for the data source. When creating authentication properties, you must

click OK to save the values and return to the mapping step. You can optionally

specify extended data source properties to enable a data source that uses

heterogeneous pooling to connect to a DB2 database. The default data source for

EJB modules is optional if data sources are specified for individual CMP beans.

Map data sources for all 2.x

CMP beans

If your application has CMP beans that are based on the EJB 2.x specification, on

the Map data sources for all 2.x CMP beans panel, for each of the 2.x CMP

beans specify a JNDI name and the type of resource authorization for data

sources to be used.

You can optionally specify a login configuration name and authentication

properties for the data source. When creating authentication properties, you must

click OK to save the values and return to the mapping step. The data source

attribute is optional for individual CMP beans if a default data source is specified

for the EJB module that contains CMP beans. If neither a default data source for

the EJB module nor a data source for individual CMP beans are specified, then a

validation error is displayed after you click Finish and installation is cancelled.

Ensure all unprotected 2.x

methods have the correct level

of protection

If your application contains EJB 2.x CMP beans that do not have method

permissions defined in the deployment descriptors for some of the EJB methods,

on the Ensure all unprotected 2.x methods have the correct level of

protection panel, specify whether you want to assign a specific role to the

unprotected methods, add the methods to the exclude list, or mark them as

unchecked. Methods added to the exclude list are marked as uncallable. For

methods marked unchecked no authorization check is performed prior to their

invocation.

Provide options to perform the

EJB Deploy

If the Deploy enterprise beans setting is enabled on the Select installation

options panel, then you can specify options for the EJB deployment tool on the

Provide options to perform the EJB Deploy panel. On this panel, you can

specify extra class paths, RMIC options, database types, and database schema

names to be used while running the EJB deployment tool.

You can specify the EJB deployment tool options on this panel when installing or

updating an application that contains EJB modules. The EJB deployment tool runs

during installation of EJB 1.x or 2.x modules. The EJB deployment tool does not

run during installation of EJB 3.0 modules.

Map shared libraries On the Shared library references and Shared library mapping panels, specify

shared library files for your application or Web modules to use. A defined shared

library must exist to associate your application or module to the library file.

Map shared library

relationships

On the Map shared library relationships panel, specify relationship identifiers

and composition unit names for shared libraries that modules in your enterprise

application reference.

When installing your enterprise application, the product creates a composition unit

for each shared library relationship in the business-level application that you

specified for Business-level application name on the Select installation

options panel.

Provide JSP reloading options

for Web modules

If your application uses Web modules, for Provide JSP reloading options for

Web modules, configure the class reloading of JavaServer Pages (JSP) files.

Chapter 5. Deploying and administering enterprise applications 39

Panel Description

Map context roots for Web

modules

If your application uses Web modules that are defined in the application XML

deployment descriptor, for Map context roots for Web modules, specify a

context root for each Web module in the application.

The product does not include Web modules from annotations on this panel.

Initialize parameters for

servlets

If your application uses Web modules that support Servlet 2.5, for Initialize

parameters for servlets, specify or override initial parameters that are passed to

the init method of Web module servlet filters.

This panel shows servlets from the module XML deployment descriptor. Servlet

deployment information from annotations is not available on this panel.

Map environment entries for

Web modules

If your application uses Web modules that support Servlet 2.5, for Map

environment entries for Web modules, configure the environment entries of

Web modules such as servlets and JSP files.

This panel shows environment entries from the module XML deployment

descriptor. Environment entry deployment information from annotations is not

available in this panel.

Map resource environment

entry references to resources

If your application contains resource environment references, for Map resource

environment entry references to resources, specify JNDI names of resources

that map to the logical names defined in resource environment references. If each

resource environment reference does not have a resource associated with it, after

you click Finish a validation error is displayed.

Correct use of system identity If your application defines Run-As Identity as System Identity, for Correct use of

system identity, you can optionally change it to Run-As role and specify a user

name and password for the Run As role specified. Selecting System Identity

implies that the invocation is done using the WebSphere Application Server

security server ID and should be used with caution as this ID has more privileges.

Correct isolation levels for all

resource references

If your application has resource references that map to resources that have an

Oracle database doing backend processing, for Correct isolation levels for all

resource references, specify or correct the isolation level to be used for such

resources when used by the application. Oracle databases support

ReadCommitted and Serializable isolation levels only.

Bind message destination

references to administered

objects

If your application uses message driven beans, for Bind message destination

references to administered objects, specify the JNDI name of the J2C

administered object to bind the message destination reference to the message

driven beans.

If the message destination reference is from a EJB 3.0 module, then the JNDI

name is optional and the run time provides a container default value.

Note: If multiple message destination references link to the same message

destination, only one JNDI name is collected. When a message destination

reference links to the same message destination as a message driven bean and

the destination JNDI name has been collected already, the destination JNDI name

for the message destination reference is not collected.

Provide JNDI names for JCA

objects

If your application contains an embedded .rar file, for Provide JNDI names for

JCA objects, specify the name and JNDI name of each J2C connection factory,

J2C administered object and J2C activation specification.

Bind J2C activationspecs to

destination JNDI names

If your application contains an embedded .rar file, its activationSpec property has

the value Destination, and its introspected type is javax.jms.Destination, for

Bind J2C activationspecs to destination JNDI names, specify the jndiName

value for each activation bound to it.

40 Developing and deploying applications

Panel Description

Select current backend ID If your application has EJB modules for which deployment code has been

generated for multiple backend databases using an assembly tool, for Select

current backend ID, specify the backend ID representing the backend database

to be used when the EJB module runs.

This step is not shown if the Deploy enterprise beans setting is enabled on the

Select installation options panel and if a database type other than None is

specified on the Provide options to perform the EJB Deploy panel.

Metadata for modules If your application has EJB 3.0 or Web 2.5 modules, you can lock deployment

descriptors for one or more of the EJB 3.0 or Web 2.5 modules. If you set the

metadata-complete attribute to true and lock deployment descriptors, the product

writes the complete module deployment descriptor, including deployment

information from annotations, to XML format.

Provide options to perform the

Web services deployment

If the Deploy Web services setting is enabled on the Select installation options

panel and your application uses Web services, then you can specify wsdeploy

command options on the Provide options to perform the Web services

deployment panel. For information on this panel, refer to descriptions of the

wsdeploy -cp and -jardir options.

5. On the Summary panel, verify the cell, node, and server onto which the application modules will install:

a. Beside Cell/Node/Server, click Click here.

b. Verify the settings.

c. Return to the Summary panel.

d. Click Finish.

Results

Several messages are displayed, indicating whether your application file is installing successfully.

If Validate input off/warn/fail on the Select installation options panel is set to warn, the default, several

validation warnings might be displayed. If the setting is fail, the validation warnings might cause errors.

If you receive an OutOfMemory error and the source application file does not install, your system might not

have enough memory or your application might have too many modules in it to install successfully onto the

server. If lack of system memory is not the cause of the error, package your application again so the .ear

file has fewer modules.

If lack of system memory and the number of modules are not the cause of the error, check the options you

specified on the Java virtual machine page of the application server running the administrative console.

You might increase the maximum heap size. Then, try installing the application file again.

What to do next

After the application file installs successfully, do the following:

1. Save the changes to your configuration.

The application is registered with the administrative configuration and application files are copied to the

target directory, which is app_server_root/installedApps/cell_name by default or the directory that you

designate.

For a single-server product, application files are copied to the destination directory when the changes

are saved.

If you clicked the Save link in the application installation messages, the Preparing for the application

installation panel displays again. Click Applications → Application Types → WebSphere enterprise

applications to exit the panel and to see your application in the list of installed applications.

Chapter 5. Deploying and administering enterprise applications 41

2. Start the application.

3. Test the application. For example, point a Web browser at the URL for the deployed application and

examine the performance of the application. If necessary, edit the application configuration.

Preparing for application installation settings

Use this page to specify an application or module to install.

To view this administrative console page, click Applications → New application → New Enterprise

Application.

This page is the first Preparing for the application installation page. On this page, specify an application or

module to install. You can install an enterprise application archive (EAR file), enterprise bean (EJB)

module (JAR file), Session Initiation Protocol (SIP) module (SAR file), or Web module (WAR file).

The second Preparing for the application installation page has more installation options, such as to

generate default bindings for incomplete existing bindings in your application or module.

Path to the new application:

Specifies the fully qualified path to the enterprise application file.

 The file can be an .ear, .jar, .sar, or .war file.

During application installation, the product typically uploads application files from a client workstation

running the browser to the server running the administrative console, and then deploys the application files

on the server. In such cases, use the Web browser running the administrative console to select EAR,

WAR, SAR, or JAR modules to upload to the server.

Use Local file system when the browser and application files are on the same computer.

Use Remote file system in the following situations:

v The application file resides on any node in the current cell context. Only .ear, .jar, .sar, or .war files are

shown during the browsing.

v The application file resides on the file system of any of the nodes in a cell.

v The application file already resides on the computer running the application server. For example, the

field value might be profile_root/installableApps/test.ear.

After the product transfers the application file, the Remote file system value shows the path of the

temporary location on the server.

Preparing for application installation binding settings

Use this page to select whether to view all installation options and to change the existing bindings for you

application or module during installation. You can chose to generate default bindings for any incomplete

bindings in the application or module or to assign specific bindings during installation.

This page is the second Preparing for the application installation page.

To view this administrative console page, click Applications → New application → New Enterprise

Application, specify the path for the application or module to install, and then click Next.

The console page might not display all of the binding options listed in this topic. The contents of the

application or module that you are installing determines which options are displayed on the console page.

Also, the Specify bindings to use option displays only when updating an installed application.

How do you want to install the application?:

42 Developing and deploying applications

Specifies whether to show only installation options that require you to supply information or to show all

installation options.

 Option Description

Fast Path - Prompt only

when additional information

is required

Displays only those options that require your attention, based on the contents of

your application or module. Use the fast path to install your application more easily

because you do not need to examine all available installation options.

Detailed - Show all

installation options and

parameters

Displays all available installation options.

Specify bindings to use:

Specifies whether to merge bindings when you update applications or to use new or existing bindings.

 This setting is shown only when you update an installed application, and not when you install a new

application.

 Option Description

Merge new and existing

bindings

Keeps the existing binding values of the installed application and adds new binding

values in the updated application for incomplete bindings. Use merge if your

updated application has binding values that differ from values specified for the

installed application. The product assigns binding values in the following order:

1. Use existing binding values in the installed application.

2. If the installed application does not have a binding value, use the new binding

value.

3. If both the installed application and the updated application do not have a

binding value, use the default value. The product assigns a default value only if

you select Generate default bindings.

Use new bindings Uses binding values in the updated application. Does not use existing binding

values in the installed application.

Use existing bindings Uses existing binding values in the installed application. Does not use binding

values in the updated application.

Generate default bindings:

Specifies whether to generate default bindings and mappings. To view this setting, expand Choose to

generate default bindings and mappings. If you select Generate default bindings, then the product

completes any incomplete bindings in the application with default values. The product does not change

existing bindings.

 After you select Generate default bindings, you can advance directly to the Summary step and install the

application if none of the steps have a red asterisk (*). A red asterisk denotes that the step has incomplete

data and requires a valid value. On the Summary panel, verify the cell, node, and server on which the

application is installed.

Note: You do not need to specify Java Naming and Directory Interface (JNDI) values for EJB bean, local

home, remote home, or business interfaces of EJB 3.0 modules. The product assigns container

default values during run time. Similarly, for any EJB reference within an EJB 3.0, Web 2.4, or Web

2.5 module, you do not need to specify JNDI values because the product resolves the targets

automatically during run time. Even when you select Generate default bindings, the product does

not generate default values for those JNDI values but it does generate default values for other

bindings such as virtual host.

Chapter 5. Deploying and administering enterprise applications 43

If you select Generate default bindings, the product generates bindings as follows:

v Enterprise bean (EJB) JNDI names are generated in the form prefix/ejb-name. The default prefix is ejb,

but can be overridden. The ejb-name is as specified in the deployment descriptors <ejb-name> tag or in

its corresponding annotation for EJB 3.0 modules. The product does not generate default values for

enterprise beans in an EJB 3.0 module because the run time provides container default values.

v EJB references are bound if an <ejb-link> is found. Otherwise, if a unique enterprise bean is found

with a matching home (or local home) interface as the referenced bean, the reference is resolved

automatically. The product does not generate default values for EJB reference in an EJB 3.0, Web 2.4,

or Web 2.5 module because the run time provides container default values or automatically resolves the

target references.

v Resource reference bindings are derived from the <res-ref-name> tag or its corresponding annotation

for Java Platform, Enterprise Edition (Java EE) 5 modules. This action assumes that the java:comp/env

name is the same as the resource global JNDI name.

v Connection factory bindings for EJB 2.0 and EJB 2.1 JAR files are generated based on the JNDI name

and authorization information provided. This action results in default connection factory settings for each

EJB 2.0 and EJB 2.1 JAR file in the application being installed. No bean-level connection factory

bindings are generated.

v Data source bindings for EJB 1.1 JAR files are generated based on the JNDI name, data source user

name password options. This action results in default data source settings for each JAR file. No

bean-level data source bindings are generated.

v For EJB 2.0 or later message-driven beans deployed as Java EE Connector Architecture (JCA)

1.5-compliant resources, the JNDI names corresponding to activationSpec instances are generated in

the form eis/MDB_ejb-name. Message destination references are bound if a <message-destination-
link> is found, then the JNDI name is set to ejs/message-destination-linkName. Otherwise, the JNDI

name is set to eis/message-destination-refName.

v For EJB 2.0 or later message-driven beans deployed against listener ports, the listener ports are

derived from the message-driven bean <ejb-name> tag with the string Port appended.

v For .war files, the virtual host is set as default_host unless otherwise specified.

The default strategy suffices for most applications or at least for most bindings in most applications.

However, if you experience errors, complete the following actions:

v Control the global JNDI names of one or more EJB files.

v Control data source bindings for container-managed persistence (CMP) beans. That is, you have

multiple data sources and need more than one global data source.

v Map resource references to global resource JNDI names that are different from the java:comp/env

name.

In such cases, you can change the behavior with an XML document, which is a custom strategy. Use the

Specific bindings file setting to specify a custom strategy and see the setting description in this help file

for examples.

Override existing bindings:

Specifies whether generated bindings are to replace existing bindings.

 The default is to not override existing bindings. Select Override existing bindings to have generated

bindings replace existing bindings.

Specific bindings file:

Specifies a bindings file that overrides the default binding.

 Change the behavior of the default binding with an XML document, which is a custom strategy. Custom

strategies extend the default strategy so you only need to customize those areas where the default

strategy is insufficient. Thus, you only need to describe how you want to change the bindings generated

by the default strategy; you do not have to define bindings for the entire application.

44 Developing and deploying applications

Use the following examples to override various aspects of the default bindings generator:

Controlling an EJB JNDI name

<?xml version="1.0"?>

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>helloEjb.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>HelloEjb</ejb-name>

 <jndi-name>com/acme/ejb/HelloHome</jndi-name>

 </ejb-binding>

 </ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Note: Ensure that the setting for <ejb-name> matches the ejb-name entry in the EJB JAR deployment

descriptor. Here the setting is <ejb-name>HelloEjb</ejb-name>.

Setting the connection factory binding for an EJB JAR file

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>yourEjb20.jar</jar-name>

 <connection-factory>

 <jndi-name>eis/jdbc/YourData_CMP</jndi-name>

 <res-auth>Container</res-auth>

 </connection-factory>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Setting the connection factory binding for an EJB file

<?xml version="1.0">

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>yourEjb20.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>YourCmp20</ejb-name>

 <connection-factory>

 <jndi-name>eis/jdbc/YourData_CMP</jndi-name>

 <res-auth>PerConnFact</res-auth>

 </connection-factory>

 </ejb-binding>

 </ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Note: Ensure that the setting for <ejb-name> matches the ejb-name tag in the deployment descriptor. Here

the setting is <ejb-name>YourCmp20</ejb-name>.

Setting the message destination reference JNDI for a specific enterprise bean

Chapter 5. Deploying and administering enterprise applications 45

This example shows an XML extract in a custom strategy file for setting message-destination-refs for a

specific enterprise bean.

<?xml version="1.0">

 <!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

 <dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>yourEjb21.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>YourSession21</ejb-name>

 <message-destination-ref-bindings>

 <message-destination-ref-binding>

 <message-destination-ref-name>jdbc/MyDataSrc</message-destination-ref-name>

 <jndi-name>eis/somAO</jndi-name>

 </message-destination-ref-binding>

 </message-destination-ref-bindings>

 </ejb-binding>

 </ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

 </dfltbndngs>

Note: Ensure that the setting for <ejb-name> matches the ejb-name tag in the deployment descriptor. Here

the setting is <ejb-name>YourSession21</ejb-name>. Also ensure that the setting for

<message-destination-ref-name> matches the message-destination-ref-name tag in the

deployment descriptor. Here the setting is <message-destination-ref-name>jdbc/MyDataSrc</
message-destination-ref-name>.

Overriding a resource reference binding from a WAR, EJB JAR file, or Java EE client JAR file

This example shows code for overriding a resource reference binding from a WAR file. Use similar code to

override a resource reference binding from an enterprise bean (EJB) JAR file or a Java EE client JAR file.

<?xml version="1.0"?>

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <war-binding>

 <jar-name>hello.war</jar-name>

 <resource-ref-bindings>

 <resource-ref-binding>

 <resource-ref-name>jdbc/MyDataSrc</resource-ref-name>

 <jndi-name>war/override/dataSource</jndi-name>

 </resource-ref-binding>

 </resource-ref-bindings>

 </war-binding>

 </module-bindings>

</dfltbndngs>

Note: Ensure that the setting for <resource-ref-name> matches the resource-ref tag in the deployment

descriptor. In the previous example, the setting is <resource-ref-name>jdbc/MyDataSrc</resource-
ref-name>.

Overriding the JNDI name for a message-driven bean deployed as a JCA 1.5-compliant resource

This example shows an XML extract in a custom strategy file for overriding the Java Message Service

(JMS) activationSpec JNDI name for an EJB 2.0 or later message-driven bean deployed as a JCA

1.5-compliant resource.

<?xml version="1.0"?>

 <!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

 <dfltbndngs>

46 Developing and deploying applications

<module-bindings>

 <ejb-jar-binding>

 <jar-name>YourEjbJar.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>YourMDB</ejb-name>

 <activationspec-jndi-name>activationSpecJNDI</activationspec-jndi-name>

 </ejb-binding>

 </ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

 </dfltbndngs>

Overriding the JMS listener port name for an EJB 2.0, 2.1, or 3.0 message-driven bean

This example shows an XML extract in a custom strategy file for overriding the JMS listener port name for

an EJB 2.0 or later message-driven bean deployed against a listener port.

<?xml version="1.0"?>

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>YourEjbJar.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>YourMDB</ejb-name>

 <listener-port>yourMdbListPort</listener-port>

 </ejb-binding>

 </ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Overriding an EJB reference binding from an EJB JAR, WAR file, or EJB file

This example shows code for overriding an EJB reference binding from an EJB JAR file. Use similar code

to override an EJB reference binding from a WAR file or an EJB file.

<?xml version="1.0"?>

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>YourEjbJar.jar</jar-name>

 <ejb-ref-bindings>

 <ejb-ref-binding>

 <ejb-ref-name>YourEjb</ejb-ref-name>

 <jndi-name>YourEjb/JNDI</jndi-name>

 </ejb-ref-binding>

 </ejb-ref-bindings>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Specify unique prefix for beans:

Specifies a string that the product applies to the beginning of generated enterprise bean JNDI names. The

prefix must be unique within the cell or node.

 The default is to not specify a unique prefix for beans.

Default bindings for EJB 1.1 CMP beans:

Chapter 5. Deploying and administering enterprise applications 47

Specifies the default data source JNDI name and other bindings for container-managed persistence (CMP)

1.1 beans.

 The default is to not use default bindings for EJB 1.1 CMP beans.

If you select Default bindings for EJB 1.1 CMP beans, specify the JNDI name for the default data

source to be used with the CMP 1.1 beans. Also specify the user name and password for this default data

source.

Default connection factory bindings:

Specifies the default connection factory JNDI name.

 The default is to not use default connection factory bindings. Select Default connection factory bindings

to specify bindings for connection factories.

If you select Default connection factory bindings, specify the JNDI name for the default connection

factory to be used. Also specify whether the resource authorization is for the application or container-wide.

Use default virtual host name for Web and SIP modules:

Specifies the virtual host for the Web module (WAR file) or Session Initiation Protocol (SIP) module (SAR

file).

 The default is to not use default virtual host name for Web or SIP modules. If you select Use default

virtual host name for Web and SIP modules, specify a default host name.

Select installation options settings

Use this panel to specify options for the installation of a Java Platform, Enterprise Edition (Java EE)

application onto a WebSphere Application Server deployment target. Default values for the options are

used if you do not specify a value. After application installation, you can specify values for many of these

options from an enterprise application settings page.

To view this administrative console panel, click Applications → New application → New Enterprise

Application and then specify values as needed for your application on the Preparing for application

installation pages.

The Select installation options panel is the same for the application installation and update wizards.

Precompile JavaServer Pages files:

Specify whether to precompile JavaServer Pages (JSP) files as a part of installation. The default is not to

precompile JSP files.

 For this option, install only onto a Version 6.1 or later deployment target.

If you select Precompile JavaServer Pages files and try installing your application onto an earlier

deployment target such as Version 5.x, the installation is rejected. You can deploy applications to only

those deployment targets that have same version as the product. If applications are targeted to servers

that have an earlier version than the product, then you cannot deploy to those targets.

 Data type Boolean

Default false

Directory to install application:

48 Developing and deploying applications

Specifies the directory to which the enterprise archive (EAR) file will be installed.

 By default, the EAR file is installed in the profile_root/installedApps/cell_name/application_name.ear

directory.

Setting options include the following:

v Do not specify a value and leave the field empty.

The default value is ${APP_INSTALL_ROOT}/cell_name, where the ${APP_INSTALL_ROOT} variable is

profile_root/installedApps. A directory having the EAR file name of the application being installed is

appended to ${APP_INSTALL_ROOT}/cell_name. Thus, if you do not specify a directory, the EAR file is

installed in the profile_root/installedApps/cell_name/application_name.ear directory.

v Specify a directory.

If you specify a directory for Directory to install application, the application is installed in

specified_path/application_name.ear directory. A directory having the EAR file name of the application

being installed is appended to the path that you specify for Directory to install application. For

example, if you are installing Clock.ear and specify C:/myapps on Windows machines, the application is

installed in the myapps/Clock.ear directory. The ${APP_INSTALL_ROOT} variable is set to the specified

path.

v Specify ${APP_INSTALL_ROOT}/${CELL} for the initial installation of the application.

If you intend to export the application from one cell and later install the exported application on a

different cell, specify the ${CELL} variable for the initial installation of the application. For example,

specify ${APP_INSTALL_ROOT}/${CELL} for this setting. Exporting the application creates an enhanced

EAR file that has the application and its deployment configuration. The deployment configuration retains

the cell name of the initial installation in the destination directory unless you specify the ${CELL}

variable. Specifying the ${CELL} variable ensures that the destination directory has the current cell

name, and not the original cell name.

Note: If an installation directory is not specified when an application is installed on a single-server

configuration, the application is installed in ${APP_INSTALL_ROOT}/cell_name. When the server

is made a part of a multiple-server configuration (using the addNode utility), the cell name of the

new configuration becomes the cell name of the deployment manager node. If the -includeapps

option is used for the addNode utility, then the applications that are installed prior to the addNode

operation still use the installation directory ${APP_INSTALL_ROOT}/cell_name. However, an

application that is installed after the server is added to the network configuration uses the default

installation directory ${APP_INSTALL_ROOT}/network_cell_name. To move the application to the

${APP_INSTALL_ROOT}/network_cell_name location upon running the addNode operation,

explicitly specify the installation directory as ${APP_INSTALL_ROOT}/${CELL} during installation. In

such a case, the application files can always be found under ${APP_INSTALL_ROOT}/
current_cell_name.

v If the application has been exported and you are installing the exported EAR file in a different cell or

location, specify ${APP_INSTALL_ROOT}/cell_name/application_name.ear if you did not specify

${APP_INSTALL_ROOT}/${CELL} for the initial installation.

The exported EAR file is an enhanced EAR file that has the application and its deployment

configuration. The deployment configuration retains the value for Directory to install application that

was used for the previous installation of the application. Unless you specify a different value for

Directory to install application for this installation, the enhanced EAR file will be installed to the same

directory as for the previous installation.

If you did not specify the ${CELL} variable during the initial installation, the deployment configuration

uses the cell name of the initial installation in the destination directory. If you are installing on a different

cell, specify ${APP_INSTALL_ROOT}/cell_name/application_name.ear, where cell_name is the name of

the cell to which you want to install the enhanced EAR file. If you do not designate the current cell

name, cell_name will be the original cell name even though you are installing the enhanced EAR file on

a cell that has a different name.

Chapter 5. Deploying and administering enterprise applications 49

v Specify an absolute path or a use pathmap variable.

You can specify an absolute path or use a pathmap variable such as ${MY_APPS}. You can use a

pathmap variable in any installation.

This Directory to install application field is the same as the Location (full path) setting on an

Application binaries page.

 Data type String

Units Full path name

Distribute application:

Specifies whether the product expands application binaries in the installation location during installation

and deletes application binaries during uninstallation. The default is to enable application distribution.

Application binaries for installed applications are expanded to the directory specified.

 On single-server products, the binaries are deleted when you uninstall and save changes to the

configuration.

On multiple-server products, the binaries are deleted when you uninstall and save changes to the

configuration and synchronize changes.

If you disable this option, then you must ensure that the application binaries are expanded appropriately in

the destination directories of all nodes where the application runs.

Note: If you disable this option and you do not copy and expand the application binaries to the nodes, a

later saving of the configuration or manual synchronization does not move the application binaries

to the nodes for you.

This Distribute application field is the same as the Enable binary distribution, expansion and cleanup

post uninstallation setting on an Application binaries page.

 Data type Boolean

Default true

Use binary configuration:

Specifies whether the application server uses the binding, extensions, and deployment descriptors located

with the application deployment document, the deployment.xml file (default), or those located in the

enterprise archive (EAR) file. Select this setting for applications installed on Version 6.0 or later

deployment targets only. This setting is not valid for applications installed on 5.x deployment targets.

 The default (false) is not to use the binding, extensions, and deployment descriptors located in

deployment.xml. To use the binding, extensions, and deployment descriptors located in the EAR file,

enable this setting (true).

This Use binary configuration field is the same as the Use configuration information in binary setting

on an Application binaries page.

 Data type Boolean

Default false

Deploy enterprise beans:

50 Developing and deploying applications

Specifies whether the EJBDeploy tool runs during application installation.

 The tool generates code needed to run enterprise bean (EJB) files. You must enable this setting in the

following situations:

v The EAR file was assembled using an assembly tool such as Rational Application Developer and the

EJBDeploy tool was not run during assembly.

v The EAR file was not assembled using an assembly tool such as Rational Application Developer.

v The EAR file was assembled using versions of the Application Assembly Tool (AAT) previous to Version

5.0.

The EJB deployment tool runs during installation of EJB 1.x or 2.x modules. The EJB deployment tool

does not run during installation of EJB 3.0 modules.

For this option, install only onto a Version 6.1 or later deployment target.

If you select Deploy enterprise beans and try installing your application onto an earlier deployment target

such as Version 6.0, the installation is rejected. You can deploy applications to only those targets that have

same WebSphere version as the product. If applications are targeted to servers that have an earlier

version than the product, then you cannot deploy to those targets.

Also, if you select Deploy enterprise beans and specify a database type on the Provide options to

perform the EJB Deploy panel, previously defined backend IDs for all of the EJB modules are overwritten

by the chosen database type. To enable backend IDs for individual EJB modules, set the database type to

"" (null) on the Provide options to perform the EJB Deploy panel.

Enabling this setting might cause the installation program to run for several minutes.

 Data type Boolean

Default true (false for EJB 3.0 modules)

Application name:

Specifies a logical name for the application. An application name must be unique within a cell and cannot

contain an unsupported character.

 An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot

contain any of the following characters:

 Unsupported characters

/ forward slash $ dollar sign ’ single quote mark

\ backslash = equal sign ″ double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

This Application name field is the same as the Name setting on an Enterprise application settings page.

 Data type String

Create MBeans for resources:

Chapter 5. Deploying and administering enterprise applications 51

Specifies whether to create MBeans for resources such as servlets or JSP files within an application when

the application starts. The default is to create MBeans.

 This field is the same as the Create MBeans for resources setting on a Startup behavior page.

 Data type Boolean

Default true

Override class reloading settings for Web and EJB modules:

Specifies whether the product run time detects changes to application classes when the application is

running. If this setting is enabled and if application classes are changed, then the application is stopped

and restarted to reload updated classes.

 The default is not to enable class reloading.

This field is the same as the Override class reloading settings for Web and EJB modules setting on

an Class loading and update detection page.

 Data type Boolean

Default false

Reload interval in seconds:

Specifies the number of seconds to scan the application’s file system for updated files. The default is the

value of the reloading interval attribute in the IBM extension (META-INF/ibm-application-ext.xmi) file of the

EAR file.

 The reloading interval attribute takes effect only if class reloading is enabled.

To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). To disable

reloading, specify zero (0). The range is from 0 to 2147483647.

This Reload interval in seconds field is the same as the Polling interval for updated files setting on a

Class loading and update detection page.

 Data type Integer

Units Seconds

Default 3

Deploy Web services:

Specifies whether the Web services deploy tool wsdeploy runs during application installation.

 The tool generates code needed to run applications using Web services. The default is not to run the

wsdeploy tool. You must enable this setting if the EAR file contains modules using Web services and has

not previously had the wsdeploy tool run on it, either from the Deploy menu choice of an assembly tool or

from a command line.

For this option, install only onto a Version 6.1 or later deployment target.

If you select Deploy Web services and try installing your application onto an earlier deployment target

such as Version 5.x, the installation is rejected. You can deploy applications to only those targets that have

same version as the product. If applications are targeted to servers that have an earlier version than the

52 Developing and deploying applications

product, then you cannot deploy to those targets.

 Data type Boolean

Default false

Validate input off/warn/fail:

Specifies whether the product examines the application references specified during application installation

or updating and, if validation is enabled, warns you of incorrect references or fails the operation.

 An application typically refers to resources using data sources for container managed persistence (CMP)

beans or using resource references or resource environment references defined in deployment descriptors.

The validation checks whether the resource referred to by the application is defined in the scope of the

deployment target of that application.

Select off for no resource validation, warn for warning messages about incorrect resource references, or

fail to stop operations that fail as a result of incorrect resource references.

This Validate input off/warn/fail field is the same as the Application reference validation setting on an

Enterprise application settings page.

 Data type String

Default warn

Process embedded configuration:

Specifies whether the embedded configuration should be processed. An embedded configuration consists

of files such as resource.xml and variables.xml. When selected or true, the embedded configuration is

loaded to the application scope from the .ear file. If the .ear file does not contain an embedded

configuration, the default is false. If the .ear file contains an embedded configuration, the default is true.

 Data type Boolean

Default false

File permission:

Specifies access permissions for application binaries for installed applications that are expanded to the

directory specified.

 The Distribute application option must be enabled to specify file permissions.

You can specify file permissions in the text field. You can also set some of the commonly used file

permissions by selecting them from the multiple-selection list. List selections overwrite file permissions set

in the text field.

You can set one or more of the following file permission strings in the list. Selecting multiple options

combines the file permission strings.

 Multiple-selection list option File permission string set

Allow all files to be read but not written to .*=755

Allow executables to execute .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755

Allow HTML and image files to be read by

everyone

.*\.htm=755#.*\.html=755#.*\.gif=755#.*\.jpg=755

Chapter 5. Deploying and administering enterprise applications 53

Instead of using the multiple-selection list to specify file permissions, you can specify a file permission

string in the text field. File permissions use a string that has the following format:

file_name_pattern=permission#file_name_pattern=permission

where file_name_pattern is a regular expression file name filter (for example, .*\\.jsp for all JSP files),

permission provides the file access control lists (ACLs), and # is the separator between multiple entries of

file_name_pattern and permission. If # is a character in a file_name_pattern string, use \# instead.

If multiple file name patterns and file permissions in the string match a uniform resource identifier (URI)

within the application, then the product uses the most stringent applicable file permission for the file. For

example, if the file permission string is .*\\.jsp=775#a.*\\.jsp=754, then the abc.jsp file has file

permission 754.

Note: Using regular expressions for file matching pattern compares an entire string URI against the

specified file permission pattern. You must provide more precise matching patterns using regular

expressions as defined by Java programming API. For example, suppose the following directory

and file URIs are processed during a file permission operation:

 1 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war

2 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

3 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF/
MANIFEST.MF

4 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/WEB-INF/classes/
MyClass.class

5 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/mydir/
MyClass2.class

6 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF

The file pattern matching results are:

v MyWarModule.war does not match any of the URIs

v .*MyWarModule.war.* matches all URIs

v .*MyWarModule.war$ matches only URI 1

v .*\\.jsp=755 matches only URI 2

v .*META-INF.* matches URIs 3 and 6

v .*MyWarModule.war/.*/.*\.class matches URIs 4 and 5

If you specify a directory name pattern for File permissions, then the directory permission is set based on

the value specified. Otherwise, the File permissions value set on the directory is the same as its parent.

For example, suppose you have the following file and directory structure:

/opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

and you specify the following file pattern string:

.*MyApp.ear$=755#.*\.jsp=644

The file pattern matching results are:

v Directory MyApp.ear is set to 755

v Directory MyWarModule.war is set to 755

v Directory MyWarModule.war is set to 755

Note: Regardless of the operation system, always use a forward slash (/) as a file path separator in file

patterns.

54 Developing and deploying applications

Access permissions specified here are at the application level. You can also specify access permissions

for application binaries in the node-level configuration. The node-level file permissions specify the

maximum (most lenient) permissions that can be given to application binaries. Access permissions

specified here at application level can only be the same as or more restrictive than those specified at the

node level.

This setting is the same as the File permissions field on the Application binaries page.

 Data type String

Application build identifier:

Specifies an uneditable string that identifies the build version of the application.

 This Application build identifier field is the same as the Application build level field on the Application

binaries page.

 Data type String

Business-level application name:

Specifies whether the product creates a new business-level application with the enterprise application that

you are installing or makes the enterprise application a composition unit of an existing business-level

application.

 The default is to create a new business-level application with a setting value of

WebSphere:blaname=Anyasset,blaedition=BASE. When you select to create a new business-level

application from the drop-down list, the product creates a business-level application that has the same

name as your enterprise application.

To add your enterprise application to an existing business-level application, select an existing

business-level application from the drop-down list. The product makes your enterprise application a

composition unit of the existing business-level application.

 Data type String

Default Create a new business-level application that has the same name as the

enterprise application that you are installing.

WebSphere:blaname=Anyasset,blaedition=BASE

Asynchronous request dispatch type:

Specifies whether Web modules can dispatch requests concurrently on separate threads and, if so,

whether the server or client dispatches the requests. Concurrent dispatching can improve servlet response

time.

 If operations are dependant on each other, do not enable asynchronous request dispatching. Select

Disabled. Concurrent dispatching might result in errors when operations are dependant.

Select Server side to enable the server to dispatch requests concurrently. Select Client side to enable

the client to dispatch requests concurrently.

 Data type String

Default Disabled

Chapter 5. Deploying and administering enterprise applications 55

Allow EJB reference targets to resolve automatically:

Specifies whether the product assigns default JNDI values for or automatically resolves incomplete EJB

reference targets.

 Select this option to enable EJB reference targets to resolve automatically if the references are from EJB

2.1 or earlier modules or from Web 2.3 or earlier modules. If you enable this option, the runtime container

provides a default value or automatically resolves the EJB reference for any EJB reference that does not

have a binding.

If you selected Generate default bindings on the Preparing for application installation page, then you do

not need to select this option. The product generates default values.

If you select Allow EJB reference targets to resolve automatically, all modules in the application must

share one deployment target. If you select this option and all of the application modules do not share a

common server, after you click Finish on the Summary page, the product displays a warning message

and does not install the application. You must deselect this setting before you click Finish to install the

application.

 Data type Boolean

Default false

Provide options to perform the EJB Deploy settings

Use this panel to specify options for the enterprise bean (EJB) deployment tool. The tool generates code

needed to run enterprise bean files. You can specify extra class paths, Remote Method Invocation

compiler (RMIC) options, database types, and database schema names to be used while running the EJB

deployment tool.

This administrative console panel is a step in the application installation and update wizards. To view this

panel, you must select Deploy enterprise beans on the Select installation options panel. Thus, to view

this panel, click Applications → New Application → New Enterprise Application → application_path →

Next → Detailed - Show all installation options and parameters → Next → Deploy enterprise beans →

Next → Step: Provide options to perform the EJB Deploy.

You can specify the EJB deployment tool options on this panel when installing or updating an application

that contains EJB modules. The EJB deployment tool runs during installation of EJB 1.x or 2.x modules.

The EJB deployment tool does not run during installation of EJB 3.0 modules.

The options that you specify set parameter values for the ejbdeploy command. The tool, and thus the

ejbdeploy command, is run on the enterprise archive (EAR) file during installation after you click Finish on

the Summary panel of the wizard.

Class path:

Specifies the class path of one or more zipped or Java archive (JAR) files on which the JAR or EAR file

being installed depends.

 To specify the class paths of multiple zipped and JAR files, the zipped and JAR file names must be fully

qualified, separated by semicolons, and enclosed in double quotation marks. For example:

path\myJar1.jar;path\myJar2.jar;path\myJar3.jar

Class path is the same as the ejbdeploy command parameter -cp class_path.

 Data type String

Default null

56 Developing and deploying applications

RMIC:

Specifies whether the EJB deployment tool passes RMIC options to the Remote Method Invocation

compiler. Refer to RMI Tools documentation for information on the options.

 Separate options by a space and enclose them in double quotation marks. For example:

"-nowarn -verbose"

The RMIC setting is the same as the ejbdeploy command parameter -rmic "options".

 Data type String

Default null

Database type:

Specifies the name of the database vendor, which is used to determine database column types, mapping

information, Table.sql, and other information. Select a database type or the empty choice from the

drop-down list. The list contains the names of valid database vendors. Selecting the empty choice sets the

database type to "" (null).

 If you specify a database type, previously defined backend IDs for all of the EJB modules are overwritten

by the chosen database type. To enable backend IDs for individual EJB modules, select the empty choice

to set the database type to null.

The backend IDs SQL92 (1992 SQL Standard) and SQL99 (1999 SQL Standard) are deprecated. Although

the SQL92 and SQL99 backend IDs are available in the list, they are deprecated.

Database type is the same as the ejbdeploy command parameter -dbvendor name.

 Data type String

Default DB2UDB_V82

Database schema:

Specifies the name of the schema that you want to create.

 The EJB deployment tool saves database information in the schema document in the JAR or EAR file,

which means that the options do not need to be specified again. It also means that when a JAR or EAR is

generated, the correct database must be defined at that point because it cannot be changed later.

If the name of the schema contains any spaces, the entire name must be enclosed in double quotes. For

example:

"my schema"

Database schema is the same as the ejbdeploy command parameter -dbschema "name".

 Data type String

Default null

Database access type:

Specifies the database access type for a DB2 database that supports Structured Query Language for Java

(SQLJ). Use SQLJ to develop data access applications that connect to DB2 databases. SQLJ is a set of

Chapter 5. Deploying and administering enterprise applications 57

programming extensions that support use of the Java programming language to embed statements that

provide SQL (Structured Query Language) database requests.

 To view this setting, you must select a DB2 backend database that supports SQLJ from the Database

type drop-down list.

Available database access types include JDBC and SQLJ.

 Data type String

Default JDBC

SQLJ class path:

Specifies the class path of the DB2 SQLJ tool sqlj.zip file. The product uses this class path to run the DB2

SQLJ tool during application installation and generate SQLJ profiles (.ser files).

 To view this setting, you must select a DB2 backend database that supports SQLJ from the Database

type drop-down list.

When you reinstall an application EAR file, the product deletes any existing SQLJ profiles and creates new

profiles.

If you do not specify a class path, the product displays a warning about the missing class path. After you

specify a valid class path, you can continue using the wizard for the application installation.

You can customize or add bindings to the generated SQLJ profile after the product installs the application.

Use the administrative console SQLJ profiles and pureQuery bind files page accessed by clicking

Applications → Application Types → WebSphere enterprise applications → application_name → SQLJ

profiles and pureQuery bind files.

 Data type String

Default null

JDK compliance level:

Specifies the Java developer kit compiler compliance level as 1.4, 5.0, or 6.0 when you include application

source files for compilation.

 The default is to use whatever developer kit version the ejbdeploy command is using. If your application is

using new functionality defined in Version 5.0 or 6.0 or you are including source files (which is not

recommended), then you must specify the Version 5.0 or 6.0 level.

JDK compliance level is the same as the ejbdeploy command parameter -complianceLevel "1.4" |

"5.0" | "6.0".

 Data type String

Default null (empty string)

Bind listeners for message-driven beans settings

Use this panel to specify bindings for message-driven beans in your application or module.

58 Developing and deploying applications

To view this administrative console panel, click Applications → Application Types → WebSphere

enterprise applications → application_name → Message Driven Bean listener bindings. This panel is

the same as the Bind listeners for message-driven beans panel on the application installation and

update wizards.

Each message-driven bean must be bound to a listener port name or to an activation specification Java

Naming and Directory Interface (JNDI) name.

Provide a listener port name if your application uses any of the following Java Message Service (JMS)

providers:

v Version 5 default messaging

v WebSphere MQ

v Generic

Provide an activation specification JNDI name if your application’s resources are configured using the

default messaging provider or any generic J2C resource adapter that supports inbound messaging.

Not providing valid listener port names or activation specification JNDI names results in the following

errors:

v If neither a listener port name or an activation specification JNDI name is specified for a message

driven bean, then a validation error is displayed after you click Finish on the Summary panel.

v If the module containing the message-driven bean is deployed on a 5.x deployment target and a listener

port is not specified, then a validation error is displayed after you click Next.

v If multiple message driven beans are linked to the same destination, specify the same destination JNDI

name for each message driven bean. If you specify different destination JNDI names, a validation error

is displayed and all JNDI specifications after the first one are ignored.

To apply binding changes to multiple mappings:

1. In the list of mappings, select the Select check box beside each EJB module that you want mapped to

a particular binding.

2. Expand Apply Multiple Mappings.

3. Specify a listener port name or select a target resource JNDI name for an activation specification.

4. If you are defining a binding for an activation specification, optionally specify the following:

Destination JNDI name

For resource adapters that support JMS, specify javax.jms.Destinations so the resource

adapter can service messages from the JMS destination. A destination JNDI name set as part

of application deployment take precedence over properties set on an activation specification

administrative object.

Target resource JNDI Name

Specify the target resource JNDI name when mapping a message-driven bean to an activation

specification.

ActivationSpec authentication alias

Specify an authentication alias that is used to access the user name and password that are set

on the configured J2C activation specification. Authentication alias properties set as part of

application deployment take precedence over properties set on an activation specification

administrative object.

5. Click Apply.

6. Click OK or Next.

EJB module:

Specifies the name of the module that contains the enterprise bean.

EJB:

Chapter 5. Deploying and administering enterprise applications 59

Specifies name of an enterprise bean in the application.

URI:

Specifies the location of the module relative to the root of the application EAR file.

Messaging type:

Specifies the type of message-driven bean.

Bindings:

Specifies a listener port name or an activation specification JNDI name for the message-driven bean.

When a message-driven enterprise bean is bound to an activation specification JNDI name you can also

specify the destination JNDI name and the authentication alias.

 Bindings specify JNDI names for the referenceable and referenced artifacts in an application. An example

JNDI name for a listener port to be used by a Store application might be StoreMdbListener. The binding

definition is stored in IBM bindings files such as ibm-ejb-jar-bnd.xmi.

Example: Installing an EAR file using the default bindings

If application bindings were not specified for all enterprise beans or resources in an enterprise application

during application development or assembly, you can select to generate default bindings. After application

installation, you can modify the bindings as needed using the administrative console.

Before you begin

This topic assumes that the application can run on a Web server.

About this task

This topic describes how to install a simple .ear file using the default bindings. You can follow the steps to

install any application, including applications provided with the product in the samples or installableApps

subdirectory.

1. Click Applications → New application → New Enterprise Application in the console navigation tree.

2. On the first Preparing for application install page, specify the full path name of the EAR file.

a. For Path to the new application, specify the full path name of the .ear file. For this example, the

base file name is my_appl.ear and the file resides on a server at C:\sample_apps.

For this example, the base file name is my_appl.ear and the file resides on a server at

/home/myuserid/myapps. Thus, enter the fully qualified path name for the file, /home/myuserid/
myapps/my_appl.ear.

b. Click Next.

3. On the second Preparing for application install page, choose to generate default bindings.

a. Expand Choose to generate default bindings and mappings.

b. Select Generate default bindings.

Using the default bindings causes any incomplete bindings in the application to be filled in with

default values. the product does not change existing bindings. By choosing this option, you can

skip many of the steps of the application installation wizard and go directly to the Summary step.

c. Click Next.

4. If application security warnings are displayed, read the warnings and click Continue.

5. On the Install New Application page, click the step number for Map modules to servers, and verify

the cell, node, and server onto which the application files will install.

60 Developing and deploying applications

a. From the Clusters and servers list, select the server onto which the application files will install.

b. Select all of the application modules.

c. Click Next.

On the Map modules to servers panel, you can map modules to other servers such as Web servers.

If you want a Web server to serve the application, use the Ctrl key to select an application server or

cluster and the Web server together in order to have the plug-in configuration file plugin-cfg.xml for that

Web server generated based on the applications which are routed through it.

6. On the Install New Application page, click the step number beside Summary, the last step.

7. On the Summary panel, click Finish.

What to do next

Examine the application installation progress messages. If the application installs successfully, save your

administrative configuration. You can now see the name of your application in the list of deployed

applications on the Enterprise applications page accessed by clicking Applications → Application Types →

WebSphere enterprise applications in the console navigation tree.

If the application does not install successfully, read the messages to identify why the installation failed.

Correct problems with the application as needed and try installing the application again.

If the application has a Web module, try opening a browser on the application.

1. Point a Web browser at the URL for the deployed application.

The URL typically has the format http://host_name:9060/Web_module_name, where host_name is your

valid Web server and 9060 is the default port number.

2. Examine the performance of the application.

If the application does not perform as desired, edit the application configuration, then save and test it

again.

Example: Installing a Web Services Sample with the console

The product provides a Web Services sample application that you can install on a Version 7.x application

server.

Before you begin

During installation, select to install the sample applications. After installation, ensure that your product

installation has a Version 7.x application server onto which you can install the Web Services Sample.

About this task

Installing the sample applications adds the JaxWSServicesSamples.ear enterprise application and

supporting Java archives (JAR files) to the app_server_root/samples/lib/JaxWSServicesSamples directory

of your product installation.

This topic describes how to install and start the JaxWSServicesSamples.ear enterprise application using

an administrative console.

1. Click Applications → New application → New Enterprise Application in the console navigation tree.

2. On the first Preparing for application installation page, specify to install JaxWSServicesSamples.ear.

a. Click Local file system or Remote file system and specify the full path name of the

JaxWSServicesSamples.ear file.

app_server_root/samples/lib/JaxWSServicesSamples/JaxWSServicesSamples.ear

b. Click Next.

Chapter 5. Deploying and administering enterprise applications 61

3. On the second Preparing for application installation page, select the fast path option.

a. Select Fast Path - Prompt only when additional information is required.

b. Click Next.

4. Click Next on each panel until you reach the Summary panel.

Do not go directly from Step 1 to the Summary panel. You must click Next on each panel that has

mandatory settings to enter values for those settings. Simply click Next to enter the default values. You

optionally can change the values to suit your environment.

5. On the Summary panel, verify the cell, node, and server onto which the application modules will install,

and then click Finish.

6. Examine the application installation progress messages.

If the application installs successfully, the message Application JaxWSServicesSamples installed

successfully is displayed. Click Save. After the configuration changes are saved, you can see the

name of the application in the list of deployed applications on the Enterprise applications page

accessed by clicking Applications → Application Types → WebSphere enterprise applications in the

console navigation tree.

If the application does not install successfully, read the messages to identify why the installation failed.

Correct problems with the server or application and try installing the application again.

Results

The JaxWSServicesSamples application is in the list of deployed applications on the Enterprise

applications page.

What to do next

After the application installs successfully, do the following:

1. Start the application.

On the Enterprise applications page, select the check boxes beside JaxWSServicesSamples, and

then click Start.

2. Test the application. Point your Web browser at:

http://localhost:9080/wssamplesei/demo

If the localhost address does not load, substitute the host name (IP address) of the computer for

localhost; for example, http://9.22.33.44:9080/wssamplesei/demo.

If you have another WebSphere Application Server installation on your machine, the server port

number is likely not 9080. See the Ports table in the administrative console to find the WC_defaulthost

server port number. Click Servers → Server Types → WebSphere application servers → server1 →

Ports. The Ports table lists the important ports:

 Port name Description

WC_adminhost Port used to open an unsecure administrative console in the URL

http://host_name:administrative_port/ibm/console

WC_adminhost_secure Port used to open a secure administrative console in the URL

http://host_name:administrative_port/ibm/console

WC_defaulthost Port used to test running applications in the URL http://host_name:server_port/
servlet_name

WC_defaulthost_secure Port used to securely test running applications in the URL http://
host_name:server_port/servlet_name

You can also view the running Web Services Sample in a Web browser open on the Samples Gallery at

http://localhost:9080/WSsamples. As needed, substitute the host name (IP address) of the computer for

localhost and the port name for 9080. After installation of the Web Services Sample, click Installed

62 Developing and deploying applications

Samples → Web Services Samples → JAX-WS Web Services Samples.

Installing enterprise modules with JSR-88

You can install Java Platform, Enterprise Edition (Java EE) modules on an application server provided by

a WebSphere Application Server product using the Java EE Application Deployment API specification

(JSR-88).

Before you begin

JSR-88 defines standard application programming interfaces (APIs) to enable deployment of Java EE

applications and stand-alone modules to Java EE product platforms. The Java EE Application Deployment

specification Version 1.1 is available at http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html

as part of the Java 2 Platform, Enterprise Edition (J2EE) 1.4 Application Server Developer Release.

Read about JSR-88 and APIs used to manage applications at http://java.sun.com/j2ee/tools/deployment/.

About this task

JSR-88 defines a contract between a tool provider and a platform that enables tools from multiple vendors

to configure, deploy and manage applications on any Java EE product platform. The tool provider typically

supplies software tools and an integrated development environment (IDE) for developing and assembly of

Java EE application modules. The Java EE platform provides application management functions that

deploy, undeploy, start, stop, and otherwise manage Java EE applications.

WebSphere Application Server is a Java EE specification-compliant platform that implements the JSR-88

APIs. Complete the following steps to deploy (install) Java EE modules on an application server provided

by the WebSphere Application Server platform.

1. Code a Java program that can access the JSR-88 DeploymentManager class for the product.

a. Write code that finds the JAR manifest attribute J2EE-DeploymentFactory-Implementation-Class.

Under JSR-88, your code finds the DeploymentFactory using the JAR manifest attribute

J2EE-DeploymentFactory-Implementation-Class. The following product application management

JAR files contain this attribute and provide support:

 Environment JAR file containing the manifest attribute

Application server app_server_root/plugins/com.ibm.ws.admin.services.jar

Application client app_client_root/plugins/com.ibm.ws.j2ee.client.jar

Thin application client app_client_root/runtimes/com.ibm.ws.admin.client_7.0.0.jar

After your code finds the DeploymentFactory, the deployment tool can create an instance of the

WebSphere DeploymentFactory and register the instance with its DeploymentFactoryManager.

Example code for the application server environment follows. The example code requires that you

use the development kit shipped with the product or use the pluggable client for deployment of

stand-alone modules. See WebSphere Application Server detailed system requirements at

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921 for information on supported

development kits.

import javax.enterprise.deploy.shared.factories.DeploymentFactoryManager;

import javax.enterprise.deploy.spi.DeploymentManager;

import javax.enterprise.deploy.spi.factories.DeploymentFactory;

import java.util.jar.JarFile;

import java.util.jar.Manifest;

// Get the DeploymentFactory implementation class from the MANIFEST.MF file.

File jsr88Jar = new File(wasHome + "/plugins/com.ibm.ws.admin.services.jar");

JarFile jarFile = new JarFile(jsr88Jar);

Manifest manifest = jarFile.getManifest();

Chapter 5. Deploying and administering enterprise applications 63

Attributes attributes = manifest.getMainAttributes();

String key = "J2EE-DeploymentFactory-Implementation-Class";

String className = attributes.getValue(key);

// Get an instance of the DeploymentFactoryManager

DeploymentFactoryManager dfm = DeploymentFactoryManager.getInstance();

// Create an instance of the WebSphere Application Server DeploymentFactory.

Class deploymentFactory = Class.forName(className);

DeploymentFactory deploymentFactoryInstance =

 (DeploymentFactory) deploymentFactory.newInstance();

// Register the DeploymentFactory instance with the DeploymentFactoryManager.

dfm.registerDeploymentFactory(deploymentFactoryInstance);

// Provide WebSphere Application Server URL, user ID, and password.

// For more information, see the step that follows.

wsDM = dfm.getDeploymentManager(

 "deployer:WebSphere:myserver:8880", null, null);

b. Write code that accesses the DeploymentManager instance for the product The product URL for

deployment has the format

"deployer:WebSphere:host:port"

The example in the previous step, ″deployer:WebSphere:myserver:8880″, tries to connect to host

myserver at port 8880 using the SOAP connector, which is the default.

The URL for deployment can have an optional parameter connectorType. For example, to use the

RMI connector to access myserver, code the URL as follows:

"deployer:WebSphere:myserver:2809?connectorType=RMI"

2. Optional: Code a Java program that can customize or deploy Java EE applications or modules using

the JSR-88 support provided by the product.

3. Start the deployed Java EE applications or stand-alone Java EE modules using the JSR-88 API used

to start applications or modules.

What to do next

Test the deployed applications or modules. For example, point a Web browser at the URL for a deployed

application and examine the performance of the application. If necessary, update the application.

Customizing modules using DConfigBeans

You can configure Java Platform, Enterprise Edition (Java EE) applications or standalone modules during

deployment using the DConfigBean class in the Java EE Application Deployment API specification

(JSR-88).

Before you begin

This topic assumes that you are deploying (installing) Java EE modules on an application server provided

by the product using the WebSphere Application Server support for JSR-88.

Read about the JSR-88 specification and using the DConfigBean class at http://java.sun.com/j2ee/tools/
deployment/.

About this task

The DConfigBean class in JSR-88 provides JavaBeans-based support for platform-specific configuration of

Java EE applications and modules during deployment. Your code can inspect DConfigBean instances to

get platform-specific configuration attributes. The DConfigBean instances provided by WebSphere

Application Server contain a single attribute which has an array of java.util.Hashtable objects. The

hashtable entries contain configuration attributes, for which your code can get and set values.

64 Developing and deploying applications

http://java.sun.com/j2ee/tools/deployment/
http://java.sun.com/j2ee/tools/deployment/

1. Write code that installs Java EE modules on an application server using JSR-88.

2. Write code that accesses DConfigBeans generated by the product during JSR-88 deployment. You (or

a deployer) can then customize the accessed DConfigBeans instances. The following pseudocode

shows how a Java EE tool provider can get DConfigBean instance attributes generated by the product

during JSR-88 deployment and set values for the attributes.

import javax.enterprise.deploy.model.*;

import javax.enterprise.deploy.spi.*;

{

DeploymentConfiguration dConfig = ___; // Get from DeploymentManager

DDBeanRoot ddRoot = ___; // Provided by J2EE tool

// Obtain root bean.

DConfigBeanRoot dcRoot = dConfig.getDConfigBeanRoot(dr);

// Configure DConfigBean.

configureDCBean (dcRoot);

}

// Get children from DConfigBeanRoot and configure each child.

method configureDCBean (DConfigBean dcBean)

{

 // Get DConfigBean attributes for a given archive.

 BeanInfo bInfo = Introspector.getBeanInfo(dcBean.getClass());

 IndexedPropertyDescriptor ipDesc =

 (IndexedPropertyDescriptor)bInfo.getPropertyDescriptors()[0];

 // Get the 0th table.

 int index = 0;

 Hashtable tbl = (Hashtable)

 ipDesc.getIndexedReadMethod().invoke

 (dcBean, new Object[]{new Integer(index)});

 while (tbl != null)

 {

 // Iterate over the hashtable and set values for attributes.

 // Set the table back into the DCBean.

 ipDesc.getIndexedWriteMethod().invoke

 (dcBean, new Object[]{new Integer(index), tbl});

 // Get the next entry in the indexed property

 tbl = (Hashtable)

 ipDesc.getIndexedReadMethod().invoke

 (dcBean, new Object[]{new Integer(++index)});

 }

}

Enterprise application collection

Use this page to view and manage enterprise applications.

This page lists installed enterprise applications. System applications, which are central to the product, are

not shown in the list because users cannot edit them. Examples of system applications include isclite,

managementEJB and filetransfer.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications.

To view the values specified for an application’s configuration, click the application name in the list. The

displayed application settings page shows the values specified. On the settings page, you can change

existing configuration values and link to additional console pages that assist you in configuring the

application.

Chapter 5. Deploying and administering enterprise applications 65

To manage an installed enterprise application, enable the Select check box beside the application name in

the list and click a button:

 Button Resulting action

Start Attempts to run the application. After the application starts up successfully, the state of

the application changes to Started if the application starts up on all deployment

targets, else the state changes to Partial Start.

Stop Attempts to stop the processing of the application. After the application stops

successfully, the state of the application changes to Stopped if the application stops on

all deployment targets, else the state changes to Partial Stop.

Install Opens a wizard that helps you deploy an application or a module such as a .jar, .war,

.sar or .rar file onto a server or a cluster.

Uninstall Deletes the application from the product configuration repository and deletes the

application binaries from the file system of all nodes where the application modules

are installed after the configuration is saved and synchronized with the nodes.

Update Opens a wizard that helps you update application files deployed on a server. You can

update the full application, a single module, a single file, or part of the application. If a

new file or module has the same relative path as a file or module already existing on

the server, the new file or module replaces the existing file or module. If the new file or

module does not exist on the server, it is added to the deployed application.

Remove File Deletes a file of the deployed application or module. Remove File deletes a file from

the configuration repository and from the file system of all nodes where the file is

installed.

Export Accesses the Export Application EAR files page, which you use to export an enterprise

application to an EAR file at a location of your choice. Use the Export action to back

up a deployed application and to preserve its binding information.

Export DDL Accesses the Export Application DDL files page, which you use to export DDL files

(Table.ddl) in the EJB modules of an enterprise application to a location of your choice.

Export File Accesses the Export a file from an application page, which you use to export a file of

an enterprise application or module to a location of your choice.

If the browser does not prompt for a location to store the file, click File → Save as and

specify a location to save the file that is shown in the browser.

These buttons are not available when you access this page from an application server settings page.

When this page is accessed from an application server settings page, it is entitled the Installed

applications page.

When security is enabled, a separate application list is shown for each of your administrative roles.

Supported roles include monitor, configurator, operator, administrator, deployer, and administrative security

manager. For example, when you have the administrator role, the statement “You can administer the

following resources” is shown followed by a list of applications that you can administer.

Name

Specifies the name of the installed (or deployed) application. Application names must be unique within a

cell and cannot contain an unsupported character.

Application Status

Indicates whether the application deployed on the application server is started, stopped, or unknown.

Started Application is running.

66 Developing and deploying applications

Partial Start Application is in the process of changing from a Stopped state to a Started

state. Application is starting to run but is not fully running yet. Or, it cannot fully

start because a server mapped to one or more application modules is stopped.

Stopped Application is not running.

Partial Stop Application is in the process of changing from a Started state to a Stopped

state. Application has not stopped running yet.

Unknown Status cannot be determined.

Pending Status is temporarily unknown pending an event that a user did not initiate,

such as pending an asynchronous call.

Not applicable Application does not provide information as to whether it is running.

The status of an application on a Web server is always Unknown.

Startup order

Specifies the order in which applications are started when the server starts. The application with the lowest

startup order is started first.

This table column is available only when this page is accessed from an application server settings page;

thus when this page is entitled the Installed applications page.

Enterprise application settings

Use this page to configure an enterprise application.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application_name.

If you have a JAX-WS Web service application installed, you also can click Services → Service providers

→ service_name or Services → Service clients → service_name.

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

Name

Specifies a logical name for the application. An application name must be unique within a cell and cannot

contain an unsupported character.

An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot

contain any of the following characters:

 Unsupported characters

/ forward slash $ dollar sign ’ single quote mark

\ backslash = equal sign ″ double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

Chapter 5. Deploying and administering enterprise applications 67

Data type String

Application reference validation

Specifies whether the product examines the application references specified during application installation

or updating and, if validation is enabled, warns you of incorrect references or fails the operation.

An application typically refers to resources using data sources for container managed persistence (CMP)

beans or using resource references or resource environment references defined in deployment descriptors.

The validation checks whether the resource referred to by the application is defined in the scope of the

deployment target of that application.

The resource can be defined on the server, its node, cell or the cluster if the server belongs to a cluster.

Select Don’t validate for no resource validation, Issue warnings for warning messages about incorrect

resource references, or Stop installation if validation fails to stop operations that fail as a result of

incorrect resource references.

This Application reference validation setting is the same as the Validate input off/warn/fail field on the

application installation and update wizards.

 Data type String

Default Issue warnings

Configuring enterprise application files

You can change the configuration of a Java Platform, Enterprise Edition (Java EE) application or module

deployed on a server.

Before you begin

You can change the contents of and deployment descriptors for an application or module before

deployment, such as in an assembly tool. However, it is assumed that the module is already deployed on

a server.

About this task

Changing an application or module configuration consists of one or more of the following:

v Changing the settings of the application or module.

v Removing a file from an application or module.

v Updating the application or its modules.

This topic describes how to change the settings of an application or module using the administrative

console.

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

v View current settings of the application or module.

Click Applications → Application Types → WebSphere enterprise applications → application_name

to access the enterprise application settings page.

68 Developing and deploying applications

Many application or module settings are available on other console pages that you can access by

clicking links on the settings page for the enterprise application. For detailed information on the settings

and allowed values, examine the online help for the console pages. When you installed the application

or module, you specified most of the settings values.

v Map each module of your application to a target server.

Specify the application servers or Web servers onto which to install modules of your application.

v Change how quickly your application starts compared to other applications or to the server.

v Configure the use of binary files.

v Change how your application or Web modules use class loaders.

v Map a virtual host for each Web module of your application. Configuring virtual hosts provides

information on virtual hosts.

v Change application bindings or other settings of the application or module.

1. Click Applications → Application Types → WebSphere enterprise applications →

application_name → property_or_item_name. From the application settings page, you can access

console pages for further configuring of the application or module.

2. Change the values for settings as needed, and click OK.

v Optional: Configure the application so it does not start automatically when the server starts. By default,

an installed application starts when the server on which the application resides starts. You can configure

the target mapping for the application so the application does not start automatically when the server

starts. To start the application, you must then start it manually.

v If the installed application or module uses a resource adapter archive (RAR file), ensure that the

Classpath setting for the RAR file enables the RAR file to find the classes and resources that it needs.

Examine the Classpath setting on the console Resource adapter settings page.

Results

The application or module configuration is changed. The application or standalone Web module is

restarted so the changes take effect.

What to do next

Save changes to your administrative configuration.

Application bindings

Before an application that is installed on an application server can start, all enterprise bean (EJB)

references and resource references defined in the application must be bound to the actual artifacts

(enterprise beans or resources) defined in the application server.

When defining bindings, you specify Java Naming and Directory Interface (JNDI) names for the

referenceable and referenced artifacts in an application. The jndiName values specified for artifacts must

be qualified lookup names. An example referenceable artifact is an EJB defined in an application. An

example referenced artifact is an EJB or a resource reference used by the application.

Binding definitions are stored in the ibm-xxx-bnd.xml or ibm-xxx-bnd.xmi files of an application. Version 7.0

binding definitions support files with the suffix of XML for EJB 3.0 and Web 2.5 modules. Modules earlier

than Java EE 5 continue to use binding definition files with the suffix of XMI as in previous versions of

WebSphere Application Server. The xxx can be ejb-jar, web, application or application-client.

Note: For EJB 3.0 modules, you do not need to specify JNDI binding names for each of the home or

business interfaces on your enterprise beans. If you do not explicitly assign bindings, the EJB

container assigns default bindings. Further, binding definitions are stored in ibm-ejb-jar-bnd.xml.

See EJB 3.0 application bindings overview.

Chapter 5. Deploying and administering enterprise applications 69

This topic provides the following information about bindings:

v “Times when bindings can be defined”

v “Required bindings”

v “Other bindings that might be needed” on page 74

Times when bindings can be defined

You can define bindings at the following times:

v During application development

An application developer can create binding definitions in ibm-xxx-bnd.xml files for EJB 3.0 and Web 2.5

modules and in ibm-xxx-bnd.xmi files for pre-Java EE 5 modules. The application developer can create

the files using a tool such as an IBM Rational developer tool or, for EJB 3.0 or Web 2.5 modules, using

an XML editor or text editor. The developer then gives an enterprise application (.ear file) complete with

bindings to an application assembler or deployer. When assembling the application, the assembler does

not modify the bindings. Similarly, when installing the application onto a server supported by

WebSphere Application Server, the deployer does not modify or override the bindings or generate

default bindings unless changes to the bindings are necessary for successful deployment of the

application.

v During application assembly

An application assembler can define bindings in annotations or deployment descriptors of an

application. Java EE 5 modules contain annotations in the source code. To declare an annotation, an

application assembler precedes a keyword with an @ character (″at″ sign). Bindings for pre-Java EE 5

modules are specified in the WebSphere Bindings section of a deployment descriptor editor. Modifying

the deployment descriptors might change the binding definitions in the ibm-xxx-bnd.xmi files created

when developing an application. After defining the bindings, the assembler gives the application to a

deployer. When installing the application onto a server supported by WebSphere Application Server, the

deployer does not modify or override the bindings or generate default bindings unless changes to the

bindings are necessary to deploy the application.

v During application installation

An application deployer or server administrator can modify the bindings when installing the application

onto a server supported by WebSphere Application Server using the administrative console. New

binding definitions can be specified on the installation wizard pages.

Also, a deployer or administrator can select to generate default bindings during application installation.

Selecting Generate default bindings during application installation instructs the product to fill in

incomplete bindings in the application with default values. Existing bindings are not changed.

Note: You cannot define or override bindings during application installation for application clients. You

must define bindings for application client modules during assembly and store the bindings in the

ibm-application-client-bnd.xmi file.

v During configuration of an installed application

After an application is installed onto a server supported by WebSphere Application Server, an

application deployer or server administrator can modify the bindings by changing values in

administrative console pages such as those accessed from the settings page for the enterprise

application.

Required bindings

Before an application can be successfully deployed, bindings must be defined for references to the

following artifacts:

EJB JNDI names

For each EJB 2.1 or earlier enterprise bean (EJB), you must specify a JNDI name. The name is

used to bind an entry in the global JNDI name space for the EJB home object. An example JNDI

70 Developing and deploying applications

name for a Product EJB in a Store application might be store/ejb/Product. The binding definition

is stored in the META-INF/ibm-ejb-jar-bnd.xmi file.

 If a deployer chooses to generate default bindings when installing the application, the installation

wizard assigns EJB JNDI names having the form prefix/EJB_name to incomplete bindings. The

default prefix is ejb, but can be overridden. The EJB_name is as specified in the deployment

descriptor <ejb-name> tag.

During and after application installation, EJB JNDI names can be specified on the Provide JNDI

names for beans panel. After installation, click Applications → Application Types → WebSphere

enterprise applications → application_name → EJB JNDI names in the administrative console.

You do not need to specify JNDI binding names for each of the EJB 3.0 home or business

interfaces on your enterprise beans because the EJB container assigns default bindings. See EJB

3.0 application bindings overview.

Data sources for entity beans

Entity beans such as container-managed persistence (CMP) beans store persistent data in data

stores. With CMP beans, an EJB container manages the persistent state of the beans. You specify

which data store a bean uses by binding an EJB module or an individual enterprise bean to a data

source. Binding an EJB module to a data source causes all entity beans in that module to use the

same data source for persistence.

 An example JNDI name for a Store data source in a Store application might be store/jdbc/store.

For modules earlier than Java EE 5, the binding definition is stored in IBM binding files such as

ibm-ejb-jar-bnd.xmi. A deployer can also specify whether authentication is handled at the container

or application level.

WebSphere Application Server Version 7.0 supports CMP beans in EJB 2.x or 1.x modules.

Version 7.0 does not support CMP beans in EJB 3.0 modules.

If a deployer chooses to generate default bindings when installing the application, the install wizard

generates the following for incomplete bindings:

v For EJB 2.x .jar files, connection factory bindings based on the JNDI name and authorization

information specified

v For EJB 1.1 .jar files, data source bindings based on the JNDI name, data source user name

and password specified

The generated bindings provide default connection factory settings for each EJB 2.x .jar file and

default data source settings for each EJB 1.1 .jar file in the application being installed. No

bean-level connection factory bindings or data source bindings are generated unless they are

specified in the custom strategy rule supplied during default binding generation.

During and after application installation, you can map data sources to 2.x entity beans on the 2.x

CMP bean data sources panel and on the 2.x entity bean data sources panel. After installation,

click Applications → Application Types → WebSphere enterprise applications →

application_name in the administrative console, then select 2.x CMP bean data sources or 2.x

entity bean data sources. You can map data sources to 1.x entity beans on the Map data

sources for all 1.x CMP beans panel and on the Provide default data source mapping for modules

containing 1.x entity beans panel. After installation, access console pages similar to those for 2.x

CMP beans, except click links for 1.x CMP beans.

Backend ID for EJB modules

If an EJB .jar file that defines CMP beans contains mappings for multiple backend databases,

specify the appropriate backend ID that determines which persister classes are loaded at run time.

 Specify the backend ID during application installation. You cannot select a backend ID after the

application is installed onto a server.

To enable backend IDs for individual EJB modules:

Chapter 5. Deploying and administering enterprise applications 71

1. During application installation, select Deploy enterprise beans on the Select installation

options panel. Selecting Deploy enterprise beans enables you to access the Provide options

to perform the EJB Deploy panel.

2. On the Provide options to perform the EJB Deploy panel, set the database type to ″″ (null).

During application installation, if you select Deploy enterprise beans on the Select installation

options panel and specify a database type for the EJB deployment tool on the Provide options to

perform the EJB Deploy panel, previously defined backend IDs for all of the EJB modules are

overwritten by the chosen database type.

The default database type is DB2UDB_V81.

The EJB deployment tool does not run during installation of EJB 3.0 modules.

EJB references

An enterprise bean (EJB) reference is a logical name used to locate the home interface of an

enterprise bean. EJB references are specified during deployment. At run time, EJB references are

bound to the physical location (global JNDI name) of the enterprise beans in the target operational

environment. EJB references are made available in the java:comp/env/ejb Java naming

subcontext.

 The product assigns default JNDI values for or automatically resolves incomplete EJB 3.0

reference targets.

For each EJB 2.1 or earlier EJB reference, you must specify a JNDI name. An example JNDI

name for a Supplier EJB reference in a Store application might be store/ejb/Supplier. The

binding definition is stored in IBM binding files such as ibm-ejb-jar-bnd.xmi. When the referenced

EJB is also deployed in the same application server, you can specify a server-scoped JNDI name.

But if the referenced EJB is deployed on a different application server or if ejb-ref is defined in an

application client module, then you should specify the global cell-scoped JNDI name.

If a deployer chooses to generate default bindings when installing the application, the install wizard

binds EJB references as follows: If an <ejb-link> is found, it is honored. If the ejb-name of an

EJB defined in the application matches the ejb-ref name, then that EJB is chosen. Otherwise, if a

unique EJB is found with a matching home (or local home) interface as the referenced bean, the

reference is resolved automatically.

During and after application installation, you can specify EJB reference JNDI names on the Map

EJB references to beans panel. After installation, click Applications → Application Types →

WebSphere enterprise applications → application_name → EJB references in the administrative

console.

Note: To enable EJB reference targets to resolve automatically if the references are from EJB 2.1

or earlier modules or from Web 2.3 or earlier modules, select Generate default bindings

on the Preparing for application installation panel or select Allow EJB reference targets to

resolve automatically on the Select installation options, Map EJB references to beans, or

EJB references console panels.

For more information, refer to EJB references .

Resource references

A resource reference is a logical name used to locate an external resource for an application.

Resource references are specified during deployment. At run time, the references are bound to the

physical location (global JNDI name) of the resource in the target operational environment.

Resource references are made available as follows:

 Resource reference type Subcontext declared in

Java DataBase Connectivity (JDBC) data source java:comp/env/jdbc

JMS connection factory java:comp/env/jms

JavaMail connection factory java:comp/env/mail

72 Developing and deploying applications

Uniform Resource Locator (URL) connection factory java:comp/env/url

For each resource reference, you must specify a JNDI name. If a deployer chooses to generate

default bindings when installing the application, the install wizard generates resource reference

bindings derived from the <res-ref-name> tag, assuming that the java:comp/env name is the same

as the resource global JNDI name.

During application installation, you can specify resource reference JNDI names on the Map

resource references to references panel. Specify JNDI names for the resources that represent the

logical names defined in resource references. You can optionally specify login configuration name

and authentication properties for the resource. After specifying authentication properties, click OK

to save the values and return to the mapping step. Each resource reference defined in an

application must be bound to a resource defined in your WebSphere Application Server

configuration. After installation, click Applications → Application Types → WebSphere enterprise

applications → application_name → Resource references in the administrative console to access

the Resource references panel.

Virtual host bindings for Web modules

You must bind each Web module to a specific virtual host. The binding informs a Web server

plug-in that all requests that match the virtual host must be handled by the Web application. An

example virtual host to be bound to a Store Web application might be store_host. The binding

definition is stored in IBM binding files such as WEB-INF/ibm-web-bnd.xmi.

 If a deployer chooses to generate default bindings when installing the application, the install wizard

sets the virtual host to default_host for each .war file.

During and after application installation, you can map a virtual host to a Web module defined in

your application. On the Map virtual hosts for Web modules panel, specify a virtual host. The port

number specified in the virtual host definition is used in the URL that is used to access artifacts

such as servlets and JavaServer Pages (JSP) files in the Web module. For example, an external

URL for a Web artifact such as a JSP file is http://host_name:virtual_host_port/context_root/
jsp_path. After installation, click Applications → Application Types → WebSphere enterprise

applications → application_name → Virtual hosts in the administrative console.

Message-driven beans

For each message-driven bean, you must specify a queue or topic to which the bean will listen. A

message-driven bean is invoked by a Java Messaging Service (JMS) listener when a message

arrives on the input queue that the listener is monitoring. A deployer specifies a listener port or

JNDI name of an activation specification as defined in a connector module (.rar file) under

WebSphere Bindings on the Beans page of an assembly tool EJB deployment descriptor editor.

An example JNDI name for a listener port to be used by a Store application might be

StoreMdbListener. The binding definition is stored in IBM bindings files such as

ibm-ejb-jar-bnd.xmi.

 If a deployer chooses to generate default bindings when installing the application, the install wizard

assigns JNDI names to incomplete bindings.

v For EJB 2.0 or later message-driven beans deployed as JCA 1.5-compliant resources, the

install wizard assigns JNDI names corresponding to activationSpec instances in the form

eis/MDB_ejb-name.

v For EJB 2.0 or later message-driven beans deployed against listener ports, the listener ports

are derived from the message-driven bean <ejb-name> tag with the string Port appended.

During application installation using the administrative console, you can specify a listener port

name or an activation specification JNDI name for every message-driven bean on the Bind

listeners for message-driven beans panel. A listener port name must be provided when using the

JMS providers: Version 5 default messaging, WebSphere MQ, or generic. An activation

specification must be provided when the application’s resources are configured using the default

messaging provider or any generic J2C resource adapter that supports inbound messaging. If

neither is specified, then a validation error is displayed after you click Finish on the Summary

Chapter 5. Deploying and administering enterprise applications 73

panel. Also, if the module containing the message-driven bean is deployed on a 5.x deployment

target and a listener port is not specified, then a validation error is displayed after you click Next.

After application installation, you can specify JNDI names and configure message-driven beans on

console pages under Resources → JMS → JMS providers or under Resources → Resource

adapters. For more information, refer to Choosing a messaging provider.

Note: You can only bind message driven-beans that are defined in an EJB 3.0 module to an

activation specification. See EJB 3.0 application bindings overview.

Message destination references

A message destination reference is a logical name used to locate an enterprise bean in an EJB

module that acts as a message destination. Message destination references exist only in J2EE 1.4

and later artifacts such as--

v J2EE 1.4 application clients

v EJB 2.1 projects

v 2.4 Web applications

If multiple message destination references are associated with a single message destination link,

then a single JNDI name for an enterprise bean that maps to the message destination link, and in

turn to all of the linked message destination references, is collected during deployment. At run

time, the message destination references are bound to the administered message destinations in

the target operational environment.

If a message destination reference and a message-driven bean are linked by the same message

destination, both the reference and the bean should have the same destination JNDI name. When

both have the same name, only the destination JNDI name for the message-driven bean is

collected and applied to the corresponding message destination reference.

If a deployer chooses to generate default bindings when installing the application, the install wizard

assigns JNDI names to incomplete message destination references as follows: If a message

destination reference has a <message-destination-link>, then the JNDI name is set to

ejs/message-destination-linkName. Otherwise, the JNDI name is set to eis/message-destination-
refName.

Other bindings that might be needed

Depending on the references in and artifacts used by your application, you might need to define bindings

for references and artifacts not listed in this topic.

Configuring application startup

You can configure the startup behavior of an application. The values set affect how quickly an application

starts and what occurs when an application starts.

Before you begin

This topic assumes that your application or module is already deployed on a server.

This topic also assumes that your application or module is configured to start automatically when the

server starts. By default, an installed application starts when the server on which the application resides

starts.

About this task

This topic describes how to change the settings of an application or module using the administrative

console.

74 Developing and deploying applications

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

1. Click Applications → Application Types → WebSphere enterprise applications → application_name

→ Startup behavior in the console navigation tree.

The Startup behavior settings page is displayed.

2. Specify the startup order for the application.

If your application starts automatically when its server starts, the value for Startup order on the

Startup behavior settings page specifies the order in which applications are started when the server

starts. The application with the lowest startup order, or starting weight, is started first. For example,

specify 1 for Startup order for applications that you want started first, specify 2 for applications to be

started next, and so.

Note: For Session Initiation Protocol (SIP) applications, the <load-on-startup> tag in the sip.xml file

affects the order in which applications are started. The value that you set for Startup order on

the Startup behavior settings page determines the importance or weight of an application within

a composition of SIP applications. For example, for the most important SIP application within a

SIP application composition, specify 1 for Startup order. For the next most important SIP

application within the composition, specify 2 for Startup order, and so on.

3. Specify whether the application must initialize fully before its server is considered started.

If your application starts automatically when its server starts, Launch application before server

completes startup specifies whether the application must initialize fully before its server is considered

started. Background applications can be initialized on an independent thread, thus allowing the server

startup to complete without waiting for the application. This setting applies only if the application is run

on a Version 6.0 or later application server.

4. Specify whether to create MBeans for resources such as servlets or JavaServer Pages (JSP) files

within an application when the application starts.

The default for Create MBeans for resources is to create MBeans.

Results

The application or module configuration is changed. The application or standalone Web module is

restarted so the changes take effect.

What to do next

Save changes to your administrative configuration.

Startup behavior settings

Use this page to configure when an application starts compared to other applications and to the server,

and to configure whether MBeans for resources are created when an application starts.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application_name → Startup behavior.

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

Startup order:

Chapter 5. Deploying and administering enterprise applications 75

Specifies the order in which applications are started when the server starts. The startup order is like a

starting weight. The application with the lowest starting weight is started first.

Note: For Session Initiation Protocol (SIP) applications, the <load-on-startup> tag in the sip.xml file

affects the order in which servlets within applications are started. The value that you set for Startup

order on this Startup behavior console page determines the importance or weight of an application

within a composition of SIP applications. For example, for the most important SIP application within

a SIP application composition, specify 1 for Startup order. For the next most important SIP

application within the composition, specify 2 for Startup order, and so on. For more information,

see the JSR 116 specification.

 Data type Integer

Default 1

Range 0 to 2147483647

Launch application before server completes startup:

Specifies whether the application must initialize fully before the server starts.

 The default setting of false indicates that server startup will not complete until the application starts.

A setting of true informs the product that the application might start on a background thread and thus

server startup might continue without waiting for the application to start. Thus, the application might not be

ready for use when the application server starts.

This setting applies only if the application is run on a Version 6.0 or later application server.

 Data type Boolean

Default false

Create MBeans for resources:

Specifies whether to create MBeans for various resources, such as servlets or JavaServer Pages (JSP)

files, within an application when the application starts. The default is to create MBeans.

 Data type Boolean

Default true

Configuring binary location and use

You can designate where binary files (binaries) used by your application reside, whether the product

distributes binaries for you automatically, and otherwise configure the use of binaries.

Before you begin

This topic assumes that your application or module is already deployed on a server.

About this task

This topic describes how to change the settings of an application or module using the administrative

console.

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

76 Developing and deploying applications

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

1. Click Applications → Application Types → WebSphere enterprise applications → application_name

→ Application binaries in the console navigation tree. The Application binaries page is displayed.

2. Specify the directory to hold the application binaries.

The default is ${APP_INSTALL_ROOT}/cell_name, where the ${APP_INSTALL_ROOT} variable is

profile_root/installedApps. For example:

profile_root/installedApps/cell_name

Refer to “Application binary settings” for a detailed description of the Location (full path) setting.

3. Specify the bindings, extensions, and deployment descriptors that an application server uses.

By default, an application server uses the bindings, extensions, and deployment descriptors located

with the application deployment document, the deployment.xml file.

To specify that the application server use the bindings, extensions, and deployment descriptors located

in the application archive (EAR) file, select Use configuration information in binary. Select this

setting for applications installed on 6.x or later deployment targets. This setting is not valid for

applications installed on 5.x deployment targets.

4. Specify whether the product distributes application binaries automatically to other nodes on the cell.

By default, Enable binary distribution, expansion and cleanup post uninstallation is selected and

binaries are distributed automatically.

If you disable this option, then you must ensure that the application binaries are expanded

appropriately in the destination directories of all nodes where the application runs.

Note: If you disable this option and you do not copy and expand the application binaries to the nodes,

a later saving of the configuration or manual synchronization does not move the application

binaries to the nodes for you.

5. Specify access permissions for binaries.

a. Ensure that the Enable binary distribution, expansion and cleanup post uninstallation option

is enabled. That option must be enabled to specify access permissions for binaries.

b. For File permissions, specify a string that defines access permissions for binaries that are

expanded in the named location.

You can specify file permissions in the text field. You can also set some of the commonly used file

permissions by selecting them from the multiple-selection list. List selections overwrite file

permissions set in the text field.

For details on File permissions, refer to “Application binary settings.”

6. Click OK.

Results

The application or module configuration is changed. The application or stand-alone Web module is

restarted so the changes take effect.

What to do next

Save changes to your administrative configuration.

Application binary settings

Use this page to configure the location and distribution of application binary files.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application_name → Application binaries.

Chapter 5. Deploying and administering enterprise applications 77

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

Location (full path):

Specifies the directory to which the enterprise application archive (EAR) file is installed. This Location

setting is the same as the Directory to install application field on the application installation and update

wizards.

 By default, an EAR file is installed in the profile_root/installedApps/cell_name/application_name.ear

directory.

Setting options include the following:

v Do not specify a value and leave the field empty.

The default value is ${APP_INSTALL_ROOT}/cell_name, where the ${APP_INSTALL_ROOT} variable is

profile_root/installedApps. A directory having the EAR file name of the application being installed is

appended to ${APP_INSTALL_ROOT}/cell_name. Thus, if you do not specify a directory, the EAR file is

installed in the profile_root/installedApps/cell_name/application_name.ear directory.

v Specify a directory.

If you specify a directory, the application is installed in specified_path/application_name.ear directory. A

directory having the EAR file name of the application being installed is appended to the path that you

specified for Directory to install application when installing the application. For example, if you

installed Clock.ear and specify C:/myapps on Windows machines, the application is installed in the

myapps/Clock.ear directory. The ${APP_INSTALL_ROOT} variable is set to the specified path.

v Specify ${APP_INSTALL_ROOT}/${CELL} for the initial installation of the application.

If you intend to export the application from one cell and later install the exported application on a

different cell, specify the ${CELL} variable for the initial installation of the application. For example,

specify ${APP_INSTALL_ROOT}/${CELL} for this setting. Exporting the application creates an enhanced

EAR file that has the application and its deployment configuration. The deployment configuration retains

the cell name of the initial installation in the destination directory unless you specify the ${CELL}

variable. Specifying the ${CELL} variable ensures that the destination directory has the current cell

name, and not the original cell name.

Note: If an installation directory is not specified when an application is installed on a single-server

configuration, the application is installed in ${APP_INSTALL_ROOT}/cell_name. When the server

is made a part of a multiple-server configuration (using the addNode utility), the cell name of the

new configuration becomes the cell name of the deployment manager node. If the -includeapps

option is used for the addNode utility, then the applications that are installed prior to the addNode

operation still use the installation directory ${APP_INSTALL_ROOT}/cell_name. However, an

application that is installed after the server is added to the network configuration uses the default

installation directory ${APP_INSTALL_ROOT}/network_cell_name. To move the application to the

${APP_INSTALL_ROOT}/network_cell_name location upon running the addNode operation,

explicitly specify the installation directory as ${APP_INSTALL_ROOT}/${CELL} during installation. In

such a case, the application files can always be found under ${APP_INSTALL_ROOT}/
current_cell_name.

v If the application has been exported and you want to install the exported EAR file in a different cell or

location, specify ${APP_INSTALL_ROOT}/cell_name/application_name.ear if you did not specify

${APP_INSTALL_ROOT}/${CELL} for the initial installation.

The exported EAR file is an enhanced EAR file that has the application and its deployment

configuration. The deployment configuration retains the value for Directory to install application that

78 Developing and deploying applications

was used for the previous installation of the application. Unless you specify a different value, the

enhanced EAR file will be installed to the same directory as for the previous installation.

If you did not specify the ${CELL} variable during the initial installation, the deployment configuration

uses the cell name of the initial installation in the destination directory. If you are installing on a different

cell, specify ${APP_INSTALL_ROOT}/cell_name/application_name.ear, where cell_name is the name of

the cell to which you want to install the enhanced EAR file. If you do not designate the current cell

name, cell_name will be the original cell name even though you are installing the enhanced EAR file on

a cell that has a different name.

v Specify an absolute path or a use pathmap variable.

You can specify an absolute path or use a pathmap variable such as ${MY_APPS}. You can use a

pathmap variable in any installation.

 Data type String

Units Full path name

Use configuration information in binary:

Specifies whether the application server uses the binding, extensions, and deployment descriptors located

with the application deployment document, the deployment.xml file (default), or those located in the EAR

file.

 The default (false) is to use the binding, extensions, and deployment descriptors located in

deployment.xml. To use the binding, extensions, and deployment descriptors located in the EAR file,

enable this setting (true).

This Use configuration information in binary setting is the same as the Use binary configuration field

on the application installation and update wizards. Select this setting for applications installed on 6.x or

later deployment targets only. This setting is not valid for applications installed on 5.x deployment targets.

 Data type Boolean

Default false

Enable binary distribution, expansion and cleanup post uninstallation:

Specifies whether the product expands application binaries in the installation location during installation

and deletes application binaries during uninstallation. The default is to enable application distribution.

Application binaries for installed applications are expanded to the directory specified.

 On single-server installations, the binaries are deleted when you uninstall and save changes to the

configuration.

If you disable this option, then you must ensure that the application binaries are expanded appropriately in

the destination directories of all nodes where the application runs.

Note: If you disable this option and you do not copy and expand the application binaries to the nodes, a

later saving of the configuration or manual synchronization does not move the application binaries

to the nodes for you.

This Enable binary distribution, expansion and cleanup post uninstallation setting is the same as the

Distribute application field on the application installation and update wizards.

 Data type Boolean

Default true

Chapter 5. Deploying and administering enterprise applications 79

File permissions:

Specifies access permissions for application binaries for installed applications that are expanded to the

directory specified.

 The Enable binary distribution, expansion and cleanup post uninstallation option must be enabled to

specify file permissions.

You can specify file permissions in the text field. You can also set some of the commonly used file

permissions by selecting them from the multiple-selection list. List selections overwrite file permissions set

in the text field.

You can set one or more of the following file permission strings in the list. Selecting multiple options

combines the file permission strings.

 Multiple-selection list option File permission string set

Allow all files to be read but not written to .*=755

Allow executables to execute .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755

Allow HTML and image files to be read by

everyone

.*\.htm=755#.*\.html=755#.*\.gif=755#.*\.jpg=755

Instead of using the multiple-selection list to specify file permissions, you can specify a file permission

string in the text field. File permissions use a string that has the following format:

file_name_pattern=permission#file_name_pattern=permission

where file_name_pattern is a regular expression file name filter (for example, .*\\.jsp for all JSP files),

permission provides the file access control lists (ACLs), and # is the separator between multiple entries of

file_name_pattern and permission. If # is a character in a file_name_pattern string, use \# instead.

If multiple file name patterns and file permissions in the string match a uniform resource identifier (URI)

within the application, then the product uses the most stringent applicable file permission for the file. For

example, if the file permission string is .*\\.jsp=775#a.*\\.jsp=754, then the abc.jsp file has file

permission 754.

Note: Using regular expressions for file matching pattern compares an entire string URI against the

specified file permission pattern. You must provide more precise matching patterns using regular

expressions as defined by Java programming API. For example, suppose the following directory

and file URIs are processed during a file permission operation:

 1 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war

2 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

3 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF/
MANIFEST.MF

4 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/WEB-INF/classes/
MyClass.class

5 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/mydir/
MyClass2.class

6 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF

The file pattern matching results are:

v MyWarModule.war does not match any of the URIs

v .*MyWarModule.war.* matches all URIs

80 Developing and deploying applications

v .*MyWarModule.war$ matches only URI 1

v .*\\.jsp=755 matches only URI 2

v .*META-INF.* matches URIs 3 and 6

v .*MyWarModule.war/.*/.*\.class matches URIs 4 and 5

If you specify a directory name pattern for File permissions, then the directory permission is set based on

the value specified. Otherwise, the File permissions value set on the directory is the same as its parent.

For example, suppose you have the following file and directory structure:

/opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

and you specify the following file pattern string:

.*MyApp.ear$=755#.*\.jsp=644

The file pattern matching results are:

v Directory MyApp.ear is set to 755

v Directory MyWarModule.war is set to 755

v Directory MyWarModule.war is set to 755

Note: Regardless of the operation system, always use a forward slash (/) as a file path separator in file

patterns.

Access permissions specified here are at the application level. You can also specify access permissions

for application binaries in the node level configuration. The node level file permissions specify the

maximum (most lenient) permissions that can be given to application binaries. Access permissions

specified here at application level can only be the same as or more restrictive than those specified at the

node level.

This setting is the same as the File permission field on the application installation and update wizards.

 Data type String

Application build level:

Specifies an uneditable string that identifies the build version of the application.

 Data type String

Configuring the use of class loaders by an application

You can configure whether your application and Web modules use their own class loaders to load classes

or use different class loaders, as well as configure the reloading of classes when application files are

updated. Class loaders enable an application to access repositories of available classes and resources.

Before you begin

This topic assumes that your application or module is already deployed on a server.

About this task

Class loaders affect whether your application and its modules find the resources that they need to run

effectively. You can select whether your application and Web modules use their own class loaders to load

classes, or use a parent class loader.

Chapter 5. Deploying and administering enterprise applications 81

An application class loader groups enterprise bean (EJB) modules, shared libraries, resource adapter

archives (RAR files), and dependency Java archive (JAR) files associated to an application. Dependency

JAR files are JAR files that contain code which can be used by both enterprise beans and servlets.

An application class loader is the parent of a Web application archive (WAR) class loader. By default, a

Web module has its own WAR class loader to load the contents of the Web module. The WAR

class-loader policy value of an application class loader determines whether the WAR class loader or the

application class loader is used to load the contents of the Web module.

You can also select whether classes are reloaded when application files are updated. For enterprise bean

(EJB) modules or any non-Web modules, enabling class reloading causes the application server run time

to stop and start the application to reload application classes. For Web modules such as servlets and

JavaServer Pages (JSP) files, a Web container reloads a Web module only when the IBM extension

reloadingEnabled in the ibm-web-ext.xmi file is set to true.

To configure use of class loaders by your application and Web modules, use the Class loading and update

detection page of the administrative console.

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

1. Click Applications → Application Types → WebSphere enterprise applications → application_name

→ Class loading and update detection to access the settings page for an application class loader.

2. Specify whether to reload application classes when the application or its files are updated.

By default, class reloading is not enabled. Select Override class reloading settings for Web and

EJB modules to choose to reload application classes. You might specify different values for EJB

modules and for Web modules such as servlets and JavaServer Pages (JSP) files.

3. Specify the number of seconds to scan the application’s file system for updated files.

The value specified for Polling interval for updated files takes effect only if class reloading is

enabled. The default is the value of the reloading interval attribute in the IBM extension

(META-INF/ibm-application-ext.xmi) file of the enterprise application (EAR file). You might specify

different values for EJB modules and for Web modules such as servlets and JSP files.

To enable reloading, specify an integer value that is greater than zero (for example, 1 to 2147483647).

To disable reloading, specify zero (0).

4. Specify the class loader order for the application.

The application class loader order specifies whether the class loader searches in the parent class

loader or in the application class loader first to load a class. The default is to search in the parent class

loader before searching in the application class loader to load a class.

Select either of the following values for Class loader order:

 Option Description

Classes loaded with parent class loader first Causes the class loader to search in the parent class

loader first to load a class. This value is the standard for

Development Kit class loaders and WebSphere

Application Server class loaders.

82 Developing and deploying applications

Option Description

Classes loaded with local class loader first (parent

last)

Causes the class loader to search in the application class

loader first to load a class. By specifying Classes loaded

with local class loader first (parent last), your

application can override classes contained in the parent

class loader.

Note: Specifying the Classes loaded with local class

loader first (parent last) value might result in

LinkageErrors or ClassCastException messages if you

have mixed use of overridden classes and non-overridden

classes.

5. Specify whether to use a single or multiple class loaders to load Web application archives (WAR files)

of your application.

By default, Web modules have their own WAR class loader to load the contents of the

WEB-INF/classes and WEB-INF/lib directories. The default WAR class loader value is Class loader

for each WAR file in application, which uses a separate class loader to load each WAR file. Setting

the value to Single class loader for application causes the application class loader to load the

Web module contents as well as the EJB modules, shared libraries, RAR files, and dependency JAR

files associated to the application. The application class loader is the parent of the WAR class loader.

Select either of the following values for WAR class loader policy:

 Option Description

Class loader for each WAR file in application Uses a different class loader for each WAR file.

Single class loader for application Uses a single class loader to load all of the WAR files in

your application.

6. Click OK.

Results

The application or module configuration is changed. The application or standalone Web module is

restarted so the changes take effect.

What to do next

Save changes to your administrative configuration.

Class loading and update detection settings

Use this page to configure use of class loaders by an application.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application_name → Class loading and update detection.

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

Override class reloading settings for Web and EJB modules:

Specifies whether to enable class reloading when application files are updated.

Chapter 5. Deploying and administering enterprise applications 83

Select Override class reloading settings for Web and EJB modules to set reloadEnabled to true in the

deployment.xml file for the application. If an application’s class definition changes, the application server

run time stops and starts the application to reload application classes.

Reloading settings in the deployment.xml file override the reloading settings for all Web and EJB modules

that can be defined in ibm-web-ext.xmi and META-INF/ibm-application-ext.xmi files.

For JavaServer Pages (JSP) files in a Web module, a Web container reloads JSP files only when the IBM

extension jspReloadingEnabled in the jspAttributes of the ibm-web-ext.xmi file is set to true. You can

enable JSP reloading during deployment on the JSP Reload Options panel.

 Data type Boolean

Default false

Polling interval for updated files:

Specifies the number of seconds to scan the application’s file system for updated files. The default is the

value of the reloading interval attribute in the IBM extension (META-INF/ibm-application-ext.xmi) file of the

EAR file.

 This Polling interval for updated files setting is the same as the Reload interval in seconds field on

the application installation and update wizards.

To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). To disable

reloading, specify zero (0). The range is from 0 to 2147483647.

The reloading interval attribute takes effect only if class reloading is enabled.

 Data type Integer

Units Seconds

Default 3

Class loader order:

Specifies whether the class loader searches in the parent class loader or in the application class loader

first to load a class. The standard for development kit class loaders and WebSphere Application Server

class loaders is Classes loaded with parent class loader first. By specifying Classes loaded with

local class loader first (parent last), your application can override classes contained in the parent

class loader, but this action can potentially result in ClassCastException or LinkageErrors if you have

mixed use of overridden classes and non-overridden classes.

 The options are Classes loaded with parent class loader first and Classes loaded with local class

loader first (parent last). The default is to search in the parent class loader before searching in the

application class loader to load a class.

For your application to use the default configuration of Jakarta Commons Logging in WebSphere

Application Server, set this application class loader mode to Classes loaded with parent class loader

first. For your application to override the default configuration of Jakarta Commons Logging in

WebSphere Application Server, your application must provide the configuration in a form supported by

Jakarta Commons Logging and this class loader mode must be set to Classes loaded with local class

loader first (parent last). Also, to override the default configuration, set the class loader mode for

each Web module in your application so that the correct logger factory loads.

 Data type String

Default Classes loaded with parent class loader first

84 Developing and deploying applications

WAR class loader policy:

Specifies whether to use a single class loader to load all WAR files of the application or to use a different

class loader for each WAR file.

 The options are Class loader for each WAR file in application and Single class loader for

application. The default is to use a separate class loader to load each WAR file.

 Data type String

Default Class loader for each WAR file in application

Manage modules settings

Use this panel to specify deployment targets where you want to install the modules that are contained in

your application. Modules can be installed on the same deployment target or dispersed among several

deployment targets.

On single-server products, a deployment target can be an application server or Web server.

To view this administrative console panel, click Applications → Application Types → WebSphere

enterprise applications → application_name → Manage modules. This panel is the similar to the Map

modules to servers panel on the application installation and update wizards.

On this panel, each Module must map to one or more targets, identified under Server. To change a

mapping:

1. In the list of mappings, select each module that you want mapped to the same target or targets.

2. From the Clusters and servers list, select one or more targets. Select only appropriate deployment

targets for a module. You cannot install modules that use WebSphere Application Server Version 7.x

features on a Version 6.x or 5.x target server.

Use the Ctrl key to select multiple targets. For example, to have a Web server serve your application,

press the Ctrl key and then select an application server and the Web server together. The product

generates the plug-in configuration file, plugin-cfg.xml, for that Web server based on the applications

which are routed through it.

3. Click Apply.

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

If you accessed this Manage modules panel from a console enterprise application page for an already

installed application, you can also use this panel to view and manage modules in your application.

To view the values specified for a module configuration, click the module name in the list. The displayed

module settings page shows the values specified. On the settings page, you can change existing

configuration values and link to additional console pages that assist you in configuring the module.

Chapter 5. Deploying and administering enterprise applications 85

To manage a module, select the module name in the list and click a button:

 Button Resulting action

Remove Removes the selected module from the deployed application. The module is deleted

from the application in the configuration repository and also from all of the nodes

where the application is installed and running or expected to run.

Update Opens a wizard that helps you update modules in an application. If a module has the

same URI as a module already existing in the application, the new module replaces

the existing module. If the new module does not exist in the application, it is added to

the deployed application.

Remove File Deletes a file from a module of a deployed application.

Export File Accesses the Export a file from an application page, which you use to export a file of

an enterprise application or module to a location of your choice.

If the browser does not prompt for a location to store the file, click File → Save as and

specify a location to save the file that is shown in the browser.

Clusters and servers

Lists the names of available deployment targets. This list is the same for every application that is installed

in the cell.

From this list, select only appropriate deployment targets for a module. You must install an application,

enterprise bean (EJB) module, Session Initiation Protocol (SIP) module (SAR), or Web module on a

Version 7.x target under any of the following conditions:

v The module supports Java Platform, Enterprise Edition (Java EE) 5.

v The module calls a 7.x runtime application programming interface (API).

v The module uses a 7.x product feature.

If a module supports J2EE 1.4, then you must install the module on a Version 6.x or 7.x deployment

target. Modules that call a 6.1.x API or use a 6.1.x feature can be installed on a 6.1.x or 7.x deployment

target. Modules that call a 6.0.x API or use a 6.0.x feature can be installed on a 6.0.x, 6.1.x or 7.x

deployment target. Modules that require 6.1.x feature pack functionality can be installed on a 6.1.x

deployment target that has been enabled with that feature pack or on a 7.x deployment target.

You can install an application or module developed for a Version 5.x product on a 5.x, 6.x or 7.x

deployment target.

Module

Specifies the name of a module in the installed (or deployed) application.

URI

Specifies the location of the module relative to the root of the application (EAR file).

Module type

Specifies the type of module, for example, a Web module or EJB module.

This setting is shown on the Manage modules panel accessed from a console enterprise application page.

Server

Specifies the name of each deployment target to which the module currently is mapped.

To change the deployment targets for a module, select one or more targets from the Clusters and

servers list and click Apply. The new mapping replaces the previous mapping.

86 Developing and deploying applications

Mapping modules to servers

Each module of a deployed application must be mapped to one or more target servers. The target server

can be an application server or Web server.

Before you begin

You can map modules of an application or stand-alone Web module to one or more target servers during

or after application installation using the console. This topic assumes that the module is already installed

on a server and that you want to change the mappings.

Before you change a mapping, check the deployment targets. You must specify an appropriate deployment

target for a module. Modules that use Version 7.x features cannot be installed onto Version 6.x or 5.x

target servers.

About this task

During application installation, different deployment targets might have been specified.

You use the Manage modules panel of the administrative console to view and change mappings. This

panel is displayed during application installation using the console and, after the application is installed,

can be accessed from the enterprise application settings page.

On the Manage modules panel, specify target servers where you want to install the modules contained in

your application. Modules can be installed on the same application server or dispersed among several

application servers. Also, specify the Web servers as targets that will serve as routers for requests to your

application. The plug-in configuration file, plugin-cfg.xml, for each Web server is generated based on the

applications which are routed through it.

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

1. Click Applications → Application Types → WebSphere enterprise applications → application_name

→ Manage modules in the console navigation tree.

The Manage modules panel is displayed.

2. Examine the list of mappings.

Ensure that each Module entry is mapped to one or more targets, identified under Server.

3. Change a mapping as needed.

a. Select each module that you want mapped to the same targets.

In the list of mappings, select check boxes for the modules.

b. From the Clusters and servers list, select one or more targets.

Select only appropriate deployment targets for a module. You cannot install modules that use

WebSphere Application Server Version 7.x features on a Version 6.x or 5.x target server.

Use the Ctrl key to select multiple targets. For example, to have a Web server serve your

application, use the Ctrl key to select an application server and the Web server together to have

the plugin-cfg.xml plug-in configuration file for that Web server generated based on the applications

that are routed through it.

c. Click Apply.

4. Repeat steps 2 and 3 until each module maps to the desired targets.

5. Click OK.

Chapter 5. Deploying and administering enterprise applications 87

Results

The application or module configurations are changed. The application or stand-alone Web module is

restarted so the changes take effect.

Example

To install an application that has modules which support Java Platform, Enterprise Edition (Java EE) 5 to

two servers, do the following:

1. Click the Select All icon to select all of the modules in the application.

2. While pressing Ctrl, select two Version 7 application servers from the Clusters and servers list.

3. Click Apply.

4. Click OK.

What to do next

Save changes to your administrative configuration.

Mapping virtual hosts for Web modules

A virtual host must be mapped to each Web module of a deployed application. Web modules can be

installed on the same virtual host or dispersed among several virtual hosts.

Before you begin

You can map a virtual host to a Web module during or after application installation using the console. This

article assumes that the Web module is already installed on a server and that you want to change the

mappings.

Before you change a mapping, check the virtual hosts definitions. You can install a Web module on any

defined virtual host. To view information on previously defined virtual hosts, click Environment → Virtual

hosts in the administrative console. Virtual hosts enable you to associate a unique port with a module or

application. The aliases of a virtual host identify the port numbers defined for that virtual host. A port

number specified in a virtual host alias is used in the URL that is used to access artifacts such as servlets

and JavaServer Pages (JSP) files in a Web module. For example, the alias myhost:8080 is the

host_name:port_number portion of the URL http://myhost:8080/servlet/snoop.

About this task

During application installation, a virtual host other than the one you want mapped to your Web module

might have been specified.

The default virtual host setting usually is default_host, which provides several port numbers through its

aliases:

80 An internal, insecure port used when no port number is specified

9080 An internal port

9443 An external, secure port

Unless you want to isolate your Web module from other modules or resources on the same node (physical

machine), default_host is a suitable virtual host for your Web module.

In addition to default_host, the product provides admin_host, which is the virtual host for the

administrative console system application. admin_host is on port 9060. Its secure port is 9043. Do not

select admin_host unless the Web module relates to system administration.

88 Developing and deploying applications

Use the Virtual hosts page of the administrative console to view and change mappings. This page is

displayed during application installation using the console and, after the application is installed, can be

accessed from the settings page for an enterprise application.

On the Virtual hosts page, specify a virtual host for each Web module. Web modules of an application can

be installed on the same virtual host or on different virtual hosts.

1. Click Applications → Application Types → WebSphere enterprise applications → application_name

→ Virtual hosts in the console navigation tree. The Virtual hosts page is displayed.

2. Examine the list of mappings. Ensure that each Web module entry has the desired virtual host

mapped to it, identified under Virtual host.

3. Change the mappings as needed.

a. Select each Web module that you want mapped to a particular virtual host. In the list of mappings,

place a check mark in the Select check boxes beside the Web modules.

b. From the Virtual host drop-down list, select the desired virtual host. If you selected more than one

virtual host in step 1:

1) Expand Apply Multiple Mappings.

2) Select the desired virtual host from the Virtual host drop-down list.

3) Click Apply.

4. Repeat steps 2 and 3 until a desired virtual host is mapped to each Web module.

5. Click OK.

Results

The application or Web module configurations are changed. The application or standalone Web module is

restarted so the changes take effect.

What to do next

After mapping virtual hosts, do the following:

1. Regenerate the plug-in configuration file.

a. Click Servers → Server Types → Web servers.

b. Select the Web server for which you want to generate a plug-in.

c. Click Generate Plug-in.

2. Save changes to your administrative configuration.

Virtual hosts settings

Use this panel to specify virtual hosts for Web modules contained in your application. Web modules can

be installed on the same virtual host or dispersed among several virtual hosts.

To view this administrative console panel, click Applications → Application Types → WebSphere

enterprise applications → application_name → Virtual hosts. This panel is the same as the Map virtual

hosts for Web modules panel on the application installation and update wizards.

On this panel, each Web module must map to a previously defined virtual host, identified under Virtual

host. You can see information on previously defined virtual hosts by clicking Environment → Virtual hosts

in the administrative console. Virtual hosts enable you to associate a unique port with a module or

application. The aliases of a virtual host identify the port numbers defined for that virtual host. A port

number specified in a virtual host alias is used in the URL that is used to access artifacts such as servlets

and JavaServer Pages (JSP) files in a Web module. For example, the alias myhost:8080 is the

host_name:port_number portion of the URL http://myhost:8080/servlet/snoop.

The default virtual host setting usually is default_host, which provides several port numbers through its

aliases:

80 An internal, insecure port used when no port number is specified

Chapter 5. Deploying and administering enterprise applications 89

9080 An internal port

9443 An external, secure port

 Unless you want to isolate your Web module from other modules or resources on the same node (physical

machine), default_host is a suitable virtual host for your Web module.

In addition to default_host, the product provides admin_host, which is the virtual host for the

administrative console system application. admin_host is on port 9060. Its secure port is 9043. Do not

select admin_host unless the Web module relates to system administration.

To change a mapping:

1. In the list of mappings, select the Select check box beside each Web module that you want mapped to

a particular virtual host.

2. From the Virtual host drop-down list, select the desired virtual host. If you selected more than one

virtual host in step 1:

a. Expand Apply Multiple Mappings.

b. Select the desired virtual host from the Virtual Host drop-down list.

c. Click Apply.

3. Click OK.

Note: If an application is running, changing an application setting causes the application to restart. On

stand-alone servers, the application restarts after you save the change. On multiple-server

products, the application restarts after you save the change and files synchronize on the node

where the application is installed. To control when synchronization occurs on multiple-server

products, deselect Synchronize changes with nodes on the Console preferences page.

Web module:

Specifies the name of a Web module in the application that you are installing or that you are viewing after

installation.

Virtual host:

Specifies the name of the virtual host to which the Web module is currently mapped.

 Expanding the drop-down list displays a list of previously defined virtual hosts. To change a mapping,

select a different virtual host from the list.

Do not specify the same virtual host for different Web modules that have the same context root and are

deployed on targets belonging to the same node even if the Web modules are contained in different

applications. Specifying the same virtual host causes a validation error.

Mapping properties for a custom login or trusted connection

configuration

Use this page to view and manage the mapping properties for a custom login configuration or a trusted

connection configuration.

To access the administrative console panel, complete the following steps:

1. Click Applications > Application types> WebSphere enterprise applications > application_name.

2. From Enterprise JavaBeans™ Properties, click Map data sources for all 2.x CMP beans.

3. For container authorization, modify the authorization type by selecting your Enterprise JavaBeans(EJB)

module and selecting Container from the Resource authorization menu.

4. Click Apply.

90 Developing and deploying applications

5. From Specify authentication method, select Use custom login configuration or Use trusted

connections and the name of the application login configuration.

6. Select the name of your EJB module.

7. Click Apply.

8. Click Mapping properties in the Resource authorization column. This property is not available until

after you click Apply in the previous step.

Name

Specifies the name for the mapping property.

Do not use the MAPPING_ALIAS property name because the name is reserved by the product.

Value

Specifies the value paired with the specified name.

Description

Specifies additional information about the name and value pair.

Viewing deployment descriptors

A deployment descriptor is an extensible markup language (XML) file that specifies configuration and

container options for an application or module.

Before you begin

This topic assumes that you have installed an application or module on a server and that you want to view

its deployment descriptor.

About this task

When you create a Java 2 Platform, Enterprise Edition (J2EE) application or module in an assembly tool,

the assembly tool creates deployment descriptor files for the application or module. Java Platform,

Enterprise Edition (Java EE) 5 applications or modules might use annotations instead of deployment

descriptors.

After an application or module is installed on a server, you can view its deployment descriptor in the

administrative console. You cannot view Java EE 5 annotations.

Unless an application supports Java EE 5, an enterprise archive (EAR) file must contain an application.xml

file. The application.xml identifies each module of an application. A Java EE 5 application is not required to

provide an application.xml file in the EAR file. When an application.xml file does not exist, the product

examines the Java archive (JAR) file contents to determine whether the JAR file is an enterprise bean

(EJB) module or an application client module. A JAR file should not contain more than one deployment

descriptor in it. When an ejb-jar.xml file is found in a JAR file, the product considers it an EJB module. If

an ejb-jar.xml file is not found and an application-client.xml is found, the product considers the JAR file to

be an application client module. If both ejb-jar.xml and application-client.xml files exist in the JAR file, the

product might consider a JAR file intended to be an application client module to be an EJB module or a

JAR file intended to be an EJB module to be an application client module. A JAR file should not contain

more than one kind of deployment descriptor.

1. Access a deployment descriptor view.

Click the navigational option stated in Accessing a console view to view the deployment descriptor

for a given module:

Chapter 5. Deploying and administering enterprise applications 91

Module Deployment descriptor file Accessing a console view

Enterprise

application

application.xml Applications → Application Types → WebSphere enterprise

applications → application_name → View deployment

descriptor

Web application WEB-INF/web.xml Applications → Application Types → WebSphere enterprise

applications → application_name → Manage modules →

module_name → View deployment descriptor

WEB-INF/portlet.xml Applications → Application Types → WebSphere enterprise

applications → application_name → Manage modules →

module_name → View portlet deployment descriptor

Enterprise bean ejb-jar.xml Applications → Application Types → WebSphere enterprise

applications → application_name → Manage modules →

module_name → View deployment descriptor

Application client application-client.xml No console view

Web service webservices.xml Applications → Application Types → WebSphere enterprise

applications → application_name → Manage modules →

module_name >

v View Web services client deployment descriptor

extension

v View Web services server deployment descriptor

v View Web services server deployment descriptor

extension

Viewing Web services deployment descriptors in the

administrative console describes the views.

Resource adapter ra.xml Resources → Resource Adapters → Resource adapters →

module_name → View deployment descriptor

2. Click Expand All to view the deployment descriptor contents.

Results

The deployment descriptor for the application or module is displayed.

Example

The deployment descriptor for the product DefaultApplication follows:

<application id="Application_ID" >

 <display-name> DefaultApplication.ear</display-name>

 <description> This is the IBM WebSphere Application Server Default Application.</<description>

 <module id="WebModule_1" >

 <web>

 <web-uri> DefaultWebApplication.war</web-uri>

 <context-root> /</context-root>

 </web>

 </module>

 <module id="EjbModule_1" >

 <ejb> Increment.jar</ejb>

 </module>

 <security-role id="SecurityRole_1204342979281" >

 <description> All Authenticated users role.</description>

 <role-name> All Role</role-name>

 </security-role>

</application>

What to do next

After displaying a deployment descriptor on the console page, do the following:

92 Developing and deploying applications

1. Examine the deployment descriptor contents, including any configurations that it has for bindings,

security roles, references to other resources, or Java Naming and Directory Interface (JNDI) names.

For example, examine the JAR files of your Java EE 5 module to ensure that each JAR file does not

contain more than one kind of deployment descriptor. If a JAR file contains more than one kind of

deployment descriptor, proceed to the next step and remove the extraneous deployment descriptor.

Thus, if both ejb-jar.xml and application-client.xml files exist in a JAR file, remove the deployment

descriptor that your module does not need.

2. Change a deployment descriptor as needed.

You can edit a deployment descriptor file manually. However, it is preferable to edit a deployment

descriptor using the console or in an assembly tool deployment descriptor editor to ensure that the

deployment descriptor has valid properties and that its references contain appropriate values.

If your EJB 3.0 or Web 2.5 module does not have a metadata-complete attribute or the metadata-complete

attribute is set to false, you can instruct the product to write the entire module deployment descriptor,

including deployment information from annotations, to XML format. On the Metadata for modules page,

select metadata-complete attribute.

Note: If your Java EE 5 application uses annotations and a shared library, do not select

metadata-complete attribute. When your application uses annotations and a shared library, setting

the metadata-complete attribute to true causes the product to incorrectly represent an @EJB

annotation in the deployment descriptor as <ejb-ref> rather than <ejb-local-ref>. For Web

modules, setting the metadata-complete attribute to true might cause InjectionException errors. If

you must set the metadata-complete attribute to true, avoid errors by not using a shared library, by

placing the shared library in either the classes or lib directory of the application server, or by fully

specifying the metadata in the deployment descriptors.

Metadata for module settings

Use this page to instruct a Java Platform, Enterprise Edition (Java EE) 5 enterprise bean (EJB) or Web

module deployment descriptor to ignore annotations that specify deployment information.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application_name → Metadata for modules. This page is the same as the

Metadata for modules page on the application installation and update wizards.

Note: If your application contains EJB 3.0 or Web 2.5 modules, you can select to lock the deployment

descriptor of one or more of the EJB 3.0 or Web 2.5 modules on the Metadata for modules page. If

you set the metadata-complete attribute to true and lock deployment descriptors, the product writes

the complete module deployment descriptor, including deployment information from annotations, to

XML format.

Annotations are a standard mechanism of adding metadata to Java classes. You can use metadata to

simplify development and deployment of Java EE 5 artifacts. Prior to the introduction of Java language

annotations, deployment descriptors were the standard mechanism used by Java EE components. These

deployment descriptors were mapped to XML format, which facilitated their persistence. If you select to

lock deployment descriptors, the product merges Java EE 5 annotation-based metadata with the

XML-based existing deployment descriptor metadata and persists the result.

Module

Specifies the name of a module in the installed (or deployed) application.

 Data type String

URI

Specifies the location of the module relative to the root of the application (EAR file).

Chapter 5. Deploying and administering enterprise applications 93

Data type String

metadata-complete attribute

Specifies whether to write the complete module deployment descriptor, including deployment information

from annotations, to extensible markup language (XML) format.

The default is not to write out a module deployment descriptor.

If your EJB 3.0 or Web 2.5 module does not have a metadata-complete attribute or the metadata-complete

attribute is set to false, you can select a check box and instruct the product to write out a module

deployment descriptor.

Note: If your Java EE 5 application uses annotations and a shared library, do not select

metadata-complete attribute. When your application uses annotations and a shared library, setting

the metadata-complete attribute to true causes the product to incorrectly represent an @EJB

annotation in the deployment descriptor as <ejb-ref> rather than <ejb-local-ref>. For Web

modules, setting the metadata-complete attribute to true might cause InjectionException errors. If

you must set the metadata-complete attribute to true, avoid errors by not using a shared library, by

placing the shared library in either the classes or lib directory of the application server, or by fully

specifying the metadata in the deployment descriptors.

After you select a check box, you cannot deselect (clear) the check box and the module is no longer

shown in the list of modules on this page. If you select all of the check boxes, the link to this page is no

longer shown on the enterprise application settings page.

 Data type Boolean

Default false (deselected)

Starting or stopping enterprise applications

You can start an application that is not running (has a status of Stopped) or stop an application that is

running (has a status of Started).

Before you begin

This topic assumes that the Java Platform, Enterprise Edition (Java EE) application is installed on a

server. By default, the application starts automatically when the server starts.

About this task

You can start and stop applications manually using the following:

v Administrative console

v startApplication and stopApplication attributes of the AdminControl object with the wsadmin tool

v startApplication and stopApplication administrative jobs of the AdminTask.submitJob -jobType object with

the wsadmin tool

v Java programs that use ApplicationManager or AppManagement MBeans

This topic describes how to use the administrative console to start or stop an application.

Note: This topic applies to applications that do not contain Java Application Programming Interface (API)

for XML-Based Web Services (JAX-WS) service providers. To stop or start applications that contain

JAX-WS service providers, use the Service providers page accessed by clicking Services →

Service providers. To start a service provider application, select a service and click Start

94 Developing and deploying applications

Application. To stop a service provider application, select a service and click Stop Application.

Then, on the Stop application page, click OK to stop all modules in the application, including other

services such as enterprise beans and servlets.

1. Go to the Enterprise applications page. Click Applications → Application Types → WebSphere

enterprise applications in the console navigation tree.

2. Select the check box for the application you want started or stopped.

3. Click a button:

 Option Description

Start Runs the application and changes the state of the application to Started. The status is

changed to partially started if not all servers on which the application is deployed are

running.

Stop Stops the processing of the application and changes the state of the application to

Stopped.

To restart a running application, select the application you want to restart, click Stop and then click

Start.

Results

The status of the application changes and a message stating that the application started or stopped

displays at the top the page.

What to do next

You can configure an application so it does not start automatically when the server on which it resides

starts. You then start the application manually using options described in this article.

If you want your application to start automatically when its server starts, you can adjust values that control

how quickly the application or its server starts:

1. Go the settings page for your enterprise application. Click Applications → Application Types →

WebSphere enterprise applications → application_name → Startup behavior.

2. Specify a different value for Startup order.

This setting specifies the order in which applications are started when the server starts. The default

value is 1 in a range from 0 to 2147483647. The application with the lowest starting weight is started

first.

3. Specify a different value for Launch application before server completes startup.

This setting specifies whether the application must initialize fully before its server starts. The default

value of false prevents the server from starting completely until the application starts. To reduce the

amount of time it takes to start the server, you can set the value to true and have the application start

on a background thread, thus allowing server startup to continue without waiting for the application.

4. Save the changes to the application configuration.

Disabling automatic starting of applications

You can enable and disable the automatic starting of an application. By default, an installed application

starts automatically when the server on which the application resides starts.

Before you begin

This topic assumes that the application is installed on an application server and that the application starts

automatically when the server starts.

Chapter 5. Deploying and administering enterprise applications 95

This topic also assumes that you mapped the installed application to a server and that you have an

administrative role with an authority higher than monitor.

About this task

You might want an application to run only after you start it manually and not to run every time after the

server starts. The target mapping for an application controls whether an application starts automatically

when the server starts or requires you to start the application manually.

You must have an administrative role with an authority higher than monitor to change the automatic

starting setting.

1. Go to the Target specific application status page for your application.

Click Applications → Application Types → WebSphere enterprise applications → application_name

→ Target specific application status.

2. Select the target server on which the application resides.

3. Click Disable Auto Start.

4. Save changes to the administrative configuration.

Results

The application does not start when its server starts. You must start the application manually.

What to do next

To enable automatic starting of the application, do the following:

1. On the Target specific application status page for the application, select the target on which the

application resides.

2. Click Enable Auto Start.

3. Save changes to the configuration.

Target specific application status

Use this page to view mappings of deployed applications or modules to servers.

Also use this page to enable or disable the automatic starting of an application when the server on which

the application resides starts.

To view this administrative console page, click Applications → Application Types → WebSphere

enterprise applications → application_name → Target specific application status.

When security is enabled, a separate application list is shown for each of your administrative roles.

Supported roles include monitor, configurator, operator, administrator, deployer, and administrative security

manager. For example, when you have the administrator role, the statement “You can administer the

following resources” is shown followed by a list of servers that you can administer.

Target

States the name of the target server to which the application or module maps. You specify the target on

the Manage modules page accessed from the settings for an application.

Node

Specifies the node name if the target is a server.

Version

Specifies the version level of the target. The target can be a Version 7.x, 6.x or 5.x deployment target.

96 Developing and deploying applications

A 7.x deployment target is a server with all members on a WebSphere Application Server Version 7.0 or

later product.

A 6.x deployment target is a server with all members on a WebSphere Application Server Version 6

product.

A 5.x deployment target is a server with at least one member on a WebSphere Application Server Version

5 product.

An application, enterprise bean (EJB) module, Session Initiation Protocol (SIP) module (SAR), or Web

module must be installed on a Version 7.x target under any of the following conditions:

v The module supports Java Platform, Enterprise Edition (Java EE) 5.

v The module calls a 7.x runtime application programming interface (API).

v The module uses a 7.x product feature.

If a module supports Java 2 Platform, Enterprise Edition (J2EE) 1.4, then you must install the module on a

Version 6.x or 7.x deployment target. Modules that call a 6.1.x API or use a 6.1.x feature can be installed

on a 6.1.x or 7.x deployment target. Modules that call a 6.0.x API or use a 6.0.x feature can be installed

on a 6.0.x, 6.1.x or 7.x deployment target. Modules that require 6.1.x feature pack functionality can be

installed on a 7.x deployment target or on a 6.1.x deployment target that has been enabled with that

feature pack.

If JavaServer Pages (JSP) precompilation, EJB deployment (ejbdeploy), or Web Services deployment

(wsdeploy) are enabled, then you can deploy applications to only those targets that have same product

version as the deployment manager. If applications are targeted to servers that have an earlier version

than the deployment manager, then you cannot deploy to those targets. Thus, if JSP precompilation,

ejbdeploy, or wsdeploy are enabled, then you must deploy the application on a 6.1.x or 7.x target.

You can install an application or module developed for a Version 5.x product on a 7.x, 6.x or 5.x

deployment target.

Similarly, a resource adapter (connector) module, or RAR file, developed for a Version 5.x product can

reside on a 7.x, 6.x or 5.x target, provided the module does not support Java Cryptography Architecture

(JCA) 1.5 and does not call any 7.x or 6.x runtime application programming interfaces (APIs). If the

module supports JCA 1.5 or calls a 7.x or 6.x API, then the module must reside on a 7.x or 6.x target.

Auto Start

Specifies whether the application modules installed on the target server are started (or enabled) when the

server starts. This setting specifies the initial state of application modules. A Yes value indicates that the

corresponding modules are enabled and thus are accessible when the server starts. A No value indicates

that the corresponding modules are not enabled and thus are not accessible when the server starts.

By default, Auto Start is enabled. Thus, by default an installed application starts automatically when the

server on which the application resides starts.

If you have an administrative role with an authority higher than monitor, you can enable and disable the

automatic starting of the application. To disable the automatic starting of the application, enable the Select

check box beside the target server and click Disable Auto Start. When automatic starting is disabled, the

application does not start when its server starts. To enable the automatic starting of the application, select

the target and click Enable Auto Start.

Application Status

Indicates whether the application deployed on the application server is started, stopped, or unknown.

Started Application is running.

Chapter 5. Deploying and administering enterprise applications 97

Partial Start Application is in the process of changing from a Stopped state to a Started

state. Application is starting to run but is not fully running yet. The application

might be in the Partial Start state because one of its application servers is not

started.

Stopped Application is not running.

Partial Stop Application is in the process of changing from a Started state to a Stopped

state. Application has not stopped running yet.

Unknown Status cannot be determined.

An application with an unknown status might, in fact, be running but have an

unknown status because the server running the administrative console cannot

communicate with the server running the application.

Pending Status is temporarily unknown pending an event that a user did not initiate, such

as pending an asynchronous call.

Not applicable Application does not provide information as to whether it is running.

The status of an application on a Web server is always Unknown.

Exporting enterprise applications

You can export an enterprise application to a location of your choice.

About this task

Exporting applications enables you to back up your applications and preserve binding information for the

applications. You might export your applications before updating installed applications or migrating to a

later version of the product.

To export applications, use the Export button on the Enterprise applications page. Using Export produces

an enhanced enterprise archive (EAR) file that contains the application as well as the deployment

configuration. The deployment configuration consists of the deployment.xml and other configuration files

that control the application behavior on a deployment target.

1. Click Applications → Application Types → WebSphere enterprise applications in the console

navigation tree to access the Enterprise applications page.

2. Select the check box beside the application and click Export.

3. On the Export application EAR files page, click on the link to download the exported EAR file.

4. Use the browser dialogue to specify a location at which to save the exported EAR file.

User profile QEJBSVR must have *WX authority to the directory and at least *X authority to all

directories in the path specified for the location.

5. Click Back to return to the Enterprise applications page.

Results

The file containing binding information is exported to the specified node and directory, and has the name

enterprise_application_name.ear.

Using the Export button to export applications does not export any manual changes that were made to

applications in the installedApps directory. To export those changes, you must copy and move the

application files manually.

98 Developing and deploying applications

What to do next

You can edit your exported enhanced EAR file and then reinstall it. By default, installation expands an

EAR file in the profile_root/installedApps/cell_name directory. If you specified the $(CELL) variable for

Directory to install application on the Select installation options panel of the application installation

wizard when you first installed the application, the cell_name directory is the current cell name.

To reinstall the enhanced EAR file, do either of the following:

v Use the Update operation available from the Enterprise applications page to upgrade the existing

application installation.

The Update operation adds the application files to the profile_root/installedApps/cell_name directory,

where cell_name is the current cell name or the name of the cell that you specified for Directory to

install application when you first installed the application on a deployment target. The Directory to

install application setting is on the Select installation options panel of the application installation

wizard. If you specified the $(CELL) variable for Directory to install application when you first installed

the application, the cell_name directory is the current cell name.

v Use the Applications → New application → New Enterprise Application operation to install the

exported EAR file.

If you specified the $(CELL) variable for Directory to install application when you first installed the

application, the cell_name directory is the current cell name. That is, if the file is originally installed on

Cell1 with $(CELL) variable in the destination directory and you reinstall the enhanced EAR file on Cell2,

the cell_name directory is Cell2, the current cell name.

If the $(CELL) variable was not specified for the first installation, using New Enterprise Application to

reinstall an enhanced EAR file installs the application in the cell_name directory of the exported

application. That is, if the application is originally installed on and exported from Cell1 and you reinstall

the enhanced EAR file on Cell2, the cell_name directory is Cell1. The enhanced EAR file expands in

the Cell1 directory even though the current cell name is Cell2. By default, the application destination

directory contains Cell1 in its path because the deployment.xml file in the exported application has Cell1

in it.

If you exported the application from Cell1 and did not specify the $(CELL) variable when first installing

the application, and you want to install the enhanced EAR file on a different cell, deselect Process

embedded configuration on the Select installation options panel of the application installation wizard to

expand the enhanced EAR file in the current cell name directory, which is not Cell1.

Exporting enterprise application files

You can export individual files of a Java Platform, Enterprise Edition (Java EE) application or module.

Before you begin

This topic assumes that you have installed an application or module on a server and that you want to

export a file in the application or module.

About this task

Exporting a file in a deployed application or module downloads the file to a location of your choice.

To export a file using the administrative console, use Export File.

To export an entire application, use Export. For information on Export, see “Exporting enterprise

applications” on page 98. The exported enterprise archive (EAR) file contains application configuration

data as well as the application.

1. Click Applications → Application Types → WebSphere enterprise applications in the administrative

console navigation tree to access the Enterprise applications page.

Chapter 5. Deploying and administering enterprise applications 99

2. Place a check mark in the check box beside the application and click Export File. A drop-down list of

exportable files is displayed.

3. Select a file from the list and click Export. A dialog in which you select a target location is displayed.

If the browser does not prompt for a location to store the file, click File → Save as and specify a

location to save the file that is shown in the browser.

4. Specify the location to which to download the file.

User profile QEJBSVR must have *WX authority to the directory and at least *X authority to all

directories in the path specified for the location.

Results

The file is downloaded to the specified location.

What to do next

Click Back to return to the Enterprise applications page.

Exporting DDL files

You can export data definition language (DDL) files in the enterprise bean (EJB) modules of an

application.

About this task

Exporting DDL (Table.ddl) files in the EJB modules of an application downloads the DDL files to a location

of your choice.

1. Click Applications → Application Types → WebSphere enterprise applications in the administrative

console navigation tree to access the Enterprise applications page.

2. Place a check mark in the check box beside the application and click Export DDL. If the application

has no DDL files in any of its EJB modules, then the message No DDL files were found is displayed at

the top of the page. If the application has DDL files in its EJB modules, then a page listing DDL files in

the format application_name.ear/_module.jar_Table.ddl is displayed.

3. Click on a file in the list and specify the location to which to download the file.

User profile QEJBSVR must have *WX authority to the directory and at least *X authority to all

directories in the path specified for the location.

Note: For Firefox browsers, right-click the file name, select Save Link As, and specify the location to

which to download the file.

Mozilla browsers might display the contents of the Table.ddl file instead of saving the file to disk.

To save the file, edit the Helper Application preference settings of the Mozilla browser by

adding a new type for DDL and specifying that you want to save DDL files to disk. That is, set

MIME type = ddl and Extension = ddl.

Results

The product downloads the DDL file to the specified location.

Updating enterprise application files

You can update Java Platform, Enterprise Edition (Java EE) application files deployed on a server.

100 Developing and deploying applications

Before you begin

Update your Java EE application or modules and reassemble them using an assembly tool. Typical tasks

include adding or editing assembly properties, adding or importing modules into an application, and adding

enterprise beans, Web components, and files.

Also, determine whether the updated files can be installed to your deployment targets. WebSphere

Application Server Version 7.x and later supports Java EE 5 enterprise applications and modules.

If you are deploying Java EE 5 modules, ensure that the deployment target supports Version 7.x. You can

deploy Java EE 5 modules to Version 7.x servers only. You cannot deploy Java EE 5 modules to Version

6.x deployment targets.

About this task

Updating consists of adding a new file or module to an installed application, or replacing or removing an

installed application, file or module. After replacement of a full application, the old application is uninstalled.

After replacement of a module, file or partial application, the old installed module, file or partial application

is removed from the installed application.

1. Determine which method to use to update your application files. The product provides several ways to

update modules.

2. Update the application files using

v Administrative console

v wsadmin scripts

v Java application programming interfaces

v WebSphere rapid deployment of Java EE applications

In some situations, you can update applications or modules without restarting the application server

using hot deployment. Do not use hot deployment unless you are an experienced user and are

updating applications in a development or test environment.

3. Start the deployed application files using

v Administrative console

v wsadmin startApplication

v Java programs that use ApplicationManager or AppManagement MBeans

What to do next

Save the changes to your administrative configuration.

Next, test the application. For example, point a Web browser at the URL for a deployed application

(typically http://hostname:9060/Web_module_name, where hostname is your valid Web server and 9060 is

the default port number) and examine the performance of the application. If the application does not

perform as desired, edit the application configuration, then save and test it again.

Ways to update enterprise application files

You can update Java Platform, Enterprise Edition (Java EE) application files deployed on a server in

several ways.

Chapter 5. Deploying and administering enterprise applications 101

Table 4. Ways to update application files

Option Method Comments Starting after update

Administrative

console update

wizard

See “Updating

enterprise

applications

with the

console” on

page 103.

To remove a

single file from

a Java EE

application or

module, see

“Removing

enterprise files”

on page 117.

Briefly, do the following:

1. Go to the Enterprise Applications

page. Click Applications →

Application Types → WebSphere

enterprise applications in the

console navigation tree.

2. Select the application to update

and click Update.

3. On the Preparing for application

update page, identify the application,

module or files to update and click

Next.

4. Complete steps in the update

wizard and click Finish.

On the Preparing for application

update page:

v Use Full application to update an

.ear file.

v Use Single module to update a

.war, .sar, enterprise bean .jar, or

connector .rar file.

v Use Single file to update a file

other than an .ear, .war, .sar, EJB

.jar, or .rar file.

v Use Partial application to update

or remove multiple files.

On the Enterprise

applications page,

select the updated

application and click

Start.

wsadmin scripts Use the update command or the

updateInteractive command in a

script or at a command prompt.

″Getting started with scripting″ in the

Using the administrative clients PDF

provides an overview of wsadmin.

Start the application

using the invoke

command and the

startApplication

attribute.

Java application

programming

interfaces

Update deployed applications by

completing the steps in ″Managing

applications through programming″ in

the Using the administrative clients

PDF.

Update an application in the

following ways:

v Update the entire application

v Add to, replace or delete multiple

files in an application

v Add a module to an application

v Update a module in an application

v Delete a module in an application

v Add a file to an application

v Update a file in an application

v Delete a file in an application

v Invoke the

AdminApp

startApplication

command.

v Invoke the

startApplication

method on an

ApplicationManager

MBean using

AdminControl.

Rapid

deployment

tools

See topics

under Rapid

deployment of

J2EE

applications.

Briefly, do the following:

1. Update your J2EE application

files.

2. Set up the rapid deployment

environment.

3. Create a free-form project.

4. Launch a rapid deployment

session.

5. Drop your updated application files

into the free-form project.

Rapid deployment tools offer the

following advantages:

v You do not need to assemble your

J2EE application files prior to

deployment.

v You do not need to use other

installation tools mentioned in this

table to deploy the files.

Use any of the above

options to start the

application. Clicking

Start on the

Enterprise

applications page is

the easiest option.

102 Developing and deploying applications

Table 4. Ways to update application files (continued)

Option Method Comments Starting after update

Hot deployment

and dynamic

reloading

Briefly, do the following:

1. Update your application (.ear),

Web module (.war), enterprise bean

.jar or HTTP plug-in configuration file.

2. Follow instructions in Hot

deployment and dynamic reloading

to update your file.

If you are new to WebSphere

Application Server, use the

administrative console to update

applications. That option is easier.

Hot deployment and dynamic

reloading is more difficult to

complete. You must directly

manipulate the application or module

file on the server where the

application is deployed.

Use any of the above

options to start the

application. Clicking

Start on the

Enterprise

applications page is

the easiest option.

You can update .ear, enterprise bean .jar, Web module .war, Session Initiation Protocol (SIP) module

(.sar), connector .rar, application client .jar, and any other files used by an installed application.

If the application is updated while it is running, WebSphere Application Server automatically stops the

application, updates the application logic and restarts the application. If the application does not start

automatically, start it manually using one of the Starting options. For more information on the restarting of

updated applications, refer to ″Fine-grained recycle behavior″ in IBM WebSphere Developer Technical

Journal: System management for WebSphere Application Server V6 -- Part 5 Flexible options for updating

deployed applications.

Updating enterprise applications with the console

Updating enterprise applications consists of adding a new file or module to an installed Java Platform,

Enterprise Edition (Java EE) application, or replacing or removing an installed application, file or module.

Before you begin

Before you update the application files on a server, ensure that the files are assembled in deployable

modules.

Next, refer to “Ways to update enterprise application files” on page 101 and decide how to update your

application files. You can update enterprise applications or modules using the administrative console, the

wsadmin tool, or Java MBean programming. These ways provide similar updating capabilities.

Further, ensure that the updated files can be installed to your deployment targets.

About this task

This topic describes how to update deployed applications or modules using the administrative console.

1. Back up the installed application or module.

a. Go to the Enterprise applications page of the administrative console. Click Applications →

Application Types → WebSphere enterprise applications in the console navigation tree.

b. Export the application to an EAR file or export a file in the application. Select the application you

want to export and click Export or Export File. Exporting preserves the binding information.

2. With the application selected on the Enterprise applications page, click Update. The Preparing for

application update page is displayed.

3. Under Specify the EAR, WAR, SAR or JAR module to upload and install:

a. Ensure that Application to be updated refers to the application to be updated.

b. Under Application update options, select the installed application, module, or file that you want to

update.

Chapter 5. Deploying and administering enterprise applications 103

The online help Preparing for application update settings provides detailed information on the

options.

Note: You cannot add, remove, or modify a Java Application Programming Interface (API) for

XML-Based Web Services (JAX-WS) annotation using the Replace or add a single file or

Replace, add, or delete multiple files update options. These options change a single file

or a partial application. If you change a JAX-WS annotation using either of these options,

the product does not return an error. However, you might encounter problems deploying

annotated Web services.

4. If you selected the Replace the entire application or Replace or add a single module option:

a. Click Next to display a wizard for updating application files.

b. Complete the steps in the update wizard.

This update wizard, which is similar to the installation wizard, provides fields for specifying or

editing application binding information. Refer to information on installing applications and on the

application installation binding settings page for guidance.

Note that the installation steps have the merged binding information from the new version and the

old version. If the new version has bindings for application artifacts such as Enterprise JavaBeans

(EJB) Java Naming and Directory Interface (JNDI) names, EJB references or resource references,

then those bindings will be part of the merged binding information. If new bindings are not present,

then bindings are taken from the installed (old) version. If bindings are not present in the old

version and if the default binding generation option is enabled, then the default bindings will be part

of the merged binding information.

You can select whether to ignore bindings in the old version or ones in the new version.

5. Click Finish.

6. If you did not use the Manage modules page of the update wizard, after updating the application, map

the installed application or module to servers.

Use the page accessed from the Enterprise Applications page.

a. Go to the Manage modules page. Click Applications → Application Types → WebSphere

enterprise applications → application_name → Manage modules.

b. Specify the application server where you want to install modules contained in your application and

click OK.

You can deploy Java 2 Platform, Enterprise Edition (J2EE) 1.4 modules to servers on Version 6 or

later nodes. You can deploy Java Platform, Enterprise Edition (Java EE) 5 modules to servers on

Version 7.x nodes only.

Results

After replacement of a full application, the product uninstalls the old application. After replacement of a

module, file or partial application, the product removes the old installed module, file or partial application

from the installed application.

What to do next

After the application file or module installs successfully, do the following:

1. Save the changes to your configuration.

2. If needed, restart the application manually so the changes take effect.

If the application is updated while it is running, the product automatically stops the application or only

its changed components, updates the application logic, and restarts the stopped application or its

components.

3. If the application you are updating is deployed on a server that has its application class loader policy

set to Single on the application server settings page, restart the server.

104 Developing and deploying applications

Preparing for application update settings

Use this page to update enterprise applications, modules or files already installed on a server.

To view this administrative console page, do the following:

1. Click Applications → Application Types → WebSphere enterprise applications.

2. Select the installed application or module that you want to update.

3. Click Update.

Clicking Update displays a page that helps you update application files deployed in the cell. You can

update the full application, a single module, a single file, or part of the application. If a new file or module

has the same relative path as a file or module already existing on the server, the new file or module

replaces the existing file or module. If the new file or module does not exist on the server, it is added to

the deployed application.

Application to be updated

Specifies the name of the installed (or deployed) application that you selected on the Enterprise

applications page.

Replace the entire application

Under Application update options, specifies to replace the application already installed on the server

with a new (updated) enterprise application .ear file.

After selecting this option, do the following:

1. Specify whether the .ear file is on a local or remote file system and the full path name of the

application. The path provides the location of the updated .ear file before installation.

Use Local file system if the browser and the updated files or modules are on the same machine,

whether or not the server is on that machine too. Local file system is available for all update options.

Use Remote file system if the application file resides on any node in the current cell context.

Also use the Remote file system option to specify an application file already residing on the machine

running the application server. For example, the field value might be app_server_install_root/
installableApps/test.ear. If you are installing a standalone WAR module, then specify the context root

as well.

Note: During application installation, application files typically are uploaded from a client machine

running the browser to the server machine running the administrative console, where they are

deployed. In such cases, use the Web browser running the administrative console to select

modules to upload to the server machine. In some cases, however, the application files reside

on the file system of any of the nodes in a cell. To have the application server install these files,

use the Remote file system option.

2. If you are installing a standalone Web application (WAR) or a Session Initiation Protocol (SIP) module

(SAR), specify the context root of the WAR or SAR file.

The context root is combined with the defined servlet mapping (from the WAR file) to compose the full

URL that users type to access the servlet. For example, if the context root is /gettingstarted and the

servlet mapping is MySession, then the URL is http://host:port/gettingstarted/MySession.

3. Click Next to display a wizard for updating application files. The update wizard, which is similar to the

installation wizard, provides fields for specifying or editing application binding information. Complete the

steps in the update wizard as needed.

When the full application is updated, the old application is uninstalled and the new application is installed.

When the configuration changes are saved and subsequently synchronized, the application files are

expanded on the node where application will run. If the application is running on the node while it is

updated, then the application is stopped, application files are updated, and application is started.

Chapter 5. Deploying and administering enterprise applications 105

Replace or add a single module

Under Application update options, specifies to replace a module in or add a module to an installed

application.

The module can be a Web module (.war file), enterprise bean module (EJB .jar file), SIP module (.sar file),

or resource adapter module (connector .rar file).

After selecting this option, specify whether the module is on a local or remote file system and the full path

name of the module. The path provides the location of the updated module before installation. For

information on Local file system and Remote file system, refer to the previous description of Replace

the entire application .

To replace a module, the specified relative path (module URI) must match the path of the module to be

updated in the installed application.

To add a new module to the installed application, the specified relative path must not match the path of a

module in the installed application. The value specifies the desired path for the new module.

If you are installing a standalone Web or SIP module, specify a value for Context root. The context root is

combined with the defined servlet mapping (from the .war file) to compose the full URL that users type to

access the servlet. For example, if the context root is /gettingstarted and the servlet mapping is

MySession, then the URL is http://host:port/gettingstarted/MySession.

Next, specify whether to show only installation options that require you to supply information or to show all

installation options.

After specifying the required information on the module, click Next to display a wizard for updating

application files. The update wizard, which is similar to the installation wizard, provides fields for specifying

or editing module binding information. Complete the steps in the update wizard as needed.

After a single module is added or updated, when configuration changes are saved, the new or updated

module is stored in the deployed application in the product configuration repository. When these changes

are synchronized with the node, the module is added or updated to the node’s file system. If the

application is running on the node when the module is added or updated, then one of the following occurs:

v For updates to a Web module, the running Web module is stopped, Web module files are updated, and

then the Web module is started.

v For module additions, the added module is started on the application servers where the application is

running after it is expanded on the node. An application restart is not necessary.

v If the class loader policy for the application is set to Single so that all modules share a class loader,

then the entire application is stopped and restarted for module level changes.

v If the security provider configured with the product does not support dynamic updates, then the entire

application is stopped and restarted for module level changes.

v For all other updates to a module, the entire application is stopped, the module files are updated, then

the entire application is started.

Replace or add a single file

Under Application update options, specifies to replace a file in or add a file to an installed application.

Use this option to update a file used by the application that is not an .ear, .war, .sar, .rar or, in some

instances, a .jar file. You can use this option to add or update .jar files that are not defined as modules in

the application. To update an .ear, file use the Replace the entire application option. To update a .war

file, .sar file, .rar file, or .jar file that is defined as a module in the application, use the Replace or add a

single module option.

106 Developing and deploying applications

After selecting this option, specify whether the file is on a local or remote file system and the full path

name of the file. The path provides the location of the updated file before installation. For information on

Local file system and Remote file system, refer to the description of Replace the entire application.

For the relative path, specify a relative path to the file that starts from the root of the .ear file. For example,

if the file is located at com/company/greeting.class in module hello.jar, specify a relative path of

hello.jar/com/company/greeting.class.

To replace a file, the relative path must match the path of the file to be updated in the installed application.

To add a new file to the installed application, the must not match the path of a file in the installed

application. The value specifies the desired path for the new file.

After you specify the file system and relative paths, click Next.

After a single file is added or updated, when configuration changes are saved, the new or updated file is

stored in the deployed application in the product configuration repository. When these changes are

synchronized with the node, the file is added or updated to the node’s file system. If the application is

running on the node when the file is added or updated, then one of the following occurs:

v When files are added at application metadata scope (META-INF directory) or updated at any application

scope or in non-Web modules, the entire application is stopped, the file is added or updated, and then

the entire application is restarted.

v When files are added at application non-metadata scope (outside of META-INF directory but not in any

module), the changes are saved in the file system without restarting the running application.

v When files are added or updated to Web module metadata (META-INF or WEB-INF directory), the

running Web module is stopped, the Web module file is added or updated, and then the Web module is

started.

v For all other files in Web modules, the file is added or updated on the node’s file system without

stopping the application or any of its components.

Replace, add, or delete multiple files

Under Application update options, specifies to update multiple files of an installed application by

uploading a compressed file. Depending on the contents of the compressed file, a single use of this option

can replace files in, add new files to, and delete files from the installed application. Each entry in the

compressed file is treated as a single file and the path of the file from the root of the compressed file is

treated as the relative path of the file in the installed application.

After selecting this option, specify whether the compressed file is on a local or remote file system and the

full path name of the compressed file. You will likely use Local file system because you are uploading a

compressed file and remote browsing only works for .ear, .sar, .war or .jar files. Specify a valid

compressed file format such as .zip or .gzip. The path provides the location of the compressed file before

installation. This option unzips the compressed file into the installed application directory.

Use Local file system if the browser and the updated files or modules are on the same machine, whether

or not the server is on that machine too. Local file system is available for all update options.

To replace a file, a file in the compressed file must have the same relative path as the file to be updated in

the installed application.

To add a new file to the installed application, a file in the compressed file must have a different relative

path than the files in the installed application.

The relative path of a file in the installed application is formed by concatenation of the relative path of the

module (if the file is inside a module) and the relative path of the file from the root of the module

separated by /.

Chapter 5. Deploying and administering enterprise applications 107

To remove a file from the installed application, specify metadata in the compressed file using a file named

META-INF/ibm-partialapp-delete.props at any archive scope. The ibm-partialapp-delete.props file must be

an ASCII file that lists files to be deleted in that archive with one entry for each line. The entry can contain

a string pattern such as a regular expression that identifies multiple files. The file paths for the files to be

deleted must be relative to the archive path that has the META-INF/ibm-partialapp-delete.props file.

 Level of files to

delete Metadata .props file to include in compressed file

Application Include META-INF/ibm-partialapp-delete.props in the compressed file. In the metadata .props

file, list files to be deleted. File paths are relative to the location of the META-INF/ibm-
partialapp-delete.props file.

For example, to delete a file named utils/config.xmi from the root of the my.ear file, include

the line utils/config.xmi in the META-INF/ibm-partialapp-delete.props file.

Module Include module_uri/META-INF/ibm-partialapp-delete.props in the compressed file.

To delete one file from a module, include the file path relative to the module in the metadata

.props file. For example, to delete a/b/c.jsp from the my.jar module, include a/b/c.jsp in

my.jar/META-INF/ibm-partialapp-delete.props file in the compressed file.

To delete multiple files within a module, list the files to be deleted in the metadata .props file

with one entry on each line. For example, to delete all JavaServer Pages (.jsp files) from the

my.war file, include the line .*jsp in the my.war/META-INF/ibm-partialapp-delete.props file.

The line uses a regular expression, .*jsp, to identify all .jsp files in my.war.

You can use a single partial application file to add, delete and update multiple files.

After you specify a file system path, click Next.

After a partial application update, when configuration changes are saved, the new or updated application

file is stored in the deployed application in the WebSphere Application Server configuration repository.

When these changes are synchronized with the node, the files are added or updated to the node’s file

system. Because the partial application option updates multiple files, the application components that are

restarted are determined using individual files in the partial application.

An example of entries in a partial application compressed file follows:

util.jar

META-INF/ibm-partialapp-delete.props

foo.jar/com/mycomp/xyz.class

xyz.war/welcome.jsp

xyz.war/WEB-INF/web.xml

webmod.war/META-INF/ibm-partialapp-delete.props

For this example, the META-INF/ibm-partialapp-delete.props file contains the .*.dat and tools/test.jar files.

The webmod.war/META-INF/ibm-partialapp-delete.props file contains the com/test/.*.jsp and

WEB-INF/test.xmi files.

The partial application update option does the following:

v Adds or replaces util.jar in the deployed application.

v Adds or replaces com/mycomp/xyz.class inside the foo.jar file of the deployed application.

v Deletes *.dat files from the application, but not from any modules.

v Deletes tools/test.jar from the application.

v Adds or replaces welcome.jsp inside the xyz.war module of the deployed application.

v Replaces WEB-INF/web.xml inside the xyz.war module of the deployed application.

v Deletes com/test/*.jsp from the webmod.war module.

v Deletes WEB-INF/test.xmi from the webmod.war module.

108 Developing and deploying applications

Hot deployment and dynamic reloading

You can make various changes to applications and their modules without having to stop the server and

start it again. Making these types of changes is known as hot deployment and dynamic reloading.

Before you begin

This topic assumes that your application files are deployed on a server and you want to upgrade the files.

See “Ways to update enterprise application files” on page 101 and determine whether hot deployment is

the appropriate way for you to update your application files. Other ways are easier and hot deployment is

appropriate only for experienced users.

Do not use hot deployment if you intend to export your application, generate a plug-in based on the

application configuration, or perform other application management in the future. Changes that you make

to your application files using hot deployment are not recognized by administrative console or wsadmin

application management functions. Those functions recognize only the application files that administrative

programs such as the console or wsadmin present during application installation, update or other

management functions. The application management functions do not recognize files changed by hot

deployment.

About this task

Hot deployment is the process of adding new components (such as WAR files, EJB Jar files, enterprise

Java beans, servlets, and JSP files) to a running server without having to stop the application server

process and start it again.

Dynamic reloading is the ability to change an existing component without needing to restart the server in

order for the change to take effect. Dynamic reloading involves:

v Changes to the implementation of a component of an application, such as changing the implementation

of a servlet

v Changes to the settings of the application, such as changing the deployment descriptor for a Web

module

As opposed to the changes made to a deployed application described in “Updating enterprise application

files” on page 100, changes made using hot deployment or dynamic reloading do not use the

administrative console or a wsadmin scripting command. You must directly manipulate the application files

on the server where the application is deployed.

If the application you are updating is deployed on a server that has its application class loader policy set to

Single, you might not be able to dynamically reload your application. At minimum, you must restart the

server after updating your application.

1. Locate your expanded application files.

The application files are in the directory you specified when installing the application or, if you did not

specify a custom target directory, are in the default target directory, app_server_root/installedApps/
cell_name. Your EAR file, ${APP_INSTALL_ROOT}/cell_name/application_name.ear, points to the target

directory. The variables.xml file for the node defines ${APP_INSTALL_ROOT}.

It is important to locate the expanded application files because, as part of installing applications, a

WebSphere application server unjars portions of the EAR file onto the file system of the computer that

will run the application. These expanded files are what the server looks at when running your

application. If you cannot locate the expanded application files, look at the binariesURL attribute in the

deployment.xml file for your application. The attribute designates the location the run time uses to find

the application files.

For the remainder of this information on hot deployment and dynamic reloading, application_root

represents the root directory of the expanded application files.

Chapter 5. Deploying and administering enterprise applications 109

2. Locate application metadata files. The metadata files include the deployment descriptors (web.xml,

application.xml, ejb-jar.xml, and the like), the bindings files (ibm-web-bnd.xmi, ibm-app-bnd.xmi,

and the like), and the extensions files (ibm-web-ext.xmi, ibm-app-ext.xmi, and the like).

Metadata XML files for an application can be loaded from one of two locations. The metadata files can

be loaded from the same location as the application binary files (such as application_root/META-INF)

or they can be loaded from the WebSphere configuration tree, ${CONFIG_ROOT}/cells/cell_name/
applications /application_EAR_name/deployments/application_name/. The value of the

useMetadataFromBinary flag specified during application installation controls which location is used. If

specified, the metadata files are loaded from the same location as the application binary files. If not

specified, the metadata files are loaded from the application deployment folder in the configuration

tree.

Note: You can have useMetadataFromBinaries=true, change an extracted copy of your application

using hot deployment, and have the changes take effect at run time by following the procedure

in this topic. However, changes that you make to your application files using hot deployment are

not recognized by console or wsadmin application management functions. Those functions

recognize only the original application files and not the files changed by hot deployment. Do not

use hot deployment if you intend to export your application, generate a plug-in based on the

application configuration, or perform other application management in the future. Hot

deployment enables you to quickly change application files; it does not support the full

management lifecycle of an application.

For the remainder of this information, metadata_root represents the location of the metadata files for

the specified application or module.

3. Optional: Examine the values specified for Reload classes when application files are updated and

Polling interval for updated files on the settings page for your application’s class loader.

If reloading of classes is enabled and the polling interval is greater than zero (0), the application files

are reloaded after the application is updated. For JavaServer Pages (JSP) files in a Web module, a

Web container reloads JSP files only when the IBM extension jspReloadingEnabled in the jspAttributes

of the ibm-web-ext.xmi file is set to true. You can set jspReloadingEnabled to true when editing your

Web module’s extended deployment descriptors in an assembly tool.

4. Change or add the following components or modules as needed:

v Application files

v WAR files

v EJB Jar files

v HTTP plug-in configuration files

5. For changes to take effect, you might need to start, stop, or restart an application.

“Starting or stopping enterprise applications” on page 94 provides information on using the

administrative console to start, stop, or restart an application.

Results

The application files are updated on the server.

Because you directly manipulated the application files on the server, you might not be able to later use the

administrative console or a wsadmin scripting command to work with the files. For example, if you try

exporting a manually changed application using Export on an Enterprise applications console page, your

manual changes to an application in the installedApps directory are not exported. To export those

changes, you must copy and move the application files manually.

Changing or adding application files

You can change or add application files on application servers without having to stop the server and start it

again.

110 Developing and deploying applications

About this task

There are several changes that you can make to deployed application files without stopping the server and

starting it again.

Note: See “Ways to update enterprise application files” on page 101 and determine whether hot

deployment is the appropriate way for you to update your application files. Other ways are easier

and hot deployment is appropriate only for experienced users. You can use the update wizard of

the administrative console to make the changes without having to stop and restart the server.

The following table lists the changes that you can make by manipulating an application file on the server

where the application is deployed. The table also states whether you use hot deployment or dynamic

reloading to make the changes.

 Change Hot deployment Dynamic reloading

Update an existing application on a running server by providing a new

EAR file.

Yes Yes

Add a new application to a running server. Yes No

Remove an existing application from a running server. Yes No

Change or add files to existing EJB or Web modules. Yes No

Change the application.xml file for an application. Not applicable Yes

Change the ibm-app-ext.xmi file for an application. Not applicable Yes

Change the ibm-app-bnd.xmi file for an application. Not applicable Yes

Change a non-module Jar file contained in the EAR file. Yes Yes

v Update an existing application on a running server by providing a new EAR file.

Reinstall an updated application using the administrative console or the wsadmin $AdminApp install

command with the -update option.

Both reinstallation methods enable you to update an existing application using any of the other steps

listed in this file, including changing classes, adding modules, removing modules, changing modules, or

changing metadata files. The application reinstallation methods detect the changes in your application

and prompt you for additional binding data that might be needed to install the application. The

reinstallation process automatically stops and restarts your application on the appropriate servers.

v Add a new application to a running server.

Install an application using the administrative console or the wsadmin install command.

v Remove an existing application from a running server.

Stop the application and then uninstall it from the server. Use the administrative console to stop the

application and then uninstall it. Or use the stopApplication attribute of the AdminControl object with

the wsadmin tool and then run the uninstall command.

v Change or add files to existing EJB or Web modules.

1. Update the application files in the application_root location.

2. Restart the application.

Use the administrative console to restart the application. Or use the startApplication and

stopApplication attributes of the AdminControl object with the wsadmin tool.

v Change the application.xml file for an application.

Restart the application. Automatic reloading will not detect the change. Use the administrative console

to restart the application. Or use the startApplication and stopApplication attributes of the

AdminControl object with the wsadmin tool.

v Change the ibm-app-ext.xmi file for an application.

Chapter 5. Deploying and administering enterprise applications 111

Restart the application. Automatic reloading will not detect the change. Use the administrative console

to restart the application. Or use the startApplication and stopApplication attributes of the

AdminControl object with the wsadmin tool.

v Change the ibm-app-bnd.xmi file for an application.

Restart the application. Automatic reloading will not detect the change. Use the administrative console

to restart the application. Or use the startApplication and stopApplication attributes of the

AdminControl object with the wsadmin tool.

v Change a non-module Jar file contained in the EAR file.

1. Update the non-module Jar file in the application_root location.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to

restart the application. Or use the startApplication and stopApplication attributes of the

AdminControl object with the wsadmin tool.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

Changing or adding WAR files

You can change Web application archives (WAR files) on application servers without having to stop the

server and start it again.

About this task

There are several changes that you can make to WAR files without stopping the server and starting it

again.

Note: See “Ways to update enterprise application files” on page 101 and determine whether hot

deployment is the appropriate way for you to update your WAR files. Other ways are easier and hot

deployment is appropriate only for experienced users. You can use the update wizard of the

administrative console to make the changes without having to stop and restart the server.

The following table lists the changes that you can make by manipulating a WAR file on the server where

the application is deployed. The table also states whether you use hot deployment or dynamic reloading to

make the changes.

 Change Hot deployment Dynamic reloading

Change an existing JavaServer Pages (JSP) file. Not applicable Yes

Add a new JSP file to an existing application. Yes Yes

Change an existing servlet class by editing and recompiling. Not applicable Yes

Change a dependent class of an existing servlet class. Not applicable Yes

Add a new servlet using the Invoker (Serve Servlets by class name)

facility or add a dependent class to an existing application.

Yes Not applicable

Add a new servlet, including a new definition of the servlet in the

web.xml deployment descriptor for the application.

Yes Not applicable

Change the web.xml file of a WAR file. Yes Yes

Change the ibm-web-ext.xmi file of a WAR file. Not applicable Yes

Change the ibm-web-bnd.xmi file of a WAR file. Not applicable Yes

v Change an existing JavaServer Pages (JSP) file.

Place the changed JSP file directly in the application_root/module_name directory or the appropriate

subdirectory. The change will be automatically detected and the JSP will be recompiled and reloaded.

v Add a new JSP file to an existing application.

112 Developing and deploying applications

Place the new JSP file directly in the application_root/module_name directory or the appropriate

subdirectory. The new file will be automatically detected and compiled on the first request to the page.

v Change an existing servlet class by editing and recompiling.

1. Place the new version of the servlet .class file directly in the application_root/module_name/WEB-
INF/classes directory. If the .class file is part of a Jar file, you can place the new version of the Jar

file directly in application_root/module_name/WEB-INF/lib. In either case, the change will be

detected, the Web application will be shut down and reinitialized, picking up the new class.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to

restart the application. Or use the startApplication and stopApplication attributes of the

AdminControl object with the wsadmin tool.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

v Change a dependent class of an existing servlet class.

1. Place the new version of the dependent .class file directly in the application_root/module_name/
WEB-INF/classes directory. If the .class file is part of a Jar file, you can place the new version of the

Jar file directly in application_root/module_name/WEB-INF/lib. In either case, the change will be

detected, the Web application will be shut down and reinitialized, picking up the new class.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to

restart the application. Or use the startApplication and stopApplication attributes of the

AdminControl object with the wsadmin tool.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

v Add a new servlet using the Invoker (Serve Servlets by class name) facility or add a dependent class to

an existing application.

1. Place the new .class file directly in the application_root/module_name/WEB-INF/classes directory.

If the .class file is part of a Jar file, you can place the new version of the Jar file directly in

application_root/module_name/WEB-INF/lib. In either case, the change will be detected, the Web

application will be shut down and reinitialized, picking up the new class.

This case is treated the same as changing an existing class. The difference is that adding the

servlet or class does not immediately cause the Web application to reload because the class has

never been loaded before. The class simply becomes available for execution.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to

restart the application. Or use the startApplication and stopApplication attributes of the

AdminControl object with the wsadmin tool.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

v Add a new servlet, including a new definition of the servlet in the web.xml deployment descriptor for the

application.

1. Place the new .class file directly in the application_root/module_name/WEB-INF/classes directory.

If the .class file is part of a Jar file, you can place the new version of the Jar file directly in

application_root/module_name/WEB-INF/lib.

You can edit the web.xml file in place or copy it into the application_root/module_name/WEB-INF/
classes directory. The new .class file will not trigger a reloading of the application.

2. Restart the application.

Use the administrative console to restart the application. Or use the startApplication and

stopApplication attributes of the AdminControl object with the wsadmin tool. After the application

restarts, the new servlet is available for service.

v Change the web.xml file of a WAR file.

1. Edit the web.xml file in place or copy it into the metadata_root/module_name/WEB-INF directory.

2. Restart the application.

Chapter 5. Deploying and administering enterprise applications 113

Use the administrative console to restart the application. Or use the startApplication and

stopApplication attributes of the AdminControl object with the wsadmin tool.

v Change the ibm-web-ext.xmi file of a WAR file.

Edit the extension settings as needed. You can change all of the extension settings. The only warning is

if you set the reloadInterval property to zero (0) or the reloadEnabled property to false, the application

no longer automatically detects changes to class files. Both of these changes disable the automatic

reloading function. The only way to re-enable automatic reloading is to change the appropriate property

and restart the application. See other task descriptions in this file for information on restarting an

application.

v Change the ibm-web-bnd.xmi file of a WAR file.

1. Edit the bindings as needed. You can change all of the values but ensure that the entities you are

binding to are present in the configuration of the server.

2. Restart the application.

Use the administrative console to restart the application. Or use the startApplication and

stopApplication attributes of the AdminControl object with the wsadmin tool.

Changing or adding EJB Jar files

You can change enterprise bean (EJB) Jar files on application servers without having to stop the server

and start it again.

About this task

There are several changes that you can make to EJB Jar files without stopping the server and starting it

again.

Note: See “Ways to update enterprise application files” on page 101 and determine whether hot

deployment is the appropriate way for you to update your EJB Jar files. Other ways are easier and

hot deployment is appropriate only for experienced users. You can use the update wizard of the

administrative console to make the changes without having to stop and restart the server.

The following table lists the changes that you can make to EJB Jar files by manipulating an EJB file on the

server where the application is deployed. The table also states whether you use hot deployment or

dynamic reloading to make the changes.

 Change Hot deployment Dynamic reloading

Change the ejb-jar.xml file of an EJB Jar file. Not applicable Yes

Change the ibm-ejb-jar-ext.xmi or ibm-ejb-jar-bnd.xmi file of an EJB

Jar file.

Not applicable Yes

Change the Table.ddl file for an EJB Jar file. Not applicable Not applicable

Change the Map.mapxmi or Schema.dbxmi file for an EJB Jar file. Not applicable Yes

Update the implementation class for an EJB file or a dependent class of

the implementation class for an EJB file.

Not applicable Yes

Update the Home/Remote interface class for an EJB file. Not applicable Yes

Add a new EJB file to an existing EJB Jar file. Yes Yes

v Change the ejb-jar.xml file of an EJB Jar file.

Restart the application. Automatic reloading will not detect the change. Use the administrative console

to restart the application. Or use the startApplication and stopApplication attributes of the

AdminControl object with the wsadmin tool.

v Change the ibm-ejb-jar-ext.xmi or ibm-ejb-jar-bnd.xmi file of an EJB Jar file.

114 Developing and deploying applications

Restart the application. Automatic reloading will not detect the change. Use the administrative console

to restart the application. Or use the startApplication and stopApplication attributes of the

AdminControl object with the wsadmin tool.

v Change the Table.ddl file for an EJB Jar file.

Rerun the DDL file on the user database server. Changing the Table.ddl file has no effect on the

application server and is a change to the database table schema for the EJB files.

v Change the Map.mapxmi or Schema.dbxmi file for an EJB Jar file.

1. Change the Map.mapxmi or Schema.dbxmi file for an EJB Jar file.

2. Regenerate the deployed code artifacts for the EJB file.

3. Apply the new EJB Jar file to the server.

4. Restart the application. Use the administrative console to restart the application. Or use the

startApplication and stopApplication attributes of the AdminControl object with the wsadmin tool.

v Update the implementation class for an EJB file or a dependent class of the implementation class for an

EJB file.

1. Update the class file in the application_root/module_name.jar file.

2. If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

If automatic reloading is not enabled, restart the application of which the EJB file is a member. If the

updated module is used by other modules in other applications, restart those applications as well.

Use the administrative console to restart the application. Or use the startApplication and

stopApplication attributes of the AdminControl object with the wsadmin tool.

v Update the Home/Remote interface class for an EJB file.

1. Update the interface class of the EJB file.

2. Regenerate the deployed code artifacts for the EJB file.

3. Apply the new EJB Jar file to the server.

4. If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

If automatic reloading is not enabled, restart the application of which the EJB file is a member. Use

the administrative console to restart the application. Or use the startApplication and

stopApplication attributes of the AdminControl object with the wsadmin tool.

v Add a new EJB file to an existing EJB Jar file.

1. Apply the new or updated Jar file to the application_root location.

2. If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

If automatic reloading is not enabled, restart the application. Use the administrative console to

restart the application. Or use the startApplication and stopApplication attributes of the

AdminControl object with the wsadmin tool.

Changing the HTTP plug-in configuration

You can change the HTTP plug-in configuration without having to stop the server and start it again.

About this task

There are several change that you can make to the HTTP plug-in configuration without stopping the server

and starting it again.

Note: See “Ways to update enterprise application files” on page 101 and determine whether hot

deployment is the appropriate way for you to update your HTTP plug-in configuration. Other ways

are easier and hot deployment is appropriate only for experienced users.

Chapter 5. Deploying and administering enterprise applications 115

The following table lists the changes that you can make to the HTTP plug-in configuration. The table also

states whether you use hot deployment or dynamic reloading to make the changes.

 Change Hot deployment Dynamic reloading

Change the application.xml file to change the context root of a Web

application archive (WAR file).

Yes No

Change the web.xml file to add, remove, or modify a servlet mapping. Yes Yes

Change the server.xml file to add, remove, or modify an HTTP

transport or change the virtualhost.xml file to add or remove a virtual

host or to add, remove, or modify a virtual host alias.

Yes Yes

v Change the application.xml file to change the context root of a WAR file.

1. Change the application.xml file.

2. If the plug-in configuration property Automatically propagate plug-in configuration file is selected

for this plug-in, it is automatically regenerated whenever the application.xml file changes.

See documentation on the Web server plug-in properties for information on how to set this property.

You can also run the GenPluginCfg.bat/sh script, or issue a wsadmin command to regenerate the

plug-in configuration file.

v Change the web.xml file to add, remove, or modify a servlet mapping.

1. Change the web.xml file.

2. If the plug-in configuration property Automatically propagate plug-in configuration file is selected

for this plug-in, it is automatically regenerated whenever the web.xml file changes.

See documentation on the Web server plug-in properties for information on how to set this property.

You can also run the GenPluginCfg.bat/sh script, or issue a wsadmin command to regenerate the

plug-in configuration file.

If the Web application has file serving enabled or has a servlet mapping of /, the plug-in

configuration does not have to be regenerated. In all other cases a regeneration is required.

v Change the server.xml file to add, remove, or modify an HTTP transport or change the

virtualhost.xml file to add or remove a virtual host or to add, remove, or modify a virtual host alias.

1. Change the server.xml file or the virtualhost.xml file.

2. If the plug-in configuration property Automatically propagate plug-in configuration file is selected

for this plug-in, it is automatically regenerated whenever the server.xml file changes.

See documentation on the Web server plug-in properties for information on how to set this property.

You can also run the GenPluginCfg.bat/sh script, or issue a wsadmin command to regenerate the

plug-in configuration file.

Uninstalling enterprise applications

After an application no longer is needed, you can uninstall it.

About this task

Uninstalling an application deletes the application from the product configuration repository and deletes the

application binaries from the file system of all nodes where the application modules are installed.

1. Click Applications → Application Types → WebSphere enterprise applications in the administrative

console navigation tree to access the Enterprise applications page.

2. If you need to retain a copy of the application, back up the application.

a. Select the application to uninstall.

b. Click Export.

The product exports the application to an enterprise application (.ear) file, preserving the binding

information.

116 Developing and deploying applications

3. Uninstall the application.

a. Select the application to uninstall.

b. Click Uninstall.

c. On the Uninstall application panel, click OK.

4. Save changes made to the administrative configuration.

Results

On single-server products, application binaries are deleted after you save the changes.

Removing enterprise files

After a file is no longer needed, you can remove the file from a Java Platform, Enterprise Edition (Java

EE) application or module deployed on a server.

About this task

Removing a file deletes the file from the product configuration repository and deletes the file from the file

system of all nodes where the file is installed.

You can use the administrative console to remove a file from an application or module.

v Remove a file from an application.

1. Go to the Enterprise applications page. Click Applications → Application Types → WebSphere

enterprise applications in the console navigation tree.

2. Select the application that contains a file you want removed.

3. Click Remove File. The Remove a file page is displayed

4. Select the URI of the file that you want removed from the application.

5. Back up the application.

Under Export before removing file, select the application name and then specify the location to

which you want the file exported.

6. Click OK to remove the file.

v Remove a file from a module.

1. Go to the Manage modules page.

Click Applications → Application Types → WebSphere enterprise applications →

application_name → Manage modules in the console navigation tree.

2. Select the module from which you want to delete a file.

3. Click Remove File. The Remove a file from a module page is displayed.

4. Select the URI of the file that you want removed from the module.

5. Back up the application.

Under Export before removing file, select the application name and then specify the location to

which you want the file exported.

6. Click OK to remove the file.

Results

The file is exported to the designated location and removed from the application or module. The

application or standalone Web module that had a file removed is restarted so the changes take effect.

Chapter 5. Deploying and administering enterprise applications 117

What to do next

Save the changes to your administrative configuration.

On single-server products, application binaries are deleted after you save the changes.

Deploying and administering applications: Resources for learning

Use the following links to find relevant supplemental information about deploying and administering

applications using the administrative console. The information resides on IBM and non-IBM Internet sites,

whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

View links to additional information about:

v “Programming model and decisions”

v “Programming instructions and examples”

v “Administration”

Programming model and decisions

v Designing Enterprise Applications with the JavaTM 2 Platform, Enterprise Edition, Second Edition,

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/

v Java EE Tutorials, http://java.sun.com/javaee/reference/tutorials/

v Recommended reading list: J2EE and WebSphere Application Server, http://www.ibm.com/
developerworks/websphere/library/techarticles/0305_issw/recommendedreading.html

v Java EE 5: Power and productivity with less complexity – An overview of Java EE 5 features and

developer-productivity enhancements, http://www.ibm.com/developerworks/java/library/j-jee5/
index.html?ca=drs-

v Rational Application Developer V7 Programming Guide, SG24-7501-00, http://www.redbooks.ibm.com/
abstracts/sg247501.html?Open

v IBM WebSphere Developer Technical Journal: The top Java EE best practices, http://www.ibm.com/
developerworks/websphere/techjournal/0701_botzum/0701_botzum.html

Programming instructions and examples

v IBM WebSphere: Deployment and Advanced Configuration, Roland Barcia, et al., ISBN 0131468626

(Prentice Hall, 2004)

v WebSphere Application Server - Express V6 Developers Guide and Development Examples,

http://www.redbooks.ibm.com/abstracts/sg246500.html

v IBM WebSphere Developer Technical Journal: Co-hosting multiple versions of J2EE applications,

http://www.ibm.com/developerworks/websphere/techjournal/0405_poddar/0405_poddar.html

v Automated Deployment of Enterprise Application Updates: Part 1 - Basic concepts,

http://websphere.sys-con.com/read/47889.htm

Administration

v IBM WebSphere Developer Technical Journal: System management for WebSphere Application Server

V6 -- Part 1 Overview of system management enhancements, http://www.ibm.com/developerworks/
websphere/techjournal/0501_williamson/0501_williamson.html

v IBM WebSphere Developer Technical Journal: System management for WebSphere Application Server

V6 -- Part 5: Flexible options for updating deployed applications, http://www.ibm.com/developerworks/
websphere/techjournal/0510_apte/0510_apte.html

118 Developing and deploying applications

v WebSphere Application Server V6.1: System Management Configuration Handbook, SG24-7304-00,

http://www.redbooks.ibm.com/abstracts/SG247304.html?Open

Chapter 5. Deploying and administering enterprise applications 119

120 Developing and deploying applications

Chapter 6. Managing applications through programming

Through Java MBean programming, you can install, update, and delete a Java Platform, Enterprise Edition

(Java EE) application on a WebSphere Application Server deployment target.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,

see MBean Java application programming interface (API) documentation.

For information on the restarting of updated applications, refer to Fine-grained recycle behavior in IBM

WebSphere Developer Technical Journal: System management for WebSphere Application Server V6 --

Part 5 Flexible options for updating deployed applications.

Before you can install or change an application on a deployment target, you must first create or update

your application and assemble it using an assembly tool.

About this task

Besides installing, uninstalling, and updating applications through programming, you can additionally

install, uninstall, and update Java EE applications through the administrative console or the wsadmin tool.

All three ways provide identical updating capabilities.

1. Perform any or all of the following tasks to manage your Java EE applications through programming.

v Access the application management function.

This topic provides examples to access the application management functionality:

– From WebSphere Application Server code

– From outside WebSphere Application Server

– When WebSphere Application Server is not running

v Install an application.

This topic provides an example for initially installing an application on a deployment target such as a

server .

v Uninstall an application.

This topic provides an example for uninstalling an application that resides on a deployment target.

v Manipulate additional attributes for a deployed application.

This topic provides an example for manipulating attributes that are not exposed through the

AppDeploymentTask object.

v Share sessions for application management.

This topic provides an example for saving application-specific updates for a deployed application to

a session, and then to the configuration repository.

v Update an application.

This topic provides an example for updating the installed application on a server with a new

application. When you completely update an application, the deployed application is uninstalled and

the new enterprise archive (EAR) file is installed.

v Add to, update, or delete part of an application.

This topic provides an example that you can use to add, update, or delete part of an application on

a server .

v Edit an application.

This topic provides an example that you can use to edit an application on a server .

v Add a module.

© Copyright IBM Corp. 2008 121

http://www.ibm.com/developerworks/websphere/techjournal/0510_apte/0510_apte.html#sec4

This topic provides an example for adding a module to an application that resides on a server .

v Update a module.

This topic provides an example for updating a module that resides on a server . When you update a

module, the deployed module is uninstalled and the updated module is installed.

v Delete a module.

This topic provides an example for deleting a module that resides on a server . When you delete a

module, the deployed module is uninstalled.

v Add a file.

This topic provides an example for adding a file to an application that resides on a server .

v Update a file.

This topic provides an example for updating a file on a server . When you update a file, the

deployed file is uninstalled and the updated file is installed.

v Delete a file.

This topic provides an example for deleting a file on a server . When you delete a file, the deployed

file is uninstalled.

2. Save your changes to the master configuration repository.

What to do next

If you have further application updates, you can do the updates through programming, the administrative

console, or the wsadmin tool.

You can use the common deployment framework to add additional logic to application management

operations. See “Extending application management operations through programming” on page 155. The

tasks that the extensions provide are available through all the administrative clients, such as the wsadmin

tool, the administrative console, or through programmatic APIs that the AppManagement MBean provides.

Application management

Java 2 Platform, Enterprise Edition (J2EE) applications and modules include an Extensible Markup

Language (XML)-based deployment descriptor that specifies various J2EE artifacts that pertain to

applications or modules. The J2EE artifacts include Enterprise JavaBeans (EJB) definitions, security role

definitions, EJB references, resource references, and so on. These artifacts define various unresolved

references that the application logic uses. The J2EE specification requires that these artifacts map to J2EE

platform-specific information, such as that found in WebSphere Application Server, during deployment of

J2EE applications.

The application assembly tools that WebSphere Application Server supports, as well as the application

management support that is provided with the product, facilitate collection of certain WebSphere

Application Server information. The collected information is used to resolve references that are defined in

various deployment descriptors in a J2EE application. This information is stored in the application EAR file

in conjunction with the deployment descriptors. The following diagram shows the structure of an Enterprise

122 Developing and deploying applications

Archive (EAR) file that is populated with deployment information that is specific to WebSphere Application

Server.

EJB module Web module RAR module Client module

EAR file

META-INF / application.xml
META-INF / ibm-appl-bnd.xmi
META-INF / ibm-appl-ext.xmi
META-INF / was.policy

META-INF .xmlejb-jar
META-INF / ibm-ejb-bnd.xmi
META-INF / ibm-ejb-ext.xmi
EJB classes

WEB / web.xml
WEB-INF / ibm-web-bnd.xmi
WEB-INF / ibm-web-ext.xmi
Servlets, JSP files, libraries

-INF

META-INF /ra.xml
libraries

META-INF /application-client.xml
META-INF / ibm-application-client-bnd.xmi
Client classes

The application management architecture provides a set of classes with which deployers can collect

WebSphere Application Server deployment information. This information is also referred to as binding

information, and is stored in the application EAR file. The deployer can install the EAR file into a

WebSphere Application Server configuration by using the AppManagement interface.

The application management support in WebSphere Application Server provides functions such as

installing and uninstalling applications, editing binding information for installed applications, updating the

entire application or part of the application, exporting the application, and so on. The

com.ibm.websphere.management.application.AppManagement interface, which is exposed as a Java

Management Extensions (JMX)-based AppManagement MBean in WebSphere Application Server, provides

this functionality. Code that runs on the server or in a stand-alone administrative client program can

access the interface. Access to the application management functions is also possible in the absence of

WebSphere Application Server. This mode, known as local mode, is particularly useful for installing J2EE

applications as part of product installation.

Accessing the application management function

The com.ibm.websphere.management.application.AppManagementProxy class provides uniform access to

application management functionality, regardless of whether the functionality is accessed from the server

process, administrative client process, or a stand-alone Java program in the absence of WebSphere

Application Server. This topic provides code excerpts that demonstrate how to obtain an

AppManagementProxy instance in a variety of cases.

Before you begin

This task assumes a basic familiarity with WebSphere Application Server programming interfaces and

MBean programming. Read about WebSphere Application Server programming interfaces and MBean

programming in the application programming interfaces documentation.

About this task

Perform any of the following tasks to access application management functionality through programming.

v To access application management functionality from WebSphere Application Server code, for example,

as a custom service, create the AppManagementProxy class.

AppManagement appMgmt =

 AppManagementProxy. getJMXProxyForServer();

Chapter 6. Managing applications through programming 123

v To access application management functionality from outside WebSphere Application Server through the

AppManagement MBean, create an administrative client to establish a connection to WebSphere

Application Server and then create the AppManagementProxy class.

AdminClient adminClient =

// create AppManagement proxy object

AppManagement appMgmt = AppManagementProxy. getJMXProxyForClient (adminClient);

v To access application management functionality when WebSphere Application Server is not running

(local mode), create the AppManagementProxy class.

AppManagement appMgmt = AppManagementProxy. getLocalProxy ();

– When running in local mode set the com.ibm.ws.management.standalone system property to true. If

you want to modify configuration documents in a non-default location, set the location of the

configuration directory through the was.repository.root system property.

– Although you can use application management functions with or without WebSphere Application

Server running, do not access application management functions concurrently through local mode

and the AppManagement MBean. Otherwise, updates that are made using these modes can collide

and break the integrity of the WebSphere Application Server configuration.

Results

After you successfully create the AppManagementProxy class, you have access to application

management functionality.

What to do next

You can perform various management tasks such as installing, uninstalling, editing, and so on.

Installing an application through programming

You can install an application through the administrative console, the wsadmin tool, or programming. Use

this example to install an application through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. Read about MBean programming in the

application programming interfaces documentation.

Before you can install an application on WebSphere Application Server, you must first create or update

your application and assemble it using an assembly tool.

About this task

The AppDeploymentController instance contains meta-data defined in XMLl-based deployment descriptors

as well as annotations defined in Java classes within the input enterprise archive (EAR) file.

Perform the following tasks to install an application through programming.

 1. Populate the EAR file with WebSphere Application Server-specific binding information.

a. Create the controller and populate the EAR file with appropriate options.

b. Optionally run the default binding generator.

c. Save and close the EAR file.

d. Retrieve the saved options table that will be passed to the installApplication MBean API.

 2. Connect to WebSphere Application Server.

 3. Create the application management proxy.

124 Developing and deploying applications

4. If the preparation phase (population of the EAR file) is not performed, the do the following actions:

a. Create an options table to be passed to the installApplication MBean API.

b. Create a table for module to server relations and add the table to the options table.

Refer to the com.ibm.websphere.management.application.AppManagement class in the

application programming interfaces documentation to understand various options that can be

passed to the installApplication MBean API.

 5. Create the notification filter for listening to installation events.

 6. Add the listener.

 7. Install the application.

 8. Wait for some timeout so that the program does not end.

 9. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

10. When the installation is done, remove the listener and quit.

Results

After you successfully run the code, the application is installed.

Example

The following example shows how to install an application based on the previous steps. Some statements

are split on multiple lines for printing purposes.

import java.lang.*;

import java.io.*;

import java.util.*;

import java.lang.reflect.*;

import com.ibm.websphere.management.application.*;

import com.ibm.websphere.management.application.client.*;

import com.ibm.websphere.management.*;

import javax.management.*;

public class Install {

 public static void main (String [] args) {

 try {

 String earFile = "C:/test/test.ear";

 String appName = "MyApp";

// Preparation phase: Begin

// Through the preparation phase you populate the enterprise archive (EAR) file with

// WebSphere Application Server-specific binding information. For example, you can specify

// Java Naming and Directory Interface (JNDI) names for enterprise beans, or virtual hosts

// for Web modules, and so on.

// First, create the controller and populate the EAR file with the appropriate options.

 Hashtable prefs = new Hashtable();

 prefs.put(AppConstants.APPDEPL_LOCALE, Locale.getDefault());

// You can optionally run the default binding generator by using the following options.

// Refer to Java documentation for the AppDeploymentController class to see all the

// options that you can set.

 Properties defaultBnd = new Properties();

 prefs.put (AppConstants.APPDEPL_DFLTBNDG, defaultBnd);

 defaultBnd.put (AppConstants.APPDEPL_DFLTBNDG_VHOST, "default_host");

// Create the controller.

 AppDeploymentController controller = AppDeploymentController

 .readArchive(earFile, prefs);

 AppDeploymentTask task = controller.getFirstTask();

Chapter 6. Managing applications through programming 125

while (task != null)

 {

// Populate the task data.

 String[][] data = task.getTaskData();

// Manipulate task data which is a table of stringtask.

 task.setTaskData(data);

 task = controller.getNextTask();

 }

 controller.saveAndClose();

 Hashtable options = controller.getAppDeploymentSavedResults();

// The previous options table contains the module-to-server relationship if it was set by

// using tasks.

//Preparation phase: End

// Get a connection to WebSphere Application Server.

 String host = "localhost";

 String port = "8880";

 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();

 config.put (AdminClient.CONNECTOR_HOST, host);

 config.put (AdminClient.CONNECTOR_PORT, port);

 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println ("Config: " + config);

 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

// Create the application management proxy, AppManagement.

 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

// If code for the preparation phase has been run, then you already have the options table.

// If not, create a new table and add the module-to-server relationship to it by uncommenting

// the next statement.

//Hashtable options = new Hashtable();

 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

// Uncomment the following statements to add the module to the server relationship table if

// the preparation phase does not collect it.

//Hashtable module2server = new Hashtable();

//module2server.put ("*", target);

//options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, module2server);

//Create the notification filter for listening to installation events.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (AppConstants.NotificationType);

//Add the listener.

 NotificationListener listener = new AListener(_soapClient,

myFilter, "Install: " + appName, AppNotification.INSTALL);

// Install the application.

 proxy.installApplication (earFile, appName, options, null);

 System.out.println ("After install App is called..");

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

126 Developing and deploying applications

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit.

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

What to do next

Once you install the application, you must explicitly start the application or you must stop and restart the

server. For information on starting an application, see the Starting an application through programming

topic in the Using the administrative clients PDF. For information on stopping or restarting the server, see

the Stopping an application server topic or the Starting an application server topic, respectively, in the

Setting up the application serving environment PDF.

Starting an application through programming

You can start an application through the administrative console, the wsadmin tool, or programming. Use

this example to start an application through programming.

Chapter 6. Managing applications through programming 127

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can start an application on WebSphere Application Server, you must first install your

application.

About this task

Perform the following tasks to start an application through programming.

1. Connect the administrative client to WebSphere Application Server.

2. Create the application management proxy.

3. Call the startApplication method on the proxy by passing the application name and optionally the list of

targets on which to start the application.

Results

After you successfully run the code, the application is started.

Example

The following example shows how to start an application following the previously listed steps. Some

statements are split on multiple lines for printing purposes.

//Do a get of the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

String appName = "myApp";

Hashtable prefs = new Hashtable();

// Use the AppManagement MBean to start and stop applications on all or some targets.

// The AppManagement MBean is on server1 in WebSphere Application Server.

// Query and get the AppManagement MBean.

ObjectName on = new ObjectName ("WebSphere:type=AppManagement,*");

Iterator iter = client.queryNames (on, null).iterator();

ObjectName appmgmtON = (ObjectName)iter.next();

//Start the application on all targets.

AppManagement proxy = AppManagementProxy.getJMXProxyForClient(client);

String started = proxy.startApplication(appName, prefs, null);

System.out.println("Application started on folloing servers: " + started);

//Start the application on some targets.

//String targets = "WebSphere:cell=cellname,node=nodename,

server=servername+WebSphere:cell=cellname,cluster=clusterName";

//String started1 = proxy.startApplication(appName, targets, prefs, null);

//System.out.println("Application started on following servers: " + started1)

Uninstalling an application through programming

You can uninstall an application through the administrative console, the wsadmin tool, or programming.

Use this example to uninstall an application through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

128 Developing and deploying applications

Before you can uninstall an application on WebSphere Application Server, you must first install it.

About this task

Perform the following tasks to uninstall an application through programming.

1. Get a connection to WebSphere Application Server.

2. Get the application management proxy.

3. Create the notification filter for listening to uninstallation events.

4. Add the listener.

5. Uninstall the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the uninstallation is done, remove the listener and quit.

Results

After you successfully run the code, the application is uninstalled.

Example

The following example shows how to uninstall an application based on the previous steps. Some

statements are split on multiple lines for printing purposes.

import java.lang.*;

import java.io.*;

import java.util.*;

import java.lang.reflect.*;

import com.ibm.websphere.management.application.*;

import com.ibm.websphere.management.application.client.*;

import com.ibm.websphere.management.*;

import javax.management.*;

public class Uninstall {

 public static void main (String [] args) {

 try {

// Get a connection to the server.

 String host = "localhost";

 String port = "8880";

 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();

 config.put (AdminClient.CONNECTOR_HOST, host);

 config.put (AdminClient.CONNECTOR_PORT, port);

 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println ("Config: " + config);

 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

 // Get the application management proxy.

 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

 String appName = "MyApp";

 Hashtable options = new Hashtable();

 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

 //Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

Chapter 6. Managing applications through programming 129

myFilter.enableType (AppConstants.NotificationType);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient,

myFilter, "Install: " + appName, AppNotification.UNINSTALL);

 // Uninstall the application.

 proxy.uninstallApplication (appName, options, null);

 System.out.println ("After uninstall App is called..");

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the unistallation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

130 Developing and deploying applications

System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Manipulating additional attributes for a deployed application

You can manipulate attributes for a deployed application through the administrative console, the wsadmin

tool, or by programming. Use this example to manipulate attributes that are not exposed during or after

application installation through the AppDeploymentTask object.

Before you begin

This task assumes a basic familiarity with MBean programming and the ConfigService interfaces. Read

about MBean programming and ConfigService interfaces in the application programming interfaces

documentation.

About this task

Perform the following tasks for your deployed application to manipulate attributes that are not exposed

through the AppDeploymentTask object. The attributes are saved in the deployment.xml file that is created

in the configuration repository for each deployed application.

1. Create a session.

2. Connect to WebSphere Application Server.

3. Locate the ApplicationDeployment object.

4. Manipulate the attributes.

5. Save your changes.

6. Clean up the session.

Results

After you successfully run the code, the attributes are updated in the deployment.xml file for the deployed

application.

Example

The following example shows how to manipulate the startingWeight, warClassLoaderPolicy, and

classloader attributes based on the previous steps.

import java.util.Properties;

import javax.management.Attribute;

import javax.management.AttributeList;

import javax.management.ObjectName;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.configservice.ConfigService;

import com.ibm.websphere.management.configservice.ConfigServiceHelper;

import com.ibm.websphere.management.configservice.ConfigServiceProxy;

import com.ibm.websphere.management.exception.ConfigServiceException;

import com.ibm.websphere.management.exception.ConnectorException;

public class AppManagementSample1 {

 public static void main(String[] args) {

Chapter 6. Managing applications through programming 131

String hostName = "localhost";

 String port = "8880";

 String appName = "ivtApp";

 ConfigService configService = null;

 // create a session.

 Session session = new Session();

 // establish connection to the server.

 try {

 Properties props = new Properties();

 props.setProperty(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 props.setProperty(AdminClient.CONNECTOR_HOST, hostName);

 props.setProperty(AdminClient.CONNECTOR_PORT, port);

 AdminClient adminClient =

 AdminClientFactory.createAdminClient(props);

 // create a config service proxy object.

 configService = new ConfigServiceProxy(adminClient);

 // Locate the application object.

 ObjectName rootID = configService.resolve(session,

 "Deployment="+appName)[0];

 System.out.println ("rootID is: " + rootID);

 // Locate the ApplicationDeployment object from the root.

 ObjectName appDeplPattern = ConfigServiceHelper.createObjectName

 (null, "ApplicationDeployment");

 /*

 ObjectName appDeplID = configService.queryConfigObjects(session,

 rootID, appDeplPattern, null)[0];

 */

 AttributeList list1 = configService.getAttributes(session,

 rootID, new String[]{"deployedObject"}, false);

 ObjectName appDeplID = (ObjectName)

 ConfigServiceHelper.getAttributeValue(list1, "deployedObject");

 System.out.println ("appDeplID: " + appDeplID);

 // Locate the class loader.

 // Change the starting weight through the startingWeight attribute. The starting weight

 // affects the order in which applications start.

 AttributeList attrList = new AttributeList();

 Integer newWeight = new Integer (10);

 attrList.add(new Attribute("startingWeight", newWeight));

 // Change the WAR class loader policy through the warClassLoaderPolicy attribute by

 // specifying SINGLE or MULTIPLE.

 // SINGLE=one classloader for all WAR modules

 attrList.add(new Attribute("warClassLoaderPolicy", "SINGLE"));

 // Set the class loader mode to PARENT_FIRST or PARENT_LAST.

 AttributeList clList = (AttributeList) configService.getAttribute

 (session, appDeplID, "classloader");

 ConfigServiceHelper.setAttributeValue (clList, "mode",

 "PARENT_LAST");

 attrList.add (new Attribute ("classloader", clList));

 // Set the new values.

 configService.setAttributes(session, appDeplID, attrList);

 // Save your changes.

 configService.save(session, false);

 } catch (Exception ex) {

132 Developing and deploying applications

ex.printStackTrace();

 } finally {

 // Clean up the session.

 try {

 configService.discard(session);

 }

 catch (ConfigServiceException csEx)

 {

 csEx.printStackTrace();

 }

 catch (ConnectorException cnEx)

 {

 cnEx.printStackTrace();

 }

 }

 }

}

Sharing sessions for application management

With the configuration service interface, ConfigService, you can create a session that is a temporary

staging area, where you can save all the configuration modifications. Saving the session saves all the

updates from the session into the WebSphere Application Server configuration repository. The application

management logic supports session sharing with the configuration service. You can perform all the

application management functions in the same session as the one that the configuration service creates.

Saving such a session saves all the updates, including the ones that are application-specific.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,

see MBean Java application programming interface (API) documentation.

About this task

Perform the following tasks for your deployed application to share and save application-specific updates

through the configService configuration service.

1. Create a configuration service proxy object.

2. Create a session.

3. Pass the session information to the AppManagement MBean.

Every method on the AppMangement interface takes session ID (workspace ID) as the last parameter.

If the session information is passed in this parameter, the application management function uses the

session. If you set the parameter to a null value:

v No session sharing occurs

v The configuration changes are always saved in the configuration repository if the operation

succeeds.

4. Save the session after all the necessary changes are made.

The following example outlines the general steps for session sharing through the configService

configuration service. For a detailed example, see “Manipulating additional attributes for a deployed

application” on page 131.

public void installApplication (String localEarPath,

 String appName, Hashtable properties, String workspaceID)

 throws AdminException;

AdminClient adminClient =;

// Create a configuration service proxy object.

ConfigService configService = new ConfigServiceProxy(adminClient);

Chapter 6. Managing applications through programming 133

// Create a session.

 Session session = new Session();

// Pass the session information to AppManagement MBean.

appMgmt = ...

appMgmt.installApplication

 (earPath, appName, properties, session.toString());

//Save the session after all necessary changes are made.

configService.save(session, false);

Results

After you successfully complete the steps, you have saved application-specific updates for a deployed

application to a session, and then to the configuration repository.

Updating an application through programming

You can update an existing application through the administrative console, the wsadmin tool, or

programming. Use this example to completely update an application through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can update an application on WebSphere Application Server, you must first install your

application.

About this task

Perform the following tasks to completely update an application through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Prepare the enterprise archive (EAR) file by populating it with binding information.

6. Update the application.

7. Wait for some timeout so that the program does not end.

8. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

9. When the update is done, remove the listener and quit.

Results

After you successfully run the code, the application is updated.

Example

The following example shows how to update an application based on the previous steps. Some statements

are split on multiple lines for printing purposes.

import java.lang.*;

import java.io.*;

import java.util.*;

import java.lang.reflect.*;

import com.ibm.websphere.management.application.*;

import com.ibm.websphere.management.application.client.*;

import com.ibm.websphere.management.*;

134 Developing and deploying applications

import javax.management.*;

public class aa {

 public static void main (String [] args) {

 try {

 // Connect to WebSphere Application Server.

 String host = "localhost";

 String port = "8880";

 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();

 config.put (AdminClient.CONNECTOR_HOST, host);

 config.put (AdminClient.CONNECTOR_PORT, port);

 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println ("Config: " + config);

 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

 // Create the application management proxy, AppManagement.

 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

 String appName = "MyApp";

String fileContents = "/test/test.ear";

 // Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.INSTALL);

// Refer to the installation example to see how you can prepare the enterprise archive (EAR)

// file by populating it with binding information.

// If code for the preparation phase has started, then you already have the options table.

// If not, create a new table and add the module-to-server relationship to it by uncommenting

// the next statement.

//Hashtable options = new Hashtable();

 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

 options.put ((AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_APP);

// Uncomment the following statements to add the module to the server relationship table if

// the preparation phase does not collect it

//Hashtable module2server = new Hashtable();

//module2server.put ("*", target);

//options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, module2server);

// Update the application.

 proxy.updateApplication (appName,

 null,

 fileContents,

 AppConstants.APPUPDATE_UPDATE,

 options,

 null);

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

Chapter 6. Managing applications through programming 135

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Adding to, updating, or deleting part of an application through

programming

You can add to, update, or delete part of an existing application through the administrative console, the

wsadmin tool, or programming. This example changes part of an application through programming. You

can use this example whether you add to, update, or delete part of an existing application. Multiple

changes to an application can be packaged in a single .zip file.

Before you begin

To learn about the structure of the .zip file, see the Updating applications topic in the Developing and

deploying applications PDF.

136 Developing and deploying applications

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can add to, update, or delete part of an application on WebSphere Application Server, you

must first install your application.

About this task

Perform the following tasks to add to, update, or delete part of an application through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter.

4. Add the listener.

5. Partially change the existing application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the update is done, remove the listener and quit.

Results

After you successfully run the code, you have changed the application.

Example

The following example shows how to add to, update, or delete part of an application based on the

previous steps. Some statements are split on multiple lines for printing purposes.

//Inputs:

//partialApp specifies the location of the partial application.

//appName specifies the name of the application.

String partialApp = "/apps/partial.zip";

String appName = "MyApp";

//Do a get of the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

// Create the notification filter.

NotificationFilterSupport myFilter = new NotificationFilterSupport();

myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

//Add the listener.

NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.UPDATE);

//Partially change the existing application, MyApp.

Hashtable options = new Hashtable();

options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_PARTIALAPP);

proxy.updateApplication (appName,

 null,

 partialApp,

 null,

 options,

 null);

Chapter 6. Managing applications through programming 137

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Editing applications

You can edit deployed applications through the administrative console, the wsadmin tool, or by

programming. Use this example to edit a deployed application through programming.

138 Developing and deploying applications

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming,

see MBean Java application programming interface (API) documentation.

Before you can edit an application on WebSphere Application Server, you must first install the application.

About this task

Perform the following tasks to edit your deployed application.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Get information about an installed application.

4. Manipulate task data as necessary.

5. Save changes for the installed application.

Results

After you successfully run the code, the application is edited.

Example

The following example shows how to edit an application, based on the previous steps.

import java.lang.*;

import java.io.*;

import java.util.*;

import java.lang.reflect.*;

import com.ibm.websphere.management.application.*;

import com.ibm.websphere.management.application.client.*;

import com.ibm.websphere.management.*;

import javax.management.*;

public class aa {

 public static void main (String [] args) {

 try {

 // Connect to WebSphere Application Server.

 String host = "localhost";

 String port = "8880";

 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();

 config.put (AdminClient.CONNECTOR_HOST, host);

 config.put (AdminClient.CONNECTOR_PORT, port);

 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println ("Config: " + config);

 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

 // Create the application management proxy, AppManagement.

 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

 String appName = "MyApp";

// Get information for an application with name appName:

// Pass Locale information as the preference.

Hashtable prefs = new Hashtable();

 prefs.put(AppConstants.APPDEPL_LOCALE, Locale.getDefault());

Vector allTasks = appMgmt.getApplicationInfo (appName, prefs, null);

Chapter 6. Managing applications through programming 139

// Manipulate task data as necessary.

if (task.getName().equals ("MapRolesToUsers") && !task. isTaskDisabled())

{

 // find out column index for role and user column

 // refer to the previous table to find the column names

 int roleColumn = -1;

 int userColumn = -1;

 String[] colNames = task.getColumnNames();

 for (int i=0; i < colNames.length; i++)

 {

 if (colNames[i].equals ("role"))

 roleColumn = i;

 else if (colNames[i].equals ("role.user"))

 userColumn = i;

 }

 // iterate over task data starting at row 1 as row0 is

 // column names

 String[][]data = task.getTaskData();

 for (int i=1; i < data.length; i++)

 {

 if (data[i][roleColumn].equals ("Role1"))

 {

 data[i][userColumn]="User1|User2";

 break;

 }

 }

 // now that the task data is changed, save it back

 task.setTaskData (data);

}

// Save changes back into the installed application:

// Set information for an application with name appName.

// Pass Locale information as the preference.

prefs = new Hashtable();

prefs.put(AppConstants.APPDEPL_LOCALE, Locale.getDefault());

appMgmt.setApplicationInfo (appName, prefs, null, allTasks);

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Preparing a module and adding it to an existing application through

programming

You can add a module to an existing application through the administrative console, the wsadmin tool, or

programming. Use this example to add a module through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can add a module to an application on WebSphere Application Server, you must install the

application.

140 Developing and deploying applications

About this task

Perform the following tasks to add a module to an application through programming.

 1. Create an application deployment controller instance to populate the module file with binding

information.

 2. Save the binding information in the module.

 3. Get the installation options.

 4. If the preparation phase (population of the EAR file) is not performed, the do the following actions:

a. Create an options table to be passed to the updateApplication MBean API.

b. Create a table for module to server relations and add the table to the options table.

 5. Connect to WebSphere Application Server.

 6. Create the application management proxy.

 7. Create the notification filter.

 8. Add the listener.

 9. Add the module to the application.

10. Specify the target for the new module.

11. Wait for some timeout so that the program does not end.

12. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

13. When the module addition is done, remove the listener and quit.

Results

After you successfully run the code, the module is added to the application.

Example

The following example shows how to add a module to an application based on the previous steps. Some

statements are split on multiple lines for printing purposes.

//Inputs:

//moduleName specifies the name of the module that you add to the application.

//moduleURI specifies a URI that gives the target location of the module

// archive contents on a file system. The URI provides the location of the new

// module after installation. The URI is relative to the application URL.

//uniquemoduleURI specfies the URI that gives the target location of the

// deployment descriptor file. The URI is relative to the application URL.

//target specifies the cell, node, and server on which the module is installed.

String moduleName = "/apps/foo.jar";

String moduleURI = "Increment.jar";

String uniquemoduleURI = "Increment.jar+META-INF/ejb-jar.xml";

String target = "WebSphere:cell=cellname,node=nodename,server=servername";

//Create an application deployment controller instance, AppDeploymentController,

//to populate the Java Archive (JAR) file with binding information.

//The binding information is WebSphere Application Server-specific deployment information.

Hashtable preferences = new Hashtable();

preferences.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

preferences.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_MODULEFILE);

AppDeploymentController controller = AppManagementFactory.readArchiveForUpdate(

 moduleName,

 moduleURI,

 AppConstants.APPUPDATE_ADD,

 preferences,

 null);

Chapter 6. Managing applications through programming 141

If the module that you add to the application lacks any bindings, add the bindings so that the module

addition works. Collect and add the bindings by using the public APIs provided with WebSphere

Application Server. Refer to Java documentation for the

com.ibm.websphere.management.application.client.AppDeploymentController instance to learn more about

how to collect and populate tasks with WebSphere Application Server-specific binding information. The

AppDeploymentController instance contains meta-data defined in XML-based deployment descriptors as

well as annotations defined in Java classes within the input module.

//After you collect all the binding information, save it in the module.

controller.saveAndClose();

//Get the installation options.

Hashtable options = controller. getAppDeploymentSavedResults();

//Connect the administrative client, AdminClient, to WebSphere Application Server.

AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

//Update the existing application, MyApp, by adding the module.

String appName = "MyApp";

options.put (AppConstants.APPUPDATE_CONTENTTYPE,

 AppConstants. APPUPDATE_CONTENT_MODULEFILE);

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.UPDATE);

//Specify the target for the new module.

Hashtable mod2svr = new Hashtable();

options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, mod2svr);

mod2svr.put (uniquemoduleURI, target);

proxy.updateApplication (appName,

 moduleURI,

 moduleName,

 AppConstants.APPUPDATE_ADD,

 options,

 null);

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

142 Developing and deploying applications

public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Preparing and updating a module through programming

You can update a module for an existing application through the administrative console, the wsadmin tool,

or programming. When you update a module, you replace the existing module with a new version. Use

this example to update a module through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can update a module on WebSphere Application Server, you must first install the application.

About this task

Perform the following tasks to update a module through programming.

 1. Create an application deployment controller instance to populate the Java archive file with binding

information.

 2. Save the binding information in the module.

 3. Get the installation options.

Chapter 6. Managing applications through programming 143

4. If the preparation phase (population of the EAR file) is not performed, the do the following actions:

a. Create an options table to be passed to the updateApplication MBean API.

b. Create a table for module to server relations and add the table to the options table.

 5. Connect to WebSphere Application Server.

 6. Create the application management proxy.

 7. Create the notification filter.

 8. Add the listener.

 9. Replace the module in the application.

10. Specify the target for the new module.

11. Wait for some timeout so that the program does not end.

12. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

13. When the module addition is done, remove the listener and quit.

Results

After you successfully run the code, the existing module is replaced with the new one.

Example

The following example shows how to add a module to an application based on the previous steps. Some

statements are split on multiple lines for printing purposes.

//Inputs:

//moduleName specifies the name of the module that you add to the application.

//moduleURI specifies a URI that gives the target location of the module

// archive contents on a file system. The URI provides the location of the new

// module after installation. The URI is relative to the application URL.

//uniquemoduleURI specfies the URI that gives the target location of the

// deployment descriptor file. The URI is relative to the application URL.

//target specifies the cell, node, and server on which the module is installed.

//appName specifies the name of the application to update.

String moduleName = "/apps/foo.jar";

String moduleURI = "Increment.jar";

String uniquemoduleURI = "Increment.jar+META-INF/ejb-jar.xml";

String target = "WebSphere:cell=cellname,node=nodename,server=servername";

String appName = "MyApp";

//Get the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

Vector tasks = proxy.getApplicationInfo (appName, new Hashtable(), null);

//Create an application deployment controller instance, AppDeploymentController,

//to populate the Java archive (JAR) file with binding information.

//The binding information is WebSphere Application Server-specific deployment information.

Hashtable preferences = new Hashtable();

preferences.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

preferences.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_MODULEFILE);

AppDeploymentController controller = AppManagementFactory.readArchiveForUpdate(

 moduleName,

 moduleURI,

 AppConstants.APPUPDATE_UPDATE,

 preferences,

 tasks);

144 Developing and deploying applications

If the module that you update for the application lacks any bindings, add the bindings so that the module

update works. Collect and add the bindings by using the public APIs that are provided with WebSphere

Application Server. Refer to Java documentation for the AppDeploymentController instance to learn more

about how to collect and populate tasks with WebSphere Application Server-specific binding information.

The AppDeploymentController instance contains meta-data defined in XML-based deployment descriptors

as well as annotations defined in Java classes within the input module.

//After you collect all the binding information, save it in the module.

controller.saveAndClose();

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.UPDATE);

//Get the installation options.

Hashtable options = controller. getAppDeploymentSavedResults();

//Update the existing application by adding the module.

options.put (AppConstants.APPUPDATE_CONTENTTYPE,

 AppConstants. APPUPDATE_CONTENT_MODULEFILE);

//Specify the target for the new module

Hashtable mod2svr = new Hashtable();

options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, mod2svr);

mod2svr.put (uniquemoduleURI, target);

proxy.updateApplication (appName,

 moduleURI,

 moduleName,

 AppConstants.APPUPDATE_UPDATE,

 options,

 null);

// Wait. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

Chapter 6. Managing applications through programming 145

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Deleting a module through programming

You can delete a module from an existing application through the administrative console, the wsadmin

tool, or programming. Use this example to delete a module through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can delete a module from an application on WebSphere Application Server, you must first

install the application.

About this task

Perform the following tasks to delete a module through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Delete the module.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the module is deleted, remove the listener and quit.

Results

After you successfully run the code, the existing module is deleted from the application.

146 Developing and deploying applications

Example

The following example shows how to delete a module from an application based on the previous steps.

Some statements are split on multiple lines for printing purposes.

//moduleURI specifies a URI that gives the target location of the module.

//appName specifies the name of the application to update.

String moduleURI = "Increment.jar";

String appName = "MyApp";

//Get the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.UPDATE);

//Update the existing application, MyApp, by deleting the module.

Hashtable options = new Hashtable();

options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_MODULEFILE);

proxy.updateApplication (appName,

 moduleURI,

 null,

 AppConstants.APPUPDATE_DELETE,

 options,

 null);

// Wait; the installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

Chapter 6. Managing applications through programming 147

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Adding a file through programming

You can add a file to an existing application through the administrative console, the wsadmin tool, or

programming. This example describes how to add a file through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can add a file to an application on WebSphere Application Server, you must first install the

application.

About this task

Perform the following tasks to add a file to an application through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Add the file to the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the file is added to the application, remove the listener and quit.

Results

After you successfully run the code, the file is added to the application.

148 Developing and deploying applications

Example

The following example shows how to add a file to an application based on the previous steps. Some

statements are split on multiple lines for printing purposes.

import java.lang.*;

import java.io.*;

import java.util.*;

import java.lang.reflect.*;

import com.ibm.websphere.management.application.*;

import com.ibm.websphere.management.application.client.*;

import com.ibm.websphere.management.*;

import javax.management.*;

public class FileAdd {

 public static void main (String [] args) {

 try {

// Get a connection to WebSphere Application Server.

 String host = "localhost";

 String port = "8880";

 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();

 config.put (AdminClient.CONNECTOR_HOST, host);

 config.put (AdminClient.CONNECTOR_PORT, port);

 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println ("Config: " + config);

 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

 // Create the application management proxy, AppManagement.

 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

 String appName = "MyApp";

 String fileURI = "test.war/com/acme/abc.jsp";

 String fileContents = "/temp/abc.jsp";

 //Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.UPDATE);

 Hashtable options = new Hashtable();

 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

 options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_FILE);

 // Update the application

 proxy.updateApplication (appName,

 fileURI,

 fileContents,

 AppConstants.APPUPDATE_ADD,

 options,

 null);

// Wait; the installation Application Programming Interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(90000); // Wait so that the program does not end.

 }

 catch (Exception e) {

Chapter 6. Managing applications through programming 149

e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Updating a file through programming

You can update a file for an existing application through the administrative console, the wsadmin tool, or

programming. This example describes how to update a file through programming.

150 Developing and deploying applications

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can update a file for an application on WebSphere Application Server, you must first install the

application.

About this task

Perform the following tasks to update a file through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Update the file in the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the installation is done, remove the listener and quit.

Results

After you successfully run the code, the file is updated for the application.

Example

The following example shows how to add a file to an application based on the previous steps. Some

statements are split on multiple lines for printing purposes.

//Inputs:

//fileContents specifies the name of the file that you add to the application.

//appName specifies the name of the application.

//fileURI specifies a URI that gives the target location of the file. The URI

// provides the location of the new module after installation. The URI is

// relative to the application URL.

String fileContents = "/apps/test.jsp";

String appName = "MyApp";

String fileURI = "SomeWebMod.war/com/foo/abc.jsp";

//Get the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.UPDATE);

Hashtable options = new Hashtable();

options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_FILE);

proxy.updateApplication (appName,

 fileURI,

Chapter 6. Managing applications through programming 151

fileContents,

 AppConstants.APPUPDATE_UPDATE,

 options,

 null);

// Wait; the installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit.

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

152 Developing and deploying applications

Deleting a file through programming

You can delete a file from an existing application through the administrative console, the wsadmin tool, or

programming. Use this example to delete a file through programming.

Before you begin

This task assumes a basic familiarity with MBean programming. For information on MBean programming

see MBean Java application programming interface (API) documentation.

Before you can delete a file from an application on WebSphere Application Server, you must first install the

application.

About this task

Perform the following tasks to delete a file through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Delete the file from the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand completion of the operation.

8. When the file is deleted from the application, remove the listener and quit.

Results

After you successfully run the code, the file is deleted from the application.

Example

The following example shows how to delete a file based on the previous steps. Some statements are split

on multiple lines for printing purposes.

//Inputs:

//fileURI specifies a URI that gives the target location of the file. The URI

// provides the location of the new module after installation. The URI is

// relative to the application URL.

//appName specifies the name of the application.

String fileURI = "Increment.jar/com/acme/Foo.class";

String appName = "MyApp";

//Get the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.UPDATE);

//Update the existing application, MyApp, by deleting the file.

Hashtable options = new Hashtable();

Chapter 6. Managing applications through programming 153

options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_FILE);

proxy.updateApplication (appName,

 fileURI,

 null,

 AppConstants.APPUPDATE_DELETE,

 options,

 null);

// Wait for some timeout. The installation Application Programming Interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //Once the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

154 Developing and deploying applications

System.exit (0);

 }

 }

}

Extending application management operations through programming

You can use the common deployment framework to add additional logic to application management

operations. The additional logic can do such tasks as code generation, configuration operations, additional

validation, and so on. This topic demonstrates, through programming, how to plug into the common

deployment framework to extend application management operations.

Before you begin

This task assumes a basic familiarity with Java application programming interfaces (APIs). Read about the

Java APIs in the application programming interfaces documentation.

Before you can extend application management operations, you must first install WebSphere Application

Server.

About this task

Use this example to extend application management through programming. The tasks that the extensions

provide are available through all the administrative clients, such as the wsadmin tool, the administrative

console, or through programmatic APIs that the AppManagement MBean provides.

1. Define your extension as an Eclipse plug-in and add a plugin.xml file to register your extension

provider with the deployment framework.

a. In the plugin.xml file, provide an extension provider implementation class for the

common-deployment-framework-extensionprovider extension point.

b. Put the plug-in Java archive (JAR) file in the plugins directory of your WebSphere Application

Server installation.

<?xml version="1.0" encoding="UTF-8"?>

<plugin

 id=“com.ibm.myproduct.MyExtensionProvider”

 name=“My Extension"

 version="1.0.0">

 <extension point=“common-deployment-framework-extensionprovider”>

 <action class=“com.acme.MyExtendProviderImpl“/>

 </extension>

</plugin>

2. Provide an extension provider.

An extension provider class provides steps for a given operation on an application Enterprise archive

(EAR) file. Before an operation runs, the deployment framework queries all the registered extension

providers for additional steps. A single list of steps is passed to each provider. Each provider can add

steps to the list. The default provider that the deployment framework provides is called first to populate

the list with default steps. Other extension providers are called next.

Various operations that you can extend through the common deployment framework are defined as

constants in the DeploymentConstants class. These operations are described in the following table.

Some operations are split on multiple lines for printing purposes.

 Table 5. Extensible DeploymentConstants operations

Operation Description

DeploymentConstants.CDF_OP_INSTALLJ2EE Installs a Java Platform, Enterprise Edition (Java EE)

EAR file

Chapter 6. Managing applications through programming 155

Table 5. Extensible DeploymentConstants operations (continued)

Operation Description

DeploymentConstants.CDF_OP_EDITJ2EE Edits a deployment application configuration

DeploymentConstants.CDF_OP_UPDATEJ2EE Applies a fine-grained update to an application such as

addition, removal, or update of a file or a module; or

partial update of an application

DeploymentConstants.CDF_OP_UNINSTALLJ2EE Uninstalls a Java EE application

DeploymentConstants.

CDF_OP_CREATE_EAR_WRAPPERJ2EE

Wraps the contents input to the application installation

into an EAR file

The AppManagement MBean, which is responsible for deploying and managing Java EE applications

on WebSphere Application Server, runs all the operations except the

CDF_OP_CREATE_EAR_WRAPPERJ2EE operation. Deploy the extensions that extend these

operations in the plugins directory of the stand-alone Application Server .

Either the wsadmin utlity or the administrative console runs the

CDF_OP_CREATE_EAR_WRAPPERJ2EE operation when the input contents that are supplied to the

CDF_OP_INSTALLJ2EE operation are not packaged as an EAR file. Deploy an extension that extends

the CDF_OP_CREATE_EAR_WRAPPERJ2EE operation in the plugins directory of the wsadmin

installation.

The following example provides an extension provider that does the following tasks:

a. Adds two additional steps for the application installation operation

b. Adds one step for wrapping input contents into an EAR file
package com.acme;

import com.ibm.websphere.management.deployment.registry.ExtensionProvider;

import com.ibm.websphere.management.deployment.core.DeploymentConstants;

public class MyExtensionProviderImpl extends ExtensionProvider {

 public void addSteps (String type, String op, String phase,

 List steps)

 {

 if (op.equals (DeploymentConstants.CDF_OP_INSTALLJ2EE))

 {

 // Add a code generation step.

 steps.add (0, new com.acme.CodeGenStep());

 // Add a configuration step.

 steps.add (new com.acme.ConfigStep());

 }

 else if (op.equals (DeploymentConstants.CDF_OP_CREATE_EAR_WRAPPERJ2EE))

 {

 // Add an ear-wrapper step.

 steps.add (new com.acme.EarWrapperStep());

 }

 }

}

3. Provide the deployment step implementation.

An extension provider adds a deployment step. The step contains logic that performs additional

processing in an application management operation. The logic provides the step access to the

deployment context and the deployable object. The deployment context provides information, such as

the name of the operation, the configuration session ID, a temporary location for creating temporary

files, operation parameters, and so on. The deployable object wraps the deployment content input to

the operation. For example, the deployable object wraps the Java EE EAR file for the installation

operation or a file, a module, or a partial application for the update operation.

v The following example illustrates how an extension during installation entirely changes an EAR file

that is input to the installation operation. The example provides a deployment step during the

installation operation that does the following tasks:

156 Developing and deploying applications

a. Runs code generation to generate a new EAR file.

b. Calls the setContentPath method in the DeployableObject class to set the new EAR file path.

The default installation logic, such as steps that the default installation logic adds, uses this new

EAR file for installation in the configuration repository.
package com.acme;

import com.ibm.websphere.management.deployment.core.DeploymentStep;

import com.ibm.websphere.management.deployment.core.DeployableObject;

public class CodeGenStep extends DeploymentStep

{

 public void execute (DeployableObject dObject)

 {

 EARFile earFile = (EARFile)dObject.getHandle();

 String newEARPath = null;

 // Use step specific logic to create another EAR file after code generation.

 ...

 newEARPath = _context.getTempDir() + "new.ear";

 dObject.setContentPath (newEARPath);

 }

}

v The following example provides a deployment step that:

a. Reads the contents of the input EAR file.

b. Manipulates the configuration session accessed through the context instance, _context.
package com.acme;

public class ConfigStep extends DeploymentStep

{

 public void execute (DeployableObject dObject)

 {

 EARFile earFile = (EARFile) dObject.getHandle();

 // Use the following example code to perform the configuration.

 String sessionID = _context.getSessionID();

 com.ibm.websphere.management.Session session = new

 com.ibm.websphere.management.Session (sessionID, true);

 // Use the configuration service to perform the configuration steps.

 ...

 // Read the application configuration.

 Application appDD = earFile.getDeploymentDescriptor();

 ...

 String newEARPath = null;

 }

}

v The following example provides a deployment step to wrap arbitrary content around an EAR file.

Application management logic accepts only the EAR file for deployment. An extension is required if

you want to input anything other than an EAR file to the deployment process.

package com.acme;

import com.ibm.websphere.management.deployment.core.DeploymentStep;

import com.ibm.websphere.management.deployment.core.DeployableObject;

public class EarWrapperStep extends DeploymentStep

{

 public void execute (DeployableObject dObject)

 {

 Archive archive = (Archive) dObject.getHandle();

 String newEARPath = null;

 // provide your logic to wrap the jar with the ear

 ...

Chapter 6. Managing applications through programming 157

newEARPath = //;

 // Set the new ear path back into DeploymentContext

 this.getContext().getContextData()

 .put(DeploymentContext.RETURN_Object_key, newEARPath);

 }

}

Results

Through programming, you have plugged into the common deployment framework to extend application

management operations.

What to do next

You can extend other application management operations, or do any other administrative operations you

choose.

158 Developing and deploying applications

Chapter 7. Deploying and administering business-level

applications

Deploying a business-level application consists of creating the business-level application on a Version 7.0

or later server.

Before you begin

Note: A business-level application is an administration model that provides the entire definition of an

application as it makes sense to the business. It is a WebSphere configuration artifact, similar to a

server, that is stored in the product configuration repository. A business-level application can contain

artifacts such as Java Platform, Enterprise Edition (Java EE) applications or modules, shared

libraries, data files, and other business-level applications. You might use a business-level

application to group related artifacts or to add capability to an existing application. For example,

suppose you want to add capability provided in a Java archive (JAR) to a Java EE application

already deployed on a product server. You can add that capability by creating a new business-level

application and adding the JAR file and the deployed Java EE application to the business-level

application. In some cases, you do not even need to change the deployed Java EE application

configuration to add the capability.

Before creating a business-level application, you must develop the artifacts to go in the application and

configure the target server. Before choosing a deployment target for the application, ensure that the target

version is 7.0 or later.

About this task

When creating a business-level application, you can configure the application enough to enable it to run on

the server. Later, you can configure the application and its contents further, start or stop the application,

and otherwise manage its activity.

The topics in this section describe how to deploy and administer a business-level application or its

contents using the administrative console. You can also use programming or wsadmin scripting.

v Import assets to a repository.

v View, delete, update, or export assets.

v Create a business-level application.

v Start the application.

v Stop the application.

v Update the application and its configuration units.

v Delete the application.

What to do next

After making changes to administrative configurations of your applications in the administrative console,

ensure that you save the changes.

Business-level applications

A business-level application is an administration model that provides the entire definition of an application

as it makes sense to the business. A business-level application is a WebSphere configuration artifact,

similar to a server or cluster, that is stored in the product configuration repository.

v Business-level application characteristics

v Comparisons to Java EE applications

© IBM Corporation 2007 159

Business-level application characteristics

A business-level application has the following characteristics:

v A business-level application is an administration model of the definition of an enterprise-level application

that consists of WebSphere and non-WebSphere artifacts. The business-level application might not

explicitly manage the lifecycle of every artifact. It is a model for defining an application.

v A business-level application does not represent or contain application binary files. It is a configuration

that lists one or more composition units, which represent the application binary files. A business-level

application uses the binary files to run the application business logic. Administration of binary files is

separate from administration of the application definition.

v A business-level application supports recursive composition by reference that facilitates hierarchical

assembly of business-level applications and individual deployed artifacts within or outside a WebSphere

product. The composition at its lowest level consists of configured instances of application binary files

that run in a specific runtime environment such as an application server. Installable packages or

archives, such as Java archives (JAR) or enterprise archive (EAR) files, typically deliver the business

logic that these configured instances represent to corresponding runtime platforms.

The following diagram shows the composition model for business-level applications:

Composition
Application

EJB
module

Configuration

Library Web
module

Enterprise
application

Business Logic

EJB JAR

Java
library

WAR EAR

Application
Application

A business-level application does not introduce new programming, runtime, or packaging models:

v You do not need to change your application business logic. The business-level application function does

not introduce new application programming interfaces (APIs).

v You do not need to change your application runtime settings. The product supports all of the runtime

characteristics, such as security, class loading and isolation, required by individual programming models

to which business components are written.

v You do not need to change your application packaging. There is no specific unique packaging model

that provides a business-level application definition.

Typically, you first create an empty business-level application and then add composition units to it. The

business-level application name must be unique within a cell. The business level application itself has

minimal configuration data associated with it, solely the list of composition units, but individual composition

units might save application-specific configuration data.

A business-level application is defined in the product configuration repository under app_server_root/cells/
cell_name/blas/business_level_application_name/bver/BASE/bla.xml.

160 Developing and deploying applications

Comparisons to Java EE applications

Business-level applications can consist of or aggregate Java Platform, Enterprise Edition (Java EE)

applications and modules with non-Java EE artifacts. The contents of Java EE applications integrate with

business-level application concepts for deployment and management of applications. Existing Java EE

application management APIs continue to work after you add Java EE application or modules to a

business-level application. The business-level application management API accepts Java EE contents and

configurations and delegates to existing Java EE management APIs. Control operations such as starting

and stopping a Java EE composition unit are delegated to ApplicationManager MBean on application

servers that start and stop Java EE applications.

 Table 6. Java EE concepts compared to business-level application concepts

Java EE concept

Business-level application

concept Description

EAR or stand-alone

module for

deployment

Asset Java EE application contents are assets.

Java EE application

created at the end of

application install

Composition unit A Java EE application is in an enterprise archive (EAR)

file. The product saves the EAR file in the product

repository as a composition unit.

Java EE modules

within the EAR file

Deployable units in the asset Each module in the EAR file is a deployable unit that you

can install on independent deployment targets. The EAR

file is still managed as a single asset in its entirety.

Java EE application

installation using the

administrative

console,

programming, or

wsadmin commands

Multiple business-level

application management

commands

During Java EE application

deployment, you can specify the

name of the business-level

application to include the Java

EE application. If the

business-level application name

is not set, the product creates a

default business-level

application with the same name

as the Java EE application

name. The product adds a

composition unit with the same

name as the Java EE

application name under the

business-level application. You

can deploy multiple Java EE

applications under a single

business-level application.

You can make a Java EE application a business-level

application and add it to another business-level application:

1. Install the Java EE application (EAR file) using the

enterprise application installation console wizard,

programming, or wsadmin. Keep the default selection

to create a business-level application that has the

same name as the Java EE application.

2. Create an empty business-level application.

3. Add the EAR file business-level application to the

empty business-level application. The EAR file

business-level application is a composition unit of the

containing business-level application.

Or, you can make a Java EE application an asset and add

it to another business-level application:

1. Import an EAR file as an asset. It has an asset type

aspect of Java EE ear.

2. Create an empty business-level application.

3. Add the Java EE application asset to the business-level

application. The EAR file asset is a composition unit of

the containing business-level application.

4. Collect targets for each deployable unit (Java EE

module).

Uninstall Java EE

application

Multiple business-level

application management

commands

You delete the Java EE application composition unit from

the business-level application:

1. Remove the composition unit for the Java EE

application from the business-level application.

2. If the EAR file is an asset, delete the asset.

Start the Java EE

application.

Start the composition unit. Starting a business-level application starts any Java EE

application in it.

Chapter 7. Deploying and administering business-level applications 161

Table 6. Java EE concepts compared to business-level application concepts (continued)

Java EE concept

Business-level application

concept Description

Stop the Java EE

application.

Stop the composition unit. Stopping a business-level application stops any Java EE

application in it.

Assets

An asset represents one or more application binary files that are stored in an asset repository. Typical

assets include application business logic such as Java Platform, Enterprise Edition (Java EE) archives,

library files, and other resource files.

An asset repository stores the binary files for the asset. The product configuration repository provides a

default asset repository.

Assets in the configuration repository are managed by the product management domain. The configuration

repository stores asset binary files in app_server_root/config/cells/cell_name/assets/asset_name/aver/
BASE/bin/.

An asset name must be unique within a cell, the product administrative domain.

The product creates an asset.xml file when an asset is registered with the product configuration. The file

contains information about the asset such as its name, destination location, and dependencies on other

assets.

You must register files as assets before you can add them to one or more business-level applications. At

the time of asset registration, you can import the physical application files into the product configuration

repository or you can specify an external location where the asset resides.

Composition units

A composition unit represents a configured asset in a business-level application. A composition unit

enables the asset contents to interact with other assets in the application. It also enables the product run

time to load and run asset contents.

The product supports three types of composition units:

Asset composition units

Composition units created from assets by configuring each deployable unit of the asset to run on

deployment targets.

Shared library composition units

Composition units created from JAR-based assets by ignoring all the deployable objects from the

asset and treating the asset JAR file as a library of classes.

Business-level application composition units

Composition units created from business-level applications that are added to existing

business-level applications.

 A composition unit contains the following information:

v Configuration information that binds contents of an asset with a specific hosting run time and adds the

configuration necessary for the run time to load and run the asset

v References to external services, components, or other resources that the asset uses

v Customized configurations for service definitions, references and other relevant configuration data

162 Developing and deploying applications

v A list of deployment targets or runtime environments along with the runtime environment-specific

configuration where the composition unit runs.

For example, a composition unit for an enterprise bean (EJB) Java archive (JAR) asset is an EJB module

instance that contains necessary EJB binding information, such as EJB Java Naming and Directory

Interface (JNDI) names and ejb-ref resolutions, along with a list of application servers where the EJB

JAR runs.

The product creates a composition unit from only one asset. However, multiple composition units can

share a single asset. This is particularly useful in scenarios where different configurations use the same

application binary files to provide different runtime behavior.

The following rules apply to a composition unit:

v A composition unit can exist only in a business-level application.

v Because a composition unit contains application-specific configuration and wiring information, multiple

business-level applications cannot share an asset or shared library composition unit.

The following graphic shows the use of composition units in business-level applications. Assume that you

have unprocessed files, such as archives, that you want to use in business-level applications. Before you

can add the files to business-level applications, you must first import the files as assets, which adds the

files to the product repository. Next, you add the assets to business-level applications, which creates

composition units for the assets. Business-level applications can contain asset composition units, shared

library composition units, or business-level composition units.
Unprocessed
files

Asset
Axis2 archive

Axis2
archive

Asset
repository

Composition
unit

Business level application
composition

Asset
EJB JAR file

JAR file

Asset
JAR file

JAR file

Composition unit

JAX-WS instance

Composition unit

EJB module instance

Composition unit

Shared library instance

Business
level
application

Business
level
application

Business
level
application

Composition
unit

Importing assets

You must register application business logic such as Java Platform, Enterprise Edition (Java EE) archives,

libraries, and other resource files with the product configuration as assets before you can add the assets

to one or more business-level applications. Importing an asset registers it with the product configuration.

Before you begin

This topic assumes that you have one or more application binary files that you want to add to a

business-level application. You must register those binary files as assets before you can add them to the

business-level application.

Chapter 7. Deploying and administering business-level applications 163

About this task

Before a business-level application that uses an asset can be started on the target run time, the asset

binaries must be extracted to a deployer-defined location on the file system that is local to the target run

time. Importing an asset extracts binaries to a location that is local to the target run time.

The application server run time that reads the asset binaries either at application start time or while

serving an incoming client request determines the extraction format of the asset binaries. The extraction

format might include unzipping of Java archive (JAR) or compressed (zip) files.

This topic describes how to import an asset using the administrative console. Alternatively, you can use

the wsadmin tool or programming.

1. Click Applications → New Application → New Asset in the console navigation tree.

2. On the Upload asset page, specify the asset package to import.

a. Specify the full path name of the asset.

b. Click Next.

3. On the Select options for importing an asset panel, specify asset settings.

You typically can click Next and use the default values.

a. Optional: For Asset description, specify a brief description of the asset.

b. Optional: For Asset binaries destination URL, specify the target location of the asset.

This setting specifies the location to which the product extracts the asset. After an asset is

imported, the product looks for the asset in this location when a running application uses the asset.

If you do not specify a value, the product installs the asset to the default location,

${profile_root}/installedAssets/asset_name/BASE/.

c. Optional: For Asset type aspects, examine the asset content type and version specified by the

product. You cannot change this setting value.

The type aspect typically denotes the type of application contents, such as a specification to which

the application is written. For example, an enterprise bean (EJB) that supports the EJB Version 2.0

specification has the aspects type=EJB,version=2.0.

If the type aspect is none and if the asset is a JAR file, then the product associates a javarchive

type aspect with the asset by default.

d. For File permissions, specify any file permissions that are set on asset binary files so the target

run time can read or run the asset. Importing the asset extracts its binary files on the disk local to

the target runtime environment.

Try importing the asset using the default value. For detailed information on the File permissions

setting, refer to the Select options for importing an asset panel online help.

e. For Current asset relationships, add assets that the asset you are importing needs to run or

remove assets that are not needed.

When the product imports a JAR asset, the product detects asset relationships automatically by

matching the dependencies defined in the JAR manifest with the assets that are already imported

into the administrative domain.

f. For Validate asset, specify whether the product validates the asset.

The setting is deselected by default. This false (no) value is appropriate for most assets. Only

select true (yes) to validate an asset when needed.

The product does not save the value specified for Validate asset. Thus, if you select to validate the

asset (yes) now and later update the asset, when you update the asset you must enable this

setting again for the product to validate the updated files.

g. Click Next.

4. On the Summary page, click Finish.

164 Developing and deploying applications

Results

Several messages are displayed, indicating whether your asset is imported successfully.

An asset can contain multiple deployable objects as defined by the application contents of that asset. A

deployable object is a part of the asset that you can map to a deployment target such as an application

server. If the product imports the asset successfully, then appropriate deployable objects are identified in

the asset and are further used when a composition unit is created from that asset.

If the asset importing is not successful, read the messages and try importing the asset again. Correct the

values noted in the messages.

What to do next

If the product imports the asset successfully and displays the list of assets on the Assets page, then click

Save.

Add a composition unit to a business-level application using the asset that you imported. An asset included

in a business-level application is represented by a composition unit.

Upload asset settings

Use this panel to specify the asset to register with the asset repository. You can add registered assets to a

business-level application.

To view this administrative console panel, click Applications → New application → New Asset.

Importing an asset registers the asset with the asset repository.

The product manages the contents of a registered asset as a single entity. The contents of a registered

asset must be accessible to application servers, Web servers and other runtime environments that use the

asset.

During asset importing, asset files typically are uploaded from a client workstation running the browser to

the server running the administrative console, where they are registered. In such cases, use the Web

browser running the administrative console to select files to upload to the server.

Path to the asset

Specifies the fully qualified path to the asset.

Specify one of the following supported assets:

v A single file, such as an enterprise bean (EJB) file

v An archive of files, such as a Java archive (JAR) or a compressed (zip) file

v An archive of archives, such as an enterprise archive (EAR) or shared library file

Use Local file system if the browser and asset files are on the same machine (whether or not the server

is on that machine, too).

Use Remote file system if the asset file resides on any node in the current cell context. Only supported

assets are shown during the browsing. Also use Remote file system to specify an asset file that is

already residing on the machine running the application server. For example, the field value might be

profile_root/installableApps/my_bean.ejb. After the asset file is transferred, the Remote file system value

shows the path of the temporary location on the server.

Chapter 7. Deploying and administering business-level applications 165

Asset settings

Use this page to specify options for the registration of an asset with the asset repository. Default values for

the options are used if you do not specify a value.

To view this administrative console page, click Applications → Application Types → Assets →

asset_name. This page is similar to the Select options for importing an asset panel on the asset import

and update wizards.

Asset name

Specifies a logical name for the asset. An asset name must be unique within a cell and cannot contain an

unsupported character.

An asset name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot

contain any of the following characters:

 Unsupported characters

/ forward slash $ dollar sign ’ single quote mark

\ backslash = equal sign ″ double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

This Asset name field is the same as the Name setting on an Assets page.

 Data type String

Asset description

Specifies a description for the asset.

Asset binaries destination URL

Specifies the directory to which the product imports the asset file.

 Data type String

Units Full path name

Asset type aspects

Specifies the type of asset content. Examples of asset type include Java archive (JAR) files, shared

libraries, and enterprise application archive (EAR) files.

The asset type suggests the content of the asset. For example, an asset packaged as a JAR file might

contain a Web module, portlet and Web service.

This setting is read-only. You cannot edit this setting.

 Data type String

Units File type

Default none

166 Developing and deploying applications

File permissions

Specifies access permissions for asset binaries that the product expands to the asset binaries destination

URL.

You can specify file permissions in the text field. You can also set some of the commonly used file

permissions by selecting them from the list. List selections overwrite file permissions set in the text field.

You can set one or more of the following file permission strings in the list. Selecting multiple options

combines the file permission strings.

 List option File permission string set

Allow all files to be read but not written to .*=755

Allow executables to execute .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755

Allow HTML and image files to be read by

everyone

.*\.htm=755#.*\.html=755#.*\.gif=755#.*\.jpg=755

Instead of using the list to specify file permissions, you can specify a file permission string in the text field.

File permissions use a string that has the following format:

file_name_pattern=permission#file_name_pattern=permission

where file_name_pattern is a regular expression file name filter (for example, .*\\.jsp for all JSP files),

permission provides the file access control lists (ACLs), and # is the separator between multiple entries of

file_name_pattern and permission. If # is a character in a file_name_pattern string, use \# instead.

If multiple file name patterns and file permissions in the string match a uniform resource identifier (URI)

within the asset, then the product uses the most stringent applicable file permission for the file. For

example, if the file permission string is .*\\.jsp=775#a.*\\.jsp=754, then the abc.jsp file has file

permission 754.

Note: Using regular expressions for file matching pattern compares an entire string URI against the

specified file permission pattern. You must provide more precise matching patterns using regular

expressions as defined by Java programming API. For example, suppose the product processes the

following directory and file URIs during a file permission operation:

 1 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war

2 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

3 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF/
MANIFEST.MF

4 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/WEB-INF/classes/
MyClass.class

5 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/mydir/
MyClass2.class

6 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF

The file pattern matching results are:

v MyWarModule.war does not match any of the URIs

v .*MyWarModule.war.* matches all URIs

v .*MyWarModule.war$ matches only URI 1

v .*\\.jsp=755 matches only URI 2

v .*META-INF.* matches URIs 3 and 6

v .*MyWarModule.war/.*/.*\.class matches URIs 4 and 5

Chapter 7. Deploying and administering business-level applications 167

If you specify a directory name pattern for File permissions, then the directory permission is set based on

the value specified. Otherwise, the File permissions value set on the directory is the same as its parent.

For example, suppose you have the following file and directory structure:

/opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

and you specify the following file pattern string:

.*MyApp.ear$=755#.*\.jsp=644

The file pattern matching results are:

v Directory MyApp.ear is set to 755

v Directory MyWarModule.war is set to 755

v Directory MyWarModule.war is set to 755

Note: Regardless of the operation system, always use a forward slash (/) as a file path separator in file

patterns.

Access permissions specified here are at the asset level. You can also specify access permissions for

asset binaries in the node-level configuration. The node-level file permissions specify the maximum (most

lenient) permissions that can be given to asset binaries. Access permissions specified here at asset level

can only be the same as or more restrictive than those specified at the node level.

 Data type String

Current asset relationships

Specifies the assets to which this asset is related.

To add or remove a relationship, use the Manage relationships panel:

1. Click Manage Relationships to access the Manage relationships panel. The Selected list on the right

lists the current asset relationships.

2. To add a relationship, select an asset in the Available list on the left and click >>.

3. To remove a relationship, select an asset in the Selected list on the right and click <<.

4. Click OK.

 Data type String

Default none

Validate asset

Specifies whether the product examines the asset references specified during asset importing or updating

and, if validation is enabled, warns you of incorrect references or fails the operation.

An asset typically refers to resources using data sources for container-managed persistence (CMP) beans

or using resource references or resource environment references defined in deployment descriptors. The

validation checks whether the resource referred to by the asset is defined in the scope of the deployment

target of that asset.

Select true (enable the check box) for resource validation and to stop operations that fail as a result of

incorrect resource references. Select false (empty check box) for no resource validation.

 Data type String

Default false (empty check box)

168 Developing and deploying applications

Managing assets

After application binary files are imported and registered with the product management domain as assets,

you can view, update and export those assets.

Before you begin

Import one or more assets. The name of each imported assets is shown on the list of assets on the

administrative console Assets page.

About this task

You can view the contents of assets, update assets, remove assets from the product management

domain, or export copies of assets to a target location. This topic describes how to perform these asset

management operations from the administrative console Assets page. Alternatively, you can use

programming or the wsadmin tool.

v View or edit asset settings.

1. Go to the administrative console Assets page.

Click Applications → Application Types → Assets.

2. Click the asset name in the list of assets. The Asset settings page displays the values that are

specified for the asset.

3. Optional: Change the asset settings as needed and click OK to save the changes.

v Remove one or more assets from the product management domain.

v Update the contents of an asset.

v Export an asset to a target location.

What to do next

Create a business level application and add the asset to the business-level application.

Asset collection

Use this page to view a list of assets in the asset repository and to manage those assets. After importing

an asset, you can add the asset to a business-level application.

Assets include Java archive (JAR) and compressed files that are used by applications installed on a

server.

To view this administrative console page, click Applications → Application Types → Assets.

To view the values specified for an asset, click the asset name in the list. The displayed asset settings

page shows the values specified. On the settings page, you can change existing asset values.

To manage an asset, enable the Select check box beside the asset name in the list and click a button:

 Button Resulting action

Import Opens a wizard that helps you add an asset to the asset repository.

Delete Removes the asset from the asset repository and deletes the asset binaries from the file

system of all nodes where the assets are installed.

On single-server installations, deletion occurs after the configuration is saved.

Chapter 7. Deploying and administering business-level applications 169

Button Resulting action

Update Opens a wizard that helps you update asset files. You can replace a file or module that

exists on the server with a file or module that has the same name. Or you can add a

new file or module, provided the new file or module does not have the same name as an

asset that already exists on the server.

Export Accesses the Export asset page, which you use to export an asset to a file at a location

of your choice. Use the Export action to back up an asset.

Name

Specifies the name of the asset. Asset names must be unique within a cell and cannot contain an

unsupported character.

Description

Specifies a description for the asset.

Updating assets

You can update application binary files that are assets registered with the product management domain.

Before you begin

Import one or more assets. The file name of each deployable object in the imported assets is shown on

the list of assets on the administrative console Assets page.

About this task

You can update all of part of the contents of assets that are in the product management domain. This topic

describes how to update an asset using the administrative console Update asset wizard. Alternatively, you

can update assets using programming or the wsadmin tool.

1. Go to the Update asset wizard.

a. Click Applications → Application Types → Assets to access the Assets page.

b. Select the check box beside the asset that you want to update.

c. Click Update.

2. On the Update asset panel, specify whether you want replace an entire asset or update its contents

and, as needed, the replacement file or module.

a. Select an update option.

You can update asset contents by adding, deleting, or updating a single file or module in the asset,

or by merging multiple files or modules. Update options include the following:

v Replace entire asset

v Replace specific asset contents

v Add module or file to asset

v Remove file or module from asset

v Merge asset contents

The online help for the Update asset panel describes the options.

b. If you are updating specific asset contents or removing a file or module, specify the path beginning

with the asset archive file.

For Specify the path beginning with the asset archive file, specify a relative path to the file that

starts from the root of the asset file. For example, if the file is located at com/company/
greeting.class in module hello.jar, specify a relative path of hello.jar/com/company/greeting.class.

c. If you are updating the entire asset, updating an asset file or module, or merging asset contents,

specify the full path name of the new file or module.

d. Click Next.

170 Developing and deploying applications

3. On the Select options for updating an asset page, specify asset settings and click Next.

The online help for the Select options for importing an asset panel describes the settings.

4. On the Summary page, click Finish.

Results

If you update an asset packaged as a library JAR file that is not a Java Platform, Enterprise Edition (Java

EE) archive, then the product automatically distributes the updated asset to all of the composition units

that use the asset.

However, if you update a Java EE asset, then the product does not automatically distribute the updated

Java EE archive to composition units created from that asset, which are Java EE applications. You must

select every Java EE application created from that asset and use the Update button to update the Java

EE application individually by specifying the update contents.

What to do next

Create a business-level application and add the asset to the business-level application.

Update asset settings

Use this panel to select whether you want replace an entire asset or update its contents. You can update

asset contents by adding, deleting, or updating a single file or module in the asset, or by merging multiple

files or modules into an asset. Updating an asset registers the updated files with the product management

domain.

To view this administrative console panel, click Applications → Application Types → Assets, select the

asset to update, and then click Update.

The product manages the contents of a registered asset as a single entity. The contents of a registered

asset must be accessible to application servers, Web servers and other runtime environments that use the

asset.

When you replace an asset or update an asset by adding a file or module, asset files typically are

uploaded from a client workstation running the browser to the server machine running the administrative

console, where they are registered. In such cases, use the Web browser running the administrative

console to select files to upload to the server machine.

The specified asset that you are installing must be one of the following supported assets:

v A single file, such as an enterprise bean (EJB) file

v An archive of files, such as a Java archive (JAR) or a compressed (zip) file

v An archive of archives, such as an enterprise archive (EAR) or shared library file

Replace entire asset:

Under Select the type of update to perform, specifies to replace the entire asset installed on the server

with a new (updated) asset.

 After selecting this option, specify whether the asset is on a local or remote file system and the full path

name of the asset. The path provides the location of the updated asset before installation.

Use Local file system if the browser and asset files are on the same machine (whether or not the server

is on that machine, too).

Use Remote file system if the asset file resides on any node in the current cell context. Only supported

assets are shown during the browsing. Also use Remote file system to specify an asset file that is

already residing on the machine running the application server. For example, the field value might be

Chapter 7. Deploying and administering business-level applications 171

profile_root/installableApps/my_bean.ejb. After the asset file is transferred, the Remote file system value

shows the path of the temporary location on the server.

Replace specific asset contents:

Under Select the type of update to perform, specifies to replace a file or module of the asset installed

on the server.

 After selecting this option, do the following:

1. For Specify the path beginning with the asset archive file, specify a relative path to the file that

starts from the root of the asset file. For example, if the file is located at com/company/greeting.class in

module hello.jar, specify a relative path of hello.jar/com/company/greeting.class.

2. Specify whether the asset is on a local or remote file system and the full path name of the asset. The

path provides the location of the updated asset before installation.

3. Click Next.

The Replace entire asset description describes options for specifying the full path name of an asset or

file to add using Local file system and Remote file system options.

Add a module or file to an asset:

Under Select the type of update to perform, specifies to add a file to the asset installed on the server.

 After selecting this option, do the following:

1. For Specify the path beginning with the asset archive file, specify a relative path to the file that

starts from the root of the asset file. For example, if the file is located at com/company/greeting.class in

module hello.jar, specify a relative path of hello.jar/com/company/greeting.class.

2. Specify whether the asset is on a local or remote file system and the full path name of the asset. The

path provides the location of the updated asset before installation.

The Replace entire asset description describes options for specifying the full path name of an asset or

file to add using Local file system and Remote file system options.

Remove a file or module from an asset:

Under Select the type of update to perform, specifies to remove a file or module from the asset installed

on the server.

 After selecting this option, do the following:

1. For Specify the path beginning with the asset archive file, specify a relative path to the file to be

removed that starts from the root of the asset file. For example, if the file is located at

com/company/greeting.class in module hello.jar, specify a relative path of hello.jar/com/company/
greeting.class.

2. Click Next.

Merge asset contents:

Under Select the type of update to perform, specifies to compare the new file or module with the file or

module of the asset installed on the server. If the file or module exists, it is replaced. Otherwise, it is

added to the installed asset.

 After selecting this option, specify whether the new file or module is on a local or remote file system and

the full path name of the file or module. The path provides the location of the updated asset before

installation.

172 Developing and deploying applications

The Replace entire asset description describes options for specifying the full path name of a file or

module to merge using Local file system and Remote file system options.

Deleting assets

You can remove application binary files that are registered as assets from the product management

domain.

Before you begin

Import one or more assets. The name of each imported asset is shown on the list of assets on the

administrative console Assets page.

About this task

You can remove assets from the product management domain, provided the asset does not have an

existing composition unit. If an asset has one or more composition units defined in the management

domain, then you cannot delete that asset until those composition units are removed.

This topic describes how to delete assets using the administrative console. Alternatively, you can use

programming or the wsadmin tool.

1. Go to the Delete asset page.

a. Click Applications → Application Types → Assets to access the Assets page.

b. Select the check box beside the asset that you want to delete.

c. Click Delete.

2. On the Delete asset page, click OK to confirm that you want the specified asset removed from the

product management domain.

Click Cancel to return to the Assets page and not delete the asset.

Results

The product deletes the asset from the product management domain.

What to do next

On the Assets page, verify that the deleted asset is no longer in the list of imported assets.

Exporting assets

After application binary files are imported and registered with the product management domain as assets,

you can export those assets.

Before you begin

Import one or more assets. The file name of each deployable object in the imported assets is shown on

the list of assets on the administrative console Assets page.

About this task

You can export copies of assets to a target location. Exporting stores application binary files, enabling you

to back up the files or edit them. The file resulting from exporting an asset contains configuration

information for the asset.

This topic describes how to export an asset from the administrative console Assets page. Alternatively, you

can use programming or the wsadmin tool.

Chapter 7. Deploying and administering business-level applications 173

1. Go to the Export asset page.

a. Click Applications → Application Types → Assets to access the Assets page.

b. Select the check box beside the asset that you want to export.

c. Click Export.

2. On the Export asset page, click the asset name or identifier.

To cancel the export operation and return to the Assets page, click Back.

3. Specify the target location for the asset file.

What to do next

Examine the target file to verify that the asset exported correctly. You can later edit this file and import the

edited asset.

Creating business-level applications

You can create an empty business-level application and then add assets, shared libraries, business-level

applications, and other artifacts as composition units to the empty business-level application.

Before you begin

Configure each target application server as needed. You must deploy a business-level application to a

Version 7.0 server.

Optionally, determine what assets or other files that you want to add to your business-level application and

whether your application files can run on your deployment targets.

About this task

You can create business-level applications using the administrative console, programming, or the wsadmin

tool.

1. Select a way to create your business level application.

 Table 7. Ways to create business level applications

Option Method

Administrative console

business-level application creation

wizard

See “Creating business-level

applications with the console” on

page 175.

Click Applications → New application → New Business-level Application and

follow instructions in the wizard.

Administrative console Java

Platform, Enterprise Edition (Java

EE) application installation wizard

See “Installing enterprise

application files with the console”

on page 36.

Click Applications → New application → New Enterprise Application and

follow instructions in the wizard.

The product creates a new business-level application with the enterprise

application that you install or makes the enterprise application a composition unit

of an existing business-level application. See the Business-level application

name setting on the Select installation options wizard panel.

2. Create your business-level application using the administrative console, programming or wsadmin.

3. Save the changes to your administrative configuration.

174 Developing and deploying applications

Results

The name of the application is shown in the list on the Business-level applications page.

What to do next

After you create a business-level application, you can do the following to add composition units to it:

1. Import any assets needed by your business-level application.

2. Add assets, shared libraries, or other business-level applications as composition units.

3. Save the changes to your administrative configuration.

4. Start the business-level application.

If the application does not run as desired, edit the application configuration, then save and run it again.

Creating business-level applications with the console

You can create an empty business-level application and then add assets or business-level applications as

composition units to the empty business-level application.

Before you begin

Before you create a business-level application, decide upon an application name. Optionally, determine

which assets, shared libraries, or business-level applications that the new business-level application

needs.

About this task

This topic describes how to create an empty business-level application and then add assets as

composition units to the application using the administrative console. Alternatively, you can use

programming or the wsadmin tool.

You can add an asset or shared library composition unit to multiple business-level applications. However,

each composition unit for the same asset must have a unique composition unit name. You can add a

business-level application composition unit to more than one business-level application.

1. Create an empty business-level application.

a. Click Applications → New application → New Business Level Application.

b. On the New business-level application panel, specify a unique name for the application and a

description, and then click OK.

c. On the business-level application settings page, click Save.

The name and description are shown in the list of applications on the Business-level applications page.

Because the application is empty, its status is Unavailable.

2. Optional: Add one or more assets, non-Java EE shared libraries, or business-level applications to a

business-level application. The product adds these assets as composition units of your business-level

application.

If the asset that you want to add to your business-level application is a Java Platform, Enterprise

Edition (Java EE) application or module that is not yet deployed, see step 3. If the asset is a Java EE

shared library, see step 4.

a. Import the assets or create the business-level applications that you want to add to the

business-level application.

b. Go to the business-level application settings page.

Click Applications → Application Types → Business-level applications → application_name.

c. On the business-level application settings page, specify the type of composition unit to add.

Chapter 7. Deploying and administering business-level applications 175

v To add an asset, under Deployed assets, click Add → Add Asset.

v To add a shared library, under Deployed assets, click Add → Add Shared Library.

v To add a business-level application, under Business-level applications, click Add.

d. On the Add panel, select a unit from the list of available units, and then click Continue.

If you are adding one or more deployable unit assets and you have multiple imported assets

available, you can select more than one deployable unit.

e. On the Set options panel, change the composition unit settings as needed, and then click Next.

This panel is not shown when you add a Java EE asset as a shared library or if you have multiple

deployable unit assets. If the application installation or update wizard displays and you want to add

a Java EE asset as a shared library, see step 4.

f. On the Map composition unit to a target panel, change the deployment target as needed, and then

click Next.

This panel is not shown when you add a business-level application.

g. If you are adding one or more deployable unit assets, specify composition unit relationship options.

See “Deployable unit relationship settings” on page 183.

h. On the Summary page, click Finish. Several messages are displayed, indicating whether the

product adds the unit to the business-level application successfully. A message having the format

Completed res=[WebSphere:cuname=unit_name,cuedition=version] indicates that the addition is

successful. Click Manage application.

If the product adds the unit successfully, the name of the unit is shown on the list of composition

units on the Adding composition unit to the business-level application page.

If the unit addition is not successful, read the messages and try adding the unit again. Correct the

problems noted in the messages.

i. On the Adding composition unit to the business-level application page, click Save.

The product creates composition units for the asset, shared library, or business-level application. The

unit names are shown in lists of composition units on the settings page of your business-level

application. To view the settings page, click Applications → Application Types → Business-level

applications → your_application_name.

3. Optional: Install a Java EE application or module, and add it as a composition unit to your

business-level application.

When installing an enterprise archive (EAR) file or a stand-alone Java EE module using the application

installation wizard, you can specify a business-level application to which to add the EAR file or module.

You can also specify relationships to any shared libraries that your Java EE application or module

uses. The product creates composition units that represent those relationships.

a. Click Applications → New application → New Enterprise Application.

b. On the first Preparing for the application installation panel, specify the Java EE application or

module to install and click Next.

c. On the second Preparing for the application installation panel, select Detailed - Show all

installation options and parameters, specify whether to generate default bindings and mappings

as needed for the application or module, and click Next.

d. On the Select installation options panel of the wizard, select your business-level application for

Business-level application name and click Next. The product creates a composition unit that has

the same name as the Java EE application or module and adds the unit to your business-level

application.

If you do not specify a value for Business-level application name, then the product creates a

default business-level application that has the same name as the Java EE application that you are

installing. The product does not add the Java EE application as a composition unit to the

business-level application that you created in step 1.

176 Developing and deploying applications

e. Optional: On the Map shared library relationship panel of the wizard, specify relationship identifiers

and composition unit names for shared libraries that modules in your Java EE application use. The

product creates a composition unit for each shared library relationship in your business-level

application.

You can map shared library relationships when installing your Java EE application or module or,

after installation, return to the Map shared library relationship panel and specify shared library

relationships. See step 4.

f. Complete the other application installation wizard options as needed to install the Java EE

application or module.

The product creates composition units for the application, module, or shared library relationships. The

unit names are shown in lists of composition units on the settings page of your business-level

application. To view the settings page, click Applications → Application Types → Business-level

applications → your_application_name.

4. Optional: After installation of a Java EE application or module, specify composition units for

relationships to shared libraries used by your business-level application on the Map shared library

relationship panel of the application installation or update wizard.

a. If you have not done so already, import a Java EE asset such as an enterprise bean (EJB) or Web

module (WAR) that uses a shared library file.

If the product displays javaarchive for Asset type aspects on the asset settings page, continue to

step 4b.

If the product does not display javaarchive for Asset type aspects on the asset settings page,

then the asset is not a Java EE asset. Use step 2 to add a shared library to your business-level

application.

b. Go to a settings page for your business-level application.

Click Applications → Application Types → Business-level applications →

your_application_name.

c. Under Deployed assets, click Add → Add Shared Library.

d. On the Add composition unit panel, select the Java EE asset that you imported and then click

Continue.

The Java EE application installation or update wizard displays. Select the Java EE application or

module that uses the asset, and complete the steps in the wizard.

e. On the Select installation options panel of the wizard, select your business-level application for

Business-level application name.

f. On the Map shared library relationship panel of the wizard, specify a relationship identifier and

composition unit name for the asset.

g. Complete the other wizard options as needed.

The product creates a composition unit for the shared library relationship. The unit name is shown in

the list of deployed asset composition units on the settings page of your business-level application.

Results

The name of your business-level application is shown on the Business-level applications page in the list of

applications.

What to do next

After you create the application, save the changes to your configuration and start the application as

needed.

Business-level application collection

Use this page to view and manage business-level applications.

Chapter 7. Deploying and administering business-level applications 177

To view this administrative console page, click Applications → Application Types → Business-level

applications.

To view the values specified for an application configuration, click the application name in the list. The

displayed application settings page shows the values specified. On the settings page, you can change

existing configuration values and link to additional console pages that assist you in configuring the

application.

To manage a business-level application, enable the Select check box beside the application name in the

list and click a button:

 Button Resulting action

Start Attempts to run the application. After the application starts successfully, the state of the

application changes to Started if the application starts on all deployment targets, else the

state changes to Partial Start.

Stop Attempts to stop the processing of the application. After the application stops

successfully, the state of the application changes to Stopped if the application stops on

all deployment targets, else the state changes to Partial Stop.

New Opens a wizard that helps you add assets, shared libraries, or business-level

applications as composition units to your application.

Delete Deletes the application from the product configuration repository and deletes the

application binaries from the file system of all nodes where the application modules are

installed.

On single-server installations, deletion occurs after the configuration is saved.

Name:

Specifies the name of the business-level application. Application names must be unique within a cell and

cannot contain an unsupported character.

Description:

Specifies a description for the business-level application.

Status:

Indicates whether the application deployed on the application server is started, stopped, or unknown.

Started Application is running.

Partial start Application is in the process of changing from a Stopped state to a Started

state. Application is starting to run but is not fully running yet. Or, it cannot fully

start because a server mapped to one or more application modules is stopped.

Stopped Application is not running.

Partial stop Application is in the process of changing from a Started state to a Stopped

state. Application has not stopped running yet.

Unknown Status cannot be determined.

Pending Status is temporarily unknown pending an event that a user did not initiate,

such as pending an asynchronous call.

Not applicable Application does not provide information as to whether it is running.

The status of an application on a Web server is always Unknown.

178 Developing and deploying applications

New business-level application settings

Use this panel to name and describe a new business-level application.

To view this administrative console panel, click Applications → New application → New Business-level

Application.

Name:

Specifies a logical name for the business-level application. An application name must be unique within a

cell and cannot contain an unsupported character.

 An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot

contain any of the following characters:

 Unsupported characters

/ forward slash $ dollar sign ’ single quote mark

\ backslash = equal sign ″ double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

 Data type String

Description:

Specifies a description for the application.

 This field is the same as the Description setting on a Business-level applications page.

Shared library relationship and mapping settings

Use the Shared library relationship and Shared library relationship mapping pages to specify relationship

identifiers and composition unit names for shared libraries that modules in your enterprise application

reference. When installing your enterprise application, the product creates a composition unit for each

shared library relationship in the business-level application that you specified on the Select installation

options panel of the application installation wizard.

To view this console panel in a wizard, click Applications → Install new application → New Enterprise

Application → application_path → Next → Detailed - Show all installation options and parameters →

Next → application_name → Step: Map shared library relationships.

After installation, click Applications → Application Types → WebSphere enterprise applications →

Shared library relationships

To map library files used in a business-level application with an application or Web module, use the

Shared library relationship mapping page:

1. Click Reference shared libraries.

2. Note the application or module in Map libraries to the application or module listed. You are

associating library files with that application or module.

3. From the Available list, select one or more libraries that the application or module uses.

Chapter 7. Deploying and administering business-level applications 179

4. Click >> to add them to the Selected list.

5. To remove an association, select one or more libraries in the Selected list and click <<.

6. Click OK.

Module:

Specifies the name of the module associated with the shared libraries.

URI:

Specifies the location of the module relative to the root of the application EAR file.

Relationship identifers:

Specifies an identifier for a module shared library relationship. The product assigns an identifier to the

composition unit that it creates for the shared library relationship in the business-level application.

Composition unit names:

Specifies a composition unit name for the shared library relationship. The product uses this value to name

the composition unit that it creates for the shared library relationship in the business-level application that

you specified on the Select installation options panel of this wizard.

 This setting is only in the application installation and update wizards.

Match target:

Specifies whether the product maps the composition unit for the shared library relationship to the same

deployment target as the business-level application.

Add composition unit settings

Use this panel to specify options for the composition unit to be added to the business-level application.

The product assigns a default value for an option when you do not specify a value.

To view this administrative console panel, click Applications → Application Types → Business-level

applications → business-level_application_name → Add → Add unit_type.

Name:

Specifies the name of the composition unit to be added to the business-level application.

 The table lists available composition units. Select a unit from this list.

Description:

Specifies a description for the composition unit.

Add asset settings

Use this panel to add one or more assets to a business-level application.

To view this administrative console panel, click Applications → Application Types → Business-level

applications → application_name → Add → Add Asset.

Deployable units:

180 Developing and deploying applications

Specifies the imported assets available for use in a business-level application. The list of deployable units

includes only imported assets, and not shared libraries or business-level applications.

 From this list, select one or more deployable units to add as composition units to your business-level

application.

Set options settings

Use this panel to specify options for the composition unit to be added to the business-level application.

The product supplies default values for the options if you do not specify a value.

To view this administrative console panel, click Applications → Application Types → Business-level

applications → application_name. On the business-level application settings page, specify the type of

composition unit to add:

v To add an asset, under Deployed assets, click Add → Add Asset.

v To add a shared library, under Deployed assets, click Add → Add Shared Library.

v To add a business-level application, under Business-level applications, click Add.

Backing identifier:

Specifies a unique identifier for a composition unit that is registered in the application management

domain.

 The identifier has the format: WebSphere:unit_typename=unit_name,unit_typeversion=version_number. For

example, for the MyApp.jar asset, the backing identifier might be WebSphere:assetname=MyApp.jar.

 Data type String

Units Composition unit identifier

Name:

Specifies the name of the composition unit.

 For example, for the MyApp.jar asset, the name might be MyApp.jar.

A unit name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot contain

any of the following characters:

 Unsupported characters

/ forward slash $ dollar sign ’ single quote mark

\ backslash = equal sign ″ double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

 Data type String

Description:

Specifies a description for the composition unit.

Chapter 7. Deploying and administering business-level applications 181

Starting weight:

Specifies the order in which composition units are started when the server starts. The starting weight is

like the startup order. The composition unit with the lowest starting weight is started first.

 The value that you set for Starting weight determines the importance or weight of a composition unit

within the business-level application. For example, for the most important composition unit within a

business-level application, specify 1 for Starting weight. For the next most important composition unit

within the business-level application, specify 2 for Starting weight, and so on.

 Data type Integer

Default 1

Range 0 to 2147483647

Start composition unit upon distribution:

Specifies whether to start the composition unit after the product distributes the composition unit to other

locations.

 The default is not to start the composition unit.

 Data type Boolean

Default false

Restart behavior on update:

Specifies whether the product restarts deployment targets after updates to the composition unit.

 Usually, a composition unit is mapped to one or more deployment targets. This setting determines whether

the product restarts those targets after editing the composition unit.

 Option Description

ALL The product restarts each target node of the composition unit after editing the composition unit.

DEFAULT The product restarts the nodes controlled by the sync plug-ins after editing the composition unit.

NONE The product does not restart nodes after editing the composition unit.

Map target settings

Use this panel to map a composition unit to a deployment target. The product assigns a default target

when you do not specify a target.

To view this administrative console panel, click Applications → Application Types → Business-level

applications → application_name → composition_unit_name → Modify Target. The Map target page is

similar to the Map composition unit to a target panel in the add composition unit wizard.

On single-server products, a deployment target can be an application server or Web server.

On this panel, map a composition unit to one or more desired targets.

Current targets:

Specifies the existing deployment targets for the composition unit.

Available:

182 Developing and deploying applications

Lists the names of available deployment targets. This list is the same for every composition unit that is

registered in the cell.

 From this list, select only appropriate deployment targets for a composition unit.

If the unit calls a Version 7.x application programming interface (API) or uses a 7.x feature, then you must

map the unit to a 7.x deployment target. If the unit supports Java Platform, Enterprise Edition (Java EE) 5,

then you must map the unit to a 7.x deployment target. If the unit supports Java 2 Platform, Enterprise

Edition (J2EE) 1.4, then you must map the unit to a 6.x or 7.x deployment target. You can map units that

call a 6.x API or use a 6.x feature to a 6.x or 7.x deployment target.

To map a composition unit to a deployment target, select a target from the Available list and click >>. The

target name is displayed in the Selected list.

Selected:

Lists the names of desired deployment targets.

 When you click OK, the product maps the composition unit to the deployment targets in the Selected list.

To remove a deployment target from the Selected list, select the target and click <<.

Deployable unit relationship settings

Use this panel to specify relationship options for deployable units in an asset deployed as part of a

business-level application. Specifying a relationship declares a dependency relationship that a deployable

unit has on another asset deployed as a shared library in the same business-level application.

To view this administrative console panel, click Applications → Application Types → Business-level

applications → application_name → deployed_asset_name → Manage Relationships. This help also

pertains to both the Relationship options panel and the Composition unit relationship options panel that are

shown when you add multiple deployable unit assets to a business-level application. These panels are

shown for the Define relationship with existing composition units and Options for creating new

composition units to satisfy asset relationships wizard steps.

A business-level application consists of composition units. When you add an asset to a business-level

application, the product creates a composition unit for the asset. The composition unit name can be

different from the name of the asset being deployed. The list of deployed assets shown for a

business-level application consists of the composition unit names for the deployed assets. The

relationships defined in this panel are composition unit relationships. The deployable units listed for a

composition unit are those you chose from the associated asset when adding the asset. Composition unit

relationships are expressed as deployable unit dependencies on other composition units belonging to the

same business-level application. Only a composition unit for an asset deployed as a shared library can be

specified as a dependency. You can map each deployable unit to a target independently from the others.

Modifying relationships in this panel only affects the composition unit, not the associated asset.

To specify relationship options, select a deployable unit and click a button.

 Button Resulting action

Set Relationships Displays a panel through which you can add or change relationships for the

deployable unit. Specify a relationship if a deployable unit depends on another asset

deployed as a shared library in order to run.

This button is on the Set relationship options panel.

Enable Match Targets If the deployable unit has a dependency relationship defined, click Enable Match

Targets to map the related deployed assets to the same deployment targets as the

dependent deployable unit.

Chapter 7. Deploying and administering business-level applications 183

Button Resulting action

Disable Match Targets If the deployable unit has a dependency relationship defined, click Disable Match

Targets if the related deployed assets do not need to be deployed to the same targets

as the deployable unit.

Deployable unit name:

Specifies the name of the deployable unit of the selected deployed asset.

Relationship:

Specifies the composition unit names for all relationships defined for the associated deployable unit.

 This setting is on the Set relationship options panel.

By default, a deployable unit has no relationships. To add or change related composition units, do the

following:

1. Select the deployable unit.

2. Click Set Relationships.

3. Select the composition units that the deployable unit requires by moving them from the Available list

to the Selected list.

4. Click OK.

Match targets:

Indicates the match targets value selected for the associated deployable unit. The default value is true.

 A match targets value of true maps the composition units listed under Relationship to the same

deployment targets as the associated deployable unit. Typically, you must deploy related composition units

to the same targets as the dependent deployable unit in order for the deployable unit to run.

A false value indicates that the related composition unit can map to deployment targets which are

different from the deployment targets of the deployable unit.

To set the value to true, select the deployable unit and click Enable Match Targets. To set the value to

false, select the deployable unit and click Disable Match Targets. To set this value, the deployable unit

must have a related composition unit.

Business-level application settings

Use this page to configure a business-level application.

To view this administrative console page, click Applications → Application Types → Business-level

applications → application_name.

This page is the same as the Adding composition unit to the business-level application page.

Name

Specifies a logical name for the application. An application name must be unique within a cell and cannot

contain an unsupported character.

An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot

contain any of the following characters:

184 Developing and deploying applications

Unsupported characters

/ forward slash $ dollar sign ’ single quote mark

\ backslash = equal sign ″ double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

 Data type String

Description

Specifies a description for the business-level application.

Deployed assets

Specifies the asset and shared library composition units in the business-level application. A composition

unit is a registered asset or shared library that has additional configuration information, which you specify

when adding the asset to the application.

For each composition unit, the table provides a name, description, asset type, and the runtime status of

the composition unit.

 Button Resulting action

Add > Add Asset For assets that contain Java Platform, Enterprise Edition (Java EE) applications or modules,

opens the application installation wizard. On the Select installation options panel of this wizard,

you can specify a Business-level application name value that identifies the target

business-level application. On the Map shared library relationships panel, you can identify the

shared library files that individual modules need to run and specify composition unit names for

the module-shared library relationships.

For non-Java EE assets, opens a wizard that helps you add an asset as a composition unit to

your business-level application.

Add > Add Shared

Library

Opens a wizard that helps you add a library file as a composition unit to your business-level

application.

Delete Deletes the composition unit from the product configuration repository and deletes the

application binaries from the file system of all nodes where the application modules are

installed.

On single-server installations, deletion occurs after the configuration is saved.

Business-level applications

Specifies the business-level applications in this business-level application.

The table provides a name, description, and the runtime status of each contained business-level

application.

 Button Resulting action

Add Opens a wizard that helps you add a business-level application to your business-level

application.

Chapter 7. Deploying and administering business-level applications 185

Button Resulting action

Delete Deletes the business-level application from the product configuration repository and deletes

the application binaries from the file system of all nodes where the application modules are

installed.

On single-server installations, deletion occurs after the configuration is saved.

Composition unit settings

Use this page to view composition unit settings and to change the deployment target of a composition unit.

To view this administrative console page, click Applications → Application Types → Business-level

applications → application_name → composition_unit_name.

Name

Specifies a logical name for the composition unit. You cannot change the name on this page.

Description

Specifies a description for the composition unit. You cannot change the description on this page.

Backing identifier

Specifies a unique identifier for a composition unit that is registered in the application management

domain.

The identifier has the following format: WebSphere:unit_typename=unit_name. For example, for the

MyApp.jar asset, the backing identifier might be WebSphere:assetname=MyApp.jar.

You cannot change the identifier on this page.

 Data type String

Units Configuration unit identifier

Starting weight

Specifies the order in which composition units are started when the server starts. The starting weight is

like the startup order. The composition unit with the lowest starting weight is started first.

The value that you set for Starting weight determines the importance or weight of a composition unit

within the business level application. For example, for the most important composition unit within a

business-level application, specify 1 for Starting weight. For the next most important composition unit

within the business-level application, specify 2 for Starting weight, and so on.

 Data type Integer

Default 1

Range 0 to 2147483647

Start on distribution

Specifies whether to start the composition unit when the product distributes the composition unit to other

locations.

The default is not to start the composition unit.

This setting applies to asset or shared library composition units. This setting does not apply when the

composition unit is a business-level application.

 Data type Boolean

186 Developing and deploying applications

Default false

Recycle behavior on update

Specifies whether the product restarts the composition unit after the composition unit is updated.

The default is to restart the composition unit after partial updating of the composition unit.

This setting applies to asset or shared library composition units. This setting does not apply when the

composition unit is a business-level application.

 Option Description

ALL Restarts the composition unit after the entire composition unit is updated

DEFAULT Restarts the composition unit after the part of the composition unit is updated

NONE Does not restart the composition unit after the composition unit is updated

Current target

Specifies the existing deployment target for the composition unit.

To change the deployment target, click Modify target and select a different deployment target from the list

of available clusters and servers.

Example: Creating a business-level application

You can add many different types of artifacts to business-level applications. For example, you can add

Java Platform, Enterprise Edition (Java EE) applications or modules, Java archives (JAR files), data in

compressed files, and other business-level applications.

About this task

An example of creating a simple business-level application follows. This example assumes that you have a

compressed file, such as a zip file, or other archive available on your computer or on a remote server that

you can use to complete the example.

If you do not have a compressed file available, look in product directories. Installing the product samples

adds several sample files to the /samples directory. You can use these sample files in a business-level

application.

1. Import assets.

a. Click Applications → New application → New Asset in the console navigation tree.

b. On the Upload asset page, specify the asset package to import and click Next.

For example, specify a compressed file such as a zip file and click Next.

c. On the Select options for importing an asset panel, click Next.

d.

e. On the Summary panel, click Finish.

f. On the Adding asset to repository panel, if messages show that the operation completed, click

Manage assets.

g. On the Assets page, click Save.

The file name displays in the list of assets.

2. Create an empty business-level application named MySampleBLA.

a. Click Applications → New application → New Business Level Application.

Chapter 7. Deploying and administering business-level applications 187

b. On the New business-level application panel, specify a unique name such as MySampleBLA and a

description, and then click OK.

c. On the business-level application settings page, click Save.

The name and description are shown in the list of applications on the Business-level applications page.

Because the application is empty, its status is Unavailable.

3. Add the asset composition unit to your business-level application.

a. On the Business-level applications page, click the application name in the list of applications.

b. On the business-level application settings page, click Add → Add Asset.

c. On the Add composition unit panel, select an asset composition unit from the list of available units,

and then click Continue.

For example, select the compressed file asset and then click Continue.

d. On the Set options panel, click Next.

e. On the Map composition unit to a target panel, change the target server as needed, and then click

Next.

f. On the Summary panel, click Finish. Several messages are displayed. A message having the

format Completed res=[WebSphere:cuname=unit_name] indicates that the addition is successful.

g. If the addition is successful, click Manage application.

h. On the business-level application settings page, click Save.

The asset name and type displays in the list of deployed assets.

4. Start the business-level application.

a. Click Applications → Application Types → Business-level applications.

b. On the Business-level applications page, select the check box beside your application.

c. Click Start.

When the business-level application is running, a green arrow displays for Status. If the business-level

application does not start, ensure that the deployment target to which the application maps is running

and try starting the application again.

What to do next

You can add other assets to your business-level application.

Starting business-level applications

You can start a business-level application that is not running (has a status of Stopped). The application

must contain code that can run on a server to start.

Before you begin

The application must be installed on a server. By default, the application starts automatically when the

server starts.

About this task

You can start and stop business-level applications manually using the administrative console or wsadmin

commands.

This topic describes how to use the administrative console to start a business-level application.

1. Go to the Business-level applications page.

Click Applications → Application Types → Business-level applications in the console navigation

tree.

188 Developing and deploying applications

2. Select the check box for the application you want started.

3. Click Start. The product runs the application and changes the state of the application to Started. The

status is changed to partially started if not all servers on which the application is deployed are

running.

Results

A message stating that the application started displays at the top the page.

What to do next

To restart a running application, select the application you want to restart, click Stop and then click Start.

Stopping business-level applications

You can stop a business-level application that is running and has a status of Started).

Before you begin

The application must be running on a product server.

About this task

You can stop applications manually using the administrative console or wsadmin commands.

This topic describes how to use the administrative console to stop a business-level application.

1. Go to the Business-level applications page.

Click Applications → Application Types → Business-level applications in the console navigation

tree.

2. Select the check box for the application you want stopped.

3. Click Stop. The product stops the processing of the application and changes the state of the

application to Stopped.

Results

The status of the application changes and a message stating that the application stopped displays at the

top the page.

What to do next

To restart a stopped application, select the application you want to restart, and then click Start.

Updating business-level applications

You can update business-level applications by deleting or changing composition units, or by mapping

composition units to different deployment targets.

Before you begin

Determine what changes that you want to make to your application. Also, determine whether the changed

application can run on your deployment targets.

Chapter 7. Deploying and administering business-level applications 189

About this task

Updating consists of adding new composition units to an application, replacing or removing composition

units, or mapping composition units to different deployment targets.

You can add an asset or shared library composition unit to multiple business-level applications. However,

each composition unit for the same asset must have a unique composition unit name. You can add a

business-level application composition unit to more than one business-level application.

This topic describes how to update business-level applications using the administrative console.

Alternatively, you can use programming or the wsadmin tool.

v Delete composition units from your business-level application.

1. Go to the business-level application settings page.

Click Applications → Application Types → Business-level applications → application_name in the

console navigation tree.

2. Select each composition unit of the application that you want to delete.

3. Click Delete.

4. On the Delete composition unit from business-level application panel, confirm the deletion and click

OK.

v Add new or updated assets, shared libraries, or other business-level applications to your business-level

application.

 1. Update asset binary files or shared libraries as needed.

 2. If you are adding new assets that are not registered with the product management domain, import

the assets.

 3. If you are updating existing assets, use the Update option to update asset files.

 4. On the business-level application settings page, specify the type of composition unit to add.

– To add an asset, under Deployed assets, click Add → Add Asset.

– To add a shared library, under Deployed assets, click Add → Add Shared Library.

– To add a business-level application, under Business-level applications, click Add.

 5. On the New composition unit panel, select a unit from the list of available units, and then click

Continue.

 6. On the Set options panel, change the composition unit settings as needed, and then click Next.

 7. On the Map composition unit to a target panel, change the deployment target as needed, and then

click Next.

This panel is not shown when you add a business-level application.

 8. On the Summary page, click Finish.

 9. If the product adds the unit successfully, click Manage application.

If the unit addition is not successful, read the messages, and try adding the unit again. Correct the

errors noted in any messages.

10. On the Adding composition unit to the business-level application page, click Save.

11. Repeat these steps to add any other assets, shared libraries, or applications needed by the

business-level application.

The business-level application settings page displays the configuration unit names.

v Map composition units to different deployment targets.

1. On the composition unit settings page, select the composition unit that you want to change.

2. Under Current targets, click Modify Target.

3. On the Map targets page, change the target.

a. From the list of available clusters and servers, select a different deployment target.

b. Click >> to add the deployment target to the Selected list.

190 Developing and deploying applications

c. To remove a deployment target from the Selected list, select the target and click <<.

d. Click OK.

The business-level application settings page displays the selected deployment target.

What to do next

Save the changes to your administrative configuration.

Deleting business-level applications

After an application no longer is needed, you can delete it.

About this task

Deleting a business-level application removes the application from the product configuration repository and

it deletes the application binaries from the file system of all nodes where the application files are installed.

1. Go to the Business-level applications page.

Click Applications → Application Types → Business-level applications in the console navigation

tree.

2. If you need to retain a copy of the application, back up composition units of the application.

3. Delete composition units of the application.

a. On the Business-level applications page, click the name of the business-level application that you

want to delete.

b. On the business-level application settings page, select each composition unit of the application.

c. Click Delete.

d. On the Delete composition unit from Business-level application panel, confirm the deletion and click

OK.

Deleting a configuration unit removes the configuration from the profile_root/config/cells/cell_name/cus

directory.

4. Delete the business-level application.

a. Select the application that you want to delete.

b. Click Delete.

Unless the application is used by another business-level application, deleting a business-level

application removes the configuration from the profile_root/config/cells/cell_name/blas directory.

5. On the Delete business-level application panel, confirm the deletion and click OK.

6. Save changes made to the administrative configuration.

Results

On single-server products, application binaries are deleted after you save the changes.

What to do next

If using the administrative console Delete options does not fully delete a business-level application or its

configuration units, you can delete the business-level application and its configuration units manually from

a stand-alone server. Suppose you want to delete a business-level application named ExampleBLA, and

ExampleBLA is not used by another business-level application. Complete the following steps to manually

delete the ExampleBLA configurations from the blas and cus directories:

1. Delete the profile_root/config/cells/cell_name/blas/ExampleBLA directory.

2. Delete the profile_root/config/cells/cell_name/cus/ExampleBLA directory.

Chapter 7. Deploying and administering business-level applications 191

3. Save changes made to the administrative configuration.

192 Developing and deploying applications

Chapter 8. Administering business-level applications using

programming

You can use the command framework programming to create, edit, update, start, stop, delete, export,

import, and query information about business-level applications. A business-level application defines an

enterprise-level application.

Before you begin

This task assumes a basic familiarity with the command framework. Read about the command framework

in the application programming interfaces documentation.

About this task

Besides creating, editing, updating, starting, stopping, deleting, exporting, importing, and querying

information about business-level applications using programming, you can do these tasks using the

administrative console or the wsadmin scripting tool.

1. Perform any of the following tasks to administer your business-level applications using programming.

a. Create an empty business-level application.

You typically create an empty business-level application and then add assets or business-level

applications as composition units to the empty business-level application.

b. Import an asset.

You can import an asset to register the asset with the product and optionally store the asset in the

product repository so that you can later use the asset in a business-level application. An asset

represents at least one binary file that implements business logic.

c. Add a composition unit.

You can add an asset to a business-level application by creating a composition unit for the asset. A

composition unit is typically created from an asset and contains configuration information that

makes the asset runnable.

d. Start a business-level application.

You can start a business-level application, which starts each composition unit in that business-level

application. Each composition unit is started on the respective targets on which the business-level

application is deployed.

e. Stop a business-level application.

You can stop a business-level application, which stops each composition unit in that business-level

application. Each composition unit is stopped on the respective targets on which the business-level

application is deployed.

f. Check the status of a business-level application.

You can check the status of an entire business-level application. You can also limit the status to a

particular composition unit of a business-level application, a specific deployment target, or check the

status of the composition unit and the deployment target at the same time.

g. Delete a business-level application.

You can delete a business-level application using programming. You might delete a business-level

application if the application is not functioning correctly, no longer needed, and so on.

h. Delete an asset.

You can delete an asset from a business-level application using programming if the asset is not

functioning corrctly, the asset is no longer needed, and so on. An asset represents at least one

binary file that implements business logic.

i. Delete a composition unit.

© Copyright IBM Corp. 2008 193

You can delete a composition unit from a business-level application if the composition unit is not

functioning correctly, the composition unit is no longer needed, and so on. A composition unit is

typically created from a business-level application or an asset and contains configuration information

that makes the asset runnable.

j. Export an asset.

You can export an asset from the current session so that you can back up the asset, import the

asset to another session, and so on. An asset represents at least one binary file that implements

business logic.

k. List assets.

You can list the assets that have been imported to the current workspace so that you can do

further asset administration, such as deleting or exporting assets. An asset represents at least one

binary file that implements business logic.

l. List composition units.

You can list the composition units for a specific business-level application in a session so that you

can do further composition unit administration, such as deleting or adding composition units. A

composition unit is typically created from a business-level application or an asset and contains

configuration information that makes the asset runnable.

m. List business-level applications.

You can list the business-level applications of a session so that you can do further business-level

application administration such as deleting a business-level application. A business-level

application is an administrative model that captures the definition of an enterprise-level application

so that you can perform specific business functions, such as accounting.

n. Edit a composition unit.

You can edit the configuration information in a composition unit of a business-level application if,

for example, you want to change which modules in the composition unit are configured to run in

which targets. A composition unit is typically created from a business-level application or an asset

and contains configuration information that makes the asset runnable.

o. Edit an asset.

You can edit the information of an asset, for example, its destination location, its relationship with

other assets, and so on. An asset represents at least one binary file that implements business logic

p. Edit a business-level application.

You can edit the information of a business-level application such as its description. A business-level

application is an administrative model that captures the entire definition of an enterprise-level

application.

q. Update an asset.

You can update an asset by adding, deleting, or updating a single file or Java Platform, Enterprise

Edition (Java EE) module, or by merging multiple files or Java EE modules into an asset. You can

also update an asset by replacing the entire asset.

r. View a composition unit.

You can view the composition unit information so that you can do other tasks associated with the

composition unit, such as editing an asset or deleting a composition unit. A composition unit is

typically created from a business-level application or an asset and contains configuration

information that makes the asset runnable.

s. View an asset.

You can view the asset information so that you can do other tasks associated with the asset, such

as editing or exporting an asset. An asset represents at least one binary file that implements

business logic.

t. View a business-level application.

194 Developing and deploying applications

You can view business-level application information such as the description so that you can do

other tasks associated with the business-level application, such as editing the business-level

application. A business-level application is an administrative model that captures the entire definition

of an enterprise-level application.

u. List control operations.

You can list the control operations of a business-level application or a composition unit for a

session. You use control operations, such as start or stop, to change or query the runtime

environment of a business-level application or a composition unit.

2. Save your changes to the master configuration repository.

3. Synchronize changes to the master configuration across the nodes for the changes to take effect.

Results

Depending on which tasks you complete, you have created, edited, updated, started, stopped, deleted,

exported, imported, or queried information about business-level applications.

What to do next

If you have further business-level application updates, you can do the updates through programming, the

administrative console, or the wsadmin scripting tool.

Creating an empty business-level application using programming

You can create an empty business-level application, and then add assets or business-level applications as

composition units to the empty business-level application.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interfaces documentation.

You can create an empty business-level application using programming, the administrative console, or the

wsadmin tool.

About this task

Perform the following steps to create an empty business-level application using programming. In your code

that creates the empty business-level application, you must provide the name parameter. The name

parameter specifies the name of the business-level application that you create.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

Chapter 8. Administering business-level applications using programming 195

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that

creates an empty business-level application.

The command name is createEmptyBLA. The name parameter is a required parameter that you use to

specify the name of the business-level application. You can optionally provide the description

parameter to provide a description of the newly created business-level application.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Call the execute method in the asynchronous command client to run the command that creates an

empty business-level application.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, the empty business-level application is created.

Example

The following example shows how to create an empty business-level application based on the previous

steps. Some statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.exception.AdminException;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class CreateEmptyBLA {

 public static void main(String[] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local

 // command manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

 // to get the soapClient soap client if you use the local

 // command manager.

 String host = "localhost";

 String port = "8880";

 // Change to your port number if it is

 // not 8880.

196 Developing and deploying applications

Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager:

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler

 // for listening to command notifications.

 // Comment out the following line if no further handling

 // of command notification is required:

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with

 // null for the AsyncCommandClient object that follows.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command that creates an empty

 // business-level application.

 String cmdName = "createEmptyBLA";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // Create an empty

 // business-level application using

 // the session created.

 System.out.println("\nCreated " + cmdName);

 // Set the name command parameter.

 String blaName = "bla1";

 cmd.setParameter("name", blaName);

 System.out.println("\nSet name parameter to "

 + cmd.getParameter("name"));

 // Uncomment the following lines to set the description of

 // the business-level application being created:

 //

 // String blaDescription = "description for bla1";

 // cmd.setParameter("description", blaDescription);

 // System.out.println("\nSet description parameter to " +

 // cmd.getParameter("description"));

 // Call the asynchronous command client to

Chapter 8. Administering business-level applications using programming 197

// process the command parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Call the asynchronous command client to run the command.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted command execution");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 } else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification.

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

You can add business-level applications or assets as composition units into the newly created

business-level application. Alternatively, you can add the newly created business-level application to other

business-level applications.

Importing an asset using programming

You can import an asset to register the asset with the product and optionally store the asset in the product

repository so that you can later use that asset in a business-level application. An asset represents at least

one binary file that implements business logic.

198 Developing and deploying applications

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interfaces documentation.

You can import an asset using programming, the administrative console, or the wsadmin tool.

About this task

When you import an asset, you register the asset with the product and optionally store the asset in the

product repository.

You must provide a file path to the source that you are importing. Specify an absolute path name to the

source, as the behavior for a relative path is unpredictable.

You can specify a destination location from where the application server reads the asset file while starting

a composition unit created from the asset. The asset is copied to this location when the configuration

session is saved after the asset is imported. The default asset destination is profile_root/installedAssets/
asset_name.

You can optionally specify a storage type of FULL, METADATA, or NONE. The default value is FULL,

which means that the asset and associated meta data are stored in the product asset repository. If you

specify a storage type of METADATA, the asset is not copied to the product repository, but associated

meta data is stored in the product repository. If you specify a storage type of NONE, neither the asset nor

the asset meta data is stored in the product asset repository. For storage types of METADATA and NONE,

the asset is expected to reside at the destination file path. Storage types of METADATA and NONE are

typically used by development tools which enable iterative development on the copy of the asset in the

directory structure of the tool.

Perform the following steps to import an asset using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to set up the command that imports an

asset.

The command name is importAsset. The source parameter is a required parameter that you use to

specify the path to the asset. You can optionally provide the storageType parameter to specify how to

save the asset in the configuration repository.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

Chapter 8. Administering business-level applications using programming 199

7. Set up the command step parameters.

You can set parameters in the AssetOptions step that contains data about the asset such as its

description, file permission, and relationship with other assets.

8. Call the asynchronous command client to run the command that imports an asset.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

9. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, the asset is imported.

Example

The following example shows how to import an asset based on the previous steps.

Some statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.UploadFile;

import com.ibm.websphere.management.exception.AdminException;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class ImportAsset {

 public static void main (String [] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local

 // command manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

 // to get the soapClient soap client if you use the local

 // command manager.

 String host = "localhost";

 String port = "8880"; //Change to your port number if it is not

 //8880.

 Properties config = new Properties();

 config.put (AdminClient.CONNECTOR_HOST, host);

 config.put (AdminClient.CONNECTOR_PORT, port);

 config.put (AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println ("Config: " + config);

200 Developing and deploying applications

AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager:

 //

 //CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create the asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required:

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Setup the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace the following listener with

 // null for the AsyncCommandClient object.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 String cmdName = "importAsset";

 UploadFile assetSource = new

UploadFile("/sources/test5.zip"); //Change to the directory of your sources.

 // Create the command to import an asset.

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); //import the asset using

 //the session created

 System.out.println("\nCreated " + cmdName);

 // Set the source command parameter.

 cmd.setParameter("source", assetSource);

 System.out.println("\nSet source parameter to " +

 cmd.getParameter("source"));

 // Uncomment the following line to set the storage type to

 // a value of STORAGETYPE_META or STORAGETYPE_NONE instead of

 // the default of STORAGETYE_FULL:

 //

 //cmd.setParameter(“storageType,

 // CommandConstants.STORAGETYPE_NONE);

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 }

 catch(Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

Chapter 8. Administering business-level applications using programming 201

System.exit(-1);

 }

 // Set up the step parameters for the AssetOptions step.

 String stepName = "AssetOptions";

 CommandStep step = ((TaskCommand) cmd).gotoStep(stepName);

 // The new asset name must contain the

 // same extension as the original .zip file name.

 String assetNewName = "asset1.zip";

 // If you override the default destination, include the

 // entire path with the file name for the new destination.

 String destName = "/websphere/asset/installDir/asset1.zip";

 for (int i = 0; i < step.getNumberOfRows(); i++) {

 // The following lines change the name and destination

 // step parameters. Other step parameters that you can

 // use follow, but are commented out.

 // Change your set

 // of step parameters as required by your scenario.

 // Set the name.

 step.setParameter("name", assetNewName, i);

 System.out.println("\nSet name parameter to " +

 step.getParameter("name", i));

 // Set the destination.

 step.setParameter("destination", destName, i);

 System.out.println("\nSet destination parameter to " +

 step.getParameter("destination", i));

 // Set the description.

 //String desc = "description for asset1.zip";

 //step.setParameter("description", desc, i);

 //System.out.println("\nSet description parameter to " +

 // step.getParameter("description", i));

 // Set the validation.

 //String validate = "Yes";

 //step.setParameter("validate", validate, i);

 //System.out.println("\nSet validate parameter to " +

 // step.getParameter("validate", i));

 // Set the file permission.

 //String filePermission = ".*\\.dll=755";

 //step.setParameter("filePermission", filePermission, i);

 //System.out.println("\nSet filePermission parameter to " +

 // step.getParameter("filePermission", i));

 // Set the type aspect parameter value.

 // Format for a typeAspect: WebSphere:spec=xxx,version=n.n+

 // Websphere:spec=xxx,version=n.n.

 //String typeAspect = "";

 //step.setParameter("typeAspect", typeAspect, i);

 //System.out.println("\nGet typeAspect: " +

 // step.getParameter("typeAspect", i));

 // Set the relationship parameter.

 // The relationship parameter declares dependency

 // relationships on other assets. The parameter value

 // is a list which contains the ID of each asset declared

 // as a dependency. Each ID in the list is separated by

 // a "plus" sign ("+").

 //

 // Only assets which are Java archives can be referenced in

 // dependency relationships. An asset is a Java archive if

202 Developing and deploying applications

// it has a type aspect identifying it as such.

 //

 // If an asset declared as a dependency does not exist or

 // does not have a Java archive type aspect, it is ignored

 // and no dependency on the asset is registered in the

 // asset’s configuration.

 //

 //String relationship =

 // "assetname=shared.zip+assetname=shared2.zip";

 //step.setParameter("relationship", relationship, i);

 //System.out.println("\nGet relationship: " +

 // step.getParameter("relationship", i));

 }

 // Call the asynchronous command client that imports the asset.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running of command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully " +

 "with result\n" + result.getResult());

 } else {

 System.out.println("\nCommand ran with " +

 "exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

Add a composition unit to a business-level application using the asset that you imported. An asset included

in a business-level application is represented by a composition unit.

Adding a composition unit using programming

You can add an asset to a business-level application by creating a composition unit for the asset. A

composition unit is typically created from a business-level application or an asset and contains

configuration information that makes the asset runnable.

Chapter 8. Administering business-level applications using programming 203

Before you begin

Before you can add a composition unit to a business-level application, you must have created an empty

business-level application and imported an asset.

You can add a composition unit to a business-level application using programming, the administrative

console, or the wsadmin tool.

About this task

When you add a composition to a business-level application, the composition unit is configured for the

specified business-level application. The composition unit cannot be shared with other business-level

applications.

Perform the following steps to add a composition unit to a business-level application using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that

adds a composition unit.

The command name is addCompUnit. The blaID and cuSourceID parameters are required parameters

that you use to specify composition unit source to be added to the business-level application.

Examples of composition unit source are an asset or a business-level application. You can optionally

provide deployable units for the composition unit through the deplUnit parameter. If the cuSourceID

parameter is a Java Platform, Enterprise Edition (Java EE) asset, you can optionally use the

cuConfigStrategyFile parameter or the defaultBindingOptions parameter to specify the default bindings.

The defaultBindingOptions parameter must match the binding options available for this Java EE asset.

To view a list of binding options available for this Java EE asset, look at the AssetOptions step in the

viewAsset command. Specify each binding option in an option_name=option_value pair, with multiple

pairs separated by a # character.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Set up the command step parameters.

You can set up composition unit information through various steps. The CUOptions step contains data

about the composition unit such as its description, starting weight, and start and restart behavior. The

MapTargets step contains target information about where the composition unit is to be deployed. The

RelationshipOptions step contains shared library composition units on which this composition unit has

dependencies. The ActivationPlanOptions step allows you to specify runtime components for each

204 Developing and deploying applications

deployable unit. The CreateAuxCUOptions step contains assets on which this composition unit has

dependencies. You can set up parameters in these steps.

8. Call the asynchronous command client to run the command that adds a composition unit to a

business-level application.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

9. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, the composition unit is added to the business-level application.

Example

The following example shows how to import an asset based on the previous steps. Some statements are

split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class AddCompUnit {

 public static void main(String [] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local command

 // manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

 // to get the soapClient soap client if you use the

 // local command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if it is

 // not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager

Chapter 8. Administering business-level applications using programming 205

CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager:

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create the asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required:

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace the following listener with

 // null for the AsyncCommandClient object.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command to add a composition unit to a business-level application.

 String cmdName = "addCompUnit";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // Add the composition unit using

 // the session created.

 System.out.println("\nCreated " + cmdName);

 // Set the blaID command parameter.

 // Examples of valid formats for the blaID parameter are:

 // - bName

 // - blaname=bName

 // - WebSphere:blaname=bName

 // This parameter accepts an

 // incomplete ID as long as the incomplete

 // ID can resolve to a unique business-level application.

 String blaID = "bla1";

 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "

 + cmd.getParameter("blaID"));

 // Set the cuSourceID command parameter.

 // Examples of valid formats for the cuSourceID parameter:

 // If the source is an asset, examples are:

 // - aName

 // - assetname=aName

 // - WebSphere:assetname=aName

 // If the source is another business-level application,

 // examples are:

 // - bName

 // - blaname=bName

 // - WebSphere:blaname=bName

 // The cuSourceID command parameter

 // accepts an incomplete ID as long as the incomplete

 // ID can resolve to a unique asset or business-level application.

 String cuSourceID = "assetname=asset1.zip";

 cmd.setParameter("cuSourceID", cuSourceID);

206 Developing and deploying applications

System.out.println("\nSet cuSourceID parameter to "

 + cmd.getParameter("cuSourceID"));

 // Set the deplUnits command parameter.

 // If the deployable units of an asset are, for example, a.jar and

 // b.jar, then when you run the addCompUnit command you can

 // specify deplUnits as a.jar+b.jar. You can specify the whole

 // list, a subset of that list, or "default" to create this composition

 // unit as a shared library. If the deplUnits parameter is not specified,

 // the deployable units are set the same as that of their asset.

 String deplUnits = "default";

 cmd.setParameter("deplUnits", deplUnits);

 System.out.println("\nSet deplUnits parameter to "

 + cmd.getParameter("deplUnits"));

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Set up the step parameters for the CUOptions step.

 // The CUOptions step contains the following arguments:

 // description - description for the composition unit

 // startingWeight - starting weight for the composition

 // unit within the business-level application. The default is 1.

 // startedOnDistributed - to start composition unit upon distribution

 // to target nodes. The default is false.

 // restartBehaviorOnUpdate - restart behavior for a composition unit when

 // updating the composition unit.

 // The default is DEFAULT. Valid values are DEFAULT, ALL, and NONE.

 String stepName = "CUOptions";

 CommandStep step = ((TaskCommand) cmd).gotoStep(stepName);

 // Composition unit name:

 String name = "cu1";

 // Composition unit description:

 String description = "cu1 description";

 for(int i = 0; i < step.getNumberOfRows(); i++) {

 // The following lines change the composition unit name and

 // description step parameters of the CUOptions step. Change

 // your set of step parameters as required for your

 // scenario.

 // Set the name.

 step.setParameter("name", name, i);

 System.out.println("\nSet name parameter to " +

 step.getParameter("name", i));

 // Set the description.

 step.setParameter("description", description, i);

 System.out.println("\nSet description parameter to " +

 step.getParameter("description", i));

 }

 // Set up the step parameters for the MapTargets step.

 stepName = "MapTargets";

 step = ((TaskCommand) cmd).gotoStep(stepName);

Chapter 8. Administering business-level applications using programming 207

// Specify the targets to deploy the composition unit.

 // The default is server1. Use the + character to

 // specify multiple targets.

 String server = "server1";

 for(int i = 0; i < step.getNumberOfRows(); i++) {

 // The following lines change the composition unit and

 // server step parameters of the

 // MapTargets step. Change your set of step parameters

 // as required for your scenario.

 // Set the server.

 step.setParameter("server", server, i);

 System.out.println("\nSet server parameter to " +

 step.getParameter("server", i));

 }

 // The addCompUnit command might contain the

 // CreateAuxCUOptions, RelationshipOptions and ActivationPlanOptions

 // steps, depending on the asset content of the assets imported.

 // The CreateAuxCUOptions step is available if the cuSourceID value

 // is an asset. The asset includes an asset relationship to an

 // asset that does not have a matching composition unit in the

 // business-level application.

 //

 // If the CreateAuxCUOptions step is available, the selected

 // deployable units of the source asset of the "primary" composition

 // unit (that is, the composition unit being added) have dependencies

 // on other assets for which there are no matching composition units

 // in the business-level application. A "secondary" composition unit will be created for each

 // of those asset dependencies.

 //

 // Each CreateAuxCUOptions row corresponds to one dependency

 // relationship declaration. Each row consists of parameter values

 // for the dependency relationship. Some parameters are read-only and

 // some of them are editable. To edit parameter values, use the same

 // approach as that used to edit parameter values in the CUOptions step.

 //

 // The parameters for this step include:

 //

 // deplUnit - The name of the deployable unit which has the

 // dependency. (Read-only.)

 // inputAsset - The asset ID for the source asset of the primary

 // composition unit. (Read-only.)

 // cuID - The name of the secondary composition unit to create.

 // matchTarget - Specifies whether the server target for the secondary

 // composition unit is to match the server target for

 // the primary composition unit. The default value

 // is "true". If the value is set to "false", the

 // secondary composition unit will be created with no

 // target. The target on the secondary composition unit

 // can be set at a later time with the editCompUnit

 // command.

 //

 // If the RelationshipOptions step is available, the selected

 // deployable units of the source asset of the "primary" composition

 // unit (that is, the composition unit being added) have dependencies

 // on other assets for which there are matching "secondary" composition

 // units in the business-level application. The RelationshipOptions step is much like

 // CreateAuxCUOptions except that the required secondary composition

 // units already exist. Also, each RelationshipOptions row maps one

 // deployable unit to one or more secondary composition units, whereas,

 // each CreateAuxCUOptions row maps one deployable unit to one

 // asset dependency.

 //

 // Each RelationshipOptions row corresponds to one deployable unit

208 Developing and deploying applications

// with one or more dependency relationships and consists of

 // parameter values for the dependency relationships. Some parameters

 // are read-only and some of them are editable. To edit parameter

 // values, use the same approach as that used to edit parameter values

 // in the CUOptions step.

 //

 // The parameters for this step include:

 //

 // deplUnit - The name of the deployable unit which has the

 // dependency. (Read-only.)

 // relationship - Composition unit dependencies in the form of a

 // list of composition unit IDs. Composition unit

 // IDs are separated by a "plus" sign ("+"). Each ID

 // can be fully or partially formed as shown with the

 // following examples:

 // WebSphere:cuname=SharedLib1.jar

 // WebSphere:cuname=SharedLib.jar

 // SharedLib.jar

 // matchTarget - Specifies whether the server target for the secondary

 // composition units are to match the server target for

 // the primary composition unit. The default value

 // is "true". If the value is set to "false", the

 // secondary composition unit will be created with no

 // target. The target on the secondary composition unit

 // can be set at a later time with the editCompUnit

 // command.

 // The addCompUnit command contains the ActivationPlanOptions step.

 // The user can set the ActivationPlanOptions step parameters

 // similar to the step parameters for the CUOptions step in

 // the previous examples. The arguments for this step include:

 // deplUnit – deployable unit URI (read only parameter)

 // activationPlan - specifies a list of runtime components in the

 // format of specname=xxxx

 //

 // Run the command to add the composition unit.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running of command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

Chapter 8. Administering business-level applications using programming 209

System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

Start the business-level application to which you added the composition unit. Complete administrative

tasks such as viewing or deleting the composition unit.

Starting a business-level application using programming

You can start a business-level application, which starts each composition unit in that business-level

application. Each composition unit is started on the respective targets on which the business-level

application is deployed.

Before you begin

Before you can start a business-level application, you must have created an empty business-level

application, imported an asset, and added a composition unit to the business-level application.

You can start a business-level application using programming, the administrative console, or the wsadmin

tool.

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interfaces documentation.

About this task

You must specify the blaID parameter of the business-level application that you start.

Perform the following steps to start a business-level application using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to set up the command that starts a

business-level application.

The command name is startBLA. The blaID parameter is a required parameter to specify the

business-level application to start.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

210 Developing and deploying applications

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command that starts a business-level application.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, the business-level application is started.

Example

The following example shows how to start a business-level application based on the previous steps. Some

statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class startBLA {

 public static void main(String [] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local command

 // manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

 // to get the soapClient soap client if

 // you use the local command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if it is

 // not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

Chapter 8. Administering business-level applications using programming 211

// Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager:

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler

 // for listening to command notifications.

 // Comment out the following line if no further handling

 // of command notification is required:

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with

 // null for the AsyncCommandClient object that follows.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command that starts the business-level application.

 String cmdName = "startBLA";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // Start a business-level

 //application using the session created.

 System.out.println("\nCreated " + cmdName);

 // (required) Set the blaID parameter.

 // Examples of valid formats for the blaID parameter are:

 // - bName

 // - blaname=bName

 // - WebSphere:blaname=bName

 // This parameter

 // accepts an incomplete ID as long as the incomplete

 // ID can resolve to a unique business-level application.

 String blaID = "bla1";

 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "

 + cmd.getParameter("blaID"));

 // Call asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Call the asynchronous command client to run the command command.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running the command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

212 Developing and deploying applications

if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

Your users can access the business-level application that you started.

Stopping a business-level application using programming

You can stop a business-level application, which stops each composition unit in that business-level

application. Each composition unit is stopped on the respective targets on which the business-level

application is deployed.

Before you begin

Before you can stop a business-level application, you must have created an empty business-level

application, imported an asset, added a composition unit to the business-level application, and started the

business-level application.

About this task

You can stop a business-level application using programming, the administrative console, or the wsadmin

tool. This topic describes how to stop a business-level application using programming.

Perform the following steps to stop a business-level application using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Chapter 8. Administering business-level applications using programming 213

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step Create and set up the command that

stops a business-level application.

The command name is stopBLA. The blaID parameter is a required parameter to specify the

business-level application to stop.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command that stops a business-level application.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, the business-level application is stopped.

Example

The following example shows how to stop a business-level application based on the previous steps. Some

statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class stopBLA {

 public static void main(String [] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local command

 // manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

214 Developing and deploying applications

// to get the soapClient soap client if

 // you use the local command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if it is

 // not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manage:.

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler

 // for listening to command notifications.

 // Comment out the following line if no further handling

 // of command notification is required.

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with

 // null for the AsyncCommandClient object that follows.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command that stops the business-level application.

 String cmdName = "stopBLA";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // Stop a business-level

 //application that is using the session created.

 System.out.println("\nCreated " + cmdName);

 // (required) Set the blaID parameter.

 // Examples of valid formats for the blaID parameter are:

 // - bName

 // - blaname=bName

 // - WebSphere:blaname=bName

 // This parameter

 // accepts an incomplete ID as long as the incomplete

 // ID can resolve to a unique business-level application.

 String blaID = "bla1";

 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "

 + cmd.getParameter("blaID"));

Chapter 8. Administering business-level applications using programming 215

// Call asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Call the asynchronous command client to run the command command.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running of command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

Complete administrative tasks on the business-level application, such as editing an asset or a composition

unit that is contained in the business-level application.

Checking the status of a business-level application using

programming

You can check the status of an entire business-level application. You can also limit the status to a

particular composition unit of a business-level application, a specific deployment target, or check the status

of the composition unit and the deployment target at the same time.

216 Developing and deploying applications

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interface documentation.

Before you can check the status of a business-level application or a composition unit, you must have

created the business-level application.

You can check the status of a business-level application using programming, the administrative console, or

the wsadmin tool.

About this task

You must provide the blaID parameter to specify the business-level application that you are viewing.

Perform the following tasks to view a business-level application using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Create and set up the getBLAStatus command to check the status of a business-level application.

a. Set the blaID parameter for the business-level application whose status you want to check.

b. Optionally set the cuID parameter if you want to narrow the scope of the query to a single

composition unit.

c. Optionally set the targetID if you want to narrow the scope of the query to a single target server

process or cluster.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command to check the status of the business-level

application.

You could have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Chapter 8. Administering business-level applications using programming 217

Results

After you successfully run the code, you can check the status of an entire business-level application, if you

chose not to limit the status. If you chose options to limit the status, you could check the status to a

particular composition unit of a business-level application, a specific deployment target, or check the status

of the composition unit and the deployment target at the same time.

The smallest unit of status data that the system maintains is for a single composition unit in a single server

or cluster member process. Business-level application status can be based on one or more composition

units, each having one or more targets, with targets potentially consisting of clusters with multiple member

processes. Therefore, the single status value returned from the getBLAStatus command is a compilation of

individual status data for all composition units on all target process within the scope of the status query.

The following table describes how individual status data is compiled into a single status value. The term

composition unit instance used in the table refers to a composition unit on a single server or single cluster

member process.

 Status Description

ExecutionState.STARTED All composition unit instances within the scope of the

query have been started.

ExecutionState.STOPPED All composition unit instances within the scope of the

query have not been started or have been stopped.

ExecutionState.PARTIAL_START Some composition unit instances within the scope of the

query have a status of ExecutionState.STARTED and

some have a status of ExecutionState.STOPPED.

ExecutionState.UNKNOWN Status data for at least one composition instance within

the scope of the query cannot be obtained for some

reason.

Example

The following example shows how to check the status of a business-level application based on the

previous steps. Some statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class EditBLA {

 public static void main(String[] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local command manager.

 // Comment out the following lines to get the soapClient soap client if

 // you are going to use the local command manager. You would

 // comment out the lines to and including

 // CommandMgr cmdMgr =

 // CommandMgr.getClientCommandMgr(soapClient);

218 Developing and deploying applications

String host = "localhost"; // Change to your host if it is not localhost.

 String port = "8880"; // Change to your port number if it is not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager.

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required.

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 // This example creates a new session. You can replace the

 // following code to use an existing session that has been

 // created.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with

 // null for the following AsyncCommandClient object.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command.

 String cmdName = "getBLAStatus";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // Check the status

 // using the session

 // created

 System.out.println("\nCreated " + cmdName);

 // Set the required blaID parameter

 // Examples of valid formats for the blaID parameter are:

 // - bName

 // - blaname=bName

 // - WebSphere:blaname=bName

 String blaID = "MyBLA"; // Replace the MyBLA value with your

 // blaID value.

 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "

 + cmd.getParameter("blaID"));

 // Optionally set the cuID parameter.

Chapter 8. Administering business-level applications using programming 219

String cuID = "myCU.zip"; // Replace the myCU.zip value with your

 // cuID value.

 cmd.setParameter("cuID", cuID);

 System.out.println("\nSet cuID parameter to "

 + cmd.getParameter("cuID"));

 // Optionally set the targetID parameter.

 // The format of the targetID parameter for a cluster

 // is WebSphere:cluster=cluster1

 String targetID = "WebSphere:node=node1,server=server1"; // Replace

 // this with your targetID value.

 cmd.setParameter("targetID", targetID);

 System.out.println("\nSet targetID parameter to "

 + cmd.getParameter("targetID"));

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted processCommandParameters");

 } catch (Throwable th) {

 System.out.println("Throwing an exception from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Run the command to check the status of the

 // business-level application.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted command execution");

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand executed successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand executed with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification.

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

220 Developing and deploying applications

What to do next

You can use the results of the status check to perform other tasks. For instance, if the results indicate that

none of the composition units is started, you could start the business-level application.

Deleting a business-level application using programming

You can delete a business-level application using programming. You might delete a business-level

application if it is not functioning correctly, it is no longer needed, and so on.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interfaces documentation.

Before you can delete a business-level application, you must have created an empty business-level

application. You can optionally have added assets or business-level applications as composition units to

the empty business-level application. All the composition units in the business-level application must be

deleted using the deleteCompUnit command before you delete the business-level application. Other

business-level applications cannot reference the business-level application that you are deleting.

Otherwise, the deletion fails.

You can delete a business-level application using programming, the administrative console, or the

wsadmin tool.

About this task

You must specify the blaID parameter of the business-level application that you are deleting. You might

delete a business-level application if it is not functioning correctly, no longer needed, and so on.

Perform the following steps to delete a business-level application using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager you created in a previous step to create and set up the command that

deletes the business-level application.

The command name is DeleteBLA. The blaID parameter is a required parameter to specify the

business-level application to delete.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

Chapter 8. Administering business-level applications using programming 221

7. Call the asynchronous command client to run the command that deletes the business-level application.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, the business-level application is deleted.

Example

The following example shows how to delete a business-level application based on the previous steps.

Some statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class DeleteBLA {

 public static void main(String [] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local

 // command manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

 // to get the soapClient soap client if you use the local

 // command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if it is

 // not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

222 Developing and deploying applications

// manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager:

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required:

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Setup the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace listener with

 // null for the following AsyncCommandClient object:

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command that deletes the business-level application.

 String cmdName = "deleteBLA";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // Delete the business-level

 // application using the session created.

 System.out.println("\nCreated " + cmdName);

 // Set the blaID parameter to the business-level application to delete.

 // Examples of valid formats for the blaID parameter are:

 // - bName

 // - blaname=bName

 // - WebSphere:blaname=bName

 // This parameter accepts an incomplete ID as long as the incomplete

 // ID can resolve to a unique business-level application.

 String blaID = "bla1";

 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "

 + cmd.getParameter("blaID"));

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Call the asynchronous command client to run the command.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running of the command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

Chapter 8. Administering business-level applications using programming 223

+ "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

You can complete other tasks associated with business-level applications, such as creating other

business-level applications, stopping and starting business-level applications, and so on.

Deleting an asset using programming

You can delete an asset from a business-level application using programming if the asset is not

functioning correctly, the asset is no longer needed, and so on. An asset represents at least one binary file

that implements business logic.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interface documentation.

Before you can delete an asset, you must have imported the asset. All the composition units associated

with the asset must be deleted using the deleteCompUnit command before you delete the asset.

Otherwise, you have to force the deletion. If you do not force the deletion, the deletion fails. If any other

composition units have a dependency on a composition unit being deleted with the force option, the

deletion fails. After all dependencies on the composition unit are removed, the force option succeeds.

About this task

You can delete an asset using programming, the administrative console, or the wsadmin tool. Use this

topic to delete an asset using programming.

You must specify the assetID parameter of the asset that you are deleting. You might delete an asset if it

is not functioning correctly, it is no longer needed, and so on.

Perform the following tasks to delete an asset using programming.

224 Developing and deploying applications

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that

deletes an asset.

The command name is deleteAsset. The assetID parameter is a required parameter to specify the

asset to delete. You can optionally specify the delete parameter to force deletion of an asset if

composition units are still associated with the asset.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command that deletes an asset.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, the asset is deleted.

Example

The following example shows how to delete an asset from a business-level application based on the

previous steps. Some statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

Chapter 8. Administering business-level applications using programming 225

public class DeleteAsset {

 public static void main(String [] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local

 // command manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

 // to get the soapClient soap client if you use the local

 // command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if it is

 // not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager.

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required.

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace listener with

 // null for the following AsyncCommandClient object:

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command that deletes the asset.

 String cmdName = "deleteAsset";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // Delete the asset from the

 // business-level application using the session created.

 System.out.println("\nCreated " + cmdName);

 // Set the assetID parameter to the asset that is to be

 // deleted.

 // Examples of valid formats for the assetID parameter are:

226 Developing and deploying applications

// - aName

 // - assetname=aName

 // - WebSphere:assetname=aName

 // This parameter will accept an incomplete ID as long as

 // the incomplete ID can resolve to a unique asset

 // in the business-level application.

 String assetID = "as1";

 cmd.setParameter("assetID ", assetID);

 System.out.println("\nSet assetID parameter to "

 + cmd.getParameter("assetID "));

 // Uncomment the following line of code to set the force parameter

 // to force the deletion even if there are composition units

 // associated with this asset.

 //

 // cmd.setParameter("force", "true");

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Call the asynchronous command client to run the command.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running the command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

Chapter 8. Administering business-level applications using programming 227

What to do next

You can complete other steps associated with assets in business-level applications, such as adding or

deleting other assets, listing assets, exporting assets, and so on.

Deleting a composition unit using programming

You can delete a composition unit from a business-level application if the composition unit is not

functioning correctly, the composition unit is no longer needed, and so on. A composition unit is typically

created from a business-level application or an asset and contains configuration information that makes

the asset runnable.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interfaces documentation.

Before you can delete a composition unit, you must have created an empty business-level application,

imported an asset, and added a composition unit to the business-level application. If other composition

units depend on the composition unit that you are deleting and you do not use the force option, the

deletion fails.

About this task

You can delete a composition unit using programming, the administrative console, or the wsadmin tool.

This topic describes how to delete a composition unit using programming.

You must provide the blaID and cuID parameters to specify the composition unit that you are deleting from

the business-level application.

Perform the following tasks to delete a composition unit using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that

deletes a composition unit.

The command name is deleteCompUnit. The blaID and cuID parameters are required parameters. The

cuID parameter is used to specify the composition unit to delete from the business-level application,

which is specified with the blaID. You can optionally provide the force parameter to force the deletion if

other composition units depend on this composition unit.

228 Developing and deploying applications

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command that deletes a composition unit.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, the composition unit is deleted.

Example

The following example shows how to delete a composition unit from a business-level application based on

the previous steps. Some statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class DeleteCompUnit {

 public static void main(String [] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local

 // command manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // to get the soapClient soap client if

 // you use the local command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if it is

 // not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

Chapter 8. Administering business-level applications using programming 229

// Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager:

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required:

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace listener with

 // null for the following AsyncCommandClient object:

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command that deletes the composition unit.

 String cmdName = "deleteCompUnit";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // Delete the composition unit from

 // the business-level application

 // using the session created.

 System.out.println("\nCreated " + cmdName);

 // Set the blaID parameter to the business-level application with

 // the composition unit to delete.

 // Examples of valid formats for the blaID parameter are:

 // - bName

 // - blaname=bName

 // - WebSphere:blaname=bName

 // This parameter accepts an incomplete ID as long as

 // the incomplete ID can resolve to a unique

 // business-level application.

 String blaID = "bla1";

 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "

 + cmd.getParameter("blaID"));

 // Set the cuID parameter to the composition unit that is to be

 // deleted.

 // Examples of valid formats for the cuID parameter are:

 // - name

 // - cuname=name

 // - WebSphere:cuname=name

 // This parameter accepts an incomplete ID as long as the

 // incomplete ID can resolve to a unique composition unit

 // within the business-level application.

 String cuID = "cu1";

 cmd.setParameter("cuID", cuID);

 System.out.println("\nSet cuID parameter to "

 + cmd.getParameter("cuID"));

230 Developing and deploying applications

// Uncomment the following line of code to set the force parameter

 // to force the deletion even if other composition units depend

 // on this composition unit.

 //

 // cmd.setParameter("force", "true");

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Call the asynchronous command client to run the command.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running of the command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

You can complete other tasks associated with the business-level application, such as adding or deleting

other composition units, listing composition units, and so on.

Chapter 8. Administering business-level applications using programming 231

Exporting an asset using programming

You can export an asset from the current session so that you can back up the asset, import the asset to

another session, and so on. An asset represents at least one binary file that implements business logic.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interfaces documentation.

This task assumes that you have already imported an asset.

About this task

You can export an asset using programming, the administrative console, or the wsadmin tool. This topic

describes how to export an asset using programming.

You must provide an assetID parameter value and a file name parameter value to export an asset. The

assetID parameter identifies the asset you want to export. An asset ID can take a number of forms. The

list below shows various forms for an asset named asset1.jar.

v asset1.jar

v assetname=asset1.jar

v WebSphere:assetname=asset1.jar

The filename parameter specifies a file system file name and location for the exported asset. Specify a

fully qualified file path for the file name parameter because the results with relative path names are

unpredictable. If you specify a file name parameter of a file that already exists, the file is overwritten with

the exported asset.

Perform the following tasks to export an asset from a business-level application using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that

exports an asset.

The command name is exportAsset. The assetID and filename parameters are required parameters to

specify the asset to export and the file name and directory where the asset is exported.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

232 Developing and deploying applications

7. Call the asynchronous command client to run the command that exports an asset.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, the asset is exported.

Example

The following example shows how to export an asset from a business-level application based on the

previous steps.

Some statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class ExportAsset {

 public static void main(String [] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local

 // command manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

 // to get the soapClient soap client if you use the local

 // command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if it is

 // not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

Chapter 8. Administering business-level applications using programming 233

// Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager:

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required:

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace the following listener with

 // null for the AsyncCommandClient object.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create command that exports the asset.

 String cmdName = "exportAsset";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // Export as asset

 // using the session created.

 System.out.println("\nCreated " + cmdName);

 // (required) Set the assetID parameter to the composition

 // unit that you are exporting.

 // Examples of valid formats for the assetID parameter are:

 // - aName

 // - assetname=aName

 // - WebSphere:assetname=aName

 // This parameter accepts an incomplete ID as long as

 // the incomplete ID can resolve to a unique asset

 // within the business-level application.

 String assetID = "test5.zip";

 cmd.setParameter("assetID", assetID);

 System.out.println("\nSet assetID parameter to "

 + cmd.getParameter("assetID"));

 // Set the file name for the asset to be exported. Use a

 // fully qualified path name. An existing file with the specified

 // name will be overwritten.

DownloadFile filename = new DownloadFile("/assets/asset1.zip");

 cmd.setParameter("filename", filename);

 System.out.println("\nSet filename parameter to "

 + cmd.getParameter("filename"));

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

234 Developing and deploying applications

"asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Call the asynchronous command client to run the command.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running of the command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

You can import the asset to another session. You can complete other tasks associated with assets, such

as listing assets, and editing assets.

Listing assets using programming

You can list the assets that have been imported so that you can do further asset administration, such as

deleting or exporting assets. An asset represents at least one binary file that implements business logic.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interfaces documentation.

You can list assets using programming, the administrative console, or the wsadmin tool.

About this task

You can list assets using programming, the administrative console, or the wsadmin tool. This topic

describes how to list assets using programming.

Chapter 8. Administering business-level applications using programming 235

When you list assets, all the assets are listed unless you set the assetID to specify the asset that you

want to list. You can optionally include deployable units or a description of the assets when you list the

assets. After you list the assets, you can use the information to do further administration, such as deleting

or exporting assets.

Perform the following tasks to list assets using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that

lists assets.

The command name is listAssets. You can optionally set the assetID parameter to query for assets

that match the ID. You can also optionally set the includeDescription parameter and the

includeDeplUnit parameter to include the display of the asset description and its deployable units.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to list the asset.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, a list of assets is displayed.

Example

The following example shows how to list the assets based on the previous steps. Some statements are

split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

236 Developing and deploying applications

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class ListAssets {

 public static void main(String[] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local

 // command manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

 // to get the soapClient soap client if you use the local

 // command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if

 // it is not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager:

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required.

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace listener with

 // null for the AsyncCommandClient object.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command that lists the assets.

 String cmdName = "listAssets";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // list all the assets

 // using the session created.

Chapter 8. Administering business-level applications using programming 237

System.out.println("\nCreated " + cmdName);

 // Optionally set the assetID parameter.

 // Uncomment the following code to set the assetID parameter to

 // only list the asset with the ID specified, otherwise all

 // assets are listed. Change the assetID parameter according to your

 // scenario.

 // Examples of valid formats for the assetID parameter are:

 // - aName

 // - assetname=aName

 // - WebSphere:assetname=aName

 // All assets that match the ID specification are listed.

 // The ID must include at least the asset name.

 // String assetID = "asset1.zip";

 // cmd.setParameter("assetID", assetID);

 //System.out.println("\nSet assetID parameter to "

 // + cmd.getParameter("assetID"));

 // Optionally include a description by setting

 // the includeDescription parameter to true or false.

 String includeDescription = "true";

 cmd.setParameter("includeDescription", includeDescription);

 System.out.println("\nSet includeDescription parameter to "

 + cmd.getParameter("includeDescription"));

 // Optionally include deployable units by setting

 // the includeDeplUnit parameter to true or false.

 String includeDeplUnit = "false";

 cmd.setParameter("includeDeplUnit", includeDeplUnit);

 System.out.println("\nSet includeDeplUnit parameter to "

 + cmd.getParameter("includeDeplUnit"));

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Run the command to list assets.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running of the command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

238 Developing and deploying applications

’}

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

You can complete other tasks associated with assets, such as deleting, editing, and exporting assets.

Listing composition units using programming

You can list the composition units for a specific business-level application so that you can complete further

composition unit administration, such as deleting or adding composition units. A composition unit is

typically created from a business-level application or an asset and contains configuration information that

makes the asset runnable.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interfaces documentation.

Before you can list composition units, you must have imported an asset, created an empty business-level

application, and added a composition unit to the business-level application.

About this task

You can list composition units using programming, the administrative console, or the wsadmin tool. This

topic describes how to list composition units using programming.

You must provide the blaID parameter to specify the business-level application to list the composition unit.

When you list composition units for a business-level application, you can optionally list the type for each

composition unit and the description for each composition unit that has a description. You can use the list

to complete further administration, such as deleting or exporting composition units.

Perform the following tasks to list composition units for a business-level application using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Chapter 8. Administering business-level applications using programming 239

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that

lists composition units.

The command name is listCompUnits. The blaID parameter is a required parameter that you use to

specify the business-level application to list the composition units. You can optionally set the

includeDescription parameter to display the composition unit descriptions. You can also optionally set

the includeType parameter to display the composition unit types.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to list the composition units.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, a list of composition units for a business-level application is displayed.

Example

The following example shows how to list the composition units of a specific business-level application

based on the previous steps. Some statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class ListCompUnits {

 public static void main(String[] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local

 // command manager. comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

240 Developing and deploying applications

// to get the soapClient soap client if you use the local

 // command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if

 // it is not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager:

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required:

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with

 // null for the AsyncCommandClient object.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command that lists the composition units.

 String cmdName = "listCompUnits";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // List all the compostion units

 // for the business-level application

 // with this session ID.

 System.out.println("\nCreated " + cmdName);

 // Set the blaID parameter to the business-level application

 // whose composition units are listing.

 // Examples of valid formats for the blaID parameter are:

 // - bName

 // - blaname=bName

 // - WebSphere:blaname=bName

 // This parameter accepts an incomplete ID as long as the incomplete

 // ID can resolve to a unique business-level application.

 String blaID = "bla1";

 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "

 + cmd.getParameter("blaID"));

Chapter 8. Administering business-level applications using programming 241

// Optionally include descriptions for each composition unit

 // that has a description by setting

 // the includeDescription parameter to true or false.

 String includeDescription = "true";

 cmd.setParameter("includeDescription", includeDescription);

 System.out.println("\nSet includeDescription parameter to "

 + cmd.getParameter("includeDescription"));

 // Optionally include types for each composition unit

 // by setting the includeType parameter to true or false.

 String includeType = "true";

 cmd.setParameter("includeType", includeType);

 System.out.println("\nSet includeType parameter to "

 + cmd.getParameter("includeType"));

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Run the command to list the composition units.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running of command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

242 Developing and deploying applications

What to do next

Now that you have listed the composition units for a business-level application, you can complete other

tasks associated with composition units, such as adding or deleting composition units.

Listing business-level applications using programming

You can list the business-level applications of a session so that you can complete further business-level

application administration such as deleting a business-level application. A business-level application is an

administrative model that captures the definition of an enterprise-level application so that you can perform

specific business functions, such as accounting.

Before you begin

Before you can list business-level applications of a session, you must have created an empty

business-level application.

About this task

You can list business-level applications of a session using programming, the administrative console, or the

wsadmin tool. This topic describes how to list business-level applications using programming.

List all the business-level applications of a session unless you set the blatID parameter to specify the

business-level application that you want to list. You can optionally list the business-level applications with a

description for those that have a description if you set the includeDescription parameter to true. After you

list the business-level applications, you can use the information to do further administration, such as

starting or deleting business-level applications.

Perform the following tasks to list business-level applications of a session using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that

lists business-level applications of a session.

The command name is listBLAs. You can optionally set the blaID parameter to query for business-level

applications that match the ID. You can optionally set the includeDescription parameter to display the

business-level application descriptions.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to list the business-level applications of a session.

Chapter 8. Administering business-level applications using programming 243

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, a list of business-level applications for a session is displayed.

Example

The following example shows how to list the business-level applications of a session based on the

previous steps. Some statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class ListBLAs {

 public static void main(String[] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local

 // command manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

 // to get the soapClient soap client if you use the local

 // command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if

 // it is not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager:

 //

244 Developing and deploying applications

// CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required:

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace listener with

 // null for the AsyncCommandClient object.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command that lists the business-level applications.

 String cmdName = "listBLAs";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // list all the business-level applications

 // using the session created.

 System.out.println("\nCreated " + cmdName);

 // Optionally set the blaID parameter.

 // Uncomment the following code to set the blaID parameter to

 // only list the business-level applications with the ID specified. Otherwise all

 // business-level applications are listed. Change the blaID parameter according

 // to your scenario.

 // Examples of valid formats for the blaID parameter are:

 // - bName

 // - blaname=bName

 // - WebSphere:blaname=bName

 // All business-level applications that match the ID specification

 // are listed. The ID must include at least the business-level

 // application name.

 // String blaID = "bla1";

 // cmd.setParameter("blaID", blaID);

 //System.out.println("\nSet blaID parameter to "

 // + cmd.getParameter("blaID"));

 // Optionally include a description by setting

 // the includeDescription parameter to true instead of false.

 String includeDescription = "true";

 cmd.setParameter("includeDescription", includeDescription);

 System.out.println("\nSet includeDescription parameter to "

 + cmd.getParameter("includeDescription"));

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

Chapter 8. Administering business-level applications using programming 245

// Run the command to list business-level applications.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running of the command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

You can complete other tasks associated with business-level applications, such as deleting, starting, or

stopping business-level applications.

Editing a composition unit using programming

You can edit the configuration information in a composition unit of a business-level application if, for

example, you want to change certain modules in the composition unit that are configured to run in specific

targets. A composition unit is typically created from a business-level application or an asset and contains

configuration information that makes the asset runnable.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interfaces documentation.

Before you can edit a composition unit of a business-level application, you must have created an empty

business-level application, imported an asset, and added a composition unit to the business-level

application.

246 Developing and deploying applications

About this task

You can edit a composition unit of a business-level application using programming, the administrative

console, or the wsadmin tool. This topic describes how to edit a composition unit of a business-level

application using programming.

You must provide the blaID and cuID parameters to specify the composition unit of the business-level

application that you are editing.

Perform the following tasks to edit a composition unit of a business-level application using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that

edits a composition unit of a business-level application.

The command name is editCompUnit. Use the required blaID and cuID parameters to specify the

composition unit of the business-level application that you are editing.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Set up the command step parameters.

You can edit various composition unit information through steps. The CUOptions step contains data

about the composition unit such as its description, starting weight, and start and restart behavior. The

MapTargets step contains target information about where to deploy the composition unit. The

RelationshipOptions step contains shared library composition units on which this composition unit has

a dependency. The ActivationPlanOptions step allows you to change runtime components for each

deployable unit. You can edit parameters in these steps.

8. Call the asynchronous command client to run the command that edits a composition unit of a

business-level application.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

9. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Chapter 8. Administering business-level applications using programming 247

Results

After you successfully run the code, the composition unit of a business-level application is edited.

Example

The following example shows how to edit a composition unit of a business-level application based on the

previous steps. Some statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class EditCompUnit {

 public static void main(String [] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local

 // command manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

 // to get the soapClient soap client if you use the local

 // command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if it is

 // not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager:

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronoous command handler.

 // Comment out the following line if no further handling

 // of command notification is required:

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

248 Developing and deploying applications

// Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with

 // null for the following AsyncCommandClient object:

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command that edits the composition unit.

 String cmdName = "editCompUnit";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // Edit a certain composition

 // unit of a business-level using the session created.

 System.out.println("\nCreated " + cmdName);

 // Set the blaID parameter.

 // Examples of valid formats for the blaID parameter are:

 // - bName

 // - blaname=bName

 // - WebSphere:blaname=bName

 // This parameter accepts an incomplete ID as long as the

 // incomplete ID can resolve to a unique business-level application.

 String blaID = "bla1";

 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "

 + cmd.getParameter("blaID"));

 // Set the cuID parameter.

 // Examples of valid formats for the cuID parameter are:

 // - name

 // - cuname=name

 // - WebSphere:cuname=name

 // This parameter accepts an incomplete ID as long as the

 // incomplete ID can resolve to a unique composition unit

 // within the business-level application.

 String cuID = "cu1";

 cmd.setParameter("cuID", cuID);

 System.out.println("\nSet cuID parameter to "

 + cmd.getParameter("cuID"));

 // Call the asynchronous client helper to process the command parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Set up the step parameters for the CUOptions step.

 // The CUOptions step contains the following arguments that can be edited:

 // description - description for the composition unit

 // startingWeight - starting weight for the composition unit

 // within the business-level application.

 // startedOnDistributed - to start composition unit upon distribution

 // to target nodes.

 // Valid values are true, false.

 // restartBehaviorOnUpdate - restart behavior for the composition

Chapter 8. Administering business-level applications using programming 249

// unit when the compostion unit is updated.

 // Valid values are DEFAULT, ALL, NONE

 String stepName = "CUOptions";

 CommandStep step = ((TaskCommand) cmd).gotoStep(stepName);

 // Composition Unit description:

 String description = "cu1 description changed in editCompUnit";

 for(int i = 0; i < step.getNumberOfRows(); i++) {

 // Use the following code to change the composition unit step parameters

 // of the CUOptions step. Change your set of step parameters

 // as required by your scenario.

 // For example, set the description.

 step.setParameter("description", description, i);

 System.out.println("\nSet description parameter to " +

 step.getParameter("description", i));

 }

 // Set up the step parameters for the MapTargets step

 stepName = "MapTargets";

 step = ((TaskCommand) cmd).gotoStep(stepName);

 // In this step the server parameter is required.

 // server - target(s) to deploy the composition unit. The default is server1.

 // To add an additional target to the existing

 // target, add a prefix to the target with a “+”. To

 // delete an existing target, add a prefix to the

 // target with a “#“. To replace the existing

 // target, use the regular syntax as in the addCompUnit example.

 // Example: server = "#server1+server2";

 String server = "server1";

 for(int i = 0; i < step.getNumberOfRows(); i++) {

 // Use the following code to set the server parameter of the MapTargets step.

 // Change your set of step parameters as required by your

 // scenario.

 // For example, set the server.

 step.setParameter("server", server, i);

 System.out.println("\nSet server parameter to " +

 step.getParameter("server", i));

 }

 // If the RelationshipOptions step is available, the selected

 // deployable units of the source asset of the "primary" composition

 // unit (that is, the composition unit being added) have dependencies

 // on other assets for which there are matching "secondary" composition

 // units in the business-level application. The RelationshipOptions step is much like

 // CreateAuxCUOptions except that the required secondary composition

 // units already exist. Also, each RelationshipOptions row maps one

 // deployable unit to one or more secondary composition units, whereas,

 // each CreateAuxCUOptions row maps one deployable unit to one

 // asset dependency.

 //

 // Each RelationshipOptions row corresponds to one deployable unit

 // with one or more dependency relationships and consists of

 // parameter values for the dependency relationships. Some parameters

 // are read-only and some of them are editable. To edit parameter

 // values, use the same approach as that used to edit parameter values

 // in the CUOptions step.

 //

 // The parameters for this step include:

 //

 // deplUnit – The name of the deployable unit which has the

 // dependency. (Read-only.)

 // relationship – Composition unit dependencies in the form of a

250 Developing and deploying applications

// list of composition unit IDs. Composition unit

 // IDs are separated by a "plus" sign ("+"). Each ID

 // can be fully or partially formed as shown with the

 // following examples:

 // WebSphere:cuname=SharedLib1.jar

 // WebSphere:cuname=SharedLib.jar

 // SharedLib.jar

 // matchTarget - Specifies whether the server target for the secondary

 // composition units are to match the server target for

 // the primary composition unit. The default value

 // is "true". If the value is set to "false", the

 // secondary composition unit will be created with no

 // target. The target on the secondary composition unit

 // can be set at a later time with the editCompUnit

 // command.

 // for(int i = 0; i < step.getNumberOfRows(); i++) {

 // Use the following if statement to set the relationship and matchTarget parameters

 // of the RelationshipOptions step. Change your set of

 // step parameters as required by your scenario.

 // Uncomment the following code to match the deplUnit and then set

 // the relationship differently.

 //String deplUnit = (String) step.getParameter(“deplUnit”,

 // i);

 //if (deplUnit.equals(“a1.jar”) {

 // For example, change the relationship for the a1.jar file.

 //step.setParameter("relationship", relationship, i);

 //System.out.println("\nSet relationship parameter " +

 // "to " + step.getParameter("relationship", i));

 // For example, change matchTarget.

 //step.setParameter("matchTarget", matchTarget, i);

 //System.out.println("\nSet matchTarget parameter to "+

 // step.getParameter("matchTarget", i));

 //}

 //}

 // The addCompUnit command contains thr ActivationPlanOptions step.

 // The user can set the ActivationPlanOptions step parameters similar to

 // the step parameters for the CUOptions step in the previous examples.

 // The arguments for this step include:

 // deplUnit – deployable unit URI (read only parameter)

 // activationPlan - specifies a list of runtime components in the

 // format of specname=xxxx

 // Run the command command to edit the composition unit.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running of the command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

Chapter 8. Administering business-level applications using programming 251

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

After you edit the composition unit, you can run the updated business-level application.

Editing an asset using programming

You can edit the information of an asset such as its destination location, its relationship with other assets,

and so on. An asset represents at least one binary file that implements business logic.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interfaces documentation.

Before you can edit an asset, you must have imported an asset.

You can edit an asset of a business-level application using programming, the administrative console, or

the wsadmin tool.

About this task

You can edit an asset of a business-level application using programming, the administrative console, or

the wsadmin tool. This topic describes how to edit an asset of a business-level application using

programming.

You must provide the assetID parameter to specify the asset that you are editing.

Perform the following tasks to edit an asset of a business-level application using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

252 Developing and deploying applications

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command that

edits an asset.

The command name is editAsset. The assetID parameter is a required parameter to specify the asset

that you are editing.

6. Call the asynchronous command client to process the command parameters.

7. Set up the command step parameters.

The AssetOptions step contains data about the asset such as its description, file permission, and

relationship with other assets. You can edit various parameters in the AssetOptions step.

8. Call the asynchronous command client to run the command that edits an asset of a business-level

application.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

9. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, the asset of a business-level application is edited.

Example

The following example shows how to edit an asset of a business-level application based on the previous

steps. Some statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class EditAsset {

 public static void main(String [] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local

 // command manager.

 // Comment out the lines to and including get the

 // soapClient soap client if you use the local command manager.

 // Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

Chapter 8. Administering business-level applications using programming 253

// soapClient);

 // to get the soapClient soap client if you use the

 // local command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if it is

 // not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager:

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager.

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create async command handler.

 // Comment out the following line if no further handling

 // of command notification is required:

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with

 // null for the following AsyncCommandClient object.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command that edits the asset.

 String cmdName = "editAsset";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // Edit an imported asset

 // using the session created.

 System.out.println("\nCreated " + cmdName);

 // Set the assetID parameter

 // Examples of valid formats for the assetID parameter are:

 // - aName

 // - assetname=aName

 // - WebSphere:assetname=aName

 // This parameter accepts an incomplete ID as long as

 // the incomplete ID can resolve to a unique asset.

 String assetID = "asset1.zip";

 cmd.setParameter("assetID", assetID);

 System.out.println("\nSet assetID parameter to "

 + cmd.getParameter("assetID"));

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

254 Developing and deploying applications

System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Set up the step parameters for the AssetOptions step.

 String stepName = "AssetOptions";

 CommandStep step = ((TaskCommand) cmd).gotoStep(stepName);

 // Asset description:

 String description = "asset for testing";

 // destination of deployed asset

 String destinationUrl = "/myInstalledAssets/asset1.zip";

 // Asset type aspect:

 String typeAspect = "spec=sharedlib";

 // Asset validation:

 String validate = "yes";

 // Permission of files:

 String filePermission = ".*\\.dll=755";

 // Asset relationship:

 String relationship = "";

 for (int i = 0; i < step.getNumberOfRows(); i++) {

 // The following lines set the description and typeAspect

 // step parameters. There are other step parameters

 // in the AssetOptions step in the following comments. Change your set

 // of step parameters as required by your scenario.

 // For example, set description

 step.setParameter("description", description, i);

 System.out.println("\nSet description parameter to " +

 step.getParameter("description", i));

 // For example, set the typeAspect parameter.

 // Format of a typeAspect is:

 // WebSphere:spec=xxx,version=n.n+

 // WebSphere:spec=xxx,version=n.n

 step.setParameter("typeAspect", typeAspect, i);

 System.out.println("\nGet typeAspect: " +

 step.getParameter("typeAspect", i));

 // For example, set the destination parameter.

 step.setParameter("destination", destination, i);

 System.out.println("\nSet destination parameter to " +

 step.getParameter("destination", i));

 // For example, set the validate parameter.

 step.setParameter("validate", validate, i);

 System.out.println("\nSet validate parameter to " +

 step.getParameter("validate", i));

 // For example, set the filePermission perameter.

 step.setParameter("filePermission", filePermission, i);

 System.out.println("\nSet filePermission parameter to " +

 step.getParameter("filePermission", i));

 // For example, set relationship.

 step.setParameter("relationship", relationship, i);

Chapter 8. Administering business-level applications using programming 255

System.out.println("\nSet relationship paramter to " +

 step.getParameter("relationship", i));

 }

 // Run the command to edit the asset.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running of command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

After you edit the asset, you can add the asset as a composition unit to a business-level application, or

export the asset.

Editing a business-level application using programming

You can edit the information of a business-level application such as its description. A business-level

application is an administrative model that captures the entire definition of an enterprise-level application.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interfaces documentation.

Before you can edit a business-level application, you must have created a business-level application.

You can edit a business-level application using programming, the administrative console, or the wsadmin

tool.

256 Developing and deploying applications

About this task

You must provide the blaID parameter to specify the business-level application that you are editing.

Perform the following tasks to edit a business-level application using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create the command that edits a

business-level application.

The command name is editBLA. Use the required blaID parameter to specify the business-level

application that you are editing.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Set up the command step parameter by setting the description parameter.

The BLAOptions step contains a description for the business-level application. You can edit the

description parameter in the BLAOptions step.

8. Call the asynchronous command client to run the command to edit a business-level application.

You could have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

9. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, the business-level application is edited.

Example

The following example shows how to edit a business-level application based on the previous steps. Some

statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

Chapter 8. Administering business-level applications using programming 257

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class EditBLA {

 public static void main(String[] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local command manager.

 // Comment out the following lines to get the soapClient SOAP client if

 // you are going to use the local command manager. You would

 // comment out the lines to and including

 // CommandMgr cmdMgr =

 // CommandMgr.getClientCommandMgr(soapClient);

 String host = "localhost"; // Change to your host if it is not localhost.

 String port = "8880"; // Change to your port number if it is not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager.

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required.

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 // This example creates a new session. You can replace the

 // code below to use an existing session that has been

 // created.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with

 // null for the following AsyncCommandClient object.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

258 Developing and deploying applications

// Create the command that edits the business-level application.

 String cmdName = "editBLA";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // Edit an existing business-level

 // application using the session

 // created.

 System.out.println("\nCreated " + cmdName);

 // Set the blaID parameter (required).

 // Examples of valid formats for the blaID parameter are:

 // - bName

 // - blaname=bName

 // - WebSphere:blaname=bName

 // This parameter accepts an incomplete ID as long as the incomplete

 // ID can resolve to a unique business-level application.

 String blaID = "bla1"; // Replace bla1 with your value of the blaID.

 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "

 + cmd.getParameter("blaID"));

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Throwing an exception from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Set up the step parameters for the BLAOptions step.

 // The only step parameter you can edit is description.

 String stepName = "BLAOptions";

 CommandStep step = ((TaskCommand) cmd).gotoStep(stepName);

 // Edit the business-level application description.

 String description = "bla for testing"; // Replace with your value.

 for (int i = 0; i < step.getNumberOfRows(); i++) {

 // The following lines set the description

 // step parameter.

 step.setParameter("description", description, i);

 System.out.println("\nSet description parameter to " +

 step.getParameter("description", i));

 }

 // Run the command to edit the business-level application.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted command execution");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand executed successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand executed with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

Chapter 8. Administering business-level applications using programming 259

} catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification.

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

After you edit the business-level application, you can continue administration of business-level

applications. You can do such things as start and stop a business-level application, delete a business-level

application, add a composition unit to a business-level application, and so on.

Updating an asset using programming

You can update an asset by adding, deleting, or updating a single file or Java Platform, Enterprise Edition

(Java EE) module, or by merging multiple files or Java EE modules into an asset. You can also update an

asset by replacing the entire asset.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interface documentation.

Before you can update an asset, you must have imported the asset.

You can update an asset using programming, the administrative console, or the wsadmin tool.

About this task

You must specify the assetID parameter of the asset that you are updating. In addition, you must specify

the operation parameter. Wether or not you must specify the contents and contenturi parameters depends

on the operation that you specify.

You modify one or more files or module files of an asset with this task. You also update the asset binary

file, but do not update the composition units that the system deploys with this asset as a backing object.

Perform the following tasks to update an asset using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

260 Developing and deploying applications

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Create and set up the command that updates an asset.

a. Set the parameter for the asset that you are updating.

b. Set the operation parameter.

c. Set the contents parameter unless the operation is set to delete.

d. Set the contenturi parameter if the operation is set to add, update, or addupdate.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command to update an asset.

You could have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, the asset is updated.

Example

The following example shows how to update an asset based on the previous steps. Some statements are

split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class EditBLA {

 public static void main(String[] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local command manager.

 // Comment out the following lines to get soapClient soap client if

Chapter 8. Administering business-level applications using programming 261

// you are going to use the local command manager.

 // Comment out the lines to and including

 // CommandMgr cmdMgr =

 // CommandMgr.getClientCommandMgr(soapClient);

 String host = "localhost"; // Change to your host if it is not localhost.

 String port = "8880"; // Change to your port number if it is not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager.

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required.

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 // This example creates a new session. You can replace the

 // following code to use an existing session that has been

 // created.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If you do not use the command handler, replace the listener with

 // null for the following AsyncCommandClient object.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command that updates the asset.

 String cmdName = "updateAsset";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // Update an asset

 // using the session

 // created.

 System.out.println("\nCreated " + cmdName);

 // Set the required assetID parameter.

 // Examples of valid formats for the assetID parameter:

 // - aName

 // - assetname=aName

 // - WebSphere:assetname=aName

 // This parameter accepts an incomplete ID as long as the

 // incomplete ID can resolve to a unique asset within the

 // business-level application.

 String assetID = "asset1.zip"; // Replace asset1.zip with your

262 Developing and deploying applications

// value of the assetID parameter.

 cmd.setParameter("assetID", assetID);

 System.out.println("\nSet assetID parameter to "

 + cmd.getParameter("assetID"));

 // Set the required operation parameter.

 // Possible operation values are add, addupdate, delete, merge,

 // replace, and update.

 // Use the add value to add a new file or Java EE module to the asset.

 // Use the addupdate value to add a new file or Java EE module to the asset, or

 // update an existing file or Java EE module.

 // Use the delete value to delete an existing file or Java EE module in the asset.

 // Use the merge value to provide a partial update with multiple

 // additions, updates, or deletions.

 // Use the replace value for a full update to replace all the contents.

 // Use the update value to update an existing file or Java EE module in the asset.

 String op = "add"; // Replace the add value with your operation value.

 cmd.setParameter("operation", op);

 System.out.println("\nSet operation parameter to "

 + cmd.getParameter("operation"));

 // Set the contents parameter.

 // This parameter is required unless the operation is set to

 // delete.

String contents = "/assets/abc.txt"

 cmd.setParameter("contents", contents);

 System.out.println("\nSet contents parameter to "

 + cmd.getParameter("contents"));

 // Set the contenturi parameter.

 // This parameter is required for the

 // add, addupdate, update, or delete operations.

 String contenturi = "abc.txt"; // URI within the asset to

 // place the new file. Replace

 // with your value.

 cmd.setParameter("contenturi", contenturi);

 System.out.println("\nSet contenturi parameter to "

 + cmd.getParameter("contenturi"));

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Throwing an exception from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Run the command.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted command execution");

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand executed successfully "

 + "with result\n" + result.getResult());

 }

Chapter 8. Administering business-level applications using programming 263

else {

 System.out.println("\nCommand executed with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification.

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

You can do other tasks associated with assets in business-level applications, such as adding or deleting

other assets, listing assets, exporting assets, and so on.

Viewing a composition unit using programming

A composition unit is typically created from a business-level application or an asset and contains

configuration information that makes the asset runnable. You can view the composition unit information so

that you can complete other tasks associated with the composition unit such as editing an asset or delete

a composition unit.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interfaces documentation.

Before you can view a composition unit of a business-level application, you must have created an empty

business-level application, imported an asset into the business-level application, and added a composition

unit to the business-level application.

About this task

You can view a composition unit using programming, the administrative console, or the wsadmin tool. This

topic describes how to view a composition unit using programming.

You must provide the blaID and cuID parameters to specify the composition unit of the business-level

application that you are viewing. You can view configuration information of the composition unit of a

business-level application. The configuration information identifies the asset from which the composition

unit is created if the composition unit contains an asset. You can also view runtime targets on which the

deployable units of the composition unit are to run.

Perform the following tasks to view a composition unit of a business-level application using programming.

1. Connect to the application server.

264 Developing and deploying applications

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command to

view a composition unit.

The command name is viewCompUnit. Use the required blaID and cuID parameters to specify the

composition unit of the business-level application that you are viewing.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command and view a composition unit.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, you can view the configuration information of a composition unit for a

business-level application.

Example

The following example shows how to view a composition unit of a business-level application based on the

previous steps. Some statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class ViewCompUnit {

Chapter 8. Administering business-level applications using programming 265

public static void main(String [] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local

 // command manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

 // to get the soapClient soap client if you use the local

 // command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if it is

 // not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager:

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required:

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace the following listener with

 // null for the AsyncCommandClient object.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command that views the composition unit.

 String cmdName = "viewCompUnit";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // View a certain composition

 // unit of a business-level

 // application using the session created.

 System.out.println("\nCreated " + cmdName);

 // (required) Set the blaID parameter.

 // Examples of valid formats for the blaID parameter are:

 // - bName

 // - blaname=bName

 // - WebSphere:blaname=bName

 // This parameter accepts an incomplete ID as long as the incomplete

 // ID can resolve to a unique business-level application.

266 Developing and deploying applications

String blaID = "bla1";

 cmd.setParameter("blaID", blaID);

 System.out.println("\nSet blaID parameter to "

 + cmd.getParameter("blaID"));

 // (required) Set the cuID parameter to the composition unit.

 // The cuID parameter has the format of

 // WebSphere:cuname=name. This parameter

 // accepts an incomplete ID as long as the incomplete

 // ID can resolve to a unique composition unit within the

 // business-level application.

 String cuID = "cu1";

 cmd.setParameter("cuID", cuID);

 System.out.println("\nSet cuID parameter to "

 + cmd.getParameter("cuID"));

 // Call the asynchronous client helper to process parameters

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Call the asynchronous command client to run the command.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running of the command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

Chapter 8. Administering business-level applications using programming 267

What to do next

You can use the information that you viewed about the composition unit to perform other tasks. For

instance, you might edit the asset in the composition unit to make improvements to the asset. You might

export the composition unit, and then import that composition unit into another business-level application.

Viewing an asset using programming

You can view the asset information so that you can complete other tasks associated with the asset, such

as editing or exporting an asset. An asset represents at least one binary file that implements business

logic.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interface documentation.

Before you can view an asset of a business-level application, you must have imported an asset.

About this task

You can view an asset using programming, the administrative console, or the wsadmin tool. This topic

describes how to view an asset using programming.

You must provide the assetID parameter to specify the asset you are viewing. You can view configuration

information of an asset, such as the destination location and relationships with other assets.

Perform the following tasks to view an asset of a business-level application using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command to

view an asset.

The command name is viewAsset. Use the required assetID parameter to specify the asset that you

are viewing.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to run the command and view an asset.

268 Developing and deploying applications

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, you can view the configuration information of an asset.

Example

The following example shows how to view an asset based on the previous steps. Some statements are

split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class ViewAsset {

 public static void main(String [] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local

 // command manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

 // to get the soapClient soap client if you use the local

 // command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if it is

 // not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager:

 //

Chapter 8. Administering business-level applications using programming 269

// CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required:

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace the following listener with

 // null for the AsyncCommandClient object:

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command to view the asset.

 String cmdName = "viewAsset";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // View a certain composition

 // unit of a business-level application

 // using the session created.

 System.out.println("\nCreated " + cmdName);

 // (required) Set the assetID parameter to the asset.

 // Examples of valid formats for the assetID parameter:

 // - aName

 // - assetname=aName

 // - WebSphere:assetname=aName

 // This parameter accepts an incomplete ID as long as the

 // incomplete ID can resolve to a unique asset.

 String assetID = "asset1.zip";

 cmd.setParameter("assetID", assetID);

 System.out.println("\nSet assetID parameter to "

 + cmd.getParameter("assetID"));

 // Call the asynchronous client helper to process parameters

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Call the asynchronous command client to run the command.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running of command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

270 Developing and deploying applications

"Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

You can use the asset information that you viewed to perform other tasks. For instance, you might edit the

asset to make improvements to the asset. You might export the asset and then import it into another

configuration repository. You can then add the asset as a composition unit to a business-level application.

Viewing a business-level application using programming

You can view business-level application information such as the description so that you can do other tasks

associated with the business-level application, such as editing the business-level application. A

business-level application is an administrative model that captures the entire definition of an

enterprise-level application.

Before you begin

This task assumes a basic familiarity with command framework programming. Read about command

framework programming in the application programming interface documentation.

Before you can view a business-level application, you must have created the business-level application.

You can view a business-level application using programming, the administrative console, or the wsadmin

tool.

About this task

You must provide the blaID parameter to specify the business-level application that you are viewing.

Perform the following tasks to view a business-level application using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Chapter 8. Administering business-level applications using programming 271

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Use the command manager that you created in a previous step to create and set up the command to

view a business-level application.

The command name is viewBLA. Use the required blaID parameter to specify the business-level

application that you are viewing.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Display the command step.

8. Call the asynchronous command client to run the command to view a business-level application.

You could have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

9. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, you can view a business-level application.

Example

The following example shows how to view a business-level application based on the previous steps. Some

statements are split on multiple lines for printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.cmdframework.CommandStep;

import com.ibm.websphere.management.cmdframework.TaskCommand;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class EditBLA {

 public static void main(String[] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local command manager.

 // Comment out the following lines to get the soapClient soap client if

 // you are going to use the local command manager. You would

272 Developing and deploying applications

// comment out the lines to and including

 // CommandMgr cmdMgr =

 // CommandMgr.getClientCommandMgr(soapClient);

 String host = "localhost"; // Change to your host if it is not localhost.

 String port = "8880"; // Change to your port number if it is not 8880.

 Properties config = new Properties();

 config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager.

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required.

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 // This example creates a new session. You can replace the

 // code below to use an existing session that has been

 // created.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace the listener with

 // null for the following AsyncCommandClient object.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command.

 String cmdName = "viewBLA";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // View an existing

 // business-level application

 // using the session created.

 System.out.println("\nCreated " + cmdName);

 // Set the required blaID parameter.

 // Examples of valid formats for the blaID parameter are:

 // - bName

 // - blaname=bName

 // - WebSphere:blaname=bName

 // This parameter accepts an incomplete ID as long as the incomplete

 // ID can resolve to a unique business-level application.

 String blaID = "bla1"; // Replace the bla1 value with your value.

 cmd.setParameter("blaID", blaID);

Chapter 8. Administering business-level applications using programming 273

System.out.println("\nSet blaID parameter to "

 + cmd.getParameter("blaID"));

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Throwing an exception from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Display step data.

 String[] stepNames = ((TaskCommand) cmd).listCommandSteps();

 for (int i = 0; i < stepNames.length; i++) {

 // Get the step.

 CommandStep step =

 ((TaskCommand)cmd).gotoStep(stepNames[i]);

 List paramNames = step.listParameterName();

 System.out.println("----------- Step: " + step.getName() +

 " ----------");

 // Get the parameter values for each row.

 for (int j = 0; j < step.getNumberOfRows(); j++) {

 System.out.println(" Row " + j);

 for (int k = 0; k < paramNames.size(); k++)

 System.out.println(" " + paramNames.get(k) +

 ": " + step.getParameter(

 (String) paramNames.get(k), j));

 }

 }

 // Run the command to view the business-level application.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted command execution");

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand executed successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand executed with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

274 Developing and deploying applications

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification.

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

You can use the information that you viewed about the business-level application to perform other tasks.

You might edit the business-level application to make improvements to it. You might start and stop a

business-level application, delete a business-level application, add a composition unit to a business-level

application, and so on.

Listing control operations using programming

You can list the control operations of a business-level application or a composition unit for a session. You

can use control operations, such as start or stop, to change or query the runtime environment of a

business-level application or a composition unit.

Before you begin

Before you can list control operations of a business-level application or a composition unit for a session,

you must have created an empty business-level application, imported an asset, and added a composition

unit.

About this task

You can list control operations of a business-level application or a composition unit using programming,

the administrative console, or the wsadmin tool. This topic describes how to list control operations using

programming.

To list control operations for a business-level application of a session, provide a blaID paramaeter value,

but no cuID parameter value. To list control operations for a composition unit, specify both a blaID

parameter value and a cuID parameter value. To list all control operations for the specified business-level

application or the specified composition unit, do not specify an opName parameter value. To list the details

for a specific control operation, set the opName parameter value to the name of the operation to list. To list

details of the control operation definition, set the long parameter to true.

Perform the following tasks to list control operations for a business-level application or a composition unit

of a session using programming.

1. Connect to the application server.

The command framework allows the administrative command to be created and run with or without

being connected to the application server. This step is optional if the application server is not running.

2. Create the command manager.

The command manager provides the functionality to create a new administrative command or query

existing administrative commands.

3. Optionally create the asynchronous command handler for listening to command notifications.

Business-level application commands are implemented as asynchronous commands. To monitor the

progress of the running command, you have to create an asynchronous command handler to receive

notifications that the command generates.

4. Create the asynchronous command client.

Chapter 8. Administering business-level applications using programming 275

An asynchronous command client provides a higher level interface to work with an asynchronous

command. If you created an asynchronous command handler in the previous step, the handler is

passed to the asynchronous command client. The asynchronous command client forwards the

command notification to the handler and helps to control running of the command.

5. Create and set up the command that lists control operations of a business-level application or a

composition unit of a session.

6. Call the processCommandParameters method in the asynchronous command client to process the

command parameters.

The command framework asynchronous command model requires this call.

7. Call the asynchronous command client to list the control operations of a business-level application or a

composition unit of a session.

You might have created an asynchronous command handler to implement the

AsyncCommandHandlerIF interface class in a previous step. If you did, the asynchronous command

client listens to command notifications and forwards the notifications to the handler. The handler

performs any necessary actions while waiting for the command to complete.

8. Check the command result when the command completes.

When the command finishes running, control is returned to the caller. You can then check the result by

calling the command.getCommandResult method.

Results

After you successfully run the code, a control operations of a business-level application or a composition

unit for a session is displayed.

Example

The following example shows how to list the control operation of a business-level application or a

composition unit of a session based on the previous steps. Some statements are split on multiple lines for

printing purposes.

package com.ibm.ws.management.application.task;

import java.util.Properties;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.Session;

import com.ibm.websphere.management.cmdframework.AdminCommand;

import com.ibm.websphere.management.cmdframework.CommandMgr;

import com.ibm.websphere.management.cmdframework.CommandResult;

import com.ibm.websphere.management.async.client.AsyncCommandClient;

public class listControlOps {

 public static void main(String[] args) {

 try {

 // Connect to the application server.

 // This step is optional if you use the local

 // command manager. Comment out the lines to and including

 // CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(

 // soapClient);

 // to get the soapClient soap client if you use the local

 // command manager.

 String host = "localhost";

 String port = "8880"; // Change to your port number if

 // it is not 8880.

 Properties config = new Properties();

276 Developing and deploying applications

config.put(AdminClient.CONNECTOR_HOST, host);

 config.put(AdminClient.CONNECTOR_PORT, port);

 config.put(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println("Config: " + config);

 AdminClient soapClient =

 AdminClientFactory.createAdminClient(config);

 // Create the command manager.

 CommandMgr cmdMgr = CommandMgr.getClientCommandMgr(soapClient);

 // Comment out the previous lines to create a client command

 // manager if you are using a local command manager.

 // Uncomment the following line to create a local command

 // manager:

 //

 // CommandMgr cmdMgr = CommandMgr.getCommandMgr();

 System.out.println("\nCreated command manager");

 // Optionally create an asynchronous command handler.

 // Comment out the following line if no further handling

 // of command notification is required:

 AsyncCmdTaskHandler listener = new AsyncCmdTaskHandler();

 // Create an asynchronous command client.

 // Set up the session.

 String id = Long.toHexString(System.currentTimeMillis());

 String user = "content" + id;

 Session session = new Session(user, true);

 // If no command handler is used, replace listener with

 // null for the AsyncCommandClient object.

 AsyncCommandClient asyncCmdClientHelper = new

 AsyncCommandClient(session, listener);

 System.out.println("\nCreated async command client");

 // Create the command that lists the control operations.

 String cmdName = "listControlOps";

 AdminCommand cmd = cmdMgr.createCommand(cmdName);

 cmd.setConfigSession(session); // List all the control operations

 // using the session created.

 System.out.println("\nCreated " + cmdName);

 // Set the blaID parameter, which is required.

 // The blaID is for either the business-level application whose control

 // units you are listing or for the business-level application whose

 // composition unit control operations you are listing.

 // Change the blaID parameter according to your

 // scenario.

 // Examples of valid formats for the blaID parameter are:

 // - bName

 // - blaname=bName

 // - WebSphere:blaname=bName

 // This parameter accepts an incomplete ID as long as the incomplete

 // ID can resolve to a unique business-level application.

 // String blaID = "bla1";

 // cmd.setParameter("blaID", blaID);

 // System.out.println("\nSet blaID parameter to "

 // + cmd.getParameter("blaID"));

 // Optionally set the cuID parameter to the composition

 // unit whose control operations you are listing.

 // Examples of valid formats for the cuID parameter are:

 // - name

Chapter 8. Administering business-level applications using programming 277

// - cuname=name

 // - WebSphere:cuname=name

 // This parameter accepts an incomplete ID as long as the

 // incomplete ID can resolve to a unique composition unit

 // within the business-level application.

 //

 // String cuID = "test5.zip";

 // cmd.setParameter("cuID", cuID);

 // System.out.println("\nSet cuID parameter to "

 // + cmd.getParameter("cuID"));

 // Optionally set the opName parameter of the operation to list.

 // String opName = "opName1";

 // cmd.setParameter("opName", opName);

 // System.out.println("\nSet opnameID parameter to "

 // + cmd.getParameter("opName"));

 // Optionally include details of the control operation definition

 // by setting the long parameter to true.

 // String long = "true";

 // cmd.setParameter("long", long);

 // System.out.println("\nSet long parameter to "

 // + cmd.getParameter("long"));

 // Call the asynchronous client helper to process parameters.

 try {

 asyncCmdClientHelper.processCommandParameters(cmd);

 System.out.println("\nCompleted process command " +

 "parameters");

 } catch (Throwable th) {

 System.out.println("Failed from " +

 "asyncCmdClientHelper.processCommandParameters(cmd).");

 th.printStackTrace();

 System.exit(-1);

 }

 // Run the command to list control operations.

 asyncCmdClientHelper.execute(cmd);

 System.out.println("\nCompleted running of command");

 // Check the command result.

 CommandResult result = cmd.getCommandResult();

 if (result != null) {

 if (result.isSuccessful()) {

 System.out.println("\nCommand ran successfully "

 + "with result\n" + result.getResult());

 }

 else {

 System.out.println("\nCommand ran with " +

 "Exception");

 result.getException().printStackTrace();

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

package com.ibm.ws.management.application.task;

import com.ibm.websphere.management.cmdframework.provider.CommandNotification;

278 Developing and deploying applications

import com.ibm.websphere.management.async.client.AsyncCommandHandlerIF;

public class AsyncCmdTaskHandler implements AsyncCommandHandlerIF {

 public void handleNotification(CommandNotification notification) {

 // Add your own code here to handle the received notification

 System.out.println("\nEXAMPLE: notification received: " +

 notification);

 }

}

What to do next

You can complete other tasks associated with business-level applications and composition units, such as

deleting, starting, or stopping business-level applications or adding or exporting a composition unit.

Chapter 8. Administering business-level applications using programming 279

280 Developing and deploying applications

Chapter 9. Troubleshooting deployment

When you are having problems deploying an application, perform some basic diagnostics and verify your

system’s configuration to solve the problem.

v Select the problem you are having with deploying or installing developed code for WebSphere

Application Server.

– Errors or problems deploying, installing, or promoting applications

v To troubleshoot other deployment issues, use the following resources.

– For current information available from IBM Support on known problems and their resolution, see the

IBM Support page.

– IBM Support has documents that can save you time gathering information needed to resolve this

problem. Before opening a PMR, see the IBM Support page.

– If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see Troubleshooting help from IBM.

Application deployment problems

You might encounter problems when deploying, installing, or promoting applications. This topic suggests

ways to resolve the problems.

What kind of problem are you having?

v “I installed my application using the wsadmin tool, but the application does not display under

Applications > Application Types > WebSphere enterprise applications” on page 282

v “Unable to save a deployed application” on page 282

v “WASX7015E error running wsadmin command $AdminApp installInteractive or $AdminApp install” on

page 282

v “Cannot install a CMP or BMP entity bean in an EJB 3.0 module” on page 282

v “Data definition language (DDL) generated by an assembly tool throws SQL error on target platform” on

page 283

v “Error message ADMA0004E: Validation error in task Specifying the Default Datasource for EJB

Modules returned when installing application using the administrative console or the wsadmin tool” on

page 283

v “Cannot load resource WEB-INF/ibm-web-bnd.xmi in archive file” on page 284

v “″Timeout!!!″ error displays when attempting to install an enterprise application in the administrative

console ” on page 284

v “I get a NameNotFoundException message when deploying an application that contains an EJB

module” on page 284

v “I get compilation errors and EJB deploy fails when installing an EJB JAR file generated for Version 5.x

or earlier” on page 284

v “After installing the application onto a different machine, the application does not run” on page 285

v “A single file replaces all application files during application update” on page 285

Check the following first:

v Verify that the logical name that you have specified to appear on the console for your application,

enterprise bean module or other resource does not contain invalid characters such as these: - / \ : * ? ″

< > |.

v If the application was installed using the wsadmin $AdminApp install command with the -local flag,

restart the server or rerun the command without the -local flag.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, check to see if the problem is identified and documented.

© IBM Corporation 2004 281

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA

I installed my application using the wsadmin tool, but the application does not

display under Applications > Application Types > WebSphere enterprise

applications

The application might be installed but you have not saved the configuration:

1. Verify that the application subdirectory is located under the app_server_root/installedApps directory.

2. Run the $AdminApp list command and verify that the application is not among those displayed.

v In the bin directory, run the wsadmin.bat or wsadmin.sh command.

v From the wsadmin prompt, enter $AdminApp list and verify that the problem application is not

among the items that display.
3. Reinstall your application using the wsadmin tool. Run the $AdminConfig save command in the

wsadmin tool before exiting.

Unable to save a deployed application

If you are unable to save a deployed application, the problem might be that too many files are opened,

exceeding the limit of the operating system.

Only root has authority to adjust the maximum number of files for each process. Complete the following

steps to modify the application to close files with disciplines:

1. After you open a file and complete your work, call the close method of the file to release the file handle

back to the operating system.

2. Using the java.io.FileInputStream and the FileOutputStream classes as examples, you can invoke their

close method to release any system resources that are associated with the stream.

WASX7015E error running wsadmin command $AdminApp installInteractive or

$AdminApp install

This problem has two possible causes:

v If the full text of the error is similar to:

WASX7015E: Exception running command:

"$AdminApp installInteractive C:/Documents and Settings/

 myUserName/Desktop/MyApp/myapp.ear";

exception information:

com.ibm.bsf.BSFException: error while

eval’ing Jacl expression: can’t find method "installInteractive"

with 3 argument(s) for class

"com.ibm.ws.scripting.AdminAppClient"

The file and path name are incorrectly specified. In this case, since the path included spaces, it was

interpreted as multiple parameters by the wsadmin program.

Enter the path of the .ear file correctly. In this case, by enclosing it in double quotes:

$AdminApp installInteractive "C:\Documents

and Settings\myUserName\Desktop\MyApps\myapp.ear"

v If the full text of the error is similar to:

WASX7015E: Exception running command: "$AdminApp installInteractive c:\MyApps\myapp.ear ";

exception information: com.ibm.ws.scripting.ScriptingException: WASX7115E:

Cannot read input file

"c:\WebSphere\AppServer\bin\MyAppsmyapp.ear"

The application path is incorrectly specified. In this case, you must use ″forward-slash″ (/) separators in

the path.

Cannot install a CMP or BMP entity bean in an EJB 3.0 module

When installing an EJB 3.0 module that contains a container-managed persistence (CMP) or

bean-managed persistence (BMP) entity bean, the installation fails.

282 Developing and deploying applications

The product does not support installation of applications that have a CMP or BMP entity bean packaged in

an EJB 3.0 module. You must package CMP or BMP entity beans in an EJB 2.1 or earlier module.

To resolve this problem:

1. Package the CMP or BMP entity beans in EJB 2.1 or earlier modules.

2. Try installing your application with the EJB 2.1 or earlier modules.

Data definition language (DDL) generated by an assembly tool throws SQL error

on target platform

If you receive SQL errors in attempting to execute data definition language (DDL) statements generated by

an assembly tool on a different platform, for example if you are deploying a container-managed

persistence (CMP) enterprise bean designed on Windows onto a UNIX® operating system server, try the

following actions:

v Browse the DDL statements for dependencies on specific user identifiers and passwords, and correct as

necessary.

v Browse the DDL statements for dependencies on specific server names, and correct as necessary.

v Refer to the message reference of the vendor for causes and suggested actions regarding specific SQL

errors. For IBM DB2, you can view the message references online at http://www.ibm.com/cgi-bin/
db2www/data/db2 /udb/winos2unix/support/index.d2w/report.

If you receive the following error after executing a DDL file created on the Windows operating system or

on operating systems such as AIX® or Linux, the problem might come from a difference in file formats:

SQL0104N An unexpected token "CREATE TABLE AGENT (COMM DOUBLE, PERCENT DOUBLE, P"

was found following " ". Expected tokens may include: " ".

SQLSTATE=42601

To resolve this problem:

v Use EDTF to edit the file.

Error message ADMA0004E: Validation error in task Specifying the Default

Datasource for EJB Modules returned when installing application using the

administrative console or the wsadmin tool

If you see the following error when trying to install an application through the administrative console or the

wsadmin command prompt:

AppDeploymentException: [ADMA0014E: Validation failed.

ADMA0004E: Validation error in task Specifying the Default Datasource for

EJB Modules JNDI name is not

specified for module beannameBean Jar with URI filename.jar,META-INF/ejb-jar.xml.

You have not specified the

data source for each CMP bean belonging to this module. Either specify the data

source for each CMP beans or

specify the default data source for the entire module.]

one possible cause is that, in WebSphere Application Server Version 4.0, it was mandatory to have a data

source defined for each CMP bean in each JAR. In Version 5.0 and later releases, you can specify either

a data source for a container-managed persistence (CMP) bean or a default data source for all CMP

beans in the JAR file. Thus during installation interaction, such as the installation wizard in the

administrative console, the data source fields are optional, but the validation performed at the end of the

installation checks to see that at least one data source is specified.

To correct this problem, step through the installation again, and specify either a default data source or a

data source for each CMP-type enterprise bean.

If you are using the wsadmin tool, use the $AdminApp installInteractive filename command to receive

prompts for data sources during installation, or to provide them in a response file.

Chapter 9. Troubleshooting deployment 283

http://www.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report
http://www.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report

Specify data sources as an option to the $AdminApp install command.

Cannot load resource WEB-INF/ibm-web-bnd.xmi in archive file

The Web application tmp.war installs on WebSphere Application Server Versions 5.0 and 5.1, but fails on a

WebSphere Application Server Version 6.0 or later server. The application fails to install because the

WEB-INF/ibm-web-bnd.xmi file contains xmi tags that the underlying WCCM model no longer recognizes.

The following error messages display:

IWAE0007E Could not load resource "WEB-INF/ibm-web-bnd.xmi" in archive "tmp.war"

[2/24/05 14:53:10:297 CST] 000000bc SystemErr R

AppDeploymentException:

com.ibm.etools.j2ee.commonarchivecore.exception.ResourceLoadException:

IWAE0007E Could not load resource "WEB-INF/ibm-web-bnd.xmi" in archive "tmp.war"

[2/24/05 14:53:10:297 CST] 000000bc SystemErr R

com.ibm.etools.j2ee.commonarchivecore.exception.ResourceLoadException:

IWAE0007E Could not load resource "WEB-INF/ibm-web-bnd.xmi" in archive "tmp.war"

!Stack_trace_of_nested_exce!

com.ibm.etools.j2ee.exception.WrappedRuntimeException: Exception occurred loading

WEB-INF/ibm-web-bnd.xmi

!Stack_trace_of_nested_exce!

To work around this problem, remove the xmi:type=EJBLocalRef tag from the ibm-web-bnd.xmi file.

Removing this tag does not affect the application because the tag was previously used for matching the

cross document reference type. The application now works for the WebSphere Application Server Version

5.1 and later releases.

″Timeout!!!″ error displays when attempting to install an enterprise application in

the administrative console

This error can occur if you attempt to install an enterprise application that has not been deployed.

To correct this problem:

v Open the file_name.ear file in an assembly tool and then click Deploy. This action creates a file with a

name like Deployed_file_name.ear.

v In the administrative console, install the deployed .ear file.

I get a NameNotFoundException message when deploying an application that

contains an EJB module

If you specify that the EJB deployment tool be run during application installation and the installation fails

with a NameNotFoundException message, ensure that the input JAR or EAR file does not contain source

files. If there are source files in the input JAR or EAR file, the EJB deployment tools runs a rebuild before

generating the deployment code.

To work around this problem, either remove the source files or include all dependent classes and resource

files on the class path. Otherwise, the source files or the lack of access to dependent classes and

resource files might cause problems during rebuilding of your application on the server.

I get compilation errors and EJB deploy fails when installing an EJB JAR file

generated for Version 5.x or earlier

When installing an old application that uses EJB modules that were built to run on WebSphere Application

Server Version 5.x or earlier, compilation errors result and EJB deploy fails. The EJB JAR file contains

Java source for the old generated code. The old Java source was generated for Version 5.x or before but,

when deployed to a WebSphere Application Server Version 6.x product, it is compiled using the Version

6.x runtime JAR files.

284 Developing and deploying applications

To work around this problem, remove all .java files from the application .ear file. After the Java source

files are removed, you can deploy the application onto a server successfully.

After installing the application onto a different machine, the application does not

run

If your application uses application level resources, its application level node information must be correct

for the application to run as expected.

When you add application level resources to an application and deploy the application onto a machine,

ensure that the application level node information is correct. Otherwise, when you install the application

onto a different machine, it is installed to the wrong location and the application does not run as expected.

You can update the application level node information using an assembly tool. Update the nodeName from

deploymentTargets of the deployment.xml file under ibmconfig. Also, ensure that binariesURL from

deployedObject of the deployment.xml file has the correct path.

A single file replaces all application files during application update

If you select the Replace or add a single file option of the application update wizard and the currently

deployed application consists of several files, specify the full path name of the file to be replaced or added

for Specify the path beginning with the installed application archive file to the file to be replaced or

added.

A full path name usually has the structure directory_path/file_name and resembles the following:

PriceChangeSession.jar/priceChangeSession/priceChangeSessionBean.class

Do not specify less than the full path name for Specify the path beginning with the installed

application archive file to the file to be replaced or added. For example, do not specify only a directory

path:

PriceChangeSession.jar/priceChangeSession

If you specify less than a full path name, all files in the directory of the currently deployed application might

be replaced by the single new file that was specified under Specify the path to the file.

Application deployment troubleshooting tips

When you first test or run a deployed application, you might encounter problems.

Select the problem you are having with testing or the first run of deployed code for WebSphere Application

Server:

v Server startup problems.

v “Application startup problems” on page 291.

v “Web resource is not displayed” on page 294.

v Data access problems.

v Enterprise bean cannot be accessed from a servlet, a JSP file, a stand-alone program, or another client.

v Application access problems.

v Access problems after enabling security.

v Security enablement followed by errors.

v Secure Sockets Layer errors.

v Application client sending SOAP request receives errors.

v “A client program does not work” on page 286.

v WebSphere MQ connection and queue connection factory creation errors.

You can use the following administrative console panels to inspect the configuration of your applications

and JMS resources:

Chapter 9. Troubleshooting deployment 285

v For a view of the JMS resources for a given application, see the following panel: Messaging resources

for this application.

v For a view of the applications and JMS resources for a given default messaging provider destination,

see the following panel: Application resources for this destination.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see Troubleshooting help from IBM.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the Must gather documents page for information to gather to send to IBM

Support page.

A client program does not work

What kind of problem are you seeing?

ActiveX client fails to display ASP files, or WebSphere Application Server

resources (JSP files, servlet, or HTML pages) or both

A possible cause of this problem is that both IIS for serving Active Server Pages (ASP) files and an HTTP

server that supports WebSphere Application Server (such as IBM HTTP Server) are deployed on the same

host. This deployment leads to misdirected HTTP traffic if both servers are listening on the same port

(such as the default port 80).

To resolve this problem, either:

v Open the IIS administrative panel, and edit the properties of the default Web server to change the port

number to a value other than 80

v Install IIS and the HTTP server on separate servers.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

Plants by WebSphere Catalog Manager (pbwsCatalogMgr) exceptions

When you federate a standalone server into a Deployment Manager cell, the bootstrap port number of the

application server may change. This will cause the client to not be able to communicate with the server,

thus causing an exception. The following scenario may cause an exception when you start Plants by

WebSphere:

1. Install a standalone WebSphere Application Server.

2. Run the Plants by WebSphere example.

3. Create a Deployment Manager (DMGR) using the Profile Management tool or by using the

manageprofiles command.

4. Federate the standalone WebSphere Application Server into a Deployment Manager cell using the

addNode command.

5. Start pbwsCatalogMgr.

To avoid the exception, locate the new (changed) port number on the server and modify the client

configuration to match the port number on the server.

1. Go to was_server_root\profiles\your_server_name\config\cells\your_cell\nodes\your_node.

a. Open the serverindex.xml file.

b. Locate the BOOTSTRAP_ADDRESS port number of the application server, for example 9810.

286 Developing and deploying applications

friend.sib/sibresources/AppToSIBRefs_DetailForm.dita
friend.sib/sibresources/AppToSIBRefs_DetailForm.dita
friend.sib/sibresources/AppsFromSIBRefs_DetailForm.dita
http://www-306.ibm.com/software/webservers/appserv/was/support/
http://www-306.ibm.com/software/webservers/appserv/was/support/
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21145599
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180

2. Assign this port number to the client to communicate with your newly-federated application server. Go

to was_client_root\bin and edit the setupClient.bat file.

3. Locate the line ’SET SERVERPORTNUMBER’ and set the value for it to 9810.

If you have security enabled, ensure that the bus security is also enabled and that a user is defined to

the bus connector role before running pbwsCatalogMgr.

4. Restart the node agent and the application server.

The client is now properly set up to start pbwsCatalogMgr.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Application startup errors

Use this information for troubleshooting problems that occur when starting an application.

What kind of error do you see when you start an application?

v “HTTP server and Application Server are working separately, but requests are not passing from HTTP

server to Application Server”

v “File serving problems” on page 288

v “Graphics do not appear in the JSP file or servlet output” on page 288

v “SRVE0026E: [Servlet Error]-[Unable to compile class for JSP file” on page 289

v “After modifying and saving a JSP file, the change does not show up in the browser (the old JSP file

displays)” on page 290

v “Message like ″Message: /jspname.jsp(9,0) Include: Mandatory attribute page missing″ appears when

attempting to browse JSP file” on page 290

v “The Java source generated from a JSP file is not retained in the temp directory (only the class file is

found)” on page 290

v “The JSP Batch Compiler fails with the message ″Enterprise Application [application name you typed in]

not found.″” on page 291

v “There is a translation problem with non-English browser input” on page 291

v “Scroll bars do not appear around items in the browser window” on page 291

v “Error ″Page cannot be displayed... server not found or DNS error″ appears when attempting to browse

a JavaServer Pages (JSP) file using Internet Explorer” on page 291

HTTP server and Application Server are working separately, but requests are not

passing from HTTP server to Application Server

If your HTTP server appears to be functioning correctly, and the Application Server also works on its own,

but browser requests sent to the HTTP server for pages are not being served, a problem exists in the

WebSphere Application Server plug-in.

In this case:

1. Determine whether the HTTP server is attempting to serve the requested resource itself, rather than

forwarding it to the WebSphere Application Server.

a. Browse the HTTP server access log (IHS install root/logs/access.log for IBM HTTP Server). It

might indicate that it could not find the file in its own document root directory.

b. Browse the plug-in log file as described below.

2. Refresh the plugin-cfg.xml file that determines which requests sent to the HTTP server are forwarded

to the WebSphere Application Server, and to which Application Server.

Use the console to refresh this file:

v In the WebSphere Application Server administrative console, expand the Environment tree control.

v Click Update WebSphere Plugin.

v Stop and restart the HTTP server.

Chapter 9. Troubleshooting deployment 287

http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180&q=mustgather

If you are using IBM HTTP Server for iSeries or Lotus® Domino® for iSeries, you do not need to

restart the HTTP server.

v Retry the Web request.

If you have created a Web server definition to model your Web server instance, the file is located

under profile_root/config/cells/cell_name/nodes/Web_server_node_name/servers/Web_server_name.

If you have not, the file is located under profile_root/config/cells.

3. Browse the plugin_install_root/logs/web_server_name/http_plugin.log file for clues to the problem.

Make sure the timestamps with the most recent plug-in information stanza, which is printed out when

the plug-in is loaded, correspond to the time the Web server started.

4. Turn on plug-in tracing by setting the LogLevel attribute in the plugin-cfg.xml file to Trace and

reloading the request. Browse the plugin_install_root/logs/Web_server_name/http_plugin.log file.

You should be able to see the plug-in attempting to match the request URI with the various URI

definitions for the routes in the plugin-cfg.xml. Check which rules the plug-in is not matching against

and then figure out if you need to add additional ones. If you just recently installed the application you

might need to manually regenerate the plug-in configuration to pick up the new URIs related to the

new application.

For further details on troubleshooting plug-in-related problems, see Webserver plug-in troubleshooting tips

located in the Administering applications and their environment PDF book.

File serving problems

If text output appears on your JSP- or servlet-supported Web page, but image files do not:

v Verify that your files are in the right place: the document root directory of your Web application

WebSphere Application Server follows the J2EE standard, which means that the document root is the

Web_module_name.war directory of your deployed Web application.

Typically this directory will be found in the profile_root/installedApps/nodename/appname.ear directory or

profile_root/installedApps/nodename/appnameNetwork.ear directory.

If the files are in a subdirectory of the document root, verify that the reference to the file reflects that.

That is, if the invoices.html file is stored in Windows directory Web_module_name.war\invoices, then

links from other pages in the Web application to display it should read ″invoices\invoices.html″, not

″invoices.html″.

v Verify that your Web application is configured to enable file serving (in other words, that it is enabled to

display static resources like image and .html files):

1. View the file serving property of the hosting Web module by browsing the source .war file in an

assembly tool. If necessary, update the property and redeploy the module. For more information

about the assembly tool, refer to the assembly tools section of the Developing and deploying

applications PDF book.

2. Edit the fileServingEnabled property in the deployed Web application ibm-web-ext.xmi

configuration file.

The file typically is found in the profile_root/config/cells/nodename or nodenameNetwork/
applications/application_name/deployments/application name/Web_module_name/web-inf

directory.

Graphics do not appear in the JSP file or servlet output

If text output appears on your JSP- or -servlet-supported Web page, but image files do not:

v Verify that your graphic files are in the right place: the document root directory of your Web

application. WebSphere Application Server Version 5 follows the J2EE standard, which means that the

document root is the Web_module_name.war directory of your deployed Web application.

Typically, this directory is found in the profile_root/installedApps/nodename/appname.ear directory or

profile_root/installedApps/nodename/appnameNetwork.ear directory.

288 Developing and deploying applications

If the graphics files are in a subdirectory of the document root, verify that the reference to the graphic

reflects that; for example, if the banner.gif file is stored in Windows directory Web_module_name.war/
images, the tag to display it should read: , not .

v Verify that your Web application is configured to enable file serving (that is, display of static resources

like image and .html files).

1. View the file serving property of the hosting Web module by browsing the source .war file in an

assembly tool. If necessary, update the property and redeploy the module. For more information

about the assembly tool, refer to the assembly tools section of the Developing and deploying

applications PDF book.

2. Edit the fileServingEnabled property in the deployed Web application ibm-web-ext.xmi

configuration file.

The file typically is found in the profile_root/config/cells/nodename or nodenameNetwork/
applications/application_name/deployments/application name/Web_module_name/web-inf

directory.

3. After completing the previous step:

– In the administrative console, expand the Environment tree control .

– Click Update WebSphere Plugin.

– Stop and restart the HTTP server and retry the Web request.

SRVE0026E: [Servlet Error]-[Unable to compile class for JSP file

If this error appears in a browser when trying to access a new or modified .jsp file for the first time, the

most likely cause is that the JSP file Java source failed (was incorrect) during the javac compilation phase.

Check the SystemErr.log file for a compiler error message, such as:

C:\WASROOT\temp\ ... test.war_myJsp.java:14: \Duplicate variable declaration: int myInt was int myInt

int myInt = 122;

String myString = "number is 122";

static int myStaticInt=22;

int myInt=121;

 ^

Fix the problem in the JSP source file, save the source and request the JSP file again.

If this error occurs when trying to serve a JSP file that was copied from another system where it ran

successfully, then there is something different about the new server environment that prevents the JSP file

from running. Browse the text of the error for a statement like:

Undefined variable or class name: MyClass

This error indicates that a supporting class or jar file is not copied to the target server, or is not on the

class path. Find the MyClass.class file, and place it on the Web module WEB-INF/classes directory, or

place its containing .jar file in the Web module WEB-INF/lib directory.

Verify that the URL used to access the resource is correct by doing the following:

v For a JSP file, html file, or image file: http://host_name/Web_module_context_root/subdir under doc

root, if any/filename.ext. The document root for a Web application is the application_name.WAR

directory of the installed application.

– For example, to access the myJsp.jsp file, located in c:\WebSphere\ApplicationServer\installedApps\
myEntApp.ear\myWebApp.war\invoices on myhost.mydomain.com, and assuming the context root for

the myWebApp Web module is myApp, the URL is http://myhost.mydomain.com/myApp/invoices/
myJsp.jsp.

– JSP serving is enabled by default. File serving for HTML and image files must be enabled as a

property of the Web module, in an assembly tool, or by setting the fileServingEnabled property to

true in the ibm-web-ext.xmi file of the installed Web application and restarting the application. For

more information about the assembly tool, refer to the assembly tools section of the Developing and

deploying applications PDF book.

Chapter 9. Troubleshooting deployment 289

v For servlets served by class name, the URL is http://hostname/Web_module_context_root/servlet/
packageName.className.

For example, to access myCom.myServlet.class, located in profile_root/installedApps/myEntApp.ear/
myWebApp.war/WEB-INF/classes, and assuming the context root for the myWebApp module is

″myApp″, the URL would be http://myhost.mydomain.com/myApp/servlet/myCom.MyServlet.

v Serving servlets by class name must be enabled as a property of the Web module, and is enabled by

default. File serving for HTML and image files must be enabled as a property of the Web application, in

an assembly tool, or by setting the fileServingEnabled property to true in the ibm-web-ext.xmi file of

the installed Web application and restarting the application. For more information about the assembly

tool, refer to the assembly tools section of the Developing and deploying applications PDF book.

Correct the URL in the ″from″ HTML file, servlet or JSP file. An HREF with no leading slash (/) inherits the

calling resource context. For example:

v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″ServletB″ resolves to

″http://hostname/myapp/servlet/ServletB″

v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″servlet/ServletB″ resolves to

″http://hostname/myapp/servlet/servlet/ServletB″ (an error)

v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″/ServletB″ resolves to

″http://hostname/ServletB″ (an error, if ServletB requires the same context root as MyServlet)

After modifying and saving a JSP file, the change does not show up in the

browser (the old JSP file displays)

It is probable that the Web application is not configured for servlet reloading, or the reload interval is too

high.

To correct this problem, in an assembly tool, check the Reloading Enabled flag and the Reload Interval

value in the IBM Extensions for the Web module in question. Enable reloading, or if it is already enabled,

then set the Reload Interval lower. For more information about the assembly tool, refer to the assembly

tools section of the Developing and deploying applications PDF book.

Message like ″Message: /jspname.jsp(9,0) Include: Mandatory attribute page

missing″ appears when attempting to browse JSP file

It is probable that the JSP file failed during the translation to Java phase. Specifically, a JSP directive, in

this case an Include statement, was incorrect or referred to a file that could not be found.

To correct this problem, fix the problem in the JSP source, save the source and request the JSP file again.

The Java source generated from a JSP file is not retained in the temp directory

(only the class file is found)

It is probable that the JSP processor is not configured to keep generated Java source.

In an assembly tool, check the JSP Attributes under Assembly Property Extensions for the Web

module in question. Make sure the keepgenerated attribute is there and is set to true. If not, set this

attribute and restart the Web application. To see the results of this operation, delete the class file from the

temp directory to force the JSP processor to translate the JSP source into Java source again. For more

information about the assembly tool, refer to the assembly tools section of the Developing and deploying

applications PDF book.

290 Developing and deploying applications

The JSP Batch Compiler fails with the message ″Enterprise Application

[application name you typed in] not found.″

It is probable that the full enterprise application path and name, starting with the .ear subdirectory that

resides in the applications directory is expected as an argument to the JspBatchCompiler tool, not just

the display name.

The directory path is profile_root/config/cells/node_nameNetwork/applications.

For example:

v ″JspBatchCompiler -enterpriseapp.name sampleApp.ear/deployments/sampleApp″ is correct, as

opposed to

v ″JspBatchCompiler -enterpriseapp.name sampleApp″, which is incorrect.

There is a translation problem with non-English browser input

If non-English-character-set browser input cannot be translated after being read by a servlet or JSP file,

ensure that the request parameters are encoded according to the expected character set before reading.

For example, if the site is Chinese, the target .jsp file should have a line:

 req.setCharacterEncoding("gb2312");

before any req.getParameter method calls.

This problem affects servlets and jsp files ported from earlier versions of WebSphere Application Server,

which converted characters automatically based upon the locale of the WebSphere Application Server.

Scroll bars do not appear around items in the browser window

In some browsers, tree or list type items that extend beyond their allotted windows do not have scroll bars

to permit viewing of the entire list.

To correct this problem, right-click on the browser window and click Reload from the menu.

Error ″Page cannot be displayed... server not found or DNS error″ appears when

attempting to browse a JavaServer Pages (JSP) file using Internet Explorer

This error can occur when an HTTP timeout causes the servant to be brought down and restarted. To

correct this problem, increase the ConnectionIOTimeOut value:

1. From the administrative console, select System administration > Deployment manager >

Administration Services > Custom Properties

2. Select ConnectionIOTimeOut.

3. Increase the ConnectionIOTimeOut value.

4. Click OK.

Application startup problems

When an application is not starting or starting with errors, the problem could be from one of various

sources.

What kind of error do you see when you start an application?

v A “java.lang.ClassNotFoundException: classname Bean_AdderServiceHome_04f0e027Bean” on page

292 error occurs

v A “ConnectionFac E J2CA0102E: Invalid EJB component: Cannot use an EJB module with version 1.1

using The Relational Resource Adapter” on page 292 error occurs

Chapter 9. Troubleshooting deployment 291

v “NMSV0605E: ″A Reference object looked up from the context...″ error when starting an application” on

page 293.

v “A Page Not Found, Array Index Out of Bounds, or other error when an updated application restarts” on

page 293

If none of these errors match the error you see:

v Browse the log files of the application server for this application looking for clues. By default, these files

are: app_server_root/logs/server_name/SystemErr.log and SystemOut.log.

v Look up any error or warning messages in the message reference table by clicking the Reference view

and expanding Messages.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see Troubleshooting help from IBM.

java.lang.ClassNotFoundException: classname

Bean_AdderServiceHome_04f0e027Bean

An similar exception occurs when you try to start an undeployed application containing enterprise beans,

or containing undeployed enterprise bean modules.

Enterprise JavaBeans modules created in an assembly tool intentionally have incomplete configuration

information. Deploying these modules completes the configuration by reading the module’s deployment

descriptor and completing platform- or installation-dependent settings and adding related classes to the

Enterprise JavaBeans JAR file.

To avoid this problem, do the following:

v Use an assembly tool and administrative console to generate deployment code and install the

application or Enterprise JavaBeans module onto a server.

1. Uninstall the application or Enterprise JavaBeans module in the administrative console.

2. Configure your assembly tool so the target server is a WebSphere Application Server installation

such as WebSphere Application Server v6. If you do not have access to the target server, you can

specify a false location such as c:\temp. Specifying a false location enables you to assemble and

generate deployment code for the enterprise bean.

3. In the Project Explorer view of an assembly tool, right-click the enterprise bean (Enterprise

JavaBeans) in the undeployed .ear file containing the Enterprise JavaBeans module or the

standalone undeployed Enterprise JavaBeans JAR file, and click Deploy. If your assembly tool can

access the WebSphere Application Server target server, deployment code is generated for the

Enterprise JavaBeans and the assembly tool attempts to install the application or module onto the

target server. If your assembly tool cannot access the WebSphere Application Server target server

or the installation fails, use the deployment code that is generated for the next step.

For information on using an assembly tool, refer to Chapter 3, “Assembling applications,” on page

11.

4. Use the wsadmin $AdminApp install command or the administrative console to install the deployed

version created by the assembly tool.
v If you use the wsadmin $AdminApp install command, uninstall it and then reinstall using the -EJBDeploy

option. Follow the install command with the $AdminConfig save command.

ConnectionFac E J2CA0102E: Invalid EJB component: Cannot use an EJB module

with version 1.1 using The Relational Resource Adapter

This error occurs when an enterprise bean developed to the Enterprise JavaBeans 1.1 specification is

deployed with a WebSphere Application Server V5 J2C-compliant data source, which is the default data

source. By default, persistent enterprise beans created under WebSphere Application Server V4.0 using

292 Developing and deploying applications

the Application Assembly Tool fulfill the Enterprise JavaBeans 1.1 specification. To run on WebSphere

Application Server V6, these enterprise beans must be associated with a WebSphere Application Server

V4.0-type data source.

Either modify the mapping in the application of enterprise beans to associate 1.x container managed

persistence (CMP) beans to associate them with a V4.0 data source or delete the existing data source and

create a V4.0 data source with the same name.

To modify the mapping in the application of enterprise beans, in the WebSphere Application Server

administrative console, select the properties for the problem application and use map resource

references to resources or Map data sources for all 1.x CMP beans to switch the data source the

enterprise bean uses. Save the configuration and restart the application.

To delete the existing data source and create a V4.0 data source with the same name:

1. In the administrative console, click Resources > Manage JDBC Providers > JDBC_provider_name >

Data sources.

2. Delete the data source associated with the Enterprise JavaBeans 1.1 module.

3. Click Resources > Manage JDBC Providers > JDBC_provider_name > Data sources (Version 4).

4. Create the data source for the Enterprise JavaBeans 1.1 module.

5. Save the configuration and restart the application.

NMSV0605E: ″A Reference object looked up from the context...″ error when

starting an application

If the full text of the error is similar to:

[7/17/02 15:20:52:093 CDT] 5ae5a5e2 UrlContextHel W NMSV0605E:

 A Reference object looked up from the context

 "java:" with the name "comp/PM/WebSphereCMPConnectionFactory" was sent to the JNDI Naming Manager

 and an exception resulted. Reference data follows:

 Reference Factory Class Name: com.ibm.ws.naming.util.IndirectJndiLookupObjectFactory

 Reference Factory Class Location URLs:

 Reference Class Name: java.lang.Object

 Type: JndiLookupInfo

 Content: JndiLookupInfo: ; jndiName="eis/jdbc/MyDatasource_CMP"; providerURL="";

 initialContextFactory=""

then the problem might be that the data source intended to support a CMP enterprise bean is not correctly

associated with the enterprise bean.

To resolve this problem:

1. Select the Use this Data Source in container managed persistence (CMP) check box in the data

source ″General Properties″ panel of the administrative console.

2. Verify the JNDI name in either of the following ways:

v Verify that the JNDI name given in the administrative console under Resources > Manage JDBC

Provider > DataSource > JNDI Name for DataSource matches the JNDI name given for CMP or

BMP resource bindings at the time of assembling the application in an assembly tool.

v Check the JNDI name for CMP or BMP resource bindings specified in the code by J2EE application

developer. Open the deployed .ear folder in an assembly tool, and look for the JNDI name for your

entity beans under CMP or BMP resource bindings. Verify that the names match.

A Page Not Found, Array Index Out of Bounds, or other error when an updated

application restarts

If an application is updated while it is running, WebSphere Application Server automatically stops the

application or only its changed components, updates the application logic, and restarts the stopped

application or its components. For more information on the restarting of updated applications, refer to

Chapter 9. Troubleshooting deployment 293

Fine-grained recycle behavior in IBM WebSphere Developer Technical Journal: System management for

WebSphere Application Server V6 -- Part 5 Flexible options for updating deployed applications.

A Page Not Found, Array Index Out of Bounds, or other error might occur during restarting.

To minimize the occurrence of such errors, update applications in a test environment before updating the

applications in a production environment. Do not put changes directly into a production environment.

Web resource is not displayed

Use this information to troubleshoot problems that occur when attempting to display a resource in a

browser.

If you are not able to display a resource in your browser, follow these steps:

1. Verify that your HTTP server is healthy by accessing the URL http://server_name from a browser and

seeing whether the Welcome page appears. This action indicates whether the HTTP server is up and

running, regardless of the state of WebSphere Application Server.

2. If the HTTP server Welcome page does not appear, that is, if you get a browser message like page

cannot be displayed or something similar, try to diagnose your Web server problem.

3. If the HTTP server appears to function correctly, the Application Server might not be serving the target

resource. Try to access the resource directly through the Application Server instead of through the

HTTP server.

If you cannot access the resource directly through the Application Server, verify that the URL used to

access the resource is correct.

If the URL is incorrect and it is created as a link from another JavaServer Pages (JSP) file, servlet, or

HTML file, try correcting it in the browser URL field and reloading, to confirm that the problem is a

malformed URL. Correct the URL in the ″from″ HTML file, servlet or JSP file.

If the URL appears to be correct, but you cannot access the resource directly through the Application

Server, verify the health of the hosting Application Server and Web module:

a. View the hosting Application Server and Web module in the administrative console to verify that

they are up and running.

b. Copy a simple HTML or JSP file, such as SimpleJsp.jsp, which is in the WebSphere Application

Server directory structure, to your Web module document root, and try to access the file. If

successful, the problem is with the resource.

View the JVM log of your Application Server to find out why your resource cannot be found or

served .
4. If you can access the resource directly through the Application Server, but not through an HTTP server,

the problem lies with the HTTP plug-in, the component that communicates between the HTTP server

and the WebSphere Application Server.

5. If the JSP file and the servlet output are served, but not static resources such as .html and image

files, see the steps for enabling file serving.

6. If certain resources display correctly, but you cannot display a servlet by its class name:

v Verify that the servlet is in a directory in the Web module class path, such as in the

/Web_module_name.war/WEB-INF/classes directory.

v Verify that you specify the full class name of the servlet, including its package name, in the URL.

v Verify that ″/servlet″ precedes the class name in the URL. For example, if the root context of a

Web module is ″myapp″, and the servlet is com.mycom.welcomeServlet, then the URL reads:

http://hostname/myapp/servlet/com.mycom.welcomeServlet

v Verify that serving the servlets by class name is enabled for the hosting Web module by opening the

source Web module in an assembly tool and browsing the serve servlets by classname setting in

the IBM Extensions property page. If necessary, enable this flag and redeploy the Web module. For

more information about the assembly tool, refer to the assembly tools section of the Developing and

deploying applications PDF book.

v For servlets or other resources served by mapped URLs, the URL is http://hostname/Web module

context root/mappedURL.

294 Developing and deploying applications

http://www.ibm.com/developerworks/websphere/techjournal/0510_apte/0510_apte.html#sec4

If none of these steps fixes your problem, see if the problem has been identified and documented by

looking at available online support (hints and tips, technotes, and fixes). If you do not find your problem

listed there, see Troubleshooting help from IBM.

Diagnosing Web server problems

If you are unable to view the welcome page of your HTTP server, determine if the server is operating

properly.

If the HTTP server does not start:

v Examine the HTTP server error log for clues.

v Try restoring the HTTP server to its configuration prior to installing WebSphere Application Server and

restarting it. If you are using IBM HTTP Server:

– Rename the file IHS_install_dir\httpd.conf.

– Copy the httpd.conf.default file to the httpd.conf directory.

– If Apache is running, stop and restart it.

v For the Sun ONE (iPlanet) Web server, restore the obj.conf configuration file for Sun ONE V4.1 and

both obj.conf and magnus.conf files for Sun ONE V6.0 and later.

v For the Microsoft® Internet Information Server (IIS), remove the WebSphere Application Server plug-in

through the IIS administrative GUI.

If restoring the HTTP server default configuration file works, manually review the configuration file that has

WebSphere Application Server updates to verify directory and file names for WebSphere Application

Server files. If you cannot manually correct the configuration, you can uninstall and reinstall WebSphere

Application Server to create a clean HTTP configuration file.

If restoring the default configuration file does not help, contact technical support for the Web server you

are using. If you are using IBM HTTP Server with WebSphere Application Server, check available online

support (hints and tips, technotes, and fixes). If you do not find your problem listed there, see

Troubleshooting help from IBM

Accessing a Web resource through the application server and bypassing the HTTP

server

You can bypass the HTTP server and access a Web resource through the application server. It is not

recommended to serve a production Web site in this way, but it provides a good diagnostic tool when it is

not clear whether a problem resides in the HTTP server, WebSphere Application Server, or the HTTP

plug-in.

To access a Web resource through the Application Server:

1. Determine the port of the HTTP service in the target application server.

a. In the WebSphere administrative console, click Servers > Application Servers.

b. Select the target server, then under Additional Properties click Web Container.

c. Under the Additional Properties of the Web container, click HTTP Transports. You see the ports

listed for virtual hosts served by the application server.

d. There can be more than one port listed. In the default application server (server1), for example,

9060 is the port reserved for administrative requests, 9443 and 9043 are used for SSL-encrypted

requests. To test the sample ″snoop″ servlet, for example, use the default application port 9080,

unless it changes.
2. Use the HTTP transport port number of the application server to access the resource from a browser.

For example, if the port is 9080, the URL is http://hostname:9080/myAppContext/myJSP.jsp.

3. If you are still unable to access the resource, verify that the HTTP transport port is in the ″Host Alias″

list:

a. Click Application Servers > Your_ApplicationServer > Web Container > HTTP Transports to

check the Default virtual host and the HTTP transport ports used by this application server.

Chapter 9. Troubleshooting deployment 295

b. Click Environment > Virtual Hosts > default host > Host Aliases to check if the HTTP transport

port exists. Add an entry if necessary. For example, if the HTTP port for your application is server

is 9080, add a host alias of *:9082.

Application uninstallation problems

When you try to uninstall an application or node, you might encounter problems. This topic suggests ways

to resolve uninstallation problems.

What kind of problem are you having?

v After uninstalling an application through wsadmin tool, the application continues to run and throws

″DocumentIOException″

If none of these steps fixes your problem:

v Make sure that the application and its Web and EJB modules are in a stopped state before uninstalling.

v If you are uninstalling or installing an application using wsadmin, make sure that you are using the

-conntype NONE option to invoke wsadmin and enable local mode. To use the -conntype NONE option,

stop the hosting application server before uninstalling the application.

v Check to see if the problem has been identified and documented by looking at the available online

support (hints and tips, technotes, and fixes).

v If you don’t find your problem listed there contact IBM support

After uninstalling application through the wsadmin tool, the application throws

″DocumentIOException″

If this exception occurs after the application was uninstalled using wsadmin with the -conntype NONE

option:

v Restart the server or,

v Rerun the uninstall command without the -conntype NONE option.

296 Developing and deploying applications

Chapter 10. Adding logging and tracing to your application

You can add logging and tracing to applications to help analyze performance and diagnose problems in

WebSphere Application Server.

About this task

Deprecation: The JRas framework that is described in this information center is deprecated. However, you

can achieve the same results using Java logging.

Designers and developers of applications that run with or under WebSphere Application Server, such as

servlets, JavaServer Pages (JSP) files, enterprise beans, client applications, and their supporting classes,

might find it useful to use Java logging for generating their application logging.

This approach has advantages over adding System.out.println statements to your code:

v Your messages are displayed in the WebSphere Application Server standard log files, using a standard

message format with additional data, such as a date and time stamp that are added automatically.

v You can more easily correlate problems and events in your own application to problems and events that

are associated with WebSphere Application Server components.

v You can take advantage of the WebSphere Application Server log file management features.

Application

code

Application

code

com.xyz.abc.def

(Logger)

com.xyz.abc.ghi

(Logger)

com.xyz.abc

(Logger)

root

(Logger)

User Handler1

(Handler)

Output

device

User Handler2

(Handler)

Output

device

WebSphere

Application

Server handlers

Output

device

com.ibm.ws

(Logger)

com.ibm.ws.xyz

(Logger)

Service

broker

Applications

WebSphere Application Server

Applications

WebSphere

Application

code

JRAS API

(deprecated)

Anonymous

(Logger)

Application Server

1. Enable and configure one of the supported types of logging. Use one of the following methods:

v “Configuring Java logging using the administrative console” on page 298

v “Configuring applications to use Jakarta Commons Logging” on page 319

v “Logging Common Base Events in WebSphere Application Server” on page 345.

2. Customize the properties to meet your logging needs. For example, enable or disable a particular log,

specify the number of logs to be kept, and specify a format for log output.

3. Restart the application server after making static configuration changes.

© Copyright IBM Corp. 2008 297

Configuring Java logging using the administrative console

Java logging provides a standard logging API for your applications. Before applications can log diagnostic

information, you need to specify how you want the server to handle log output and what level of logging

you require.

About this task

Developing, deploying and maintaining applications are complex tasks. When an application encounters an

unexpected condition, it might not be able to complete a requested operation. You might want the

application to inform the administrator that the operation failed and tell the administrator why the operation

failed. This information enables the administrator to take the proper corrective action. Application

developers might need to gather detailed information that relates to the path of a running application to

determine the root cause of a failure that is due to a code bug. The facilities that are used for these

purposes are typically referred to as logging and tracing. For more information read “Java logging.”

Using the administrative console, you can:

v Enable or disable a particular log, specify where log files are stored and how many log files are kept.

v Specify the level of detail in a log, and specify a format for log output.

v Set a log level for each logger.

You can change the log configuration statically or dynamically. Static configuration changes affect

applications when you start or restart the application server. Dynamic or run time configuration changes

apply immediately.

When a log is created, the level value for that log is set from the configuration data. If no configuration

data is available for a particular log name, the level for that log is obtained from the parent of the log. If no

configuration data exists for the parent log, the parent of that log is checked, and so on up the tree, until a

log with a non-null level value is found. When you change the level of a log, the change is propagated to

the children of the log, which recursively propagates the change to their children, as necessary.

1. Optional: See the Java documentation for the java.util.logging class for a full description of the syntax

and the construction of logging methods.

2. Set the logging levels for your logs:

a. In the navigation pane, click Servers > Application Servers.

b. Click the name of the server that you want to work with.

c. Under Troubleshooting, click Logs and Trace.

d. Click Change Log Detail levels.

e. To make a static change to the configuration, click the Configuration tab. A list of well-known

components, packages, and groups is displayed. To change the configuration dynamically, click the

Runtime tab. The list of components, packages, and groups displays all the components that are

currently registered on the running server.

f. Select a component, package, or group to set a logging level.

g. Click Apply.

h. Click OK.

3. To have static configuration changes take effect, stop then restart the application server.

Java logging

Java logging is the logging toolkit that is provided by the java.util.logging package. Java logging provides a

standard logging API for your applications.

298 Developing and deploying applications

Message logging (messages) and diagnostic trace (trace) are conceptually similar, but do have important

differences. These differences are important for application developers to understand to use these tools

properly. The following operational definitions of messages and trace are provided.

Message

A message entry is an informational record that is intended for end users, systems administrators,

and support personnel to view. The text of the message must be clear, concise, and interpretable

by an end user. Messages are typically localized and displayed in the national language of the end

user. Although the destination and lifetime of messages might be configurable, enable some level

of message logging in normal system operation. Use message logging judiciously because of

performance considerations and the size of the message repository.

Trace A trace entry is an information record that is intended for service engineers or developers to use.

As such, a trace record might be considerably more complex, verbose, and detailed than a

message entry. Localization support is typically not used for trace entries. Trace entries can be

fairly inscrutable, understandable only by the appropriate developer or service personnel. It is

assumed that trace entries are not written during normal runtime operation, but can be enabled as

needed to gather diagnostic information.

The application server redirects the system streams at the server startup. There is no way to allow the

application to output logging to the console because the system streams can not be obtained by the

application. If you would like to use console to monitor the application without using the console handler,

you can either monitor the SystemOut.log file, or monitor a file created by another file handler.

Note: The application server uses Java logging internally and therefore certain restrictions apply for using

system streams with this logging API by applications. During server startup, the standard output and

error streams are replaced with special streams that write to the logging infrastructure, in order to

include the output of the system streams in the log files. Because of this, applications can not use

java.util.logging.ConsoleHandler, or any handler writing to System.err or System.out streams,

attached to the root logger. If the user does attach the handler to the root logger, an infinite loop is

created within the logging infrastructure, leading to stack overflow and server crash.

If the use of a handler that writes to system streams is necessary, attach it to a non-root logger so

that it does not publish log records to parent handlers. The data written to the system streams is

then formatted and written to the corresponding system stream log file. To monitor what is being

written system streams, the configured log files (SystemOut.log and SystemErr.log by default) can

be monitored.

Log level settings

Use this topic to configure and manage log level settings.

Using log levels you can control which events are processed by Java logging. When you change the level

for a logger, the change is propagated to the children of the logger.

Change Log Detail Levels

 Enter a log detail level that specifies the components, packages, or groups to trace. The log detail

level string must conform to the specific grammar described in this topic. You can enter the log

detail level string directly, or generate it using the graphical trace interface.

If you select the Configuration tab, a static list of well-known components, packages, and groups is

displayed. This list might not be exhaustive.

If you select the Runtime tab, the list of components, packages, and group are displayed with all

the components that are registered on the running application server and in the static list.

The format of the log detail level specification is:

<component> = <level>

Chapter 10. Adding logging and tracing to your application 299

where <component> is the component for which to set a log detail level, and <level> is one of the

valid logger levels (off, fatal, severe, warning, audit, info, config, detail, fine, finer, finest, all).

Separate multiple log detail level specifications with colons (:).

Components correspond to Java packages and classes, or to collections of Java packages. Use

an asterisk (*) as a wildcard to indicate components that include all the classes in all the packages

that are contained by the specified component. For example:

* Specifies all traceable code running in the application server, including the product system

code and customer code.

com.ibm.ws.*

Specifies all classes with the package name beginning with com.ibm.ws.

com.ibm.ws.classloader.JarClassLoader

Specifies the JarClassLoader class only.

An error can occur when setting a log detail level specification from the administrative console if

selections are made from both the Groups and Components lists. In some cases, the selection

made from one list is lost when adding a selection from the other list. To work around this

problem, enter the log detail level specification directly into the log detail level entry field.

Select a component or group to set a log detail level. The table following lists the valid levels for

application servers at WebSphere Application Server Version 6 and later, and the valid logging and trace

levels for earlier versions:

 Version 6 logging level Logging level before

Version 6

Trace level before Version

6

Content / Significance

Off Off All disabled* Logging is turned off.

* In Version 6, a trace level

of All disabled turns off

trace, but does not turn off

logging. Logging is enabled

from the Info level.

Fatal Fatal - Task cannot continue and

component, application, and

server cannot function.

Severe Error - Task cannot continue but

component, application, and

server can still function.

This level can also indicate

an impending fatal error.

Warning Warning - Potential error or impending

error. This level can also

indicate a progressive

failure (for example, the

potential leaking of

resources).

Audit Audit - Significant event affecting

server state or resources

Info Info - General information

outlining overall task

progress

Config - - Configuration change or

status

Detail - - General information

detailing subtask progress

300 Developing and deploying applications

Fine - Event Trace information - General

trace + method entry, exit,

and return values

Finer - Entry/Exit Trace information - Detailed

trace

Finest - Debug Trace information - A more

detailed trace that includes

all the detail that is needed

to debug problems

All All enabled All events are logged. If you

create custom levels, All

includes those levels, and

can provide a more detailed

trace than finest.

When you enable a logging level in Version 6.0 or above, you are also enabling all of the levels with

higher severity. For example, if you set the logging level to warning on your Version 6.x application server,

then warning, severe and fatal events are processed.

Trace information, which are events at the Fine, Finer and Finest levels, can be written only to the trace

log. Therefore, if you do not enable diagnostic trace, setting the log detail level to Fine, Finer, or Finest will

not have an effect on the data that is logged.

Loggers

Loggers are used by applications and runtime components to capture message and trace events.

When situations occur that are significant either due to a change in state, for example when a server

completes startup or because a potential problem is detected, such as a timeout waiting for a resource, a

message is written to the logs. Trace events are logged in debugging scenarios, where a developer needs

a clear view of what is occurring in each component to understand what might be going wrong. Logged

events are often the only events available when a problem is first detected, and are used during both

problem recovery and problem resolution.

Loggers are organized hierarchically. Each logger can have zero or more child loggers.

Loggers can be associated with a resource bundle. If specified, the resource bundle is used by the logger

to localize messages that are logged to the logger. If the resource bundle is not specified, a logger uses

the same resource bundle as its parent.

You can configure loggers with a level. If specified, the level is compared by the logger to incoming

events. The events that are less severe than the level set for the logger are ignored by the logger. If the

level is not specified, a logger takes on the level that is used by its parent. The default level for loggers is

Level.INFO.

Loggers can have zero or more attached handlers. If supplied, all events that are logged to the logger are

passed to the attached handlers. Handlers write events to output destinations such as log files or network

sockets. When a logger finishes passing a logged event to all of the handlers that are attached to that

logger, the logger passes the event to the handlers that are attached to the parents of the logger. This

process stops if a parent logger is configured not to use its parent handlers. Handlers in WebSphere

Application Server are attached to the root logger. Set the useParentHandlers logger property to false to

prevent the logger from writing events to handlers that are higher in the hierarchy.

Loggers can have a filter. If supplied, the filter is invoked for each incoming event to tell the logger whether

or not to ignore it.

Chapter 10. Adding logging and tracing to your application 301

Applications interact directly with loggers to log events. To obtain or create a logger, a call is made to the

Logger.getLogger method with a name for the logger. Typically, the logger name is either the package

qualified class name or the name of the package that the logger is used by. The hierarchical logger

namespace is automatically created by using the dots in the logger name. For example, the

com.ibm.websphere.ras logger has a com.ibm.websphere parent logger, which has a com.ibm parent. The

parent at the top of the hierarchy is referred to as the root logger. This root logger is created during

initialization. The root logger is the parent of the com logger.

Loggers are structured in a hierarchy. Every logger, except the root logger, has one parent. Each logger

can also have 0 or more children. A logger inherits log handlers, resource bundle names, and event

filtering settings from its parent in the hierarchy. The logger hierarchy is managed by the LogManager

function.

Loggers create log records. A log record is the container object for the data of an event. This object is

used by filters, handlers, and formatters in the logging infrastructure.

The logger provides several sets of methods for generating log messages. Some log methods take only a

level and enough information to construct a message. Other, more complex logp (log precise) methods

support the caller in passing class name and method name attributes, in addition to the level and message

information. The logrb (log with resource bundle) methods add the capability of specifying a resource

bundle as well as the level, message information, class name, and method name. Using methods such as

severe, warning, fine, finer, and finest you can log a message at a particular level. For more information on

logging and how to use it in your applications read “Using loggers in an application” on page 304. For a

complete list of methods, see the java.util.logging documentation at http://java.sun.com/javase/.

Log handlers

Log handlers write log record objects to output devices like log files, sockets, and notification mechanisms.

Loggers can have zero or more attached handlers. All objects that are logged to the logger are passed to

the attached handlers, if handlers are supplied.

You can configure handlers with a level. The handler compares the level that is specified in the logged

object to the level that is specified for the handler. If the level of the logged object is less severe than the

level set in the handler, the object is ignored by the handler. The default level for handlers is ALL.

Handlers can have a filter. If a filter is supplied, the filter is invoked for each incoming object to tell the

handler whether or not to ignore it.

Handlers can have a formatter. If a formatter is supplied, the formatter controls how the logged objects are

formatted. For example, the formatter can decide to first include the time stamp, followed by a string

representation of the level, followed by the message that is included in the logged object. The handler

writes this formatted representation to the output device. Read “Example: Creating custom formatters with

java.util.logging” on page 314 for information on using a custom formatter in your applications.

Both loggers and handlers can have levels and filters, and a logged object must pass all of these elements

to be output. For example, you can set the logger level to FINE, but if the handler level is set at

WARNING, only WARNING level messages are displayed in the output for that handler. Conversely, if your

log handler is set to output all messages (level=All), but the logger level is set to WARNING, the logger

never sends messages lower than WARNING to the log handler.

Log levels

Levels control which events are processed by Java logging. WebSphere Application Server controls the

levels of all loggers in the system.

302 Developing and deploying applications

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

The level value is set from configuration data when the logger is created and can be changed at run time

from the administrative console. If a level is not set in the configuration data, a level is obtained by

proceeding up the hierarchy until a parent with a level value is found. You can also set a level for each

handler to indicate which events are published to an output device. When you change the level for a

logger in the administrative console, the change is propagated to the children of the logger.

Levels are cumulative; a logger can process logged objects at the level that is set for the logger, and at all

levels above the set level. Valid levels are:

 Level Content / Significance

Off No events are logged.

Fatal Task cannot continue and component cannot function.

Severe Task cannot continue, but component can still function

Warning Potential error or impending error

Audit Significant event affecting server state or resources

Info General information outlining overall task progress

Config Configuration change or status

Detail General information detailing subtask progress

Fine Trace information - General trace + method entry / exit /

return values

Finer Trace information - Detailed trace

Finest Trace information - A more detailed trace - Includes all

the detail that is needed to debug problems

All All events are logged. If you create custom levels, All

includes your custom levels, and can provide a more

detailed trace than Finest.

For instructions on how to set logging levels, see “Configuring Java logging using the administrative

console” on page 298

Note: Trace information, which includes events at the Fine, Finer and Finest levels, can be written only to

the trace log. Therefore, if you do not enable diagnostic trace, setting the log detail level to Fine,

Finer, or Finest does not effect the logged data.

Log filters

Log filters help control more detailed logging settings that are not handled by usual log level settings.

A filter provides an optional, secondary control over what is logged, beyond the control that is provided by

setting the level. Applications can apply a filter mechanism to control logging output through the logging

APIs. An example of filter usage is to suppress all the events with a particular message key.

A filter is attached to a logger or log handler using the appropriate setFilter method. Read “Example:

Creating custom filters with java.util.logging” on page 313 for information on implementing custom filters.

For a complete list of filter methods, see the java.util.logging documentation at http://java.sun.com/javase/

Log formatters

Log formatters format log messages so they can be used by various log handlers.

Handlers can be configured with a log formatter that knows how to format log records. The event, which is

represented by the log record object, is passed to the appropriate formatter by the handler. The formatter

returns formatted output to the handler, which writes the output to the output device.

Chapter 10. Adding logging and tracing to your application 303

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

The formatter is responsible for rendering the event for output. This formatter uses the resource bundle

that is specified in the event to look up the message in the appropriate language.

Formatters are attached to handlers using the setFormatter method.

You can find the java.util.logging documentation at http://java.sun.com/javase/.

Using loggers in an application

This topic describes how to use Java logging within an application.

About this task

To create an application using Java logging, perform the following steps:

1. Create the necessary handler, formatter, and filter classes if you need your own log files.

2. If localized messages are used by the application, create a resource bundle, as described in “Creating

log resource bundles and message files” on page 308.

3. In the application code, get a reference to a logger instance, as described in “Using a logger.”

4. Insert the appropriate message and trace logging statements in the application, as described in “Using

a logger.”

Using a logger

You can use Java logging to log messages and add tracing.

About this task

Use WsLevel.DETAIL level and above for messages, and lower levels for trace. The WebSphere

Application Server Extension API (the com.ibm.websphere.logging package) contains the WsLevel class.

For messages use:

WsLevel.FATAL

Level.SEVERE

Level.WARNING

WsLevel.AUDIT

Level.INFO

Level.CONFIG

WsLevel.DETAIL

For trace use:

Level.FINE

Level.FINER

Level.FINEST

1. Use the logp method instead of the log or the logrb method. The logp method accepts parameters for

class name and method name. The log and logrb methods will generally try to infer this information,

but the performance penalty is prohibitive. In general, the logp method has less performance impact

than the log or the logrb method.

2. Avoid using the logrb method. This method leads to inefficient caching of resource bundles and poor

performance.

3. Use the isLoggable method to avoid creating data for a logging call that does not get logged. For

example:

if (logger.isLoggable(Level.FINEST)) {

 String s = dumpComponentState(); // some expensive to compute method

 logger.logp(Level.FINEST, className, methodName, "componentX state

dump:\n{0}", s);

 }

304 Developing and deploying applications

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

Example

The following sample applies to localized messages:

// note - generally avoid use of FINE, FINER, FINEST levels for messages to be consistent with

// WebSphere Application Server

String componentName = "com.ibm.websphere.componentX";

String resourceBundleName = "com.ibm.websphere.componentX.Messages";

Logger logger = Logger.getLogger(componentName, resourceBundleName);

// "Convenience" methods - not generally recommended due to lack of class

/ method names

// - cannot specify message substitution parameters

// - cannot specify class and method names

if (logger.isLoggable(Level.SEVERE))

 logger.severe("MSG_KEY_01");

if (logger.isLoggable(Level.WARNING))

 logger.warning("MSG_KEY_01");

if (logger.isLoggable(Level.INFO))

 logger.info("MSG_KEY_01");

if (logger.isLoggable(Level.CONFIG))

 logger.config("MSG_KEY_01");

// log methods are not generally used due to lack of class and method

names

// - enable use of WebSphere Application Server-specific levels

// - enable use of message substitution parameters

// - cannot specify class and method names

if (logger.isLoggable(WsLevel.FATAL))

 logger.log(WsLevel.FATAL, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))

 logger.log(Level.SEVERE, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))

 logger.log(Level.WARNING, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))

 logger.log(WsLevel.AUDIT, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))

 logger.log(Level.INFO, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.CONFIG))

 logger.log(Level.CONFIG, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))

 logger.log(WsLevel.DETAIL, "MSG_KEY_01", "parameter 1");

// logp methods are the way to log

// - enable use of WebSphere Application Server-specific levels

// - enable use of message substitution parameters

// - enable use of class and method names

if (logger.isLoggable(WsLevel.FATAL))

 logger.logp(WsLevel.FATAL, className, methodName, "MSG_KEY_01",

"parameter 1");

if (logger.isLoggable(Level.SEVERE))

 logger.logp(Level.SEVERE, className, methodName, "MSG_KEY_01",

"parameter 1");

if (logger.isLoggable(Level.WARNING))

 logger.logp(Level.WARNING, className, methodName, "MSG_KEY_01",

"parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))

 logger.logp(WsLevel.AUDIT, className, methodName, "MSG_KEY_01",

"parameter 1");

if (logger.isLoggable(Level.INFO))

 logger.logp(Level.INFO, className, methodName, "MSG_KEY_01",

"parameter 1");

if (logger.isLoggable(Level.CONFIG))

 logger.logp(Level.CONFIG, className, methodName, "MSG_KEY_01",

"parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))

 logger.logp(WsLevel.DETAIL, className, methodName, "MSG_KEY_01",

"parameter 1");

// logrb methods are not generally used due to diminished performance

Chapter 10. Adding logging and tracing to your application 305

of switching resource bundles dynamically

// - enable use of WebSphere Application Server-specific levels

// - enable use of message substitution parameters

// - enable use of class and method names

String resourceBundleNameSpecial =

"com.ibm.websphere.componentX.MessagesSpecial";

if (logger.isLoggable(WsLevel.FATAL))

 logger.logrb(WsLevel.FATAL, className, methodName, resourceBundleNameSpecial,

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))

 logger.logrb(Level.SEVERE, className, methodName, resourceBundleNameSpecial,

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))

 logger.logrb(Level.WARNING, className, methodName, resourceBundleNameSpecial,

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))

 logger.logrb(WsLevel.AUDIT, className, methodName, resourceBundleNameSpecial,

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))

 logger.logrb(Level.INFO, className, methodName, resourceBundleNameSpecial,

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.CONFIG))

 logger.logrb(Level.CONFIG, className, methodName, resourceBundleNameSpecial,

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))

 logger.logrb(WsLevel.DETAIL, className, methodName, resourceBundleNameSpecial,

"MSG_KEY_01", "parameter 1");

For trace, or content that is not localized, the following sample applies:

// note - generally avoid use of FATAL, SEVERE, WARNING, AUDIT,

// INFO, CONFIG, DETAIL levels for trace

// to be consistent with WebSphere Application Server

String componentName = "com.ibm.websphere.componentX";

Logger logger = Logger.getLogger(componentName);

// Entering / Exiting methods are used for non trivial methods

if (logger.isLoggable(Level.FINER))

 logger.entering(className, methodName);

if (logger.isLoggable(Level.FINER))

 logger.entering(className, methodName, "method param1");

if (logger.isLoggable(Level.FINER))

 logger.exiting(className, methodName);

if (logger.isLoggable(Level.FINER))

 logger.exiting(className, methodName, "method result");

// Throwing method is not generally used due to lack of message - use

logp with a throwable parameter instead

if (logger.isLoggable(Level.FINER))

 logger.throwing(className, methodName, throwable);

// Convenience methods are not generally used due to lack of class

/ method names

// - cannot specify message substitution parameters

// - cannot specify class and method names

if (logger.isLoggable(Level.FINE))

 logger.fine("This is my trace");

if (logger.isLoggable(Level.FINER))

 logger.finer("This is my trace");

if (logger.isLoggable(Level.FINEST))

 logger.finest("This is my trace");

// log methods are not generally used due to lack of class and

method names

// - enable use of WebSphere Application Server-specific levels

// - enable use of message substitution parameters

// - cannot specify class and method names

if (logger.isLoggable(Level.FINE))

 logger.log(Level.FINE, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINER))

 logger.log(Level.FINER, "This is my trace", "parameter 1");

306 Developing and deploying applications

if (logger.isLoggable(Level.FINEST))

 logger.log(Level.FINEST, "This is my trace", "parameter 1");

// logp methods are the recommended way to log

// - enable use of WebSphere Application Server-specific levels

// - enable use of message substitution parameters

// - enable use of class and method names

if (logger.isLoggable(Level.FINE))

 logger.logp(Level.FINE, className, methodName, "This is my trace",

"parameter 1");

if (logger.isLoggable(Level.FINER))

 logger.logp(Level.FINER, className, methodName, "This is my trace",

"parameter 1");

if (logger.isLoggable(Level.FINEST))

 logger.logp(Level.FINEST, className, methodName, "This is my trace",

"parameter 1");

// logrb methods are not applicable for trace logging because no localization

is involved

Configuring the logger hierarchy

WebSphere Application Server handlers are attached to the Java root logger, which is at the top of the

logger hierarchy. As a result, any request from anywhere in the logger tree can be processed by

WebSphere Application Server handlers.

About this task

You can configure your application server to handle logs in many different ways. Configure your log

settings based upon your configuration and the logging structure that best suits your needs.

v Forward all application logging requests to the WebSphere Application Server handlers. This behavior is

the default.

v Forward all application logging requests to your own custom handlers. Set the useParentHandlers

option to false on one of your custom loggers, and then attach your handlers to that logger.

v Forward all application logging requests to both WebSphere Application Server handlers, and your

custom handlers, but do not forward WebSphere Application Server logging requests to your custom

handlers. Set the useParentHandlers option to true on one of your non-root custom loggers, and then

attach your handlers to that logger.True is the default setting.

v Forward all WebSphere Application Server logging requests to both WebSphere Application Server

handlers, and your custom handlers. Logging requests are always forwarded to WebSphere Application

Server handlers. To forward WebSphere Application Server requests to your custom handlers, attach

your custom handlers to the Java root logger, so that they are at the same level in the hierarchy as the

WebSphere Application Server handlers.

Chapter 10. Adding logging and tracing to your application 307

Example

The following example shows how these requirements can be met using the Java logging infrastructure:

Application

code

Application

code

com.xyz.abc.def

(Logger)

com.xyz.abc.ghi

(Logger)

com.xyz.abc

(Logger)

root

(Logger)

User Handler1

(Handler)

Output

device

User Handler2

(Handler)

Output

device

WebSphere

Application

Server handlers

Output

device

com.ibm.ws

(Logger)

com.ibm.ws.xyz

(Logger)

Service

broker

Applications

WebSphere Application Server

Applications

WebSphere

Application

code

JRAS API

(deprecated)

Anonymous

(Logger)

Application Server

Creating log resource bundles and message files

You can forward messages that are written to the internal WebSphere Application Server logs to other

processes for display. Messages that are displayed on the administrative console, which can be running in

a different location than the server process, can be localized using the late binding process. Late binding

means that WebSphere Application Server does not localize messages when they are logged, but defers

localization to the process that displays the message.

About this task

Every method that accepts messages localizes those messages. The mechanism for providing localized

messages is the resource bundle support provided by the IBM Developer Kit, Java Technology Edition. If

you are not familiar with resource bundles as implemented by the Developer Kit, you can get more

information from various texts, or by reading the API documentation for the java.util.ResourceBundle,

java.util.ListResourceBundle and java.util.PropertyResourceBundle classes, as well as the

java.text.MessageFormat class.

The PropertyResourceBundle class is the preferred mechanism to use.

To properly localize the message, the displaying process must have access to the resource bundle where

the message text is stored. You must package the resource bundle separately from the application, and

install it in a location where the viewing process can access it.

By default, the WebSphere Application Server runtime localizes all the messages when they are logged.

This localization eliminates the need to pass a .jar file to the application, unless you need to localize in a

different location. However, you can use the early binding technique to localize messages as they log. An

application that uses early binding must localize the message before logging it. The application looks up

the localized text in the resource bundle and formats the message. Use the early binding technique to

package the application resource bundles with the application.

To create a resource bundle, perform the following steps.

308 Developing and deploying applications

1. Create a text properties file that lists message keys and the corresponding messages. The properties

file must have the following characteristics:

v Each property in the file is terminated with a line-termination character.

v If a line contains white space only, or if the first non-white space character of the line is the pound

sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be

used to put comments into the file.

v Each line in the file, unless it is a comment or consists of white space only, denotes a single

property. A backslash (\) is treated as the line-continuation character.

v The syntax for a property file consists of a key, a separator, and an element. Valid separators

include the equal sign (=), colon (:), and white space ().

v The key consists of all characters on the line from the first non-white space character to the first

separator. Separator characters can be included in the key by escaping them with a backslash (\),

but doing this process is not recommended, because escaping characters is error prone and

confusing. Instead, use a valid separator character that does not display in any keys in the

properties file.

v White space after the key and separator is ignored until the first non-white space character is

encountered. All characters remaining before the line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full description of the syntax and the

construction of properties files.

2. Translate the file into localized versions of the file with language-specific file names. For example, a

file named DefaultMessages.properties can be translated into DefaultMessages_de.properties for

German and DefaultMessages_ja.properties for Japanese.

3. When the translated resource bundles are available, put the bundle in a directory that is part of the

application class path.

4. When a message logger is obtained from the log manager, configure it to use a particular resource

bundle. Messages logged with the Logger API use this resource bundle when message localization is

performed. At run time, the user locale setting determines the properties file from which to extract the

message that is specified by a message key, ensuring that the message is delivered in the correct

language.

5. If the message loggers msg method is called, a resource bundle name must be explicitly provided.

What to do next

The application locates the resource bundle based on the file location relative to any directory in the class

path. For instance, if the DefaultMessages.properties property resource bundle is located in the

baseDir/subDir1/subDir2/resources directory and baseDir is in the class path, the name

subdir1.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource

bundle.

Example: Logging resource bundles by creating a properties file:

You can create resource bundles in several ways. The best and easiest way is to create a properties file

that supports a properties resource bundle. This sample shows how to create such a properties file.

 Resource bundle sample

For this sample, four localizable messages are provided. The properties file is created and the key-value

pairs are inserted. All the normal properties file conventions and rules apply to this file. In addition, the

creator must be aware of other restrictions that are imposed on the values by the Java MessageFormat

class. For example, apostrophes must be escaped or they cause a problem. Avoid the use of non-portable

characters. WebSphere Application Server does not support the use of extended formatting conventions

that the MessageFormat class supports, such as {1, date} or {0,number, integer}.

Assume that the base directory for the application that uses this resource bundle is baseDir and that this

directory is in the class path. Assume that the properties file is stored in the subdirectory baseDir that is

Chapter 10. Adding logging and tracing to your application 309

not in the class path (for example, baseDir/subDir1/subDir2/resources). To allow the messages file to

resolve, the subDir1.subDir2.resources.DefaultMessage name is used to identify the property resource

bundle and is passed to the message logger.

For this sample, the properties file is named DefaultMessages.properties.

Contents of the DefaultMessages.properties file

MSG_KEY_00=A message with no substitution parameters.

MSG_KEY_01=A message with one substitution parameter: parm1={0}

MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1}

MSG_KEY_03=A message with three parameter: parm1={0}, parm2 = {1}, parm3={2}

When the DefaultMessages.properties file is created, the file can be sent to a translation center where

the localized versions are generated.

Changing the message IDs used in log files

You can change the default format for message IDs in server logs by setting the

com.ibm.websphere.logging.messageId.version system property.

Before you begin

Note: Beginning with WebSphere Application Server Version 6.0, logging files are formatted according to

a standardized system. However, the default runtime behavior is still configured to use the older

format. In new releases of WebSphere Application Server, the message IDs that are written to log

files will be changed to ensure they do not conflict with other IBM products. The default runtime

behavior is still configured to use the older message IDs, deprecated in Version 7.0.

As a result of the default runtime behavior, you might see a mixture of messages that use 4–letter

message prefixes and 5–letter message prefixes. The information in this topic explains how to

change your configuration so that the messages consistently show with 5–letter message prefixes.

The default behavior has not changed to minimize the impact on customers that depend on the

existence of the 4–letter message prefixes.

The following is a sample of an entry in a trace.log file using a default message ID. Note that the message

ID is PMON0001A

[1/26/05 10:17:12:529 EST] 0000000a PMIImpl A PMON0001A: PMI is enabled

A sample of the same entry using a new message ID follows. Note that the message ID is CWPMI0001A.

All new WebSphere Application Server message IDs begin with ’CW’.

[1/26/05 10:17:12:529 EST] 0000000a PMIImpl A CWPMI0001A: PMI is enabled.

About this task

If you are using a logging tool that uses the standardized format, you might want to change the default

configuration settings to format the logging output appropriately. You will need to change the configuration

for each Java virtual machine (JVM) in the cell if you want the output formatting to be the same across

application servers.

v To configure logging files so that they use the newer, 5–letter error message prefixes for each process,

use the following commands with the wsadmin utility:

– Using Jacl:

$AdminConfig list JavaVirtualMachine

set cfgJvm [$AdminConfig list "JavaVirtualMachine"]

$AdminConfig create Property $cfgJvm {{name com.ibm.websphere.logging.messageId.version}

{value 6} {required false}}

$AdminConfig save

– Using Jython:

ls = java.lang.System.getProperty("line.separator")

cfgJvmList = AdminConfig.list("JavaVirtualMachine").split(ls)

print cfgJvmList

310 Developing and deploying applications

cfgJvm = cfgJvmList[JavaVirtualMachine]

AdminConfig.create(’Property’, cfgJvm, [[’name’, ’com.ibm.websphere.logging.messageId.version’],

[’value’, ’6’], [’required’, ’false’]]

AdminConfig.save()

Where JavaVirtualMachine is the number of the process that you want to use.

When you specify the process, the first process listed is zero (0), the second process is one (1), and

so on. Make the changes for each JVM in the cell for consistent output formatting.

Note: Restart the application server for the changes to take effect.

v To change the configuration so that the log files contain the newer, 5–letter message prefixes in the

startServer.log or stopServer.log files, modify the startServer and stopServer scripts in the

install_root/bin directory. Within these files, add the following line of code:

>> %TMPJAVAPROPFILE% echo com.ibm.websphere.logging.messageId.version=6

Note: Restart the application server for the changes to take effect.

Results

Message IDs written to log files will now be compliant with the new standard.

Converting log files to use IBM unique Message IDs:

The convertlog command creates a new log file with either new or old message IDs substituted in place of

the message IDs in the source file.

 Before you begin

Prior to Version 6.x, components were assigned message IDs that are not necessarily unique across IBM

software products. In Version 6.0, a system property was provided to map the message IDs in output logs

to a set of IBM unique message IDs (all WebSphere Application Server message IDs now start with CW)

that do not conflict with other IBM software products. The default runtime behavior still uses the old

message IDs.

About this task

To facilitate the migration of logging tools that are reliant on the old message IDs, the convertlog command

is provided to convert the message IDs of log entries from the old standard to the new standard, or the

new standard back to the old. By default, the software is configured to use the old message IDs when

logging, but you can change the default output with the com.ibm.websphere.logging.messageId.version

system property. Read “Changing the message IDs used in log files” on page 310 for more information.

Use the convertlog command to convert the log output:

convertlog <source file name> <destination file name> [options]

 options: -newMessageFormat convert message IDs to CCCCCnnnnS format

 (cannot be used with -m5)

 -oldMessageFormat convert message IDs to CCCCnnnnS format

 (cannot be used with -m6)

Results

After using the convertlog command you have a new file with message IDs in the chosen format.

convertlog command:

The convertlog command is used to convert the message IDs in log entries from the old standard to the

new standard, or the new standard back to the old.

Chapter 10. Adding logging and tracing to your application 311

Previous versions of WebSphere Application Server used message IDs that are deprecated in WebSphere

Application Server Version 7.0. To facilitate the migration of tools based on the old message IDs, the

convertlog command is implemented to translate log files from one message ID standard to the other.

Use the convertlog command as follows:

convertlog <source file name> <destination file name> [options]

 options: -newMessageFormat convert message IDs to CCCCCnnnnS format

 (cannot be used with -m5)

 -oldMessageFormat convert message IDs to CCCCnnnnS format

 (cannot be used with -m6)

MessageConverter class:

The com.ibm.websphere.logging.MessageConverter class provides a method to convert a message ID at

the front of a String into either a new message ID or an old message ID. The direction of the conversion is

controlled with the conversionType argument.

 Use the MessageConverter class with log analysis tools to convert message IDs from earlier versions of

WebSphere Application Server into the corresponding message IDs that are used in later releases, or to

revert message IDs to an earlier format.

Method

public static java.lang.String convert(java.lang.String in, short conversionType)

Parameters

Use the following parameters with the MessageConverter class:

 Parameter Name Description

in The message to convert. The method assumes the

message ID is the first part of the supplied message with

no leading white space.

conversionType CONVERSION_TYPE_WASV5_TO_WASV6

CONVERSION_TYPE_WASV6_TO_WASV5

Example: Creating custom log handlers with java.util.logging

There may be occasions when you want to propagate log records to your own log handlers rather than

participate in integrated logging.

To use a stand-alone log handler, set the useParentHandlers flag to false in your application.

The mechanism for creating a customer handler is the Handler class support that is provided by the IBM

Developer Kit, Java Technology Edition. If you are not familiar with handlers, as implemented by the

Developer Kit, you can get more information from various texts, or by reading the API documentation for

the java.util.logging API.

The following sample shows a custom handler:

import java.io.FileOutputStream;

import java.io.PrintWriter;

import java.util.logging.Handler;

import java.util.logging.LogRecord;

/**

 * MyCustomHandler outputs contents to a specified file

 */

public class MyCustomHandler extends Handler {

312 Developing and deploying applications

FileOutputStream fileOutputStream;

 PrintWriter printWriter;

 public MyCustomHandler(String filename) {

 super();

 // check input parameter

 if (filename == null || filename == "")

 filename = "mylogfile.txt";

 try {

 // initialize the file

 fileOutputStream = new FileOutputStream(filename);

 printWriter = new PrintWriter(fileOutputStream);

 setFormatter(new SimpleFormatter());

 }

 catch (Exception e) {

 // implement exception handling...

 }

 }

 /* (non-API documentation)

 * @see java.util.logging.Handler#publish(java.util.logging.LogRecord)

 */

 public void publish(LogRecord record) {

 // ensure that this log record should be logged by this Handler

 if (!isLoggable(record))

 return;

 // Output the formatted data to the file

 printWriter.println(getFormatter().format(record));

 }

 /* (non-API documentation)

 * @see java.util.logging.Handler#flush()

 */

 public void flush() {

 printWriter.flush();

 }

 /* (non-API documentation)

 * @see java.util.logging.Handler#close()

 */

 public void close() throws SecurityException {

 printWriter.close();

 }

}

Example: Creating custom filters with java.util.logging

A custom filter provides optional, secondary control over what is logged, beyond the control that is

provided by the level.

The mechanism for creating a customer filter is the Filter interface support that is provided by the IBM

Developer Kit, Java Technology Edition. If you are not familiar with filters, as implemented by the

Developer Kit, you can get more information from various texts, or by reading the API documentation the

for the java.util.logging API.

The following example shows a custom filter:

/**

 * This class filters out all log messages starting with SECJ022E, SECJ0373E, or SECJ0350E.

 */

import java.util.logging.Filter;

import java.util.logging.Handler;

import java.util.logging.Logger;

import java.util.logging.LogRecord;

Chapter 10. Adding logging and tracing to your application 313

public class MyFilter implements Filter {

 public boolean isLoggable(LogRecord lr) {

 String msg = lr.getMessage();

 if (msg.startsWith("SECJ0222E") || msg.startsWith("SECJ0373E") || msg.startsWith("SECJ0350E")) {

 return false;

 }

 return true;

 }

}

//This code will register the above log filter with the root Logger’s handlers (including the WAS system logs):

...

Logger rootLogger = Logger.getLogger("");

rootLogger.setFilter(new MyFilter());

Example: Creating custom formatters with java.util.logging

A formatter formats events. Handlers are associated with one or more formatters.

The mechanism for creating a customer formatter is the Formatter class support that is provided by the

IBM Developer Kit, Java Technology Edition. If you are not familiar with formatters, as implemented by the

Developer Kit, you can get more information from various texts, or by reading the API documentation for

the java.util.logging API.

The following example shows a custom formatter:

import java.util.Date;

import java.util.logging.Formatter;

import java.util.logging.LogRecord;

/**

 * MyCustomFormatter formats the LogRecord as follows:

 * date level localized message with parameters

 */

public class MyCustomFormatter extends Formatter {

 public MyCustomFormatter() {

 super();

 }

 public String format(LogRecord record) {

 // Create a StringBuffer to contain the formatted record

 // start with the date.

 StringBuffer sb = new StringBuffer();

 // Get the date from the LogRecord and add it to the buffer

 Date date = new Date(record.getMillis());

 sb.append(date.toString());

 sb.append(" ");

 // Get the level name and add it to the buffer

 sb.append(record.getLevel().getName());

 sb.append(" ");

 // Get the formatted message (includes localization

 // and substitution of paramters) and add it to the buffer

 sb.append(formatMessage(record));

 sb.append("\n");

 return sb.toString();

 }

}

Example: Adding custom handlers, filters, and formatters

In some cases you might want to have your own custom log files. Adding custom handlers, filters, and

formatters enables you to customize your logging environment beyond what can be achieved by the

configuration of the default WebSphere Application Server logging infrastructure.

314 Developing and deploying applications

The following example demonstrates how to add a new handler to process requests to the

com.myCompany subtree of loggers (see “Configuring the logger hierarchy” on page 307). The main

method in this sample gives an example of how to use the newly configured logger.

import java.util.Vector;

import java.util.logging.Filter;

import java.util.logging.Formatter;

import java.util.logging.Handler;

import java.util.logging.Level;

import java.util.logging.Logger;

public class MyCustomLogging {

 public MyCustomLogging() {

 super();

 }

 public static void initializeLogging() {

 // Get the logger that you want to attach a custom Handler to

 String defaultResourceBundleName = "com.myCompany.Messages";

 Logger logger = Logger.getLogger("com.myCompany", defaultResourceBundleName);

 // Set up a custom Handler (see MyCustomHandler example)

 Handler handler = new MyCustomHandler("MyOutputFile.log");

 // Set up a custom Filter (see MyCustomFilter example)

 Vector acceptableLevels = new Vector();

 acceptableLevels.add(Level.INFO);

 acceptableLevels.add(Level.SEVERE);

 Filter filter = new MyCustomFilter(acceptableLevels);

 // Set up a custom Formatter (see MyCustomFormatter example)

 Formatter formatter = new MyCustomFormatter();

 // Connect the filter and formatter to the handler

 handler.setFilter(filter);

 handler.setFormatter(formatter);

 // Connect the handler to the logger

 logger.addHandler(handler);

 // avoid sending events logged to com.myCompany showing up in WebSphere

 // Application Server logs

 logger.setUseParentHandlers(false);

 }

 public static void main(String[] args) {

 initializeLogging();

 Logger logger = Logger.getLogger("com.myCompany");

 logger.info("This is a test INFO message");

 logger.warning("This is a test WARNING message");

 logger.logp(Level.SEVERE, "MyCustomLogging", "main", "This is a test SEVERE message");

 }

}

When the above program is run, the output of the program is written to the MyOutputFile.log file. The

content of the log is in the expected log file, as controlled by the custom handler, and is formatted as

defined by the custom formatter. The warning message is filtered out, as specified by the configuration of

the custom filter. The output is as follows:

C:\>type MyOutputFile.log

Sat Sep 04 11:21:19 EDT 2004 INFO This is a test INFO message

Sat Sep 04 11:21:19 EDT 2004 SEVERE This is a test SEVERE message

Chapter 10. Adding logging and tracing to your application 315

HTTP error, FRCA, and NCSA access log settings

Use this page to configure the global HTTP error log, and National Center for Supercomputing Applications

(NCSA) access log settings for an HTTP inbound channel. If you are running the product on z/OS, you

can also use this page to configure the global Fast Response Cache Accelerator (FRCA) log settings for

an HTTP inbound channel. FRCA logs are a specialized form of NCSA logs and can only be created in a

z/OS environment.

To view this administrative console page, click Servers > Server Types > WebSphere application

servers > server_name > HTTP error, NCSA access and FRCA logging. This console page has

separate sections for each type of logging. The FRCA logging section only appears if you are running the

product on z/OS.

The HTTP error log contains a record of HTTP processing errors that occur. The level of error logging that

occurs is dependent on the value that is selected for the Error log level field.

The NCSA access log contains a record of all inbound client requests that the HTTP transport channel

handles. All of the messages that are contained in these logs are in NCSA format.

After you configure the HTTP error log, NCSA access logs, and FRCA logs, you must explicitly enable

each type of logging on the settings page for the HTTP channels for which you want a specific types of

logging to occur. To view the settings page for an HTTP channel, click Servers > Server Types >

Application servers > server > Web Container Settings > Web container transport chains > HTTP

inbound channel.

Note: The settings for any of these logs can also be modified on the settings page for a specific HTTP

inbound channel. Any changes that you make on the HTTP inbound channel settings page only

apply to that specific inbound channel. and override any global configuration settings that you

specify on this page.

Enable logging service at server start-up

Select this option if you want any of the following logging to start when the server starts:

v NCSA access logging

v HTTP error logging

Note: Even if you select this option, you must explicitly enable the type of logging that you want to occur

on this page and on the settings page for the HTTP transport channel for which you want that type

of logging to occur.

Enable NCSA access logging

When selected, a record of inbound client requests that the HTTP transport channel handles is kept in the

NCSA access log.

NCSA access log file path

Specifies the directory path and name of the NCSA access log. Standard variable substitutions, such as

$(SERVER_LOG_ROOT), can be used when specifying the directory path.

NCSA access log maximum size

Specifies the maximum size, in megabytes, of the NCSA access log. When this size is reached, the

logfile_name.1 archive log is created. However, every time that the original log file overflows this archive

file, the file is overwritten with the most current version of the original log file.

Maximum number of historical files

Specifies the maximum number of historical versions of the NCSA access log file that are kept for future

reference.

316 Developing and deploying applications

NCSA access log format

Specifies which NCSA format is used when logging client access information. If you select Common, the

log entries contain the requested resource and a few other pieces of information, but does not contain

referral, user agent, and cookie information. If you select Combined, referral, user agent, and cookie

information is included.

Enable error logging

When selected, HTTP errors that occur while the HTTP channel processes client requests are recorded in

the HTTP error log.

Error log file path

Specifies the directory path and the name of the HTTP error log. Standard variable substitutions, such as

$(SERVER_LOG_ROOT), can be used when specifying the directory path.

Error log maximum size

Specifies the maximum size, in megabytes, of the HTTP error log file. When this size is reached, the

logfile_name.1 archive log is created. However, every time that the original log file overflows this archive

file, this file is overwritten with the most current version of the original log file.

Maximum number of historical files

Specifies the maximum number of historical versions of the Error log file that are kept for future reference.

Error log level

Specifies the type of error messages that are included in the HTTP error log.

You can select:

Critical

Only critical failures that stop the Application Server from functioning properly are logged.

Error The errors that occur in response to clients are logged. These errors require Application Server

administrator intervention if they result from server configuration settings.

Warning

Information on general errors, such as socket exceptions that occur while handling client requests,

are logged. These errors do not typically require Application Server administrator intervention.

Information

The status of the various tasks that are performed while handling client requests is logged.

Debug

More verbose task status information is logged. This level of logging is not intended to replace

RAS logging for debugging problems, but does provide a steady status report on the progress of

individual client requests. If this level of logging is selected, you must specify a large enough log

file size in the Error log maximum size field to contain all of the information that is logged.

Logger.properties file for configuring logger settings

Use the Logger.properties file to set logger attributes for specific loggers.

The properties file is loaded the first time that the Logger.getLogger(logger_name) method is called within

an application.

Important: The name of the Logger.properties file is case sensitive. Use a capital ″L″ in the file name.

When an application calls the Logger.getLogger method for the first time, all the available logger properties

files are loaded. Applications can provide Logger.properties files in:

v the META-INF directory of the Java archive (JAR) file for the application

v directories included in the class path of an application module

Chapter 10. Adding logging and tracing to your application 317

v directories included in the application class path

The properties file contains two categories of parameters, logger control and logger data:

v Logger control information

– Minimum localization level: The minimum LogRecord level for which localization is attempted

– Group: The logical group that this component belongs to

– Event factory: The Common Base Event template file to use with the event factory. The naming

convention for this template is the fully qualified component name, with a file extension of

.event.xml. For example, a template that applies to the com.ibm.compXYZ package is called

com.ibm.compXYZ.event.xml.

v Logger data information

– Product name

– Organization name

– Component name

– Extensions and additional properties

Syntax of the Logger.properties file

Use the following syntax to set logger properties:

<logger base name>.<property>=value

where:

logger base name is the starting part of the logger name to which the property applies. All loggers with

names starting with this string have the property applied.

property is one of the following properties:

v organization

v product

v component

v minimum_localization_level

v group

v eventfactory

Sample Logger.properties file

In the following sample, the com.ibm.xyz.MyEventFactory event factory is used by any loggers in the

com.ibm.websphere.abc package or any sub packages that do not override this value in their configuration

file.

com.ibm.websphere.abc.eventfactory=com.ibm.xyz.MyEventFactory

Group Logger.properties file

In the following example, the group is MyTraceGroup and the components are com.ibm.stuff and

com.ibm.morestuff:

com.ibm.stuff.group=MyTraceGroup

com.ibm.morestuff.group=MyTraceGroup

Example: Sample security policy for logging

Set up a security policy to allow your applications to modify logging and handler properties.

318 Developing and deploying applications

The sample security policy that follows grants access to the file system and runtime classes. Include this

security policy, with the entry permission java.util.logging.LoggingPermission "control", in the

META-INF directory of your application if you want your applications to programmatically alter controlled

properties of loggers and handlers. The META-INF file is located in the following locations for the different

module types:

 EJB projects ejbModule/META-INF/MANIFEST.MF

Application client projects appClientModule/META-INF/MANIFEST.MF

Dynamic Web projects WebContent/META-INF/MANIFEST.MF

Connector projects connectorModule/META-INF/MANIFEST.MF

Below is a sample security policy that grants permission to modify logging properties:

//

//

// WebSphere Application Server Security Policy

//

//

//

// Allow all access to the file system and runtime classes

//

grant codeBase "file:${application}" {

 permission java.util.logging.LoggingPermission "control";

};

Configuring applications to use Jakarta Commons Logging

Jakarta Commons Logging provides a simple logging interface and thin wrappers for several logging

systems. WebSphere Application Server supports Jakarta Commons Logging by providing a logger. The

support does not change interfaces defined by Jakarta Commons Logging.

Before you begin

The WebSphere Application Server logger is a thin wrapper for the WebSphere Application Server logging

facility. The logger name is com.ibm.websphere.commons.logging.WsJDK14Logger. The logger can handle

logging objects defined by either of the following:

v Java Logging found in Java Specification Request 47: Logging API Specification

v Common Base Event

A logging object is an object that holds logging entry information.

To better understand Jakarta Commons Logging, read Jakarta Commons and the specifications for Java

Logging and for Common Base Event. To better understand use of the WebSphere Application Server

logger, read “Jakarta Commons Logging” on page 320.

About this task

WebSphere Application Server provides the Jakarta Commons Logging binary distribution in its libraries

directory. By default, the product uses the Jakarta Commons Logging LogFactory implementation and

JDK14Logger.

Note: The default configuration of Jakarta Commons Logging is stored in the commons-logging.properties

file. To specify the factory class to use with Jakarta Commons Logging in an application, provide a

file named org.apache.commons.logging.LogFactory, located in META-INF/services directory, that

Chapter 10. Adding logging and tracing to your application 319

http://jcp.org/en/jsr/detail?id=47
http://www-128.ibm.com/developerworks/webservices/library/ws-cbe/
http://jakarta.apache.org/commons/

contains the name of the factory class on the first line. This is the configuration mechanism for the

JAR file service provider, as defined in JDK 1.3 and above.

For an application to use the WebSphere Application Server logger, the application must provide its own

configuration for the logger. To configure an application to use the WebSphere Application Server logger,

complete the steps that follow.

1. Examine “Configurations for the WebSphere Application Server logger” on page 322 and determine

which configuration best suits your application.

2. Change your application configuration as needed to enable use of the WebSphere Application Server

logger.

Results

After the application starts, Jakarta Commons Logging routes the application’s logging output to the

WebSphere Application Server logger.

Jakarta Commons Logging

Jakarta Commons Logging provides a simple logging interface and thin wrappers for several logging

systems. The logging interface enables application logging to be simple and independent of the logging

system that the application uses. You can change the logging implementation for a deployed application

without having to change the application logging code. However, the simplicity of the logging interface

prevents the application from leveraging all the functionality of the logging systems.

This topic provides the following information about Jakarta Commons Logging in WebSphere Application

Server:

v “Support for Jakarta Commons Logging”

v “Benefits of support for Jakarta Commons Logging”

v “Overview of the process for using Jakarta Commons Logging” on page 321

v “Classes used to obtain a logger factory and logger” on page 321

v “Logger level configuration and mapping” on page 322

Support for Jakarta Commons Logging

The product supports Jakarta Commons Logging by providing a logger, a thin wrapper for the WebSphere

Application Server logging facility. The logger can handle both Java Logging (JSR-47) and Common Base

Event logging objects. A logging object is an object that holds logging entry information.

The product support for Jakarta Commons Logging does not change interfaces defined by Jakarta

Commons Logging.

Benefits of support for Jakarta Commons Logging

The WebSphere Application Server support for Jakarta Commons Logging provides the following benefits:

v WebSphere Application Server is pre-configured to use Jakarta Commons Logging.

All of the functionality of Jakarta Commons Logging is provided for any application or WebSphere

Application Server component. Logging calls are routed by default to the underlying WebSphere

Application Server logging facility.

v A logger that uses the WebSphere Application Server logging facility.

Applications and components can pass both Java Logging and Common Base Event logging objects to

the WebSphere Application Server logger without conversion to strings, providing applications with

enhanced logging. Further, Jakarta Commons Logging Logger levels are integrated into WebSphere

Application Server administrative facilities.

320 Developing and deploying applications

http://jakarta.apache.org/commons/
http://jcp.org/en/jsr/detail?id=47
http://www.ibm.com/developerworks/library/specification/ws-cbe/
http://www.ibm.com/developerworks/library/specification/ws-cbe/

Overview of the process for using Jakarta Commons Logging

Logging with Jakarta Commons Logging consists of the steps that follow. “Configurations for the

WebSphere Application Server logger” on page 322 provides details on configuring your application to use

the WebSphere Application Server logger.

1. Obtain an instance of a logger factory.

To obtain a logger factory, use Jakarta Commons Logging code. You can configure the code to meet

your needs. In WebSphere Application Server, Jakarta Commons Logging is configured by default to

instantiate the Jakarta Commons Logging default logger factory. Applications or WebSphere Application

Server components can provide their own configuration if they use a different logger factory

implementation. Applications can use more than one factory.

2. Obtain an instance of a logger.

To obtain a logger, use code implemented by a logger factory. Configuration of the code is

implementation specific.

The WebSphere Application Server logger implements the methods defined in the logging interface.

The logging methods take at least one argument, which can be any Java object. The WebSphere

Application Server logger, the WsJDK14Logger logger described in “Classes used to obtain a logger

factory and logger,” handles the following objects passed into the following logging methods:

CommonBaseEvent

Wrapped into CommonBaseEventLogRecord

CommonBaseEventLogRecord

Passed without change

LogRecord

Passed without change

Other objects

Converted to String

Applications or WebSphere Application Server components can provide their own configuration if they

use an implementation of a logger that is not specific to WebSphere Application Server. An application

must know what factory is being used in order to configure it.

3. Start your application. Jakarta Commons Logging routes the application’s logging output to the

designated logger

Classes used to obtain a logger factory and logger

 Class name Description

LogFactory LogFactory is a Jakarta Commons Logging class that implements initialization logic. LogFactory

is an abstract class that every logger factory implementation has to extend. It provides static

methods for obtaining:

v An instance of a factory class

v Instances of a logger, using an instance of the factory class

LogFactory provides methods for obtaining instances of loggers, although these methods

delegate the logger instantiation and configuration to an instance of a logger factory class.

Logger factories, once instantiated, are cached on a per context class loader basis. The

instances in a cache can be released. This functionality is designed for platform container

implementations rather than for applications.

LogFactoryImpl LogFactoryImpl is a Jakarta Commons Logging concrete class that implements the default

logger factory using methods in LogFactory. To use Java Logging, there must always be at least

one instance of a logger factory class, even if the application has not explicitly obtained one. If

the configuration does not name a logger factory class, LogFactoryImpl is used as the default.

Chapter 10. Adding logging and tracing to your application 321

Class name Description

Log Log is a Jakarta Commons Logging interface for loggers. Commons logging loggers have to

implement the Log interface. Because the goal of Jakarta Commons Logging is to wrapper any

logging system, the Log interface defines a small set of common logging methods. In

WebSphere Application Server, WsJDK14Logger implements the Log interface.

Logger instantiation and configuration is specific to every logger factory. Logging in WebSphere

Application Server uses the default logger factory provided in Jakarta Commons Logging, which

keeps instantiated loggers in cache, on a per class loader context basis.

WsJDK14Logger WsJDK14Logger is a WebSphere Application Server class that provides a Jakarta Commons

Logging logger by implementing the Log interface. The WsJDK14Logger logger differs from the

Java Logging logger in that the WsJDK14Logger logger enables Java Logging or Common Base

Event objects to be passed over without converting them into String objects. This prevents any

information loss the conversion to String might cause as well as allows the logging output to be

more descriptive and precise. In contrast, the Java Logginglogger that is provided in Jakarta

Commons Logging converts objects passed into the logging calls to String objects before

passing them over to the underlying Java Logging.

Logger level configuration and mapping

Because Jakarta Commons Logging loggers are thin wrappers for specific logging systems, the loggers do

not have their own level, but use the level of the logger from the underlying logging system. Although the

underlying system can provide methods for changing level, there are no methods for changing level

defined on the Log interface, which all Jakarta Commons Logging logger must implement.

WsJDK14Logger uses the level of its underlying Java Logging logger.

Following table shows, on the left, the mapping of Jakarta Commons Logging levels within

WsJDK14Logger to levels in the WebSphere Application Server implementation of Java Logging. On the

right, it shows the levels defined in Java Logging and the level mapping in the Jakarta Commons Logging

JDK14Logger to the Java Logging levels.

WsJDK14Logger

Java Logging in WebSphere

Application Server Java Logging JDK14Logger

Fatal Fatal

Error Severe Severe Fatal, Error

Warning Warning Warning Warning

Audit

Info Info Info Info

Config Config

Detail

Debug Fine Fine Debug

Finer Finer

Trace Finest Finest Trace

The WsJDK14Logger level is synchronized with the underlying Java Logging logger level. WebSphere

Application Server administration controls the WsJDK14Logger level.

Configurations for the WebSphere Application Server logger

This topic describes several ways to configure an application to use the WebSphere Application Server

logger.

322 Developing and deploying applications

The type of configuration that best suits an application depends upon the following:

v Whether the class loader order setting for the application is Classes loaded with parent class loader

first (Parent First) or Classes loaded with application class loader first (Parent Last), you can

set the class loader delegation mode on a console page. For more details about class load order and

delegation, consult the class loading chapter in the Developing and deploying applications PDF book

v Whether Jakarta Commons Logging is bundled with the application configuration

v Whether Jakarta Commons Logging is provided within the application

The following tables describe the conditions required to enable an application to use the WebSphere

Application Server logger.

Class loader mode is Parent First and Jakarta Commons Logging is bundled with the application

 Jakarta Commons Logging

configuration

LogFactory

instance Log instance Comments

The application provides the

configuration by either of the

following:

v The properties file

commons-logging.properties in

the application classpath is not

read by the LogFactory

because the parent class

loader finds the WebSphere

properties file first.

v The class name is read from

the file

META-INF/services/

org.apache.commons

.logging.LogFactory

The log factory

used is the

LogFactory

implementation

specified in the

WebSphere

Application Server

default

configuration,

unless the

configuration is

provided in a

META-INF file of

the application or

module.

The log used is either

of the following:

v The Log

implementation

specified in the

WebSphere

Application Server

default configuration

v An application-
specific

Log implementation if

an application-specific

LogFactory that

instantiates a different

Log implementation is

used.

The application parent class loader

is the first class loader to load the

Jakarta Commons Logging code. The

WebSphere bundle that supports

Jakarta Commons Logging provides

the LogFactory static code that looks

up the LogFactory configuration

attributes.

For the static LogFactory code to

instantiate the LogFactory instance

specified in the application

configuration, the LogFactory instance

must be on the classpath of the parent

class loader.

Not provided by the application The log factory

used is the

LogFactory

implementation

specified in the

WebSphere default

configuration.

The log used is the

Log implementation

specified in the

WebSphere default

configuration.

The Jakarta Commons Logging

bundled with the application is not

used.

Class loader mode is Parent First and Jakarta Commons Logging is not bundled with the

application

Chapter 10. Adding logging and tracing to your application 323

Jakarta Commons Logging

configuration

LogFactory

instance Log instance Comments

The application provides the

configuration by either of the

following:

v The properties file

commons-logging.properties in

the application classpath is not

read by the LogFactory

because the parent class

loader finds the WebSphere

Application Server properties

file first.

v The class name is read from

the file

META-INF/services/

org.apache.commons

.logging.LogFactory

The log factory

used is the

LogFactory

implementation

specified in the

WebSphere

Application Server

default

configuration,

unless the

configuration is

provided in a

META-INF file of

the application or

module.

The log used is either

of the following:

v The Log

implementation

specified in the

WebSphere

Application Server

default configuration

v An

application-specific

Log implementation if

an application-specific

LogFactory that

instantiates a different

Log implementation is

used.

The application parent class loader

is the first class loader to load the

Jakarta Commons Logging code. The

WebSphere bundle that supports

Jakarta Commons Logging provides

the LogFactory static code that looks

up the LogFactory configuration

attributes.

For the static LogFactory code to

instantiate the LogFactory instance

specified in the application

configuration, the LogFactory instance

must be on the classpath of the parent

class loader.

Not provided by the application The log factory

used is the

LogFactory

implementation

specified in the

WebSphere

Application Server

default

configuration.

The log used is the

Log implementation

specified in the

WebSphere

Application Server

default configuration.

Same as in the previous row

Class loader mode is Parent Last and Jakarta Commons Logging is bundled with the application

 Jakarta Commons Logging

configuration

LogFactory

instance Log instance Comments

The application provides the

configuration by either of the

following:

v The properties file

commons-logging.properties in

the application classpath is

read by the LogFactory

because the class loader finds

the application properties file

first.

v The class name is read from

the file

META-INF/services/

org.apache.commons

.logging.LogFactory

The log factory

used is either of

the following:

v The default

Jakarta Commons

Logging

LogFactory

v The LogFactory

specified in the

application

configuration

The log used is the

Log implementation

specified in the

application

configuration.

If the log factory used

is the default Jakarta

Commons Logging

LogFactory, the Log

implementation must

be on the classpath

of the application

class loader.

The application class loader is the

first class loader to load the Jakarta

Commons Logging code. The

application bundle that supports

Jakarta Commons Logging provides

the LogFactory static code that looks

up the LogFactory configuration

attributes.

For the static LogFactory code to

instantiate the LogFactory instance

specified in the application

configuration, the LogFactory instance

must be on the classpath of the

application class loader.

324 Developing and deploying applications

Jakarta Commons Logging

configuration

LogFactory

instance Log instance Comments

Not provided by the application The log factory

used is the

LogFactory

implementation

specified in the

WebSphere

Application Server

default

configuration.

The log used is the

Log implementation

specified in the

WebSphere

Application Server

default configuration.

Class loader mode is Parent Last and Jakarta Commons Logging is not bundled with the

application

 Jakarta Commons Logging

configuration

LogFactory

instance Log instance Comments

The application provides the

configuration by either of the

following:

v The properties file

commons-logging.properties in

the application classpath is

read by the LogFactory

because the class loader finds

the application properties file

first.

v The class name is read from

the file

META-INF/services/

org.apache.commons

.logging.LogFactory

The log factory

used is either of

the following:

v The default

Jakarta Commons

Logging

LogFactory

v The LogFactory

specified in the

application

configuration

The log used is the

Log implementation

specified in the

application

configuration.

If the log factory used

is the default Jakarta

Commons Logging

LogFactory, the Log

implementation must

be on the classpath

of the application

class loader.

There is no Jakarta Commons Logging

code at the application class loader.

Thus, the WebSphere bundle that

supports Jakarta Commons Logging

provides the LogFactory static code

that looks up the LogFactory

configuration attributes.

For the static LogFactory code to

instantiate the LogFactory instance

specified in the application

configuration, the LogFactory instance

must be on the classpath of the parent

class loader.

Not provided by the application The log factory

used is the

LogFactory

implementation

specified in the

WebSphere

Application Server

default

configuration.

The log used is the

Log implementation

specified in the

WebSphere

Application Server

default configuration.

Programming with the JRas framework

Use the JRas extensions to incorporate message logging and diagnostic trace into WebSphere Application

Server applications.

Before you begin

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can

achieve similar results using Java logging.

Chapter 10. Adding logging and tracing to your application 325

About this task

The JRas extensions allow message logging and diagnostic trace to work with WebSphere Application

Server applications. They are based on the stand-alone JRas logging toolkit.

1. Retrieve a reference to the JRas manager.

2. Retrieve message and trace loggers by using methods on the returned manager.

3. Call the appropriate methods on the returned message and trace loggers to create message and trace

entries, as appropriate.

JRas logging toolkit

The JRas logging toolkit provides diagnostic information to help the administrator diagnose problems or

tune application performance.

Deprecated: The JRas framework that is described in this task and its sub-tasks is deprecated. However,

you can achieve similar results using Java logging.

Developing, deploying, and maintaining applications are complex tasks. For example, when a running

application encounters an unexpected condition, it might not be able to complete a requested operation. In

such a case, you might want the application to inform the administrator that the operation failed and

provide information. This action enables the administrator to take the proper corrective action. Those who

develop or maintain applications might need to gather detailed information relating to the path of a running

application to determine the root cause of a failure that is due to a code bug. The facilities that are used

for these purposes are typically referred to as message logging and diagnostic trace.

Message logging (messages) and diagnostic trace (trace) are conceptually quite similar, but do have

important differences. It is important for application developers to understand these differences to use

these tools properly. To start with, the following operational definitions of messages and trace are provided.

Message

A message entry is an informational record that is intended for end users, systems administrators

and support personnel to view. The text of the message must be clear, concise, and interpretable.

Messages are typically localized, meaning that they display in the national language of the end

user. Although the destination and lifetime of messages might be configurable, some level of

message logging is always enabled in normal system operation. Message logging must be used

judiciously due to both performance considerations and the size of the message repository.

Trace A trace entry is an information record that is intended for service engineers or developers to use.

This trace record might be considerably more complex, verbose, and detailed than a message

entry. Localization support is typically not used for trace entries. Trace entries can be fairly

inscrutable, understandable only by the appropriate developer or service personnel. It is assumed

that trace entries are not written during normal runtime operation, but might be enabled as needed

to gather diagnostic information.

WebSphere Application Server provides a message logging and diagnostic trace API that applications can

use. This API is based on the stand-alone JRas logging toolkit, which was developed by IBM. The

stand-alone JRas logging toolkit is a collection of interfaces and classes that provide message logging and

diagnostic trace primitives. These primitives are not tied to any particular product or platform. The

stand-alone JRas logging toolkit provides a limited amount of support, which is typically referred to as

systems management support, including log file configuration support based on property files.

As designed, the stand-alone JRas logging toolkit does not contain the support that is required for

integration into the WebSphere Application Server run time or for use in a Java 2 Platform, Enterprise

Edition (J2EE) environment. To overcome these limitations, WebSphere Application Server provides a set

of extension classes to address these shortcomings. This collection of extension classes is referred to as

the JRas extensions. The JRas extensions do not modify the interfaces that are introduced by the

326 Developing and deploying applications

stand-alone JRas logging toolkit, but provide the appropriate implementation classes. The conceptual

structure that is introduced by the stand-alone JRas logging toolkit is described in the following section. It

is equally applicable to the JRas extensions.

JRas concepts

The section contains a basic overview of important concepts and constructs that are introduced by the

stand-alone JRas logging toolkit. This information is not an exhaustive overview of the capabilities of this

logging toolkit, nor is it intended as a detailed discussion of usage or programming paradigms. More

detailed information, including code examples, is available in JRas extensions and its subtopics, including

in the API documentation for the various interfaces and classes that make up the logging toolkit.

Event types

The stand-alone JRas logging toolkit defines a set of event types for messages and a set of event

types for trace. Examples of message types include informational, warning, and error. Examples of

trace types include entry, exit, and trace.

Event classes

The stand-alone JRas logging toolkit defines both message and trace event classes.

Loggers

A logger is the primary object with which the user code interacts. Two types of loggers are defined:

message loggers and trace loggers. The set of methods on message loggers and trace loggers

are different because they provide different functionality. Message loggers create message records

only and trace loggers create trace records only. Both types of loggers contain masks that indicate

which categories of events the logger processes and which to ignore. Although every JRas logger

is defined to contain both a message and trace mask, the message logger uses only the message

mask and the trace logger uses the trace mask only. For example, by setting a message logger

message mask to the appropriate state, it can be configured to process only error messages and

ignore informational and warning messages. Changing the trace mask state of a message logger

has no effect.

 A logger contains one or more handlers to which it forwards events for further processing. When

the user calls a method on the logger, the logger compares the event type that is specified by the

caller to its current mask value. If the specified type passes the mask check, the logger creates an

event object to capture the information relating to the event that passed to the logger method. This

information can include information, such as the names of the class and method which logs the

event, a message, and parameters to log, among others. When the logger creates the event

object, it forwards the event to all handlers currently registered with the logger.

Methods that are used within the logging infrastructure do not make calls to the logger method.

When an application uses an object that extends a thread class, implements the hashCode

method, and makes a call to the logging infrastructure from that method, the result is a recursive

loop.

Handlers

A handler provides an abstraction over an output device or event consumer. An example is a file

handler, which knows how to write an event to a file. The handler also contains a mask that is

used to further restrict the categories of events the handler processes. For example, a message

logger might be configured to pass both warning and error events, but a handler attached to the

message logger might be configured to pass error events only. Handlers also include formatters,

which the handler invokes to format the data in the passed event before it is written to the output

device.

Formatters

Handlers are configured with formatters, which know how to format events of certain types. A

handler can contain multiple formatters, each of which knows how to format a specific class of

event. The event object is passed to the appropriate formatter by the handler. The formatter

returns formatted output to the handler, which then writes it to the output device.

Chapter 10. Adding logging and tracing to your application 327

JRas Extensions

JRas extensions are the collection of implementation classes that support JRas integration into the

WebSphere Application Server environment.

JRas extensions

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

The stand-alone JRas logging toolkit defines interfaces and provides a variety of concrete classes that

implement these interfaces. Because the stand-alone JRas logging toolkit is developed as a general

purpose toolkit, the implementation classes do not contain the configuration interfaces and methods that

are necessary for use in the WebSphere Application Server product. In addition, many of the

implementation classes are not written appropriately for use in a Java 2 Platform, Enterprise Edition

(J2EE) environment. To overcome these shortcomings, WebSphere Application Server provides the

appropriate implementation classes that support integration into the WebSphere Application Server

environment. The collection of these implementation classes is referred to as the JRas extensions.

Usage model

You can use the JRas extensions in three distinct operational modes:

Integrated

In this mode, message and trace records are written only to logs that are defined and maintained

by the WebSphere Application Server run time. This mode is the default mode of operation and is

equivalent to the WebSphere Application Server V4.0 mode of operation.

stand-alone

In this mode, message and trace records are written solely to stand-alone logs that are defined

and maintained by the user. You control which categories of events are written to which logs, and

the format in which entries are written. You are responsible for configuration and maintenance of

the logs. Message and trace entries are not written to WebSphere Application Server runtime logs.

Combined

In this mode, message and trace records are written to both WebSphere Application Server

runtime logs and to stand-alone logs that you must define, control, and maintain. You can use

filtering controls to determine which categories of messages and trace are written to which logs.

The JRas extensions are specifically targeted to an integrated mode of operation. The integrated mode of

operation can be appropriate for some usage scenarios, but many scenarios are not adequately addressed

by these extensions. Many usage scenarios require a stand-alone or combined mode of operation instead.

A set of user extension points are defined that support JRas extensions in either a stand-alone or

combined mode of operations.

JRas extension classes

WebSphere Application Server provides a base set of implementation classes that are collectively referred

to as the JRas extensions. Many of these classes provide the appropriate implementations of loggers,

handlers, and formatters for use in a WebSphere Application Server environment.

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

The collection of JRas classes is targeted at an integrated mode of operation. If you choose to use the

JRas extensions in either stand-alone or combined mode, you can reuse the logger and manager class

that are provided by the extensions, but you must provide your own implementations of handlers and

formatters.

328 Developing and deploying applications

WebSphere Application Server message and trace loggers

The message and trace loggers that are provided by the stand-alone JRas logging toolkit cannot be

directly used in the WebSphere Application Server environment. The JRas extensions provide the

appropriate logger implementation classes. Instances of these message and trace logger classes are

obtained directly and exclusively from the WebSphere Application Server Manager class. You cannot

directly instantiate message and trace loggers. Obtaining loggers in any manner other than directly from

the Manager class is not allowed and directly violates the programming model.

The message and trace logger instances that are obtained from the WebSphere Application Server

Manager class are subclasses of the RASMessageLogger and RASTraceLogger classes that are provided

by the stand-alone JRas logging toolkit. The RASMessageLogger and RASTraceLogger classes define the

set of methods that are directly available. Public methods that are introduced by the JRas extensions

logger subclasses cannot be called directly by user code because it is a violation of the programming

model.

Loggers are named objects and are identified by name. When the Manager class is called to obtain a

logger, the caller is required to specify a name for the logger. The Manager class maintains a

name-to-logger instance mapping. Only one instance of a named logger is ever created within the lifetime

of a process. The first call to the Manager class with a particular name results in the logger, which is

configured by the Manager class. The Manager class caches a reference to the instance, then returns it to

the caller. Subsequent calls to the Manager class that specify the same name result in a returned

reference to the cached logger. Separate namespaces are maintained for message and trace loggers. You

can use a single name obtain both a message logger and a trace logger from the Manager, without

ambiguity, and without causing a namespace collision.

In general, loggers have no predefined granularity or scope. A single logger can be used to instrument an

entire application. You might determine that having a logger per class is more effective, or the appropriate

granularity might be somewhere in between. Partitioning an application into logging domains is determined

by the application writer.

The WebSphere Application Server logger classes that are obtained from the Manager class are

thread-safe. Although the loggers provided as part of the stand-alone JRas logging toolkit implement the

serializable interface, loggers are not serializable. Loggers are stateful objects, tied to a Java virtual

machine instance and are not serializable. Attempting to serialize a logger is a violation of the

programming model.

Personal or individual logger subclasses are not supported in a WebSphere Application Server

environment.

WebSphere Application Server handlers

WebSphere Application Server provides the appropriate handler class that is used to write message and

trace events to the WebSphere Application Server run time logs. You cannot configure the WebSphere

Application Server handler to write to any other destination. The creation of a WebSphere Application

Server handler is a restricted operation and is not available to user code. Every logger that is obtained

from the Manager comes preconfigured with an instance of this handler already installed. You can remove

the WebSphere Application Server handler from a logger when you want to run in stand-alone mode.

When you remove it, you cannot add the WebSphere Application Server handler again to the logger from

which it is removed or any other logger. Also, you cannot directly call any method on the WebSphere

Application Server handler. Attempting to create an instance of the WebSphere Application Server handler,

to call methods on the WebSphere Application Server handler or to add a WebSphere Application Server

handler to a logger by user code is a violation of the programming model.

Chapter 10. Adding logging and tracing to your application 329

WebSphere Application Server formatters

The WebSphere Application Server handler comes preconfigured with the appropriate formatter for data

that is written to WebSphere Application Server logs. The creation of a WebSphere Application Server

formatter is a restricted operation and not available to user code. No mechanism exists that allows the

user to obtain a reference to a formatter installed in a WebSphere Application Server handler, or to change

the formatter a WebSphere Application Server handler is configured to use.

WebSphere Application Server manager

WebSphere Application Server provides a Manager class in the com.ibm.websphere.ras package. All

message and trace loggers must be obtained from this Manager class. A reference to the Manager class is

obtained by calling the static Manager.getManager method. Message loggers are obtained by calling the

createRASMessageLogger method on the Manager class. Trace loggers are obtained by calling the

createRASTraceLogger method on the Manager class.

The manager also supports a group abstraction that is useful when dealing with trace loggers. The group

abstraction supports multiple, unrelated trace loggers to register as part of a named entity called a group.

WebSphere Application Server provides the appropriate systems management facilities to manipulate the

trace setting of a group, similar to the way the trace settings of an individual trace logger work.

For example, suppose component A consists of 10 classes. Suppose each class is configured to use a

separate trace logger. All 10 trace loggers in the component are registered as members of the same

group, for example, Component_A_Group. You can turn on trace for a single class, or you can turn on

trace for all 10 classes in a single operation using the group name, if you want a component trace. Group

names are maintained within the namespace for trace loggers.

JRas framework (deprecated)

Because the JRas extensions classes do not provide the flexibility and behavior that are required for many

scenarios, a variety of extension points are defined. You can write your own implementation classes to

obtain the required behavior.

Deprecated: The JRas framework described in this topic is deprecated. However, you can achieve similar

results using Java logging.

In general, the JRas extensions require you to call the Manager class to obtain a message logger or trace

logger. No provision is made for you to provide your own message or trace logger subclasses. In general,

user-provided extensions cannot be used to affect the integrated mode of operation. The behavior of the

integrated mode of operation is solely determined by the WebSphere Application Server run time and the

JRas extensions classes.

Handlers

The stand-alone JRas logging toolkit defines the RASIHandler interface. All handlers must implement this

interface. You can write your own handler classes that implement the RASIHandler interface. Directly

create instances of user-defined handlers and add them to the loggers that are obtained from the Manager

class.

The stand-alone JRas logging toolkit provides several handler implementation classes. These handler

classes are inappropriate for use in the Java 2 Platform, Enterprise Edition (J2EE) environment. You

cannot directly use or subclass any of the Handler classes that are provided by the stand-alone JRas

logging toolkit. Doing so is a violation of the programming model.

330 Developing and deploying applications

Formatters

The stand-alone JRas logging toolkit defines the RASIFormatter interface. All formatters must implement

this interface. You can write your own formatter classes that implement the RASIFormatter interface. You

can add these classes to a user-defined handler only. WebSphere Application Server handlers cannot be

configured to use user-defined formatters. Instead, directly create instances of your formatters and add

them to the your handlers appropriately.

As with handlers, the stand-alone JRas logging toolkit provides several formatter implementation classes.

Direct use of these formatter classes is not supported.

Message event types

The stand-alone JRas toolkit defines message event types in the RASIMessageEvent interface. In

addition, the WebSphere Application Server reserves a range of message event types for future use. The

RASIMessageEvent interface defines three types, with values of 0x01, 0x02, and 0x04. The values 0x08

through 0x8000 are reserved for future use. You can provide your own message event types by extending

this interface appropriately. User-defined message types must have a value of 0x1000 or greater.

Message loggers that are retrieved from the Manager class have their message masks set to pass or

process all message event types defined in the RASIMessageEvent interface. To process user-defined

message types, you must manually set the message logger mask to the appropriate state by user code

after the message logger is obtained from the Manager class. WebSphere Application Server does not

provide any built-in systems management support for managing message types.

Message event objects

The stand-alone JRas toolkit provides a RASMessageEvent implementation class. When a message

logging method is called on the message logger, and the message type is currently enabled, the logger

creates and distributes an event of this class to all handlers that are currently registered with that logger.

You can provide your own message event classes, but they must implement the RASIEvent interface. You

must directly create instances of such user-defined message event classes. When it is created, pass your

message event to the message logger by calling the message logger’s fireRASEvent method directly.

WebSphere Application Server message loggers cannot directly create instances of user-defined types in

response to calling a logging method (msg.message) on the logger. In addition, instances of user-defined

message types are never processed by the WebSphere Application Server handler. You cannot create

instances of the RASMessageEvent class directly.

Trace event types

The stand-alone JRas toolkit defines trace event types in the RASITraceEvent interface. You can provide

your own trace event types by extending this interface appropriately. In such a case, you must ensure that

the values for the user-defined trace event types do not collide with the values of the types that are

defined in the RASITraceEvent interface.

Trace loggers that are retrieved from the Manager class typically have their trace masks set to reject all

types. A different starting state can be specified by using WebSphere Application Server systems

management facilities. In addition, you can change the state of the trace mask for a logger at run-time,

using WebSphere Application Server systems management facilities.

To process user-defined trace types, the trace logger mask must be manually set to the appropriate state

by user code. WebSphere Application Server systems management facilities cannot be used to manage

user-defined trace types, either at start time or run time.

Chapter 10. Adding logging and tracing to your application 331

Trace event objects

The stand-alone JRas toolkit provides a RASTraceEvent implementation class. When a trace logging

method is called on the WebSphere Application Server trace logger and the type is currently enabled, the

logger creates and distributes an event of this class to all the handlers that are currently registered with

that logger.

You can provide your own trace event classes. Such trace event classes must implement the RASIEvent

interface. You must create instances of such user-defined event classes directly. When it is created, pass

the trace event to the trace logger by calling the trace logger’s fireRASEvent method directly. WebSphere

Application Server trace loggers cannot directly create instances of user-defined types in response to

calling a trace method (entry, exit, trace) on the trace logger. In addition, instances of user-defined trace

types are never processed by the WebSphere Application Server handler. You cannot create instances of

the RASTraceEvent class directly.

User defined types, user defined events and WebSphere Application Server

By definition, the WebSphere Application Server handler processed user-defined message or trace types,

or user-defined message or trace event classes. Message and trace entries of either a user-defined type

or user-defined event class cannot be written to the WebSphere Application Server run-time logs.

JRas programming interfaces for logging (deprecated):

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

 General considerations

You can configure the WebSphere Application Server to use Java 2 security to restrict access to protected

resources such as the file system and sockets. Because user-written extensions typically access such

protected resources, user-written extensions must contain the appropriate security checking calls, using

AccessController doPrivileged calls. In addition, the user-written extensions must contain the appropriate

policy file. In general, locating user-written extensions in a separate package is a good practice. It is your

responsibility to restrict access to the user-written extensions appropriately.

Writing a handler

User-written handlers must implement the RASIHandler interface. The RASIHandler interface extends the

RASIMaskChangeGenerator interface, which extends the RASIObject interface. A short discussion of the

methods that are introduced by each of these interfaces follows, along with implementation pointers. For

more in-depth information on any of the particular interfaces or methods, see the corresponding product

API documentation.

RASIObject interface

The RASIObject interface is the base interface for stand-alone JRas logging toolkit classes that are

stateful or configurable, such as loggers, handlers, and formatters.

v The stand-alone JRas logging tookit supports rudimentary properties-file based configuration. To

implement this configuration support, the configuration state is stored as a set of key-value pairs in a

properties file. The public Hashtable getConfig and public void setConfig(Hashtable ht) methods are

used to get and set the configuration state. The JRas extensions do not support properties-based

configuration. Implement these methods as no-operations. You can implement your own

properties-based configuration using these methods.

v Loggers, handlers, and formatters can be named objects. For example, the JRas extensions require the

user to provide a name for the loggers that are retrieved from the manager. You can name your

handlers. The public String getName and public void setName(String name) methods are provided to

332 Developing and deploying applications

get or set the name field. The JRas extensions currently do not call these methods on user handlers.

You can implement these methods as you want, including as no operations.

v Loggers, handlers, and formatters can also contain a description field. The public String getDescription

and public void setDescription(String desc) methods can be used to get or set the description field. The

JRas extensions currently do not use the description field. You can implement these methods as you

want, including as no operations.

v The public String getGroup method is provided for use by the RASManager interface. Since the JRas

extensions provide their own Manager class, this method is never called. Implement this as a

no-operation.

RASIMaskChangeGenerator interface

The RASIMaskChangeGenerator interface is the interface that defines the implementation methods for

filtering of events based on a mask state. It is currently implemented by both loggers and handlers. By

definition, an object that implements this interface contains both a message mask and a trace mask,

although both need not be used. For example, message loggers contain a trace mask, but the trace mask

is never used because the message logger never generates trace events. Handlers, however, can actively

use both mask values. For example, a single handler can handle both message and trace events.

v The public long getMessageMask and public void setMessageMask(long mask) methods are used to

get or set the value of the message mask. The public long getTraceMask and public void

setTraceMask(long mask) methods are used to get or set the value of the trace mask.

In addition, this interface introduces the concept of calling back to interested parties when a mask changes

state. The callback object must implement the RASIMaskChangeListener interface.

v The public void addMaskChangeListener(RASIMaskChangeListener listener) and public void

removeMaskChangeListener(RASIMaskChangeListener listener) methods are used to add or remove

listeners to the handler. The public Enumeration getMaskChangeListeners method returns an

enumeration over the list of currently registered listeners. The public void

fireMaskChangedEvent(RASMaskChangeEvent mc) method is used to call back all the registered

listeners to inform them of a mask change event.

For efficiency reasons, the JRas extensions message and trace loggers implement the

RASIMaskChangeListener interface. The logger implementations maintain a composite mask in addition to

the logger mask. The logger composite mask is formed by logically or’ing the appropriate masks of all

handlers that are registered to that logger, then and’ing the result with the logger mask. For example, the

message logger composite mask is formed by or’ing the message masks of all handlers that are registered

with that logger, then and’ing the result with the logger message mask.

All handlers are required to properly implement these methods. In addition, when a user handler is

instantiated, the logger that is added must be registered with the handler; use the addMaskChangeListener

method. When either the message mask or trace mask of the handler is changed, the logger must be

called back to inform it of the mask change. With this process, the logger can dynamically maintain the

composite mask.

The RASMaskChangedEvent class is defined by the stand-alone JRas logging toolkit. Direct use of that

class by user code is supported in this context.

In addition, the RASIMaskChangeGenerator interface introduces the concept of caching the names of all

message and trace event classes that the implementing object process. The intent of these methods is to

support a management program such as a graphical user interface to retrieve the list of names, introspect

the classes to determine the event types that they might possibly process and display the results. The

JRas extensions do not ever call these methods, so they can be implemented as no operations.

v The public void addMessageEventClass(String name) and public void

removeMessageEventClass(String name) methodscan be called to add or remove a message event

class name from the list. The method public Enumeration getMessageEventClasses returns an

enumeration over the list of message event class names. Similarly, the public void

Chapter 10. Adding logging and tracing to your application 333

addTraceEventClass(String name) and public void removeTraceEventClass(String name) methods can

be called to add or remove a trace event class name from the list. The public Enumeration

getTraceEventClasses method returns an enumeration over the list of trace event class names.

RASIHandler interface

The RASIHandler interface introduces the methods that are specific to the behavior of a handler.

The RASIHandler interface, as provided by the stand-alone JRas logging toolkit, supports handlers that

run in either a synchronous or asynchronous mode. In asynchronous mode, events are typically queued by

the calling thread and then written by a worker thread. Because spawning of threads is not supported in

the WebSphere Application Server environment, it is expected that handlers do not queue or batch events,

although this activity is not expressly prohibited.

v The public int getMaximumQueueSize() and public void setMaximumQueueSize(int size) methods

create IllegalStateException exceptions to manage the maximum queue size. The public int

getQueueSize method is provided to query the actual queue size.

v The public int getRetryInterval and public void setRetryInterval(int interval) methods support the notion

of error retry, which implies some type of queueing.

v The public void addFormatter(RASIFormatter formatter), public void removeFormatter(RASIFormatter

formatter) and public Enumeration getFormatters methods are provided to manage the list of formatters

that the handler can be configured with. Different formatters can be provided for different event classes,

if appropriate.

v The public void openDevice, public void closeDevice and public void stop methods are provided to

manage the underlying device that the handler abstracts.

v The public void logEvent(RASIEvent event) and public void writeEvent(RASIEvent event) methods are

provided to pass events to the handler for processing.

Writing a formatter

User-written formatters must implement the RASIFormatter interface. The RASIFormatter interface extends

the RASIObject interface. The implementation of the RASIObject interface is the same for both handlers

and formatters. A short discussion of the methods that are introduced by the RASIFormatter interface

follows. For more in-depth information on the methods introduced by this interface, see the corresponding

product API documentation.

RASIFormatter interface

v The public void setDefault(boolean flag) and public boolean isDefault methods are used by the concrete

RASHandler classes that are provided by the stand-alone JRas logging toolkit to determine if a

particular formatter is the default formatter. Because these RASHandler classes must never be used in

a WebSphere Application Server environment, the semantic significance of these methods can be

determined by the user.

v The public void addEventClass(String name), public void removeEventClass(String name) and public

Enumeration getEventClasses methods are provided to determine which event classes a formatter can

use to format. You can provide the appropriate implementations.

v The public String format(RASIEvent event) method is called by handler objects and returns a formatted

String representation of the event.

Programming model summary

The programming model that is described in this section builds upon and summarizes some of the

concepts already introduced. This section also formalizes usage requirements and restrictions. Use of the

WebSphere Application Server JRas extensions in a manner that does not conform to the following

programming guidelines is prohibited.

Deprecated: The JRas framework described in this task and its sub-tasks is deprecated. However, you

can achieve similar results using Java logging.

334 Developing and deploying applications

You can use the WebSphere Application Server JRas extensions in three distinct operational modes. The

programming models concepts and restrictions apply equally across all modes of operation.

v You must not use implementation classes that are provided by the stand-alone JRas logging toolkit

directly, unless specifically noted otherwise. Direct usage of those classes is not supported. IBM

Support provides no diagnostic aid or bug fixes relating to the direct use of classes that are provided by

the stand-alone JRas logging toolkit.

v You must obtain message and trace loggers directly from the Manager class. You cannot directly

instantiate loggers.

v You cannot replace the WebSphere Application Server message and trace logger classes.

v You must guarantee that the logger names that are passed to the Manager class are unique, and follow

the documented naming constraints. When a logger is obtained from the Manager class, you must not

attempt to change the name of the logger by calling the setName method.

v Named loggers can be used more than once. For any given name, the first call to the Manager class

results in the Manager class creating a logger that is associated with that name. Subsequent calls to the

Manager class that specify the same name result in a returned reference to the existing logger.

v The Manager class maintains a hierarchical namespace for loggers. Use a dot-separated, fully qualified

class name to identify any logger. Other than dots or periods, logger names cannot contain any

punctuation characters, such as an asterisk (*), a comma (.), an equals sign (=), a colon (:), or quotes.

v Group names must comply with the same naming restrictions as logger names.

v The loggers returned from the Manager class are subclasses of the RASMessageLogger and the

RASTraceLogger classes that are provided by the stand-alone JRas logging toolkit. You can call any

public method that is defined by the RASMessageLogger and RASTraceLogger classes. You cannot call

any public method that is introduced by the provided subclasses.

v If you want to operate in either stand-alone or combined mode, you must provide your own Handler

and Formatter subclasses. You cannot use the Handler and Formatter classes that are provided by the

stand-alone JRas logging toolkit. User written handlers and formatters must conform to the documented

guidelines.

v Loggers that are obtained from the Manager class come with a WebSphere Application Server handler

installed. This handler writes message and trace records to logs that are defined by the WebSphere

Application Server run time. Manage these logs using the provided systems management interfaces.

v You can programmatically add and remove user-defined handlers from a logger at any time. Multiple

additions and removals of user defined handlers are supported. You are responsible for creating an

instance of the handler to add, configuring the handler by setting the handler mask value and formatter

appropriately, then adding the handler to the logger using the addHandler method. You are responsible

for programmatically updating the masks of user-defined handlers, as appropriate.

v You might get a reference to the handler that is installed within a logger by calling the getHandlers

method on the logger and processing the results. You must not call any methods on the handler that are

obtained in this way. You can remove the WebSphere Application Server handler from the logger by

calling the logger removeHandler method, passing in the reference to the WebSphere Application

Server handler. When removed, the WebSphere Application Server handler cannot be added again to

the logger.

v You can define your own message type. The behavior of user-defined message types and restrictions

on their definitions is discussed in Extending the JRas framework.

v You can define your own message event classes. The use of user-defined message event classes is

discussed in Extending the JRas framework.

v You can define your own trace types. The behavior of user-defined trace types and restrictions on your

definitions is discussed in Extending the JRas framework.

v You can define your own trace event classes. The use of user-defined trace event classes is discussed

in Extending the JRas framework.

v You must programmatically maintain the bits in the message and trace logger masks that correspond to

any user-defined types. If WebSphere Application Server facilities are used to manage the predefined

types, these updates must not modify the state of any of the bits that correspond to those types. If you

are assuming ownership responsibility for the predefined types, then you can change all bits of the

masks.

Chapter 10. Adding logging and tracing to your application 335

JRas messages and trace event types

The basic JRas message and event types are not the same as those natively recognized by WebSphere

Application Server, so the JRas types are mapped onto the types that are native to the runtime

environment. You can control the way JRas message and trace events are processed using custom filters

and message controls.

Event types

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

The base message and trace event types that are defined by the stand-alone JRas logging toolkit are not

the same as the native types that are recognized by the WebSphere Application Server run-time. Instead,

the basic JRas types are mapped onto the native types. This mapping can vary by platform or edition. The

mapping is discussed in the following section.

Platform message event types

The message event types that are recognized and processed by the WebSphere Application Server

runtime are defined in the RASIMessageEvent interface that is provided by the stand-alone JRas logging

toolkit. These message types are mapped onto the native message types, as follows.

 WebSphere Application Server native type JRas RASIMessageEvent type

Audit TYPE_INFO, TYPE_INFORMATION

Warning TYPE_WARN, TYPE_WARNING

Error TYPE_ERR, TYPE_ERROR

Platform trace event types

The trace event types that are recognized and processed by the WebSphere Application Server run time

are defined in the RASITraceEvent interface that is provided by the stand-alone JRas logging toolkit. The

RASITraceEvent interface provides a rich and complex set of types. This interface defines both a simple

set of levels, as well as a set of enumerated types.

v For a user who prefers a simple set of levels, the RASITraceEvent interface provides TYPE_LEVEL1,

TYPE_LEVEL2, and TYPE_LEVEL3. The implementations provide support for this set of levels. The levels

are hierarchical, enabling level 2 also enables level 1, enabling level 3 also enables levels 1 and 2.

v For users who prefer a more complex set of values that can be OR’d together, the RASITraceEvent

interface provides TYPE_API, TYPE_CALLBACK, TYPE_ENTRY_EXIT, TYPE_ERROR_EXC, TYPE_MISC_DATA,

TYPE_OBJ_CREATE, TYPE_OBJ_DELETE, TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC, and TYPE_SVC.

The trace event types are mapped onto the native trace types as follows:

Mapping WebSphere Application Server trace types to the JRas RASITraceEvent level types.

 WebSphere Application Server native type JRas RASITraceEvent level type

Event TYPE_LEVEL1

EntryExit TYPE_LEVEL2

Debug TYPE_LEVEL3

Mapping WebSphere Application Server trace types to the JRas RASITraceEvent enumerated types.

 WebSphere Application Server native type JRas RASITraceEvent enumerated types

336 Developing and deploying applications

Event TYPE_ERROR_EXC, TYPE_SVC, TYPE_OBJ_CREATE,

TYPE_OBJ_DELETE

EntryExit TYPE_ENTRY_EXIT, TYPE_API, TYPE_CALLBACK,

TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC

Debug TYPE_MISC_DATA

For simplicity, it is recommended that one or the other of the tracing type methodologies is used

consistently throughout the application. If you decide to use the non-level types, choose one type from

each category and use those types consistently throughout the application, to avoid confusion.

Message and trace parameters

The various message logging and trace method signatures accept the Object, Object[] and Throwable

parameter types. WebSphere Application Server processes and formats the various parameter types as

follows:

Primitives

Primitives, such as int and long are not recognized as subclasses of Object type and cannot be

directly passed to one of these methods. A primitive value must be transformed to a proper Object

type (Integer, Long) before passing as a parameter.

Object

The toString method is called on the object and the resulting String is displayed. Implement the

toString method appropriately for any object that is passed to a message logging or trace method.

It is the responsibility of the caller to guarantee that the toString method does not display

confidential data such as passwords in clear text, and does not cause infinite recursion.

Object[]

The Object[] type is provided for the case when more than one parameter is passed to a message

logging or trace method. The toString method is called on each Object in the array. Nested arrays

are not handled, that is none of the elements in the Object array belong in an array.

Throwable

The stack trace of the Throwable type is retrieved and displayed.

Array of primitives

An array of primitive, for example, byte[], int[], is recognized as an Object, but is treated

somewhat as a second cousin of Object by Java code. In general, avoid arrays of primitives, if

possible. If arrays of primitives are passed, the results are indeterminate and can change,

depending on the type of array passed, the API used to pass the array, and the release of the

product. For consistent results, user code needs to preprocess and format the primitive array into

some type of String form before passing it to the method. If such preprocessing is not performed,

the following problems can result:

v [B@924586a0b - This message is deciphered as a byte array at location X. This message is

typically returned when an array is passed as a member of an Object[] type and results from

calling the toString method on the byte[] type.

v Illegal trace argument : array of long. This response is typically returned when an array of

primitives is passed to a method taking an Object.

v 01040703: The hex representation of an array of bytes. Typically this problem can occur when a

byte array is passed to a method taking a single Object. This behavior is subject to change and

cannot be relied on.

v ″1″ ″2″: The String representation of the members of an int[] type formed by converting each

element to an integer and calling the toString method on the integers. This behavior is subject

to change and cannot be relied on.

v [Ljava.lang.Object;@9136fa0b : An array of objects. Typically this response is seen when an

array containing nested arrays is passed.

Chapter 10. Adding logging and tracing to your application 337

Controlling message logging

Writing a message to a WebSphere Application Server log requires that the message type passes three

levels of filtering or screening:

1. The message event type must be one of the message event types that is defined in the

RASIMessageEvent interface.

2. Logging of that message event type must be enabled by the state of the message logger mask.

3. The message event type must pass any filtering criteria that is established by the WebSphere

Application Server run-time.

When a WebSphere Application Server logger is obtained from the Manager class, the initial setting of the

mask forwards all native message event types to the WebSphere Application Server handler. It is possible

to control what messages get logged by programmatically setting the state of the message logger mask.

Some editions of the product support user specified message filter levels for a server process. When such

a filter level is set, only messages at the specified severity levels are written to WebSphere Application

Server. Message types that pass the mask check of the message logger can be filtered out by WebSphere

Application Server.

Control tracing

Each edition of the product provides a mechanism for enabling or disabling trace. The various editions can

support static trace enablement (trace settings are specified before the server is started), dynamic trace

enablement (trace settings for a running server process can be dynamically modified), or both.

Writing a trace record to a WebSphere Application Server requires that the trace type passes three levels

of filtering or screening:

1. The trace event type must be one of the trace event types that is defined in the RASITraceEvent

interface.

2. Logging of that trace event type must be enabled by the state of the trace logger mask.

3. The trace event type must pass any filtering criteria that is established by the WebSphere Application

Server run-time.

When a logger is obtained from the Manager class, the initial setting of the mask is to suppress all trace

types. The exception to this rule is the case where the WebSphere Application Server run time supports

static trace enablement and a non-default startup trace state for that trace logger is specified. Unlike

message loggers, the WebSphere Application Server can dynamically modify the trace mask state of a

trace logger. WebSphere Application Server only modifies the portion of the trace logger mask that

corresponds to the values that are defined in the RASITraceEvent interface. WebSphere Application

Server does not modify undefined bits of the mask that might be in use for user-defined types.

When the dynamic trace enablement feature that is available on some platforms is used, the trace state

change is reflected both in the application server run time and the trace mask of the trace logger. If user

code programmatically changes the bits in the trace mask corresponding to the values that are defined by

in the RASITraceEvent interface, the mask state of the trace logger and the run time state become

unsynchronized and unexpected results occur. Therefore, programmatically changing the bits of the mask

corresponding to the values that are defined in the RASITraceEvent interface is not supported.

Related tasks

“Programming with the JRas framework” on page 325
Use the JRas extensions to incorporate message logging and diagnostic trace into WebSphere Application

Server applications.

Instrumenting an application with JRas extensions

You can create an application using JRas extensions.

338 Developing and deploying applications

Before you begin

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can

achieve similar results using Java logging.

About this task

To create an application using the WebSphere Application Server JRas extensions, perform the following

steps:

1. Determine the mode for the extensions: integrated, stand-alone, or combined.

2. If the extensions are used in either stand-alone or combined mode, create the necessary handler and

formatter classes.

3. If localized messages are used by the application, create a resource bundle.

4. In the application code, get a reference to the Manager class and create the manager and logger

instances.

5. Insert the appropriate message and trace logging statements in the application.

Creating JRas resource bundles and message files

The WebSphere Application Server message logger provides the message and msg methods so the user

can log localized messages. In addition, the message logger provides the textMessage method to log

messages that are not localized. Applications can use either or both, as appropriate.

Before you begin

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can

achieve similar results using Java logging.

About this task

The mechanism for providing localized messages is the resource bundle support that is provided by the

IBM Developer Kit, Java Technology Edition. If you are not familiar with resource bundles as implemented

by the Developer Kit, you can get more information from various texts, or by reading the API

documentation for the java.util.ResourceBundle, java.util.ListResourceBundle and

java.util.PropertyResourceBundle classes, as well as the java.text.MessageFormat class.

The PropertyResourceBundle class is the preferred mechanism to use. In addition, note that the JRas

extensions do not support the extended formatting options such as {1, date} or {0, number, integer} that

are provided by the MessageFormat class.

You can forward messages that are written to the internal WebSphere Application Server logs to other

processes for display. For example, messages that are displayed on the administrative console, which can

be running in a different location than the server process, can be localized using the late binding process.

Late binding means that WebSphere Application Server does not localize messages when they are logged,

but defers localization to the process that displays the message.

To properly localize the message, the displaying process must have access to the resource bundle where

the message text is stored. You must package the resource bundle separately from the application, and

install it in a location where the viewing process can access it. If you do not want to take these steps, you

can use the early binding technique to localize messages as they are logged.

The two techniques are described as follows:

Early binding

The application must localize the message before logging it. The application looks up the localized

Chapter 10. Adding logging and tracing to your application 339

text in the resource bundle and formats the message. When formatting is complete, the application

logs the message using the textMessage method. Use this technique to package the application

resource bundles with the application.

Late binding

The application can choose to have the WebSphere Application Server run time localize the

message in the process where it displays. Using this technique, the resource bundles are

packaged in a stand-alone .jar file, separately from the application. You must then install the

resource bundle .jar file on every machine in the installation from which an administrative console

or log viewing program might be run. You must install the .jar file in a directory that is part of the

extensions class path. In addition, if you forward logs to IBM service, you must also forward the

.jar file that contains the resource bundles.

To create a resource bundle, perform the following steps.

1. Create a text properties file that lists message keys and the corresponding messages. The properties

file must have the following characteristics:

v Each property in the file is terminated with a line-termination character.

v If a line contains only white space, or if the first non-white space character of the line is the number

sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be

used to put comments into the file.

v Each line in the file, unless it is a comment or consists only of white space, denotes a single

property. A backslash (\) is treated as the line-continuation character.

v The syntax for a property file consists of a key, a separator, and an element. Valid separators

include the equal sign (=), colon (:), and white space ().

v The key consists of all characters on the line from the first non-white space character to the first

separator. Separator characters can be included in the key by escaping them with a backslash (\),

but using this approach is not recommended because escaping characters is error prone and

confusing. Instead, use a valid separator character that does not display in any keys in the

properties file.

v White space after the key and separator is ignored until the first non-white space character is

encountered. All characters that remain before the line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full description of the syntax and

construction of properties files.

2. Translate the file into localized versions of the file with language-specific file names for example, the

DefaultMessages.properties file can be translated into DefaultMessages_de.properties for German

and DefaultMessages_ja.properties for Japanese.

3. When the translated resource bundles are available, write them to a system-managed persistent

storage medium. Resource bundles are used to convert the messages into the requested national

language and locale.

4. When a message logger is obtained from the JRas manager, configure the logger to use a particular

resource bundle. Messages logged through the message API use this resource bundle when message

localization is performed. At run time, the user’s locale setting is used to determine the properties file

from which to extract the message that is specified by a message key, ensuring that the message is

delivered in the correct language.

5. If the message loggers msg method is called, explicitly identify a resource bundle name.

What to do next

The application locates the resource bundle based on the file location relative to any directory in the class

path. For instance, if the DefaultMessages.properties property resource bundle is in the

baseDir/subDir1/subDir2/resources directory and baseDir is in the class path, the name

subdir1.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource

bundle.

JRas resource bundles:

340 Developing and deploying applications

You can create resource bundles in several ways. The best and easiest way is to create a properties file

that supports a PropertiesResourceBundle resource bundle. This sample shows how to create such a

properties file.

 Resource bundle sample

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

For this sample, four localizable messages are provided. The properties file is created and the key-value

pairs are inserted into it. All the normal properties files conventions and rules apply to this file. In addition,

the creator must be aware of other restrictions that are imposed on the values by the Java

MessageFormat class. For example, apostrophes must be escaped or they cause a problem. Avoid the

use of non-portable characters. WebSphere Application Server does not support the use of extended

formatting conventions that the MessageFormat class supports, such as {1, date} or {0, number, integer}.

Assume that the base directory for the application that uses this resource bundle is baseDir and that this

directory is in the class path. Assume that the properties file is stored in the subdirectory baseDir that is

not in the class path (baseDir/subDir1/subDir2/resources). To allow the messages file to resolve, the

subDir1.subDir2.resources.DefaultMessage name is used to identify the PropertyResourceBundle resource

bundle and is passed to the message logger.

For this sample, the properties file is named DefaultMessages.properties:

Contents of the DefaultMessages.properties file

MSG_KEY_00=A message with no substitution parameters.

MSG_KEY_01=A message with one substitution parameter: parm1={0}

MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1}

MSG_KEY_03=A message with three substitution parameters: parm1={0}, parm2 = {1}, parm3={2}

When the DefaultMessages.properties file is created, the file can be sent to a translation center where

the localized versions are generated.

JRas manager and logger instances

You can use the JRas extensions in integrated, stand-alone, or combined mode. Configuration of the

application varies depending on the mode of operation, but use of the loggers to log message or trace

entries is identical in all modes of operation.

Deprecated: The JRas framework described in this task and its sub-tasks is deprecated. However, you

can achieve similar results using Java logging.

Integrated mode is the default mode of operation. In this mode, message and trace events are sent to the

WebSphere Application Server logs.

In the combined mode, message and trace events are logged to both WebSphere Application Server and

user-defined logs.

In the stand-alone mode, message and trace events are logged only to user-defined logs.

Using the message and trace loggers

Regardless of the mode of operation, the use of message and trace loggers is the same.

Using a message logger

The message logger is configured to use the DefaultMessages resource bundle. Message keys must be

passed to the message loggers if the loggers are using the message API.

Chapter 10. Adding logging and tracing to your application 341

msgLogger.message(RASIMessageEvent.TYPE_WARNING, this,

 methodName, "MSG_KEY_00");

... msgLogger.message(RASIMessageEvent.TYPE_WARN, this,

 methodName, "MSG_KEY_01", "some string");

If message loggers use the msg API, you can specify a new resource bundle name.

msgLogger.msg(RASIMessageEvent.TYPE_ERR, this, methodName,

 "ALT_MSG_KEY_00", "alternateMessageFile");

You can also log a text message. If you are using the textMessage API, no message formatting is done.

msgLogger.textMessage(RASIMessageEvent.TYPE_INFO, this, methodName,"String and Integer",

"A String", new Integer(5));

Using a trace logger

Because trace is normally disabled, guard trace methods for performance reasons.

private void methodX(int x, String y, Foo z)

{

 // trace an entry point. Use the guard to make sure tracing is enabled.

Do this checking before you gather parameters to trace.

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT) {

 // I want to trace three parameters, package them up in an Object[]

 Object[] parms = {new Integer(x), y, z};

 trcLogger.entry(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX", parms);

 }

... logic

 // a debug or verbose trace point

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_MISC_DATA) {

 trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA, this, "methodX" "reached here");

 }

 ...

 // Another classification of trace event. An important state change is

 detected, so a different trace type is used.

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_SVC) {

 trcLogger.trace(RASITraceEvent.TYPE_SVC, this, "methodX", "an important event");

 }

 ...

 // ready to exit method, trace. No return value to trace

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT)) {

 trcLogger.exit(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX");

 }

}

Setting up for integrated JRas operation

Use JRas operations in integrated mode to send trace events and logging messages to only WebSphere

Application Server logs.

Before you begin

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

About this task

In the integrated mode of operation, message and trace events are sent to WebSphere Application Server

logs. This approach is the default mode of operation.

1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;

import com.ibm.websphere.ras.*;

2. Declare logger references:

342 Developing and deploying applications

private RASMessageLogger msgLogger = null;

private RASTraceLogger trcLogger = null;

3. Obtain a reference to the Manager class and create the loggers. Because loggers are named

singletons, you can do this activity in a variety of places. One logical candidate for enterprise beans is

the ejbCreate method. For example, for the myTestBean enterprise bean, place the following code in

the ejbCreate method:

com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();

msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",

 myTestBean.class.getName());

// Configure the message logger to use the message file that is created

// for this application.

msgLogger.setMessageFile("acme.widgets.DefaultMessages");

trcLogger = mgr.createRASTraceLogger("Acme", "Widgets", "RasTest",

 myTestBean.class.getName());

mgr.addLoggerToGroup(trcLogger, groupName);

Setting up for combined JRas operation

Use JRas operation in combined mode to output trace data and logging messages to both WebSphere

Application Server and user-defined logs.

Before you begin

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

About this task

In combined mode, messages and trace are logged to both WebSphere Application Server logs and

user-defined logs. The following sample assumes that:

v You wrote a user-defined handler named SimpleFileHandler and a user-defined formatter named

SimpleFormatter.

v You are not using user-defined types or events.

1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;

import com.ibm.websphere.ras.*;

2. Import the user handler and formatter:

import com.ibm.ws.ras.test.user.*;

3. Declare the logger references:

private RASMessageLogger msgLogger = null;

 private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager class, create the loggers, and add the user handlers. Because

loggers are named singletons, you can obtain a reference to the loggers in a number of places. One

logical candidate for enterprise beans is the ejbCreate method. Make sure that multiple instances of

the same user handler are not accidentally inserted into the same logger. Your initialization code must

support this approach. The following sample is a message logger sample. The procedure for a trace

logger is similar.

com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();

 msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",

 myTestBean.class.getName());

 // Configure the message logger to use the message file defined

 // in the ResourceBundle sample.

 msgLogger.setMessageFile("acme.widgets.DefaultMessages");

 // Create the user handler and formatter. Configure the formatter,

Chapter 10. Adding logging and tracing to your application 343

// then add it to the handler.

 RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");

 RASIFormatter formatter = new SimpleFormatter("simple formatter");

 formatter.addEventClass("com.ibm.ras.RASMessageEvent");

 handler.addFormatter(formatter);

 // Add the Handler to the logger. Add the logger to the list of the

 //handlers listeners, then set the handlers

 // mask, which updates the loggers composite mask appropriately.

 // WARNING - there is an order dependency here that must be followed.

 msgLogger.addHandler(handler);

 handler.addMaskChangeListener(msgLogger);

 handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

Setting up for stand-alone JRas operation

You can configure JRas operations to output trace data and logging messages to only user-defined

locations.

Before you begin

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

About this task

In stand-alone mode, messages and traces are logged only to user-defined logs. The following sample

assumes that:

v You have a user-defined handler named SimpleFileHandler and a user-defined formatter named

SimpleFormatter.

v You are not using user-defined types of events.

1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;

import com.ibm.websphere.ras.*;

2. Import the user handler and formatter:

import com.ibm.ws.ras.test.user.*;

3. Declare the logger references:

private RASMessageLogger msgLogger = null;

 private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager class, create the loggers, and add the user handlers. Because

loggers are named singletons, you can obtain a reference to the loggers in a number of places. One

logical candidate for enterprise beans is the ejbCreate method. Make sure that multiple instances of

the same user handler are not accidentally inserted into the same logger. Your initialization code must

support this approach. The following sample is a message logger sample. The procedure for a trace

logger is similar.

com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();

 msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",

 myTestBean.class.getName());

 // Configure the message logger to use the message file that is defined in

 //the ResourceBundle sample.

 msgLogger.setMessageFile("acme.widgets.DefaultMessages");

 // Get a reference to the Handler and remove it from the logger.

 RASIHandler aHandler = null;

 Enumeration enum = msgLogger.getHandlers();

 while (enum.hasMoreElements()) {

 aHandler = (RASIHandler)enum.nextElement();

 if (aHandler instanceof WsHandler)

 msgLogger.removeHandler(wsHandler);

 }

344 Developing and deploying applications

// Create the user handler and formatter. Configure the formatter,

 // then add it to the handler.

 RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");

 RASIFormatter formatter = new SimpleFormatter("simple formatter");

 formatter.addEventClass("com.ibm.ras.RASMessageEvent");

 handler.addFormatter(formatter);

 // Add the Handler to the logger. Add the logger to the list of the

 // handlers listeners, then set the handlers

 // mask, which will update the loggers composite mask appropriately.

 // WARNING - there is an order dependency here that must be followed.

 msgLogger.addHandler(handler);

 handler.addMaskChangeListener(msgLogger);

 handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

Logging Common Base Events in WebSphere Application Server

WebSphere Application Server uses Common Base Events within its logging framework. Common Base

Events can be created explicitly and then logged through the Java logging API, or can be created implicitly

by using the Java logging API directly.

About this task

An event is a notification from an application or the application server that reports information that is

related to a specific problem or situation. Common Base Events provide you with a standard structure for

these event notifications, which allow you to correlate events that are received from different applications.

Log Common Base Events to capture events from different sources to help you fix a problem within an

application environment or to tune system performance.

For Common Base Event creation, the application server environment provides a Common Base Event

factory with a content handler that provides both runtime data and template data for Common Base

Events.

1. Optional: Read about the Common Base Event types and how they are implemented within an

application server. Refer to “The Common Base Event in WebSphere Application Server.”

2. Read “Logging Common Base Events in WebSphere Application Server” on page 369.

3. Configure the Common Base Event framework for your application server using one of the following

methods:

v “Logging with Common Base Event API and the Java logging API” on page 358

v “Generate Common Base Event content with the default event factory” on page 359.

Results

Common Base Events will now be logged according to your configuration. Use these event logs to

determine the source of application problems.

The Common Base Event in WebSphere Application Server

The Common Base Event is an XML document that defines a common representation of events that is

intended for use by enterprise management and business applications. The Common Base Event defines

common fields, the values they can take, and the exact meanings of these values.

An application creates an event object whenever something happens that either needs to be recorded for

later analysis or which might require the trigger of additional work. An event is a structured notification that

reports information that is related to a situation. An event reports three kinds of information:

v The situation: What happened

v The identity of the affected component: For example, the server that shut down

Chapter 10. Adding logging and tracing to your application 345

v The identity of the component that is reporting the situation, which might be the same as the affected

component

The application that creates the event object is called the event source. Event sources can use a common

structure for the event. The accepted standard for such a structure is called the Common Base Event. The

Common Base Event is an XML document that is defined as part of the autonomic computing initiative.

The Common Base Event model is a standard that defines a common representation of events that is

intended for use by enterprise management and business applications. This standard, which is developed

by the IBM Autonomic Computing Architecture Board, supports encoding of logging, tracing, management,

and business events using a common XML-based format. This format makes it possible to correlate

different types of events that originate from different applications. For more information about the Common

Base Event model, see the Common Base Event specification (Canonical Situation Data Format: The

Common Base Event V1.0.1). The common event infrastructure currently supports Version 1.0.1 of the

specification.

The basic concept behind the Common Base Event model is the situation. A situation can be anything that

happens anywhere in the computing infrastructure, such as a server shutdown, a disk-drive failure, or a

failed user login. The Common Base Event model defines a set of standard situation types that

accommodate most of the situations that might arise (for example, StartSituation and CreateSituation).

The Common Base Event contains all of the information that is needed by the consumers to understand

the event. This information includes data about the runtime environment, the business environment, and

the instance of the application object that created the event.

For complete details on the Common Base Event format, see the XML schema that is included in the

Common Base Event specification document, at http://www.ibm.com/developerworks/autonomic/books/
fpy0mst.htm#HDRCBEDESC .

Types of problem determination events

Problem determination involves multiple types of data, including at least two different classes of event

data, log events, and diagnostic events.

Log events, which are also referred to as message events, are typically emitted by components of a

business application during normal deployment and operations. Log events might identify problems, but

these events are also normally available and emitted while an application and its components are in

production mode. The target audience for log and message events is users and administrators of the

application and the components that make up the application. Log events are normally the only events

available when a problem is first detected, and are typically used during both problem recovery and

problem resolution.

Diagnostic events, which are commonly referred to as trace events, are used to capture internal diagnostic

information about a component, and are usually not emitted or available during normal deployment and

operation. The target audience for diagnostic events is the developers of the components that make up the

business application. Diagnostic events are typically used when trying to resolve problems within a

component, such as a software failure, but are sometimes used to diagnose other problems, especially

when the information provided by the log events is not sufficient to resolve the problem. Diagnostic events

are typically used when trying to resolve a problem.

A Common Base Event is a common structure for an event. It defines common fields, the values that

these fields can take, and the exact meanings of these values for an event. Common Base Events are

primarily used to represent log events.

Common Base Event structure

A Common Base Event is a common structure for an event. It defines common fields, the values that

these fields can take, and the exact meanings of these values for an event.

346 Developing and deploying applications

http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRCBEDESC
http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRCBEDESC

The Common Base Event contains several structural elements. These elements include:

v Common header information

v Component identification, both source and reporter

v Situation information

v Message data

v Extended data

v Context data

v Associated events and association engine

Each of these structural elements has its own embedded elements and attributes.

The following table presents a summary of all the fields in the Common Base Event and their usage

requirements for problem determination events. This table shows whether a particular element or attribute

is required, recommended, optional, prohibited, or discouraged for log events, and the base specification.

 Field name Log events Base specification

Version Required Required

creationTime Required Required

severity Required Optional

Msg Required Optional

sourceComponentId* Required Required

sourceComponentId.location Required Required

sourceComponentId.locationType Required Required

sourceComponentId.component Required Required

sourceComponentId.subComponent Required Required

sourceComponentId.componentIdType Required Required

sourceComponentId.componentType Required Required

sourceComponentId.application Recommended Optional

sourceComponentId.instanceId Recommended Optional

sourceComponentId.processId Recommended Optional

sourceComponentId.threadId Recommended Optional

sourceComponentId.executionEnvironment Optional Optional

situation* Required Required

situation.categoryName Required Required

situation.situationType* Required Required

situation.situationType.reasoningScope Required Required

situation.situationType.(specific Situation Type elements) Required Required

msgDataElement* Recommended Optional

msgDataElement .msgId Recommended Optional

msgDataElement .msgIdType Recommended Optional

msgDataElement .msgCatalogId Recommended Optional

msgDataElement .msgCatalogTokens Recommended Optional

msgDataElement .msgCatalog Recommended Optional

msgDataElement .msgCatalogType Recommended Optional

msgDataElement .msgLocale Recommended Optional

Chapter 10. Adding logging and tracing to your application 347

extensionName Recommended Optional

localInstanceId Optional Optional

globalInstanceId Optional Optional

priority Discouraged Optional

repeatCount Optional Optional

elapsedTime Optional Optional

sequenceNumber Optional Optional

reporterComponentId* Optional Optional

reporterComponentId.location Required (2) Required (2)

reporterComponentId.locationType Required (2) Required (2)

reporterComponentId.component Required (2) Required (2)

reporterComponentId.subComponent Required (2) Required (2)

reporterComponentId.componentIdType Required (2) Required (2)

reporterComponentId.componentType Required (2) Required (2)

reporterComponentId.instanceId Optional Optional

reporterComponentId.processId Optional Optional

reporterComponentId.threadId Optional Optional

reporterComponentId.application Optional Optional

reporterComponentId.executionEnvironment Optional Optional

extendedDataElements* Note 3 Optional

contextDataElements* Note 4 Optional

associatedEvents* Note 5 Optional

Notes:

v Items followed by an asterisk (*) are elements that consist of sub elements and attributes. The fields in

those elements are listed in the table directly following the parent element name.

v Some of the elements are optional, but when included, they include sub elements and attributes that are

required. For example, the reporterComponentId element has a ComponentIdentification type. The

component attribute in ComponentIdentification is required. Therefore, the

reporterComponentId.component attribute is required, but only when the reporterComponentId parent

element is included.

v The extendedDataElements element can be included multiple times to supply extended data

information. See the Extended data section for more information on required and recommended

extended data element values.

v The contextDataElements element can be included multiple times to supply context data information.

v The associatedEvents element can be included multiple times to supply correlation data. No

recommended uses of this element exist for the producers of problem determination data, and the use

of this element is discouraged.

Common header information:

This topic provides additional information about how to format and use these fields for problem

determination events, which can be used to clarify and extend the information provided in the other

documents.

 The Common Base Event specification [CBE101] provides information on the required format of these

fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.

348 Developing and deploying applications

The common header information in the Common Base Event includes the following information about an

event:

v Version: The version of this Common Base Event

v creationTime: The date and time when the event generated

v Severity and priority: The severity of the condition (situation) that is identified by the event

v extensionName: The type of event that was captured

v localInstanceId and globalInstanceId: Identifiers that can be used to quickly identify a specific event

within a set of events

v repeatCount and elapsedTime: Information that supports a system to efficiently report multiple events of

the same type, by consolidating those events into a single event

v sequenceNumber: Sequence information that supports a system to order a set of events in other ways

than time of capture

severity

All problem determination events must provide an indication as to the relative severity of the condition

(situation) being reported by providing appropriate values for the severity field in the Common Base

Event. The severity field is required for problem determination events. This field is more restrictive than

the base specification for the Common Base Event, which lists this field as optional because effective

and efficient problem determination requires the ability to quickly identify the information that is needed

to resolve a problem as well as prioritize the problems that need addressing. Typically, the following

values are used for problem determination events:

 10 Information Log information events, normal

conditions, and events that are

supplied to clarify operations, for

example, state transitions, operational

changes. These events typically do

not require administrator action or

intervention.

20 Harmless Similar to information events, but are

used to capture audit items, such as

state transitions or operational

changes. These events typically do

not require administrator action or

intervention.

30 Warning Warnings typically represent

recoverable errors, for example a

failure that the system can correct.

These events can require

administrator action or intervention.

40 Minor Minor errors describe events that

represent an unrecoverable error

within a component. The failure

affects the component ability to

service some requests. The business

application can continue to perform its

normal functions, but its overall

operation might be degraded. These

events require administrator action or

intervention to address the condition.

Chapter 10. Adding logging and tracing to your application 349

50 Critical Critical errors describe events that

represent an unrecoverable error

within a component. The failure

significantly affects the component

ability to service most requests. The

business application can continue

most, but not all of its normal

functions and its overall operation

might be degraded. These events

require administrator action or

intervention to address the condition.

60 Fatal Fatal errors describe events that

represent an unrecoverable error

within a component. The failure

usually results in the complete failure

of the component. The business

application can continue some normal

functions, but its overall operation

might be degraded. These events

require administrator action or

intervention to address the condition.

msg

Refer to “Message data” on page 354 for information on this attribute.

priority

The use of the priority field is discouraged for problem determination events. The severity field is

typically used to communicate and evaluate the importance of problem determination events. Use the

priority field to enhance the information that is provided in the severity field, that is. prioritize events of

the same severity.

extensionName

The extensionName field is used to communicate the type of event that is reported, for example, what

general class of events is being reported. In many cases this field provides an indication of what

additional data you can expect with the event, for example, optional data values.

repeatCount

The repeatCount field is valid for problem determination events, but is not typically used or supplied by

the event producers. This field is used for data reduction and consolidation by event management and

analysis systems.

elapsedTime

The elapsedTime field is valid for problem determination events, but is not typically used or supplied

by the event producers. This field is used for data reduction and consolidation by event management

and analysis systems.

sequenceNumber

The sequenceNumber field is valid for problem determination events. It is typically used only by event

producers when the granularity of the event time stamp (the creationTime field) is not sufficient in

ordering events. The sequenceNumber field is typically used to sequence events that have the same

time stamp value.

 Event management and analysis systems can use the sequenceNumber field for a number of reasons,

including providing alternative sequencing, not necessarily based on a time stamp. The

recommendations here are provided primarily for event producers.

Component identification for source and reporter:

350 Developing and deploying applications

The component identification fields in the Common Base Event are used to indicate which component in

the system is experiencing the condition that is described by the event (the sourceComponentID) and

which component emitted the event (the reporterComponentID).

 Typically, these components are the same, in which case only the sourceComponentID is supplied. Some

notes and scenarios on when to use these two elements in the Common Base Event:

v The sourceComponentID is always used to identify the component experiencing the condition that is

described by the event.

v The reporterComponentID is used to identify the component that actually produced and emitted the

event. This element is typically used only within events that are emitted by a component that is

monitoring another component and providing operational information regarding that component. The

monitoring component (for example, a Tivoli® agent or hardware device driver) is identified by the

reporterComponentID and the component being monitored (for example, a monitored server or

hardware device) is identified by the sourceComponentID.

A potential misuse of the reporterComponentID is to identify a component that provides event

conversion or management services for a component, for example, identifying an adapter that

transforms the events that are captured by a component into Common Base Event format. The event

conversion function is considered an extension of the component and not identified separately.

The information that is used to identify a component in the system is the same, regardless of whether it is

the source component or reporter component:

 location locationType Component location Identifies the location of the

component.

component componentIdType Component name Identifies the asset name of the

component, as well as the type of

component.

subcomponent Subcomponent name Identifies a specific part or

subcomponent of a component, for

example a software module or

hardware part.

application Business application name Identifies the business application or

process the component is a part of

and provides services for.

instanceId Operational instance Identifies the operational instance of a

component, that is the actual running

instance of the component.

processId threadId Operational instance Identifies the operational instance of a

component within the context of a

software operating system, that is he

operating system process and thread

running when the event was

produced.

executionEnvironment Operational instance Component

location

Provides additional information about

the operational instance of a

component or its location by

identifying the name of the

environment hosting the operational

instance of the component, for

example the operating system name

for a software application, the

application server name for a Java 2

Platform, Enterprise Edition (J2EE)

application, or the hardware server

type for a hardware part.

Chapter 10. Adding logging and tracing to your application 351

The Common Base Event specification [CBE101] provides information on the required format of these

fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.

This section provides additional information about how to format and use some of these fields for problem

determination events, which can be used to clarify and extend the information that is provided in the other

documents.

Component

The Component field in a problem determination event is used to identify the manageable asset that is

associated with the event. A manageable asset is open for interpretation, but a good working definition

is a manageable asset represents a hardware or software component that can be separately obtained

or developed, deployed, managed, and serviced. Examples of typical component names are:

v IBM eServer™ xSeries® model x330

v IBM WebSphere Application Server version 5.1 (5.1 is the version number)

v Microsoft Windows 2000

v The name of an internally developed software application for a component

subComponent

The Subcomponent field in a problem determination event identifies the specific part of a component

that is associated with the event. The subcomponent name is typically not a manageable asset, but

provides internal diagnostic information when diagnosing an internal defect within a component, that is

What part failed? Examples of typical subcomponents and their names are:

v Intel Pentium® processor within a server system (Intel Pentium IV Processor)

v the enterprise bean container within a Web application server (enterprise bean container)

v the task manager within an operating system (Linux Kernel Task Manager)

v the name of a Java class and method (myclass.mycompany.com or

myclass.mycompany.com.methodname).

The format of a subcomponent name is determined by the component, but use the convention shown

previously for naming a Java class or the combination of a Java class and method is followed. The

subcomponent field is required in the Common Base Event.

componentIdType

The componentIdType field is required by the Common Base Event specification, but provides minimal

value for problem determination events. For most problem determination events, it is encouraged to

use the value provided in the application field instead of the componentIdType. The componentIdType

field identifies the type of component; the application is identified by the application field.

application

The application field is listed as an optional value within the Common Base Event specification, but

provide it within problem determination events whenever it this value is available. The only reason this

field is not required for problem determination events is that instances exist where the issuing

component might not be aware of the overall business application.

instanceId

The instanceId field is listed as an optional value within the Common Base Event specification, but

provide this value within problem determination events whenever it is available.

 Always provide the instanceID when a software component is identified and identify the operational

instance of the component (for example, which operation instance of an installed software image is

actually associated with the event). Provide this value for hardware components when these

components support the concept of operational instances.

The format of the supplied value is defined by the component, but must be a value that an analysis

system can use (either human or programmatic) to identify the specific running instance of the

identified component. Examples include:

v cell, node, server name for the IBM WebSphere Application Server

v deployed EAR file name for a Java enterprise bean

352 Developing and deploying applications

v serial number for a hardware processor

processId

The processId field is listed as an optional value within the Common Base Event specification, but

provide this value for problem determination events whenever it is available and applicable. Always

provide this value for software-generated events, and identify the operating system process that is

associated with the component that is identified in the event. Match the format of the thread ID with

the format of the operating system (or other running environment, such as a Java virtual machine).

This field is typically not applicable or used for events that are emitted by hardware (for example,

firmware).

threadId

The threadId field is listed as an optional value within the Common Base Event specification, but

provide this value for problem determination events whenever it is available and applicable. Always

provide for software-generated events, and identify the active operating system thread when the event

was detected or issued. A notable exception to this recommendation is some operating systems or

running environments do not support threads. Match the format of the thread ID with the format of the

operating system (or other running environment, such as a Java virtual machine). This field is typically

not applicable or used for events that are emitted by hardware (for example, firmware).

executionEnvironment

The executionEnvironment field, when used, identifies the immediate running environment that is used by

the component being identified. Some examples are:

v the operating system name when the component is a native software application.

v the operating system/Java virtual machine name when the component is a Java 2 Platform, Standard

Edition (J2SE) application.

v the Web server name when the component is a servlet.

v the portal server name when the component is a portlet.

v the application server name when the component is an enterprise bean.

The Common Base Event specification [CBE101] provides information on the required format of these

fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.

Situation information:

The situation information is used to classify the condition that is reported by an event into a common set of

situations.

 The Common Base Event specification [CBE101] provides information on the set of situations defined for

the Common Base Event, with the values and formats that are used to describe these situations. The

Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.

Consider the following points regarding situation information for problem determination events:

v Whenever possible, use the situation categorizations and qualifiers that are described in the base

Common Base Event specification. Avoid using your own situation definitions as much as possible.

v Not all messages and logs can be classified using the situation definitions that are supplied in the base

Common Base Event specification. You can use the OtherSituation categorization to provide your own

situation information, but the recommended course of action for problem determination events is to use

the ReportSituation categorization, with reportCategory=Log.

v Warning events can be confusing. A warning event (that is an event with severity=warning) typically

indicates a recoverable failure, but the situation settings can be interpreted as unrecoverable failures

(for example ConnectSituation, successDisposition=UNSUCCESSFUL). Use the appropriate situation

categorization so the severity setting indicates the severity of the situation, that is whether the

component recovered from the failure.

v The recommended setting for the reasoningScope value is EXTERNAL for all message events.

Chapter 10. Adding logging and tracing to your application 353

Message data:

All problem determination Common Base Events must provide human readable text that describes the

specific reported event within the msg field of the Common Base Event.

 The text that is associated with events representing actual messages or log entries is expected to be

translated and localized. Include the msgDataElement element in the Common Base Event whenever

internationalized text is provided in the event. This element provides information about how the message

text is created and how to interpret it. This information is particularly invaluable when trying to interpret the

event programmatically or when trying to interpret the message independent of the locale or language that

is used to format the message text.

Prerequisite: Understand the concepts that are associated with creating internationalized messages. A

good source of education on these concepts is provided by the documentation that is associated with

internationalization of Java information and the usage of resource bundles within the Java language.

The msgDataElement element in the Common Base Event includes the following information about the

value of the msg field that is provided with an event:

v The locale of the supplied message text, which identifies how the locale-independent fields within the

message are formatted, as well as the language of the message (msgLocale).

v A locale-independent identifier that is associated with the message that can be used to interpret the

message independent of the message language, message locale, and message format (msgId and

msgIdType).

v Information on how a translated message is created, including:

– The identifier that is used to retrieve the message template (msgCatalogId).

– The name and type of message catalog that are used to retrieve the message template (msgCatalog

and msgCatalogType).

– Any locale-independent information that is inserted into the message template to create the final

message (msgCatalogTokens).

The Common Base Event specification [CBE101] provides information on the required format of these

fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.

This section provides additional information about how to format and use these fields for problem

determination events.

msg

All message, log, and trace events must provide a human-readable message in the msg field of the

Common Base Event. The msg field is required for problem determination events, both log events and

diagnostic events. This field is more restrictive than the base specification for the Common Base

Event, which lists this field as optional; effective and efficient problem determination requires the ability

to quickly identify the reported condition. The format and usage of this message is component-specific,

but use the following general guidelines:

v Expect the message text that is supplied with messages and log events to be internationalized.

v Provide the locale of the supplied message text with the msgLocale field in the msgDataElement

element of the Common Base Event.

v Provide additional information regarding the format and construction of internationalized messages

whenever possible, using the msgDataElement element of the Common Base Event.

msgLocale

Provide the message locale whenever message text is provided within the Common Base Event, as is

the case with all problem determination events. The msgLocale field is listed as an optional value

within the Common Base Event specification, but provide this information within problem determination

events whenever possible. The reason this field is not required for problem determination events is

that instances exist where the locale information is not provided or available when formatting the

Common Base Event.

354 Developing and deploying applications

msgId and msgIdType

Several companies include a locale-independent identifier within internationalized message text that

you can use to interpret the described condition by the message text, independent of the message.

For example, most messages issued by IBM software look like IEE890I WTO Buffers in console

backup storage = 1024, where a unique, locale-independent identifier IEE890I precedes the translated

message text. This identifier provides a way to uniquely detect and identify a message independent of

location and language. This detection is invaluable for locale-independent and programmatic analysis.

 The msgId field is listed as an optional value within the Common Base Event specification, but it must

be provided within problem determination events whenever this identifier is included in the message

text. Likewise, the msgIdType field is listed as an optional value within the Common Base Event

specification, but it must be provided within problem determination events whenever a value is

supplied for msgId. Do not supply these fields when the message text is not translated or localized, for

example, for trace events.

msgCatalogId

The msgCatalogId field is listed as an optional value within the Common Base Event specification, but

provide this value whenever the Common Base Event includes localized or translated message text,

for example when providing problem determination events that represent issued messages or log

events. This field is not required for problem determination events because not all problem

determination events include translated message text Some cases exist where the value is not

provided or available when formatting the Common Base Event. Do not supply this field when the

message text is not translated or localized, for example, for trace events.

msgCatalogTokens

The msgCatalogTokens field is listed as an optional value within the Common Base Event

specification, but provide this value whenever the Common Base Event includes localized or translated

message text, for example when providing problem determination events that represent issued

messages or log events. This field is not required for problem determination events because not all

problem determination events include translated message text, and cases exist where the value is not

provided or available when formatting the Common Base Event. This value contains the list of

locale-independent values or message tokens that are inserted into the localized message text when

creating a translated message.

 These values are difficult to extract from a translated message without knowing the translated

message template that is used to create the message. Do not supply this field when the message text

is not translated or localized

The Common Base Event provides several mechanisms for providing additional data about an event,

including this field, extended data elements, and extensions to the schema. Always use the

msgCatalogTokens field to supply the list of message tokens that is included in the message text

associated with an event. These values can also be supplied in other parts of the Common Base

Event, but they must be included in this field.

msgCatalog and msgCatalogType

The msgCatalog and msgCatalogType fields are listed as optional values within the Common Base

Event specification, but provide this value whenever the Common Base Event includes localized or

translated message text, for example when providing problem determination events that represent

issued messages or log events. These fields are not required for problem determination events

because not all problem determination events include translated message text, and cases exist where

the values are not provided or available when formatting the Common Base Event. Do not complete

these fields when the message text has is not translated or localized, for example, for trace events.

Extended data:

The Common Base Event provides several methods for including this additional data, including extending

the Common Base Event schema or supplying one or more ExtendedDataElement elements within the

Common Base Event, which is the preferred approach.

Chapter 10. Adding logging and tracing to your application 355

The base information that is included in a Common Base Event might not be sufficient to represent all of

the information captured by a component when creating a problem determination event.

Use an ExtendedDataElement element to represent a single data item. A Common Base Event can

contain more than one of these elements, essentially one for each additional data item. A hint to the

number and type of ExtendedDataElement elements is supplied by the extensionName value, but this

information is only a hint. The usage of the attributes in the ExtendedDataElement element for problem

determination events is the same as those for any other Common Base Event.

Sample Common Base Event instance

This XML document is an example of a Common Base Event instance that is generated by a WebSphere

Application Server application.

Use the following example for reference:

<CommonBaseEvent creationTime="2004-09-18T04:03:28.484Z"

 globalInstanceId="myhost:1095479647062:1899"

 msg="WSVR0024I: Server server1 stopped"

 severity="10"

 version="1.0.1">

 ... several extendedDataElements for WebSphere Application Server internal use only ...

<sourceComponentId component="com.ibm.ws.runtime.component.ServerCollaborator"

 componentIdType="Unknown"

 executionEnvironment="Windows 2000[x86]#5.0"

 instanceId="myhost\myhost\server1"

 location="myhost"

 locationType="Hostname"

 processId="1095479647062"

 subComponent="Unknown"

 threadId="Alarm : 0"

 componentType="http://www.ibm.com/namespaces/autonomic/WebSphereApplicationServer"/>

 <msgDataElement msgLocale="en_US">

 <msgCatalogTokens value="server1"/>

 <msgId>WSVR0024I< /msgId>

 <msgCatalogId>WSVR0024I< /msgCatalogId>

 <msgCatalog>com.ibm.ws.runtime.runtime< /msgCatalog>

 </msgDataElement>

 <situation categoryName="ReportSituation">

 <situationType xsi:type="ReportSituation" reasoningScope="EXTERNAL" reportCategory="LOG"/>

 </situation>

</CommonBaseEvent>

A number of extendedDataElement elements in the XML are used by WebSphere Application Server, but

are not for application use because these elements might change.

The CommonBaseEvent element defines the Common Base Event instance. This element has a set of

attributes that are common for all Common Base Events. This set includes the extensionName attribute,

which defines the type or class of the Common Base Event instance, the creation time, severity, and

priority.

Nested within the CommonBaseEvent element are elements giving more detail about the situation. The

first of these elements is the situation element. This classification is standardized.

The CommonBaseEvent element also includes the sourceComponentId and the (optional)

reporterComponentId elements. The sourceComponentId element describes where the situation occurred;

the reporterComponentId describes where the situation is detected. If the sourceComponentId and the

reporterComponentId elements are the same, the reporterComponentId element is omitted.

356 Developing and deploying applications

The attributes of both the sourceComponentId and the reporterComponentId elements are the same. They

identify the component type, name, operating system, and network location. The content of these attributes

provides vertical correlation of the stack of IT resources that are active when the Common Base Event is

created.

Also included in the CommonBaseEvent element are contextDataElements elements that describe the

context in which the situation occurred. This context correlates Common Base Event instances that are

part of the same work. This correlation is called horizontal correlation because an instance of a particular

context type correlates events at the same level of abstraction, for example at the business level, the

application level, or at the middleware level.

FExtended data elements contain additional data that is used to describe a situation. In this example, an

extended data element is added by WebSphere Application Server to describe the Java 2 Platform,

Enterprise Edition (J2EE) component that generated the Common Base Event instance and some

application data.

Sample Common Base Event template

The content handler uses template information to fill in blanks in the Common Base Event when the

Common Base Event complete method is called.

Components that use the WebSphere Application Server event factory home can include a Common Base

Event template XML file to provide data to populate Common Base Events. Information that is already

supplied in the event is not overridden if the same field is supplied in the template.

The following example illustrates a Common Base Event template:

<?xml version="1.0" encoding="UTF-8"?>

<TemplateEvent

 version="1.0.1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="templateEvent.xsd">

 <CommonBaseEvent

 <sourceComponentId application="My Application" component="com.ibm.componentX"/>

 <extendedDataElements name="Sample ExtendedDataElement name" type="string">

 <values>Sample ExtendedDataElement value</values>

 </extendedDataElements>

 </CommonBaseEvent>

</TemplateEvent>

Component identification for problem determination

This topic describes types of problem determination events.

A business application is made up of multiple components. A component can be made up of several

internal subcomponents. Consistent application of these concepts is critical for effective problem

determination of a business application; all of the parts of the application must use the same concepts and

assumptions when creating and formatting events. Use the following definitions and examples when

creating Common Base Events for problem determination.

Business application

A business application is the business logic and business data that is used to address a set of specific

business requirements. A business application consists of several components of multiple types,

combined in a unique manner by an enterprise, to provide the functions and resources that are

needed to address those requirements. The primary creator and manager of a business application is

the enterprise, and each enterprise or company creates unique business applications. Examples of

business applications are the Payroll Application for the ACME Corporation and the Inventory

Application for Spacely Sprockets.

Chapter 10. Adding logging and tracing to your application 357

Components

A business application is created and managed by the enterprise as a set of components.

Components are deployable assets, which are developed either by the enterprise or a vendor, and

managed by the enterprise. A component might be created by the enterprise, typically for use within a

specific business application. For example, the ACME Corporation might create a set of enterprise

beans to represent the business logic that is required by their Payroll Application. A component might

also be an asset that is produced by a vendor and acquired by an enterprise. Examples of these

components are hardware products, such as IBM eServers or Sun Solaris systems, or software

products, such as IBM WebSphere Application Server, Oracle Database Servers.

Subcomponents

A specific component, depending on its complexity, might consist of several subcomponents. For

example, the IBM WebSphere Application Server consists of many subcomponents, such as the

enterprise bean container and the servlet engine. Subcomponent information is typically used only by

the creator of the component to service the component, and as such are not separately deployable or

manageable resources in the enterprise. The enterprise might deploy a change or update to a

subcomponent, but only upon guidance from the component vendor and as part of the vendor’s

component. For example, a software fix for the enterprise bean container of the IBM WebSphere

Application Server is packaged and deployed as a software update to the IBM WebSphere Application

Server. Replacement of the processor in an IBM eServer is deployed as a physical part, but only as a

part of the original deployed component, the IBM eServer.

Logging with Common Base Event API and the Java logging API

In cases where the events that are generated by the Java logging API are insufficient to describe the

event that needs capturing, you can create Common Base Events with the Common Base Event factory

APIs.

Before you begin

When you create a Common Base Event, you can add data to the Common Base Event before it is

logged. The following diagram illustrates how application code can create and log Common Base Events:

Application
code EventFactory

ContentHandler

Runtime data

CBE
XML

template

Logger

Handler

Output
device

CommonBaseEventLogRecord

CommonBaseEvent

About this task

WebSphere Application Server is configured to use an event factory that automatically populates

WebSphere Application Server-specific information into the Common Base Events that it generates. In

general, it is good practice to create events using the WebSphere Application Server default Common

358 Developing and deploying applications

Base Event factory because this approach ensures consistency of Common Base Event content across

events. However, you can create and use other Common Base Event factories.

Common Base Events are initiated and logged in the following sequence:

1. Application code invokes the createCommonBaseEvent method on the EventFactory class to create a

CommonBaseEvent.

2. Application code wraps CommonBaseEvent event in a CommonBaseEventLogRecord record, and

adds event-specific data.

3. Application code calls the CommonBaseEvent event complete method.

4. The CommonBaseEvent event invokes the ContentHandler completeEvent method.

5. The ContentHandler handler adds XML template data to the CommonBaseEvent event. Not all

ContentHandler handlers support templates.

6. The ContentHandler handler adds runtime data to the CommonBaseEvent event.

7. Application code passes the CommonBaseEventLogRecord record to the logger using the Logger.log

method.

8. Logger passes CommonBaseEventLogRecord record to Handlers.

9. Handlers format data and write to the output device.

v You can use the default Common Base Event factory to generate content. Read “Generate Common

Base Event content with the default event factory” for more information.

v If you do not wish to use the default event factory, you can create custom content handlers and event

factories.

1. Create a custom factory home. Read “Creating custom Common Base Event factory homes” on

page 364.

2. Create a custom content handler. Read “Creating custom Common Base Event content handlers” on

page 362.

Results

After completing all the above steps you will have a Common Base event based on your configuration

settings.

Generate Common Base Event content with the default event factory

A default Common Base Event content handler populates Common Base Events with WebSphere

Application Server runtime information. This content handler can also use a Common Base Event template

to populate Common Base Events.

The default content handler is used when the server creates CommonBaseEventLogRecords as would be

the case in the following example:

// Get a named logger

Logger logger = Logger.getLogger("com.ibm.someLogger");

// Log to the logger -- implicitly the default content handler

// will be associated with the CommonBaseEvent contained in the

// CommonBaseEventLogRecord.

logger.warning("MSG_KEY_001");

To specify a Common Base Event template in the above case, a Logger.properties file would need to be

provided with an eventfactory entry for com.ibm.someLogger. If a valid template is found on the classpath,

then the Logger’s event factory will use the specified template’s content in addition to the WebSphere

Application Server runtime information when populating Common Base Events. If the template is not found

on the classpath, or is invalid, then the Logger’s event factory will only use the WebSphere Application

Server runtime information when populating Common Base Events.

Chapter 10. Adding logging and tracing to your application 359

The default content handler is also associated with the event factory home supplied in the global event

factory context. This is convenient for creating Common Base Events that need to be populated with

content similar to that generated from the WebSphere Application Server:

// Request the event factory from the global event factory home

EventFactory eventFactory =

 EventFactoryContext.getInstance().getEventFactoryHome().getEventFactory(templateName);

// Create a Common Base Event

CommonBaseEvent commonBaseEvent = eventFactory.createCommonBaseEvent();

// Complete the Common Base Event using content from the template (if specified above)

// and the server runtime information.

eventFactory.getContentHandler().completeEvent(commonBaseEvent);

In the above example, if the template referenced by templateName is found on the classpath, and the

template is valid, then the event factory home will return an event factory which uses a content handler

that combines the template’s content with the WebSphere Application Server runtime information when

populating Common Base Events. If the template is not found on the classpath, or is invalid, then the

event factory home will return an event factory which uses a content handler that uses only the

WebSphere Application Server runtime information when populating Common Base Events.

The default content handler populates Common Base Events in the server environment with the following

runtime information:

CommonBaseEvent.globalInstanceId

Value: The unique_record_id

 Set this value only if the CommonBaseEvent.globalInstanceId value is null before the

completeEvent method is called.

CommonBaseEvent.msg

Value: A localized message that is based on the MsgDataElement element.

 Set this value only if the CommonBaseEvent.msg message is null before the completeEvent

method is called.

CommonBaseEvent.severity

Value: Set based on the value of level set on the CommonBaseEventLogRecord record, if level >=

Level.SEVERE, set to 50; if level >= Level.WARNING, set to 30; the default is set to 10.

 Set this value only if the CommonBaseEvent.severity value is null before the completeEvent

method is called.

CommonBaseEvent.ComponentIdentification.component

Value:Set based on the LoggerName value that is set on the CommonBaseEventLogRecord

record.

 Set this value only if the CommonBaseEvent.ComponentIdentification.component is null before the

completeEvent method is called.

CommonBaseEvent.ComponentIdentification.componentIdType

Value: ″Unknown″

 Set this value only if the CommonBaseEvent.ComponentIdentification.componentIdType value is

null before the completeEvent method is called.

CommonBaseEvent.ComponentIdentification.executionEnvironment

Value: OSname[OSarch]#OSversion

 Set this value only if the CommonBaseEvent.ComponentIdentification.executionEnvironment value

is null before the completeEvent method is called.

CommonBaseEvent.ComponentIdentification.instanceId

Value: cellName\nodeName\serverName

360 Developing and deploying applications

Set this value only if the CommonBaseEvent.ComponentIdentification.instanceId value is null

before the completeEvent method is called. Set only in a server environment because this value is

ignored in a client application.

CommonBaseEvent.ComponentIdentification.location

Value:The host name

 Set this value only if both the CommonBaseEvent.ComponentIdentification.location and the

CommonBaseEvent.ComponentIdentification.locationType values are null before the

completeEvent method is called.

CommonBaseEvent.ComponentIdentification.locationType

Value: The host name

 Set this value only if both the CommonBaseEvent.ComponentIdentification.location and the

CommonBaseEvent.ComponentIdentification.locationType values are null before the

completeEvent method is called.

CommonBaseEvent.ComponentIdentification.processId

Value: An internally generated representation of the process number.

 Set this value only if the CommonBaseEvent.ComponentIdentification.processId value is null

before the completeEvent method is called

CommonBaseEvent.ComponentIdentification.subComponent

Value: Set based on values of the sourceClassName and the sourceMethodName names that are

set on the sourceClassName.sourceMethodName name of the CommonBaseEventLogRecord

record.

 Set this value only if the CommonBaseEvent.ComponentIdentification.subComponent values is null

before the completeEvent method is called and both the sourceClassName and the

sourceMethodName names are set.

CommonBaseEvent.ComponentIdentification.threadId

Value: Set to the value of the Java Virtual Machine (JVM) thread name.

 Set this value only if the CommonBaseEvent.ComponentIdentification.threadId values is null before

the completeEvent value is called.

CommonBaseEvent.ComponentIdentification.componentType

Value: http://www.ibm.com/namespaces/autonomic/WebSphereApplicationServer

 Set this value only if the CommonBaseEvent.ComponentIdentification.componentType values is

null before the completeEvent method is called.

CommonBaseEvent.MsgDataElement.msgLocale

Value: Set based on the default locale of the JVM.

 Set this value only if the CommonBaseEvent.msg value is null before the completeEvent method

is called.

CommonBaseEvent.Situation.categoryName

Value: ReportSituation

 Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent

method is called.

CommonBaseEvent.Situation.situationType.type

Value: ReportSituation

 Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent

method is called.

CommonBaseEvent.Situation.situationType.reasoningScope

Value: EXTERNAL

Chapter 10. Adding logging and tracing to your application 361

Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent

method is called.

CommonBaseEvent.Situation.situationType.reportCategory

Value: LOG

 Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent

method is called.

The sourceComponentIdentification value is populated if no reporterComponentIdentification ID exists

when the completeEvent method is invoked on the content handler. Otherwise, the

reporterComponentIdentification ID is populated instead.

Common Base Event content handler

Content handlers populate data into Common Base Events when the Common Base Event complete

method is invoked. You can associate content handlers with Common Base Event templates, which

provide default information to transfer into each Common Base Event.

Content handlers might also provide any other information that is relevant to completing the population of

the Common Base Event, such as appropriate runtime defaults. The use of content handlers ensures

consistency of field use in the Common Base Event within a component or within a set of components that

share the same runtime. For example, some content handlers support the specification of a template. If

used consistently across a component, this template ensures that all events for that component have the

same template information filled in. Similarly, some content handlers can also supply runtime information to

their associated Common Base Events. If consistently used throughout the entire runtime, runtime

information ensures that all events use runtime data in a similar way.

The event factory home that is used in the WebSphere Application Server runtime is associated with a

content handler that both reads from a template, and supplies runtime data. Have components use Event

Factories that are obtained from this event factory home with their own templates, to produce consistency

between application events and server events.

More details can be found in“Creating custom Common Base Event content handlers” or the API

documentation for org.eclipse.hyades.logging.events.cbe.ContentHandler at www.eclipse.org/hyades.

Creating custom Common Base Event content handlers

Create a custom Common Base Event content handler or template to automate configuration or values for

specific events.

Before you begin

A content handler is an object that automatically sets the property values of each event based on any

arbitrary policies that you want to use.

The following content handler classes were added to WebSphere Application Server to facilitate the use of

the Common Base Event infrastructure:

 Class Name Description

WsContentHandlerImpl This provides an implementation of

org.eclipse.hyades.logging.events.cbe.ContentHandler specifically for use in

the WebSphere Application Server environment. This content handler

completes Common Base Events using information from the WebSphere

Application Server runtime, and it uses the same content handler as is used

internally by the WebSphere Application Server when completing Common

Base Events for logging.

362 Developing and deploying applications

http://www.eclipse.org/hyades

WsTemplateContentHandlerImpl This provides the same function as WsContentHandlerImpl, but it extends

the org.eclipse.hyades.logging.events.cbe.impl.TemplateContentHandlerImpl

class to enable the use of a Common Base Event template. Template

content takes precedence in cases where the template data specifies values

for the same Common Base Event fields as does the

WsContentHandlerImpl.

About this task

In some situations, you might want some event property data set automatically for every event that you

create. This automation is a way to fill in certain standard values that do not change, such as the

application name, or to set some properties based on information that is available from the runtime

environment, like creation time or thread information. You can set property data automatically by creating a

content handler.

v Use the following code sample to implement the CustomContentHandler class:

public class CustomContentHandler extends WsContentHandlerImpl {

 public CustomContentHandler() {

 super();

 // TODO Custom initialization code goes here

 }

 public void completeEvent(CommonBaseEvent cbe) throws CompletionException {

 // following code will add WAS content to the Content Base Event

 super.completeEvent(cbe);

 // TODO Custom content can be added to the Content Base Event here

 }

}

v The following shows how to implement the CustomTemplateContentHandler class:

public class CustomTemplateContentHandler extends WsTemplateContentHandlerImpl {

 public CustomTemplateContentHandler() {

 super();

 // TODO Custom initialization code goes here

 }

 public void completeEvent(CommonBaseEvent cbe) throws CompletionException {

 // following code will add WAS content to the Content Base Event

 super.completeEvent(cbe);

 // TODO Custom content can be added to the Content Base Event here

 }

}

Results

You now have a content handler or a custom content handler template based on the settings that you

specified.

Common Base Event factory home

Event Factory homes provide Event Factory instantiation that is based on a unique factory name.

Event factory home implementations are tightly coupled with content handlers that are used to populate

Common Base Events with template or default data. Event factory instances are maintained by the

associated event factory home, based on their unique name. For example, when application code requests

a named event factory, the newly created Event Factory instance is returned and persisted for future

requests for that named event factory. An abstract event factory home class provides the implementation

Chapter 10. Adding logging and tracing to your application 363

for the APIs in the event factory home interface. Implementers extend the abstract event factory home

class and implement the createContentHandler API to create a typed content handler that is based on the

type of event factory home implementation.

In WebSphere Application Server, the default event factory home that is obtained with a call to

EventFactoryContext.getInstance.getEventFactoryHome method is associated with a ContentHandler

handler capable of supplying both event template information, as well as WebSphere Application Server

runtime default information.

More details can be found in the API documentation for

org.eclipse.hyades.logging.events.cbe.EventFactoryHome at www.eclipse.org/hyades.

Creating custom Common Base Event factory homes

Use custom Common Base Event factory homes to control configuration and implementation of unique

event factories.

Before you begin

Event factory homes create and provide homes for Event Factory instances. Each event factory home has

a content handler. This content handler is assigned to every event factory the event factory home creates.

In turn, when a Common Base Event is created, the content handler from the event factory is assigned to

it. Event factory instances are maintained by the associated event factory home, based on their unique

name. For example, when application code requests a named event factory, the newly created event

factory instance is returned and persisted for future requests for that named event factory.

The following classes were added to facilitate the use of event eactory homes for logging Common Base

Events:

 Class Name Description

WsEventFactoryHomeImpl This class extends the

org.eclipse.hyades.logging.events.cbe.impl.AbstractEventFactoryHome class.

This event factory home returns event factory instances associated with the

WsContentHandlerImpl content handler. The WsContentHandlerImpl is the

content handler used by the WebSphere Application Server by default when no

event factory template is in use.

WsTemplateEventFactory

HomeImpl

This class extends the

org.eclipse.hyades.logging.events.cbe.impl.EventXMLFileEventFactoryHomeImpl

class. This event factory home returns event factory instances associated with

the WsTemplateContentHandlerImpl Content Handler. The

WsTemplateContentHandlerImpl is the content handler used by the WebSphere

Application Server when an Event Factory template is required.

About this task

Custom event factory homes support the use of Common Base Event for logging in WebSphere

Application Server and make logging easy and consistent between the WebSphere Application Server

runtime and the exploiters of this API. The CustomEventFactoryHome and

CustomTemplateEventFactoryHome classes will be used to obtain an event factory. These classes are

there to make sure the correct content handler is being used with a particular event factory. The

CustomEventFactoryHelper class is an example of how the infrastructure provider can hide the factory

selection details from infrastructure users, using their own set of parameters to decide which the

appropriate event factory is.

v The following code samples provide examples of how to implement and use the

CustomEventFactoryHome class.

1. Implementation of the CustomEventFactoryHome class is as follows:

364 Developing and deploying applications

public class CustomEventFactoryHome extends AbstractEventFactoryHome {

 public CustomEventFactoryHome() {

 super();

 // TODO Custom intialization code goes here

 }

 public ContentHandler createContentHandler(String arg0) {

 // Always use custom content handler

 return resolveContentHandler();

 }

 public ContentHandler resolveContentHandler() {

 // Always use custom content handler

 return new CustomContentHandler();

 }

}

2. The following is an example of how to use the CustomEventFactoryHome class:

// get the event factory

 EventFactory eventFactory=(new CustomEventFactoryHome()).getEventFactory("XYZ");

 // create an event - call appropriate method

 eventFactory.createCommonBaseEvent();

 // log event ...

v For the CustomTemplateEventFactoryHome class you can use the following code for implementation

and use:

1. Implement the CustomTemplateEventFactoryHome class by using this code:

public class CustomTemplateEventFactoryHome extends

 EventXMLFileEventFactoryHomeImpl {

 public CustomTemplateEventFactoryHome() {

 super();

 // TODO Custom intialization code goes here

 }

 public ContentHandler createContentHandler(String arg0) {

 // Always use custom content handler

 return resolveContentHandler();

 }

 public ContentHandler resolveContentHandler() {

 // Always use custom content handler

 return new CustomTemplateContentHandler();

 }

}

2. Use the CustomTemplateEventFactoryHome class by following this sample code:

// get the event factory

 EventFactory eventFactory=(new

 CustomTemplateEventFactoryHome()).getEventFactory("XYZ");

 // create an event - call appropriate method

 eventFactory.createCommonBaseEvent();

 // log event ...

v The CustomEventFactoryHelper class can be implemented and used by following the code below:

1. Implement the custom CustomEventFactoryHelper class using this code:

public class CustomTemplateEventFactoryHome extends

 EventXMLFileEventFactoryHomeImpl {

 public CustomTemplateEventFactoryHome() {

 super();

 // TODO Custom intialization code goes here

 }

 public ContentHandler createContentHandler(String arg0) {

Chapter 10. Adding logging and tracing to your application 365

// Always use custom content handler

 return resolveContentHandler();

 }

 public ContentHandler resolveContentHandler() {

 // Always use custom content handler

 return new CustomTemplateContentHandler();

 }

}

Figure 4 CustomTemplateEventFactoryHome class

public class CustomEventFactoryHelper {

 // name of the event factory to use

 public static final String FACTORY_NAME="XYZ";

 public static EventFactory getEventFactory(String param1, String param2) {

 EventFactory factory=null;

 switch (resolveFactory(param1,param2)) {

 case 1:

 factory=(new CustomEventFactoryHome()).getEventFactory(FACTORY_NAME);

 break;

 case 2:

 factory=(new

 CustomTemplateEventFactoryHome()).getEventFactory(FACTORY_NAME);

 break;

 default:

 // Add default for event factory

 break;

 }

 return factory;

 }

 private static int resolveFactory(String param1, String param2) {

 int factory=0;

 // Add code here to resolve which factory to use

 return factory;

 }

}

2. To use the CustomEventFactoryHelper class, use the following code:

// get the event factory

 EventFactory eventFactory=

 CustomEventFactoryHelper.getEventFactory("param1","param2","param3");

 // create an event - call appropriate method

 eventFactory.createCommonBaseEvent();

 // log event ...

Results

Use the information provided here to implement a custom content factory home and the associated

classes based on the settings that you specify.

Common Base Event factory context

The event factory context provides a service to look up event factory homes. Retrieve the event factory

context using a call to the EventFactoryContext.getInstance method.

Using this class, you can look up the event factory homes by name, and avoid the need to include the

typed home in code. The EventFactoryHome name must be located on the class path to be found. The

EventFactoryContext context also stores an EventFactoryHome name as a default, which can be obtained

with a call to the EventFactoryContext.getInstance.getEventFactoryHome method.

In WebSphere Application Server, the EventFactoryContext context is configured with a default

EventFactoryHome name which is associated to a ContentHandler handler that is capable of supplying

both event template information, as well as WebSphere Application Server runtime default information.

366 Developing and deploying applications

More details can be found in the API documentation for

org.eclipse.hyades.logging.events.cbe.EventFactory at www.eclipse.org/hyades.

Common Base Event factory

Use event factories to create Common Base Events and complete event properties with associated

content handlers.

Content handlers populate data into Common Base Events when the Common Base Event invokes the

complete method. All event properties set by the application code have priority over all properties that are

specified by the content handler. Event factory implementations are tightly coupled with the content

handler instance, which is associated with the event factory when the event factory is instantiated. Factory

instances can be retrieved only from their associated event factory home. Event factory instances are

retrieved and maintained based on unique names. Event factory names are hierarchical; they are

represented using the standard Java dot-delimited, name-space naming conventions.

More details can be found in the API documentation for

org.eclipse.hyades.logging.events.cbe.EventFactory at www.eclipse.org/hyades.

java.util.logging -- Java logging programming interface

The java.util.logging.Logger class provides a variety of methods with which data can be logged.

In the WebSphere Application Server, the Java logging API (java.util.logging) automatically creates

Common Base Events for events that are logged at the WsLevel.DETAIL level or above (including

WsLevel.DETAIL, Level.CONFIG, Level.INFO, WsLevel.AUDIT, Level.WARNING, Level.SEVERE, and

WsLevel.FATAL). These Common Base Events are created using the event factory that is associated with

the logger to which the message is logged. If no event factory is specified, WebSphere Application Server

uses a default event factory which automatically fills in WebSphere Application Server-specific information.

The WebSphere Application Server uses a special implementation of the java.util.logging.Logger class that

automatically creates Common Base Events for the following methods:

v config

v info

v warning

v severe

v log: All variants except log(LogRecord) when used with the WsLevel.DETAIL level or more severe levels

v logp: When used with the WsLevel.DETAIL level or more severe levels

v logrb: When used with the WsLevel.DETAIL level or more severe levels

The WebSphere Application Server logger implementation is used only for named loggers for example,

loggers that are instantiated with calls, such as Logger.getLogger(″com.xyz.SomeLoggerName″). Loggers

instantiated with calls to the Logger.getAnonymousLogger and Logger.getLogger, or Logger.global

methods do not use the WebSphere Application Server implementation, and do not automatically create

Common Base Events for logging requests made to them. Log records that are logged directly with the

Logger.log(LogRecord) method are not automatically converted by WebSphere Application Server loggers

into Common Base Events.

The following diagram illustrates how application code can log Common Base Events:

Chapter 10. Adding logging and tracing to your application 367

Application
code

EventFactory
ContentHandler

Runtime Data

CBE
XML

template

Logger

Handler

Output
device

CommonBaseEventLogRecord

CommonBaseEvent

The Java logging API processing of named loggers and message-level events proceeds as follows:

 1. Application code invokes the named logger (WsLevel.DETAIL or above) with event-specific data.

 2. The logger creates a Common Base Event using the createCommonBaseEvent method on the event

factory that is associated with the logger.

 3. The logger creates a Common Base Event using the event factory associated to the logger.

 4. The logger wraps the common base event in a CommonBaseEventLogRecord record, and adds

event-specific data.

 5. The logger calls the Common Base Event complete method.

 6. The Common Base Event invokes the ContentHandler completeEvent method.

 7. The content handler adds XML template data to the Common Base Event (including for example, the

component name). Not all content handlers support templates.

 8. The content handler adds runtime data to the Common Base Event (including for example, the

current thread name).

 9. The logger passes the CommonBaseEventLogRecord record to the handlers.

10. The handlers format data and write to the output device.

Logger.properties file

Use the Logger.properties file to set logger attributes for your component.

The properties file is loaded the first time the Logger.getLogger(loggername) method is called within an

application. The Logger.properties file must be either on the WebSphere Application Server class path, or

the context class path.

The logging subsystem uses Common Base Events to represent all the messages in the WebSphere

Application Server activity.log file. You can specify your own event factory template to be used with your

loggers. Use the eventfactory property in your Logger.properties file. See “Sample Common Base Event

template” on page 357 for details on the Common Base Event template.

By convention, the name of the event factory template file should be the fully qualified package name of

the package using the template. The name of the file must end with the .event.xml extension. For

example, a valid event factory template file name for the com.abc.somepackage package is:

com.abc.somepackage.event.xml

368 Developing and deploying applications

When you specify the property value for the eventfactory property in the Logger.properties file, include the

full path name with no leading slash relative to the root of your class path entry. Do not include the

.event.xml extension.

For example, if the template files from the example above are located in the com/abc/templates directory,

the valid value for the eventfactory property is:

com/abc/templates/com.abc.somepackage

Finally, if this event factory template file is used by the com.abc.somepackage.SomeClass logger, then the

following entry will appear in the Logger.properties file:

com.abc.somepackage.SomeClass.eventfactory=com/abc/templates/com.abc.somepackage

Logging Common Base Events in WebSphere Application Server

The following practices ensure consistent use of Common Base Events within your components, and

between your components and WebSphere Application Server components.

Follow these guidelines:

v Use a different logger for each component. Sharing loggers across components gets in the way of

associating loggers with component-specific information.

v Associate loggers with event templates that specify source component identification. This association

ensures that the source of all events created with the logger is properly identified.

v Use the same template for directly created Common Base Events (events created using the Common

Base Event factories) and indirectly created Common Base Events (events created using the Java

logging API) within the same component.

v Avoid calling the complete method on Common Base Events until you are finished adding data to the

Common Base Event and are ready to log it. This approach ensures that any decisions made by the

content handler based on data already in the event are made using the final data.

The following sample Logger.properties file entry demonstrates how to associate the

com.ibm.componentX logger with the com.ibm.componentX event factory:

com.ibm.componentX.eventfactory=com.ibm.componentX

The following sample code demonstrates the use of the same event factory setting for direct (Part 1) and

indirect (Part 2) Common Base Event logging:

<?xml version="1.0" encoding="UTF-8"?>

<TemplateEvent>

 version="1.0.1"

 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xsi:noNamespaceSchemaLocation="templateEvent.xsd">

 <CommonBaseEvent>

 <sourceComponentId application="My application" component="com.ibm.componentX"/>

 <extendedDataElements CommonBaseEventname="Sample ExtendedDataElement name" type="string">

 <values>Sample ExtendedDataElement value</values>

 </extendedDataElements>

 < /CommonBaseEvent>

< /TemplateEvent>

Chapter 10. Adding logging and tracing to your application 369

370 Developing and deploying applications

Chapter 11. Securing Web services applications using the

WSS APIs at the message level

Standards and profiles address how to provide protection for messages that are exchanged in a Web

service environment. Web services security is a message-level standard that is based on securing SOAP

messages through XML digital signature, confidentiality through XML encryption, and credential

propagation through security tokens.

Before you begin

To secure Web services, you must consider a broad set of security requirements, including authentication,

authorization, privacy, trust, integrity, confidentiality, secure communications channels, delegation, and

auditing across a spectrum of application and business topologies. One of the key requirements for the

security model in today’s business environment is the ability to interoperate between formerly incompatible

security technologies in heterogeneous environments. The complete Web services security protocol stack

and technology roadmap is described in the Web services roadmap.

About this task

The Organization for the Advancement of Structured Information Standards (OASIS) Web Services

Security: SOAP Message Security Version 1.1 specification is the basic messaging transport for all Web

services. SOAP 1.2 adds extensions to the existing SOAP 1.1 extensions so that you can build secure

Web services. Attachments can be added to SOAP messages by using Message Transmission

Optimization Mechanism (MTOM) and XML-binary Optimized Packaging (XOP) instead of the SOAP with

Attachments (SWA) profile.

The OASIS Web Services Security (WS-Security) Version 1.1 specification is the building block that is

used in conjunction with other Web service and application-specific protocols to accommodate a wide

variety of security models. Web services security for WebSphere Application Server is based on specific

standards that are included in the OASIS Web Services Security Version 1.1 specification and profiles.

The Version 1.1 specification defines additional facilities for protecting the integrity and confidentiality of a

message. The Version 1.1 specification also provides the mechanisms for associating security-related

claims with the message. The Web Services Security Version 1.1 standards that are supported by

WebSphere Application Server include the signature confirmation, encrypted header elements, the

Username Token Profile and the X.509 Token Profile. The Username Token Profile and the X.509 Token

Profile have been updated as Version 1.1 profiles. For the X.509 Certificate Token Profile, one new type of

security token reference is the Thumbprint reference, which is specified in the binding.

XML Schema, Part 1 and Part 2 are specifications that explain how schemas are organized in XML

documents. The two WS-Security Version 1.0 schemas have been updated to the Version 1.1

specifications plus a new Version 1.1 schema has been added. Note that the Version 1.1 schema does not

replace the Version 1.0 schema but instead builds upon it by defining an additional set of capabilities

within a Version 1.1 namespace.

You can use the following methods to configure Web services security and to define policy types to secure

the SOAP messages:

v Use the administrative console to configure policy sets.

This method uses the bootstrap policy that is defined in the policy set. You can use policy sets, or

assertions about how services are defined, to simplify your security configuration for Web services. You

can use the administrative console to create, modify, and delete custom policy sets. A set of default

policy sets are available.

For example, you can define the bootstrap policy in the policy set to secure the Web Services Trust

(WS-Trust) SOAP messages.

© Copyright IBM Corp. 2008 371

You can also use the administrative console to perform policy set management tasks and to secure

Web Services using encryption, signing information, and security tokens.

The following steps high-level steps describe how to configure WebSphere Application Server to use

WS-Security and to secure the SOAP messages using the administrative console. The generator and

consumer tasks that are discussed in the following steps use WS-Security Versions 1.0 and 1.1.

– Create and configure the application policy sets or the system policy sets for trust service.

– Define the policy types to be used to secure the SOAP messages when creating and configuring the

policy sets.

– Configure the policy set binding. Select either the symmetric or asymmetric binding assertion to

describe the token type and the algorithm to be used for message protection.

– Assemble your Web services security-enabled application by using an assembly tool.

v Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for

the client)

WebSphere Application Server uses a new API programming model. In addition to the existing

JAX-RPC programming model, a new programming model, Java API for XML Web Services (JAX-WS),

has been added. The JAX-WS programming standard aligns with the document-centric messaging

model and replaces the remote procedure call programming model defined by the Java API for

XML-based RPC (JAX-RPC) specification.

For example, an application could create system policy sets and then use the WebSphere Application

Server WSS API to acquire the security context token for programmatic API-based Web Services

Secure Conversation (WS-SecureConversation).

You can also use the administrative console to perform the encryption, signing, and token configuration

tasks that the WSS APIs perform to secure Web services.

The following high-level steps describe how to configure WebSphere Application Server to use

WS-Security and to secure the SOAP messages using the WSS APIs. The generator and consumer

tasks that are discussed in the following steps use WS-Security Versions 1.0 and 1.1.

– Use the WSSSignature API to configure the signing information for the request generator (client side)

binding.

Different message parts can be specified in the message protection for a request on the generator

side. The default required parts are BODY, ADDRESSING_HEADERS and TIMESTAMP.

The WSSSignature API also specifies the different algorithm methods to be used with the signature

for message protection. The default signature method is RSA_SHA1. The default canonicalization

method is EXC_C14N.

– Use the WSSSignPart API if you want to change the digest method and the transform method.

The default signed parts are WSSSignature.BODY, WSSSignature.ADDRESSING_HEADERS and

WSSSignature.TIMESTAMP.

The WSSSignPart API also specifies the different algorithm methods to be used if you added or

changed the signed parts. The default digest method is SHA1. The default transform method is

TRANSFORM_EXC_C14N. For example, use the WSSSignPart API if you want to generate the

signature for the SOAP message using the SHA256 digest method instead of the default value of

SHA1.

– Use the WSSEncryption API to configure the encryption information on the request generator side.

The encryption information on the generator side is used for encrypting an outgoing SOAP message

for the request generator (client side) bindings. The default targets of encryption are

BODY_CONTENT and SIGNATURE.

The WSSEncryption API also specifies the different algorithm methods to be used to protect

message confidentiality. The default data encryption method is AES128. The default key encryption

method is KW_RSA_OAEP.

– Use the WSSEncryptPart API if you want to set the transform method only.

For example, if you want to change the data encryption method from the default value of AES128 to

TRIPLE_DES.

372 Developing and deploying applications

No algorithm methods are required for encrypted parts.

– Use the WSS API to configure the token on the generator side.

The requirements for the security token depend on the token type. The JAAS Login Module and the

JAAS CallbackHandler are responsible for creating the security token on the generator side. Different

standalone tokens can be sent in request and response. The default token is the X509Token. The

other token that can be used for signing is the DerivedKeyToken, which is used only with Web

Services Secure Conversation (WS-SecureConversation).

– Use the WSSVerification API to verify the signature for the response consumer (client side) binding.

Different message parts can be specified in the message protection for a response on the consumer

side. The required targets for verification are BODY, ADDRESSING_HEADERS and TIMESTAMP.

The WSSVerification API also specifies the different algorithm methods to be used for verifying the

signature and for message protection. The default signature method is RSA_SHA1. The default

canonicalization method is EXC_C14N.

– Use the WSSVerifyPart API to change the digest method and the transform method. The required

verify parts are WSSVerification.BODY, WSSVerification.ADDRESSING_HEADERS and

WSSVerification.TIMESTAMP.

The WSSVerifyPart API also specifies the different algorithm methods to be used if you added or

changed the verification parts. The default digest method is SHA1. The default transform method is

TRANSFORM_EXC_C14N.

– Use the WSSDecryption API to configure the decryption information for the response consumer

(client side) binding.

The decryption information on the consumer side is used for decrypting an incoming SOAP

message. The targets of decryption are BODY_CONTENT and SIGNATURE. The default key

encryption method is KW_RSA_OAEP.

No algorithm methods are required for decryption.

– Use the WSSDecryptPart API if you want to set the transform method only.

For example, if you want to change the data encryption method from the default value of AES128 to

TRIPLE_DES.

No algorithm methods are required for decrypted parts.

– Use the WSS API to configure the token on the consumer side.

The requirements for the security token depend on the token type. The JAAS Login Module and the

JAAS CallbackHandler are responsible for validating (authenticating) the security token on the

consumer side. Different standalone tokens can be sent in request or response.

The WSS API adds the information for the candidate token that is used for decryption. The default

token is X509Token.

v Use the wsadmin administrative scripting tool to configure policy sets.

This method allows you to create, manage, and delete policy sets from the command-line or to create

scripts to automate your tasks. You can use the wsadmin tool and the PolicySetManagement command

group to manage default policy sets, create custom policy sets, configure policies, and manage

attachments and bindings. For more information, use the policy set scripting topics in the information

center.

To secure Web services with WebSphere Application Server, you must configure the generator and the

consumer security constraints. You must specify several different configurations. Although there is no

specific sequence to specify these different configurations, some configurations reference other

configurations. For example, decryption configurations reference encryption configurations.

Results

After completing these high-level steps for WebSphere Application Server, you have secured Web services

by configuring policy sets and by using the WSS API to configure encryption and decryption, the signature

Chapter 11. Securing Web services applications using the WSS APIs at the message level 373

and signature verification information, and the consumer and generator tokens.

Securing messages at the request generator using WSS APIs

You can secure SOAP messages by configuring signing information, encryption, and generator tokens to

protect message integrity, confidentiality, and authenticity, respectively. This request (client-side) generator

configuration defines the Web services security requirements for the outgoing SOAP message request.

Before you begin

To secure Web services with WebSphere Application Server, you must configure the generator and the

consumer security constraints. Therefore, in addition to securing messages at the request generator level,

you must also secure messages at the response consumer level.

About this task

The request (client-side) generator configuration requirements involve generating a SOAP message

request that uses a digital signature, incorporates encryption, and attaches security tokens.

To secure Web service applications, you must specify several different configurations. Although there is no

specific sequence to specify these different configurations, some configurations reference other

configurations. For example, decryption configurations reference encryption configurations.

You can use the following interfaces to configure Web services security and to define policy types to

secure the SOAP messages:

v Use the administrative console to configure policy sets.

v Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for the

client)

The following high-level steps use the WSS APIs:

v Configure generator signing to protect message integrity.

v Configure encryption to protect message confidentiality.

v Attach generator tokens to protect message authenticity.

Results

After completing these procedures, you have secured messages at the request generator level.

What to do next

Next, if not already configured, secure messages with signature verification, decryption, and consumer

tokens at the response consumer (client-side) level.

Configuring encryption to protect message confidentiality using the

WSS APIs

You can configure encryption information for the client-side request generator (sender) bindings.

Encryption information is used to specify how the generators (senders) encrypt outgoing SOAP messages.

To configure encryption, specify which message parts to encrypt and specify which algorithm methods and

security tokens are to be used for encryption.

Before you begin

Confidentiality refers to encryption while integrity refers to digital signing. Confidentiality reduces the risk of

someone understanding the message flowing across the Internet. With confidentiality specifications, the

374 Developing and deploying applications

message is encrypted before it is sent and decrypted when it is received at the correct target. Prior to

configuring encryption, familiarize yourself with XML encryption.

About this task

For encryption, you must specify the following:

v Which parts of the message are to be encrypted.

v Which encryption algorithms to specify.

To configure encryption and encrypted parts on the client side, use the WSSEncryption and

WSSEncryptPart APIs, or configure policy sets using the administrative console.

WebSphere Application Server provides default values for bindings. However, an administrator must

modify the defaults for a production environment.

WebSphere Application Server uses encryption information for the default generator to encrypt parts of the

SOAP message. The WSSEncryption API configures the following required parts as encrypted parts.

 Table 8. Required encrypted parts

Encryption parts Description

Keywords Keywords are used to add the encrypted parts to the SOAP message.

XPath expression An XPath expression is used to add the encrypted parts to the SOAP

message.

WSSEncryptPart object This object adds the encrypted parts to the SOAP message.

WSSSignature object This object adds the signature component as an encrypted part.

Header This part adds the header in the SOAP header, specified by QName,

as an encryption part.

Security token object This object adds the security token as an encryption part.

Web Services Security API (WSS API) supports symmetric encryption, by using a shared key, only when

Web Services Secure Conversation (WS-SecureConversation) is used.

The WSS APIs allow the use of either keywords or an XPath expression to specify the parts of the

message that are to be encrypted. WebSphere Application Server supports the use of the following

keywords:

 Table 9. Supported encryption keywords

Keyword References

BODY_CONTENT The keyword for the contents of the SOAP message body as an

encryption target.

SIGNATURE The keyword for the signature component as an encryption target.

If configuring using the WSS APIs, the WSSEncryption and WSSEncryptPart APIs complete these

high-level steps:

1. Use the WSSEncryption API to configure encryption. The WSSEncryption API performs these tasks by

default:

a. Generates the callback handler.

b. Generates the generator security token object.

c. Adds the security token reference type.

d. Adds the signature component.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 375

e. Adds the WSSEncryptPart object.

f. Adds the parts to be encrypted. Adds the default parts as targets of encryption by using keywords

and XPath expressions.

g. Adds the header in the SOAP message, specified by QName.

h. Sets the default data encryption method.

i. Specifies whether the key is to be encrypted using a Boolean value.

j. Sets the default key encryption method.

k. Selects a part reference.

l. Sets the MTOM optimization Boolean value.

2. Use the WSSEncryptPart API to configure encrypted parts or add a transform method. The

WSSEncryptPart API performs these tasks by default:

a. Sets the encrypted parts specified by using keywords or an XPath expression.

b. Sets the encrypted parts specified by an XPath expression.

c. Sets the signature component object, WSSSignature.

d. Sets the header in the SOAP message, specified by QName.

e. Sets the generator security token.

f. Adds the transform method, if needed.

3. Change from the default values for algorithm or message parts, as needed. For example: you could

change one or more of the following items:

v Change the data encryption algorithm from the default value of AES 128.

v Change the key encryption algorithm from the default value of KW_RSA_OAEP.

v Specify to not encrypt the key (false).

v Change the security token type from default of X.509 token.

v Change the security token reference type from the default value of SecurityToken.REF_STR.

v Only use BODY_CONTENT as an encryption part and not use SIGNATURE also.

v Turn MTOM optimization on (true).

Results

The encryption information is configured for the generator binding.

Example

The following is an example of the WSSEncryption API:

 WSSFactory factory = WSSFactory.getInstance();

 WSSGenerationContext gencont = factory.newWSSGenerationContext();

 X509GenerateCallbackHandler callbackhandler = generateCallbackHandler();

 SecurityToken token = factory.newSecurityToken(X509Token.class, callbackHandler);

 WSSEncryption enc = factory.newWSSEncryption(token);

 gencont.add(enc);

What to do next

You must configure similar decryption information for the client-side response consumer (receiver)

bindings, if you have not already configured the information.

Next, review the WSSEncryption API process.

376 Developing and deploying applications

Encrypting the SOAP message using the WSSEncryption API

You can secure the SOAP messages, without using policy sets for configuration, by using the Web

Services Security APIs (WSS API). To configure the client for request encryption on the generator side,

use the WSSEncryption API to encrypt the SOAP message. The WSSEncryption API specifies which

request SOAP message parts to encrypt when configuring the client.

Before you begin

You can use the WSS API or use policy sets on the administrative console to enable encryption and add

generator security tokens in the SOAP message. To secure SOAP messages, use the WSS APIs to

complete the following encryption tasks, as needed:

v Configure encryption and choose the encryption methods using the WSSEncryption API.

v Configure the encrypted parts, as needed, using the WSSEncryptPart API.

About this task

The encryption information on the generator side is used for encrypting an outgoing SOAP message for

the request generator (client side) bindings. The client generator configuration must match the

configuration for the provider consumer.

Confidentiality settings require that confidentiality constraints be applied to generated messages. These

constraints include specifying which message parts within the generated message must be encrypted, and

which message parts to attach encrypted Nonce and timestamp elements to.

The following encryption parts can be configured:

 Table 10. Encryption parts

Encryption parts Description

part Adds the WSSEncryptPart object as a target of the encryption part.

keyword Adds the encryption parts using keywords. WebSphere Application Server supports

the following keywords:

v BODY_CONTENT

v SIGNATURE

xpath Adds the encryption part using an XPath expression.

signature Adds the WSSignature component as a target of the encrypted part.

header Adds the SOAP header, specified by QName, as a target of the encrypted part.

securityToken Adds the SecurityToken object as a target of the encrypted part.

WSSAPI

WSS
Generation

Context

RuntimeClient
Application

Runtime Provider
Application

<s11:Header>
<wsse: Security>
<EncryptedKey>

/
</wsse:Security>
</s11:Header>
<s11:Body>

Data
Data

</s11:Body>

< EncryptedKey>

<Encrypted >
</Encrypted >

Encrypt
the body
content

Chapter 11. Securing Web services applications using the WSS APIs at the message level 377

For encryption, certain default behaviors occur. The simplest way to use the WSSEncryption API is to use

the default behavior (see the example code).

WSSEncryption provides defaults for the key encryption algorithm, the data encryption algorithm, the

security token reference method, and the encryption parts such as the SOAP body content and the

signature. The encryption default behaviors include:

 Table 11. Encryption decisions

Encryption decisions Default behavior

Which SOAP message parts to

encrypt using keywords

Sets the encryption parts that you can add using keywords. The default

encryption parts are the BODY_CONTENT and SIGNATURE. WebSphere

Application Server supports using these keywords:

v WSSEncryption.BODY_CONTENT

v WSSEncryption.SIGNATURE

Which data encryption method to

choose (algorithm)

Sets the data encryption method. Both data and key encryption methods can be

specified. The default data encryption algorithm method is AES 128. WebSphere

Application Server supports these data encryption methods:

v WSSEncryption.AES128: http://www.w3.org/2001/04/xmlenc#aes128-cbc

v WSSEncryption.AES192: http://www.w3.org/2001/04/xmlenc#aes192-cbc

v WSSEncryption.AES256: http://www.w3.org/2001/04/xmlenc#aes256-cbc

v WSSEncryption.TRIPLE_DES: http://www.w3.org.2001/04/xmlenc#tripledes-
cbc

Whether to encrypt the key

(isEncrypt)

Specifies whether to encrypt the key. The values are true or false. The default

value is to encrypt the key (true).

Which key encryption method to

choose (algorithm)

Sets the key encryption method. Both data and key encryption methods can be

specified. The default key encryption algorithm method is key wrap RSA OAEP.

WebSphere Application Server supports these key encryption methods:

v WSSEncryption.KW_AES128: http://www.w3.org/2001/04/xmlenc#kw-aes128

v WSSEncryption.KW_AES192: http://www.w3.org/2001/04/xmlenc#kw-aes192

v WSSEncryption.KW_AES256: http://www.w3.org/2001/04/xmlenc#kw-aes256

v WSSEncryption.KW_RSA_OAEP: http://www.w3.org/2001/04/xmlenc#rsa-
oaep-mgf1p

v WSSEncryption.KW_RSA15: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v WSSEncryption.KW_TRIPLE_DES: http://www.w3.org/2001/04/xmlenc#kw-
tripledes

Which security token to specify

(securityToken)

Sets the SecurityToken. The default security token type is the X509Token.

WebSphere Application Server provides the following pre-configured consumer

token types:

v Derived key token

v X.509 tokens

Which token reference to use

(refType)

Sets the type of the security token reference. The default token reference is

SecurityToken.REF_KEYID. WebSphere Application Server supports the

following token reference types:

v SecurityToken.REF_KEYID

v SecurityToken.REF_STR

v SecurityToken.REF_EMBEDDED

v SecurityToken.REF_THUMBPRINT

Whether to use MTOM

(mtomOptimize)

Sets Message Transmission Optimization Mechanism (MTOM) optimization for

the encrypted part.

378 Developing and deploying applications

1. To encrypt the SOAP message using the WSSEncryption API, first ensure that the application server is

installed.

2. The WSS API process for encryption performs these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance

b. Creates the WSSGenerationContext instance from the WSSFactory instance.

c. Creates the SecurityToken from WSSFactory used for encryption.

d. Creates WSSEncryption from the WSSFactory instance using the SecurityToken. The default

behavior of WSSEncryption is to encrypt the body content and the signature.

e. Adds a new part to be encrypted in WSSEncryption if the existing part is not appropriate. After

addEncryptPart(), addEncryptHeader(), or addEncryptPartByXPath() is called, the default part is

cleared.

f. Calls the encryptKey(false) if the key is not to be encrypted.

g. Sets the data encryption method if the default method is not appropriate.

h. Sets the key encryption method if the default method is not appropriate.

i. Sets the token reference if the default token reference is not appropriate.

j. Adds WSSEncryption to WSSConsumingContext.

k. Calls WSSGenerationContext.process() with the SOAPMessageContext.

Results

If there is an error condition during encryption, a WSSException is provided. If successful, the API calls the

WSSGenerationContext.process(), the WS-Security header is generated, and the SOAP message is now

secured using Web services security.

Example

The following example provides sample code using methods that are defined in WSSEncryption:

// Get the message context

 Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)

WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSGenerationContext instance (step: b)

WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate the callback handler

X509GenerateCallbackHandler callbackHandler = new

 X509GenerateCallbackHandler(

 "",

 "enc-sender.jceks",

 "jceks",

 "storepass".toCharArray(),

 "bob",

 null,

 "CN=Bob, O=IBM, C=US",

 null);

// Generate the security token used for encryption (step: c)

SecurityToken token = factory.newSecurityToken(X509Token.class , callbackHandler);

// Generate WSSEncryption instance (step: d)

WSSEncryption enc = factory.newWSSEncryption(token);

// Set the part to be encrypted (step: e)

// DEFAULT: WSSEncryption.BODY_CONTENT and WSSEncryption.SIGNATURE

// Set the part specified by the keyword (step: e)

 enc.addEncryptPart(WSSEncryption.BODY_CONTENT);

Chapter 11. Securing Web services applications using the WSS APIs at the message level 379

// Set the part in the SOAP Header specified by QName (step: e)

 enc.addEncryptHeader(new QName("http://www.w3.org/2005/08/addressing",

 "MessageID"));

// Set the part specified by WSSSignature (step: e)

 SecurityToken sigToken = getSecurityToken();

 WSSSignature sig = factory.newWSSSignature(sigToken);

 enc.addEncryptPart(sig);

// Set the part specified by SecurityToken (step: e)

 UNTGenerateCallbackHandler untCallbackHandler =

 new UNTGenerateCallbackHandler("Chris", "sirhC");

 SecurityToken unt = factory.newSecurityToken(UsernameToken.class,

 untCallbackHandler);

 enc.addEncryptPart(unt, false);

// sSt the part specified by XPath expression (step: e)

 StringBuffer sb = new StringBuffer();

 sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

 and local-name()=’Envelope’]");

 sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

 and local-name()=’Body’]");

 sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’

 and local-name()=’Ping’]");

 sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’

 and local-name()=’Text’]");

 enc.addEncryptPartByXPath(sb.toString());

// Set whether the key is encrypted (step: f)

// DEFAULT: true

 enc.encryptKey(true);

// Set the data encryption method (step: g)

// DEFAULT: WSSEncryption.AES128

 enc.setEncryptionMethod(WSSEncryption.TRIPLE_DES);

// Set the key encryption method (step: h)

// DEFAULT: WSSEncryption.KW_RSA_OAEP

 enc.setEncryptionMethod(WSSEncryption.KW_RSA15);

// Set the token reference (step: i)

// DEFAULT: SecurityToken.REF_KEYID

 enc.setTokenReference(SecurityToken.REF_STR);

// Add the WSSEncryption to the WSSGenerationContext (step: j)

 gencont.add(enc);

// Process the WS-Security header (step: k)

gencont.process(msgcontext);

Note: The X509GenerationCallbackHandler does not need the key password because the public key is

used for encryption. You do not need a password to obtain the public key from the Java keystore.

What to do next

If you have not previously specified which encryption methods to choose, use the WSS API or configure

the policy sets using the administrative console to choose the data and key encryption algorithm methods.

Choosing the encryption methods for the generator binding

To configure the client for request encryption for the generator binding, you must specify which encryption

methods to use when the client encrypts the SOAP messages.

Before you begin

Prior to completing these steps, read the XML encryption information to become familiar with encrypting

and decrypting SOAP messages.

380 Developing and deploying applications

To specify which algorithm methods are to be used when the client encrypts the SOAP messages,

complete the following tasks:

v Use the WSSEncryption API to configure the data encryption algorithm and the key encryption algorithm

methods.

v Use the WSSEncryptPart API to configure a transform algorithm method, if needed. The default is no

transform algorithm.

About this task

Some of the encryption-related definitions are based on the XML-Encryption specification. The following

information defines some data encryption-related terms:

Data encryption method algorithm

Data encryption algorithms specify the algorithm uniform resource identifier (URI) of the data

encryption method. This algorithm encrypts and decrypts data in fixed size, multiple octet blocks.

 By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength

ciphers. To use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms,

you must apply unlimited jurisdiction policy files.

For the AES256-cbc and the AES192-cbc algorithms, you must download the unrestricted Java™

Cryptography Extension (JCE) policy files from the following Web site: http://www.ibm.com/
developerworks/java/jdk/security/index.html.

Key encryption method algorithm

Key encryption algorithms specify the algorithm uniform resource identifier (URI) of the method to

encrypt the key that is used to encrypt data. The algorithm represents public key encryption

algorithms that are specified for encrypting and decrypting keys.

 By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a

message digest as part of the encryption operation. Optionally, you can use the SHA256 or

SHA512 message digest algorithm by specifying a key encryption algorithm property.

The property name is: com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is

one of the following URIs of the digest method:

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the

OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption

algorithm property. For the property name, you can specify

com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams. The property value is the base 64-encoded

value of the octet string.

Note: You can set these digest method and OAEPParams properties on the generator side only.

On the consumer side, these properties are read from the incoming SOAP message.

For the KW-AES256 and the KW-AES192 key encryption algorithms, you must download the

unrestricted JCE policy files from the following Web site: http://www.ibm.com/developerworks/java/
jdk/security/index.html.

 Table 12. Encryption usage types

Usage types Description

Data encryption Specifies the algorithm URI that is used for both encrypting and decrypting data.

Encrypts and decrypts data in fixed size, multiple octet blocks.

Key encryption Specifies the algorithm URI that is used for encrypting and decrypting the

encryption key.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 381

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

Data encryption

WebSphere Application Server supports the following pre-configured data encryption algorithms:

 Table 13. Data encryption algorithms

Data encryption name Algorithm URI

WSSEncryption.AES128 (the default

value)

A URI of data encryption algorithm, AES 128: http://www.w3.org/2001/04/
xmlenc#aes128-cbc

WSSEncryption.AES192 A URI of data encryption algorithm, AES 192: http://www.w3.org/2001/04/
xmlenc#aes192-cbc

WSSEncryption.AES256 A URI of data encryption algorithm, AES 256: http://www.w3.org/2001/04/
xmlenc#aes256-cbc

WSSEncryption.TRIPLE_DES A URI of data encryption algorithm, 3DES: http://www.w3.org.2001/04/
xmlenc#tripledes-cbc

Key encryption

WebSphere Application Server supports the following pre-configured key encryption algorithms:

 Table 14. Key encryption algorithms

Key encryption name Algorithm URI

WSSEncryption.KW_AES128 A URI of key encryption algorithm, key wrap AES 128:

http://www.w3.org/2001/04/xmlenc#kw-aes128

WSSEncryption.KW_AES192 A URI of key encryption algorithm, key wrap AES 192:

http://www.w3.org/2001/04/xmlenc#kw-aes192

Note: Do not use the 192-bit key encryption algorithm if you want your

configured application to be in compliance with the Basic Security Profile

(BSP).

WSSEncryption.KW_AES256 A URI of key encryption algorithm, key wrap AES 256:

http://www.w3.org/2001/04/xmlenc#kw-aes256

WSSEncryption.KW_RSA_OAEP (the

default value)

A URI of key encryption algorithm, key wrap RSA OAEP:

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

WSSEncryption.KW_RSA15 A URI of key encryption algorithm, key wrap RSA 1.5:

http://www.w3.org/2001/04/xmlenc#rsa-1_5

WSSEncryption.KW_TRIPLE_DES http://www.w3.org/2001/04/xmlenc#kw-tripledes

To configure the encryption and encrypted part algorithm methods, use the WSSEncryption API, or

configure policy sets using the administrative console.

Note: Policy sets do not support symmetric key encryption. If you are using the WSS API for symmetric

key encryption, you will not be able to interoperate with Web services endpoints that use policy

sets.

The WSS API process completes the following high-level steps to specify which encryption methods to use

when configuring the client for request encryption:

1. Using the WSSEncryption API, adds the required data encryption algorithm. The data encryption

algorithm is used for encrypting or decrypting parts of a SOAP message. Data encryption algorithms

specify the algorithm uniform resource identifier (URI) of the data encryption method.

The client generator configuration must match the configuration for the provider consumer.

382 Developing and deploying applications

The default data encryption algorithm is AES 128. The data encryption name is AES128, and the URI

of the data encryption algorithm, is http://www.w3.org/2001/04/xmlenc#aes128-cbc. WebSphere

Application Server supports the following pre-configured data encryption algorithms:

v AES 128: http://www.w3.org/2001/04/xmlenc#aes128-cbc

The AES 128 algorithm is the default data algorithm method.

v AES 192: http://www.w3.org/2001/04/xmlenc#aes192-cbc

Do not use the 192-bit key encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

To use this AES 192-cbc algorithm, you must download the unrestricted Java Cryptography

Extension (JCE) policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

v AES 256: http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this AES 256-cbc algorithm, you must download the unrestricted Java Cryptography

Extension (JCE) policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

v TRIPLEDES: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

2. As needed, changes the WSSEncryption API method to specify another data encryption algorithm. For

example, you might add the following code to change from the default AES 128 algorithm to the Triple

DES algorithm:

// Default data encryption algorithm: AES128

WSSEncryption enc = factory.newWSSEncryption(x509t);

 enc.setEncryptionMethod(EncryptionMethod.TRIPLEDES_CBC);

gencont.add(enc);

3. Using the WSSEncryption API, adds the required key encryption algorithm. The key encryption

algorithm is used for encrypting the key that is used for encrypting the message parts within the SOAP

message. If the encryption key, which is the key that is used for encrypting the message parts, is not

encrypted, then the decryption API selects false to match the encryption key.

The client generator configuration must match the configuration for the provider consumer.

The default key encryption algorithm value is key wrap RSA OAP. The key encryption name is

KW_RSA_OAEP, and the URI of the key encryption algorithm is http://www.w3.org/2001/04/
xmlenc#rsa-oaep-mgf1p. WebSphere Application Server supports the following pre-configured key

encryption algorithms:

v KW AES128: http://www.w3.org/2001/04/xmlenc#kw-aes128

v KW AES192: http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this key wrap AES 192 algorithm, you must download the unrestricted Java Cryptography

Extension (JCE) policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

Do not use the 192-bit key encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).KW AES 256: http://www.w3.org/2001/04/
xmlenc#kw-aes256

To use this key wrap AES 256-cbc algorithm, you must download the unrestricted Java

Cryptography Extension (JCE) policy file from the following Web site: http://www.ibm.com/
developerworks/java/jdk/security/index.html.

v KW RSA OAEP: http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

The KW RSA OAEP algorithm is the default key algorithm method.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport

algorithms does not include this algorithm. This algorithm appears in the list of supported key

transport algorithms when running with SDK Version 1.5. See more information at

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

v KW RSA15: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v KW TRIPLE DES: http://www.w3.org/2001/04/xmlenc#kw-tripledes

Chapter 11. Securing Web services applications using the WSS APIs at the message level 383

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

Note: For Web Services Secure Conversation, the WSSEncryption API might specify addition

key-related information, such as the:

v algorithmName

v keyLength

Results

If there is an error condition, a WSSException is provided. If successful, the API calls the

WSSGenerationContext.process(), the WS-Security header is generated, and the SOAP message is now

secured using Web services security.

Example

The following example provides sample WSS API code using WSSEncryption.setEncryptionMethod() and

WSSEncryption.setKeyEncryptionMethod().

// Get the message context

 Object msgcontext = getMessageContext();

// Generate the WSSFactory instance

 WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSGenerationContext instance

 WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate callback handler

 X509GenerateCallbackHandler callbackHandler = new

 X509GenerateCallbackHandler(

 "",

 "enc-sender.jceks",

 "jceks",

 "storepass".toCharArray(),

 "bob",

 null,

 "CN=Bob, O=IBM, C=US",

 null);

// Generate the security token used for encryption

 SecurityToken token = factory.newSecurityToken(X509Token.class , callbackHandler);

// Generate WSSEncryption instance

 WSSEncryption enc = factory.newWSSEncryption(token);

// Set the data encryption method

// DEFAULT: WSSEncryption.AES128

 enc.setEncryptionMethod(WSSEncryption.TRIPLE_DES);

// Set the key encryption method

// DEFAULT: WSSEncryption.KW_RSA_OAEP

 enc.setEncryptionMethod(WSSEncryption.KW_RSA15);

// Add the WSSEncryption to the WSSGenerationContext

 gencont.add(enc);

// Generate the WS-Security header

gencont.process(msgcontext);

What to do next

Next, if you want to add a transform algorithm, review the WSSEncryptPart API process task.

Encryption methods

For request generator binding settings, the encryption methods include specifying the data and key

encryption algorithms to use to encrypt the SOAP message. The WSS API for encryption (WSSEncryption)

384 Developing and deploying applications

specifies the algorithm name and the matching algorithm uniform resource identifier (URI) for the data and

key encryption methods. If the data and key encryption algorithms are specified, only elements that are

encrypted with those algorithms are accepted.

Data encryption algorithms

The data encryption algorithm is used to encrypt parts of the SOAP message, including the body and the

signature. Data encryption algorithms specify the algorithm uniform resource identifier (URI) for each type

of data encryption algorithms.

The following pre-configured data encryption algorithms are supported:

 Table 15. Data encryption algorithms

Data encryption algorithm name Algorithm URI

WSSEncryption.AES128 (the default value) A URI of data encryption algorithm, AES 128:

http://www.w3.org/2001/04/xmlenc#aes128-cbc

WSSEncryption.AES192 A URI of data encryption algorithm, AES 192:

http://www.w3.org/2001/04/xmlenc#aes192-cbc

WSSEncryption.AES256 A URI of data encryption algorithm, AES 256:

http://www.w3.org/2001/04/xmlenc#aes256-cbc

WSSEncryption.TRIPLE_DES A URI of data encryption algorithm, TRIPLE DES:

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength ciphers. To

use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms, you must apply

unlimited jurisdiction policy files.

For the AES256-cbc and the AES192-CBC algorithms, you must download the unrestricted Java™

Cryptography Extension (JCE) policy files from the following Web site: http://www.ibm.com/developerworks/
java/jdk/security/index.html.

The data encryption algorithm configured for encryption for the generator side must match the data

encryption algorithm that is configured for decryption for the consumer side.

Key encryption algorithms

This algorithm is used to encrypt and decrypt keys. This key information is used to specify the

configuration that is needed to generate the key for digital signature and encryption. The signing

information and encryption information configurations can share the key information. The key information

on the consumer side is used for specifying the information about the key that is used for validating the

digital signature in the received message or for decrypting the encrypted parts of the message. The

request generator is configured for the client.

Note: Policy sets do not support symmetric key encryption. If you are using the WSS API for symmetric

key encryption, you will not be able to interoperate with Web services endpoints using the policy

sets.

Key encryption algorithms specify the algorithm uniform resource identifier (URI) of the key encryption

method. The following pre-configured key encryption algorithms are supported:

 Table 16. Supported pre-configured key encryption algorithms

WSS API URI

WSSEncryption.KW_AES128 A URI of key encryption algorithm, key wrap AES 128:

http://www.w3.org/2001/04/xmlenc#kw-aes128

Chapter 11. Securing Web services applications using the WSS APIs at the message level 385

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

Table 16. Supported pre-configured key encryption algorithms (continued)

WSS API URI

WSSEncryption.KW_AES192 A URI of key encryption algorithm, key wrap AES 192:

http://www.w3.org/2001/04/xmlenc#kw-aes192

Note: Do not use the 192-bit key encryption algorithm if you want

your configured application to be in compliance with the Basic

Security Profile (BSP).

WSSEncryption.KW_AES256 A URI of key encryption algorithm, key wrap AES 256:

http://www.w3.org/2001/04/xmlenc#kw-aes256

WSSEncryption.KW_RSA_OAEP (the default

value)

A URI of key encryption algorithm, key wrap RSA OAEP:

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

WSSEncryption.KW_RSA15 A URI of key encryption algorithm, key wrap RSA 1.5:

http://www.w3.org/2001/04/xmlenc#rsa-1_5

WSSEncryption.KW_TRIPLE_DES A URI of key encryption algorithm, key wrap TRIPLE DES:

http://www.w3.org/2001/04/xmlenc#kw-tripledes

For Secure Conversation, additional key-related information must be specified, such as:

v algorithmName

v keyLength

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a message

digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512 message digest

algorithm by specifying a key encryption algorithm property. The property name is:

com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the following URIs of

the digest method:

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the

OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption algorithm

property. For the property name, you can specify com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams.

The property value is the base 64-encoded value of the octet string.

Note: You can set these digest method and OAEPParams properties on the generator side only. On the

consumer side, these properties are read from the incoming SOAP message.

For the KW-AES256 and the KW-AES192 key encryption algorithms, you must download the unrestricted

JCE policy files from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

The key encryption algorithm for the generator must match the key decryption algorithm that is configured

for the consumer.

This example provides sample code for encryption to use the Triple DES for the data encryption method

and to use RSA1.5 for the key encryption method:

 // get the message context

 Object msgcontext = getMessageContext();

 // generate WSSFactory instance

 WSSFactory factory = WSSFactory.getInstance();

 // generate WSSGenerationContext instance

 WSSGenerationContext gencont = factory.newWSSGenerationContext();

386 Developing and deploying applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

// generate callback handler

 X509GenerateCallbackHandler callbackHandler = new X509GenerateCallbackHandler(

 "",

 "enc-sender.jceks",

 "jceks",

 "storepass".toCharArray(),

 "bob",

 null,

 "CN=Bob, O=IBM, C=US",

 null);

 // generate the security token used to the encryption

 SecurityToken token = factory.newSecurityToken(X509Token.class,

 callbackHandler);

 // generate WSSEncryption instance to encrypt the SOAP body content

 WSSEncryption enc = factory.newWSSEncryption(token);

 enc.addEncryptPart(WSSEncryption.BODY_CONTENT);

 // set the data encryption method

 // DEFAULT: WSSEncryption.AES128

 enc.setEncryptionMethod(WSSEncryption.TRIPLE_DES);

 // set the key encryption method

 // DEFAULT: WSSEncryption.KW_RSA_OAEP

 enc.setEncryptionMethod(WSSEncryption.KW_RSA15);

 // add the WSSEncryption to the WSSGenerationContext

 gencont.add(enc);

 // generate the WS-Security header

 gencont.process(msgcontext);

Adding encrypted parts using the WSSEncryptPart API

You can secure the SOAP messages, without using policy sets for configuration, by using the Web

Services Security APIs (WSS API). To configure encrypted parts for the request generator (client side)

bindings, use the WSSEncryptPart API to define and add to the listing of elements in the encrypted part.

WSSEncryptPart is an interface that is part of the com.ibm.websphere.wssecurity.wssapi.encryption

package.

Before you begin

You can use the WSS APIs or configure policy sets using the administrative console to enable the

encrypted parts. To secure SOAP messages, use the WSS APIs to complete the following encryption

tasks, as needed:

v Configure encryption and choose the encryption methods using the WSSEncryption API.

v Configure the encrypted parts using the WSSEncryptpart API, as needed.

About this task

Confidentiality settings require that confidentiality constraints be applied to generated messages. These

constraints include specifying which message parts within the generated message must be encrypted, and

which message parts to attach encrypted elements to. The encryption information on the generator side is

used for encrypting an outgoing SOAP message. The request generator is configured for the client.

The WSSEncryptPart API specifies information related to encrypted parts and sets the encrypted parts that

have been added for message confidentiality protection. Use the WSSEncryptPart to set the transform

method and to specify the part to which the transform method is to be applied. Sets the transform method

only if using SOAP with Attachments. The WSSEncryptPart is usually not needed except, in some case for

tasks such as setting the transform method.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 387

The encrypted parts and related information displayed in the following table are used to protect the

confidentiality of messages.

 Table 17. Encrypted parts

Encrypted parts Description

part Adds the WSSEncryptPart object as a target of the encryption part.

keyword Adds the encrypted parts using keywords. The default encryption parts that you can

add using keywords are the BODY_CONTENT and SIGNATURE. WebSphere

Application Server supports using these keywords:

v BODY_CONTENT

v SIGNATURE

xpath Adds the encrypted part by using an XPath expression.

signature Adds the WSSSignature component as a target of the encrypted part.

WSSSignature is applicable only if the SOAP message contains a signature

element.

header Adds the SOAP header, specified by QName, as a target of the encrypted part.

securityToken Adds the SecurityToken object as a target of the encrypted part.

For encrypted parts, certain default behaviors occur. The simplest way to use the WSSEncryptPart API is

to use the default behavior. The WSSEncryptPart API provides defaults for specifying the transform

algorithm, setting objects as targets, specifying the encrypted parts, such as: the SOAP body content and

the signature.

The encryption default behaviors include:

 Table 18. Encrypted part decisions

Encrypted part decisions Default behavior

Which SOAP message parts to encrypt

using keywords

Specifies which keywords to use for the encrypted parts. WebSphere

Application Server sets the following SOAP message parts by default for

encryption:

v WSSEncryption.BODY_CONTENT

v WSSEncryption.SIGNATURE

Which transform method to add WebSphere Application Server does not specify any transform method by

default. Specify a transform method only if using SOAP with Attachments.

1. To encrypt the SOAP message parts using the WSSEncryptPart API, first ensure that the application

server is installed.

2. The WSS API process using WSSEncryptPart follows these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSGenerationContext instance from the WSSFactory instance.

c. Creates the SecurityToken from WSSFactory to configure the encryption.

d. Creates WSSEncryption from the WSSFactory instance using SecurityToken.

e. Creates WSSEncryptPart from WSSFactory.

f. Adds the parts to be encrypted and to be applied with the transform in WSSEncryptPart.

WebSphere Application Server sets these encrypted parts by default for WSSEncryptPart: the

BODY_CONTENT and SIGNATURE. After you add other encrypted parts, the default values are no

longer valid. For example, if you call addEncryptPart(securityToken, false), only the security token is

encrypted, and not the signature and body content. So if you want to encrypt the security token, the

signature, and the body content, you must call addEncryptPart(securityToken, false),

388 Developing and deploying applications

addEncryptPart(WSSEncryption.SIGNATURE), and

addEncryptPart(WSSEncrypyion.BODY_CONTENT).

g. Sets the transform method.

h. Adds WSSEncryptPart to WSSEncryption.

i. Adds WSSEncryption to WSSGenerationContext.

j. Calls WSSGenerationContext.process() with the SOAPMessageContext.

Results

If there is an error condition during encryption of the message parts, a WSSException is provided. If

successful, the API calls the WSSGenerationContext.process(), the WS-Security header is generated, and

the SOAP message is now secured using Web services security.

What to do next

After enabling encrypted parts for the request generator (client side) binding, you must specify the same

parts to be decrypted for the response consumer (client side) bindings. Next, to configure decryption and

decrypted parts, use the WSS APIs or configure policy sets using the administrative console.

Configuring generator signing information to protect message integrity

using the WSS APIs

You can configure the signing information to protect message integrity for the request (client side)

generator binding. Signing information includes the signature and the signed parts. To keep the integrity of

the message, digital signatures are typically applied.

Before you begin

In addition to using a digital signature and configuring the signing information, the following tasks should

also be performed:

v Verify the signing information.

v Incorporate encryption.

v Attach security tokens.

About this task

Integrity refers to digital signature while confidentiality refers to encryption. Integrity is provided by applying

a digital signature to a SOAP message. To configure the signing information to protect message integrity,

you must first digitally sign and then verify the signature for the SOAP messages. Integrity decreases the

risk of data modification when you transmit data across a network.

Also, message integrity is provided by digitally signing the body, time stamp, and WS-Addressing headers

using the signature algorithm methods. The WSS APIs specify which algorithm is to be used to sign the

certificate. The signature algorithms specify the Uniform Resource Identifiers (URI) of the signature

method. WebSphere Application Server supports several pre-configured request signing algorithm

methods.

You can use the following interfaces to configure Web services security and to protect SOAP message

integrity:

v Use the administrative console to configure policy sets for the signing information.

v Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for the

client).

Chapter 11. Securing Web services applications using the WSS APIs at the message level 389

Perform the following signing tasks, using the WSS APIs, to configure the signing information and to

protect message integrity for the generator binding.

v Configure the signing information using the WSSSignature API. Configure the signing information for the

generator binding using the WSSSignature API. Signing information is used to sign parts of a message

including the SOAP body, the time stamp, and the WS-Addressing headers. Both signing and encryption

can be applied to the same message parts, such as the SOAP body.

v Add or change signed parts using the WSSSignPart API.

v Configure the client for request signing methods using the WSSSignature or WSSSignPart APIs. To

configure the client for request signing, choose the signing methods. The request signing methods

include the signature, the canonicalization, the digest, and the transform methods. Use the

WSSSignature API to configure the signature and canonicalization methods. Use the WSSSignPart API

to configure the digest and transform methods.

Results

The WSS APIs also specify the security token for the generator (client) binding and set the type of token

reference to protect message authenticity. By completing the steps in these tasks, you have configured

generator signing to protect the integrity of the SOAP message.

What to do next

Next, verify the consumer signing information by using the WSS APIs or by configuring policy sets using

the administrative console.

Configuring the signing information using the WSS APIs

You can configure the signing information for the client-side request generator (sender) bindings. Signing

information is used to sign and validate parts of a message including the SOAP body, the timestamp

information, and the Username token. To configure the client for request signing, specify which message

parts to digitally sign when configuring the client.

Before you begin

WebSphere Application Server uses XML digital signature with existing algorithms such as RSA, HMAC,

and SHA1. XML signature defines many methods for describing key information and enables the definition

of a new method. Prior to completing these steps, familiarize yourself with XML digital signature for signing

and verifying digital signatures for digital content.

About this task

By including XML signature in SOAP messages, the following issues are realized: message integrity and

authentication. Integrity refers to digital signature whereas confidentiality refers to encryption. Integrity

decreases the risk of data modification while the data is transmitted across the Internet. WebSphere

Application Server uses the signing information for the default generator to sign parts of the message,

such as the body, time stamp, and Username token.

For the signing information, you must specify the following:

v Which parts of the message are to be signed.

v The key information that is referenced by the key information for the signing keys.

v The signing algorithms.

WebSphere Application Server provides default values for bindings. However, an administrator must

modify the defaults for a production environment.

390 Developing and deploying applications

The WSSSignature API configures the following parts as signature parts:

 Table 19. Pre-configured signature parts

Security token object This object authenticates the client. If this option is specified, then the message

is signed. You can digitally sign the message using a security token if a login

configuration authentication method is selected.

WSSTimestamp object This object adds a time stamp to a message. The time stamp determines if the

message is valid based on the time that the message is sent and then received.

WSSSignature Part object This object adds the signature parts to a message.

SOAP header and the QName as

a target

This signature part adds the header, specified by QName, as a verification part.

The WSS APIs allow the use of keywords or an XPath expression to specify which parts of the message

are to be signed. WebSphere Application Server supports the use of the following keywords:

 Table 20. Supported signature keywords

Keyword References

ADDRESSING_HEADERS The Web Services Addressing (WS-Addressing) headers.

BODY The SOAP message body. The body is the user data portion of the message.

TIMESTAMP The creation and expiration timestamp information.

The Web Services Security API (WSS API) are used to configure the signing information for the request

generator (client side) section of the bindings file. To configure the signing information on the client side,

use the WSS APIs or configure policy sets for signing using the administrative console.

If configuring using the WSS APIs, the WSSSignature and WSSSignPart APIs complete the following steps

to specify which message parts to digitally sign when configuring the client for request generator signing:

 1. The WSSSignature API adds the required parts of the SOAP message to digitally sign. Either a

keyword or an XPath expression can be used to specify the required encryption parts.

 2. The WSSSignature API sets the signature method algorithm. The default signature method is

RSA_SHA1. WebSphere Application Server supports the following pre-configured algorithms:

v RSA SHA1: http://www.w3.org/2000/09/xmldsig#rsa-sha1

v HMAC SHA1http://www.w3.org/2000/09/xmldsig#hmac-sha1

WebSphere Application Server does not support the following algorithm for DSA-SHA1:

http://www.w3.org/2000/09/xmldsig#dsa-sha1. You cannot use the DSA-SHA1 algorithm if you want to

be compliant with the Basic Security Profile (BSP).

Any ds:SignatureMethod/@Algorithm element in a signature is based on a symmetric key and must

have a value of RSA-SHA1 or HMAC-SHA1.

The algorithm that is specified for the request generator configuration must match the algorithm that

is specified for the request consumer configuration.

 3. The WSSSignature API sets the canonicalization method. The default signature method is

EXC_C14N. WebSphere Application Server supports the following pre-configured algorithms:

v The URI of the exclusive canonicalization algorithm, EXC_C14N: http://www.w3.org/2001/10/xml-
exc-c14n#.

v The URI of the inclusive canonicalization algorithm, C14N: http://www.w3.org/2001/10/xml-c14n#.

The canonicalization algorithm that you specify for the generator must match the algorithm for the

consumer.

 4. The WSSSignature API adds a security token. The API adds information about the security token that

is to be used for the signature, such as:

Chapter 11. Securing Web services applications using the WSS APIs at the message level 391

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1

v The class for security token.

v The callback handler

v The name of the JAAS login configuration.

 5. The WSSSignature API sets the type of security token and sets the type of token reference.

WebSphere Application Server supports the following pre-configured token references:

v SecurityToken.REF_STR

Represents the security token reference as a token reference type.

v SecurityToken.REF_KEYID

Represents the key identifier reference as a token reference type.

v SecurityToken.REF_EMBEDDED

Represents the embedded reference as a token reference type.

v SecurityToken.REF_THUMBPRINT

Represents the thumbprint reference as a token reference type.

 6. If SecurityToken.REF_KEYID is set as the type of token reference, the WSSSignature API sets the

key information signature type and configures the key information that is referenced by the key

information references. WebSphere Application Server supports the following:

v Specifying that the KeyInfo element is not signed.

v Specifying that the entire <KeyInfo> element is signed.

v Specifying that the child elements <Keyinfochildelements> of the <KeyInfo> element are signed.

If you do not specify one of the previous signature types, WebSphere Application Server specifies

that the entire <KeyInfo> element is signed, by default.

If you select Keyinfo or Keyinfochildelements and you select http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0#STR-Transform as the transform algorithm in a

subsequent step, WebSphere Application Server also signs the referenced token.

The key information signature type for the generator must match the signature type for the consumer.

 7. The WSSSignature API specifies whether to require signature confirmation. The OASIS Web Services

Security (WS-Security) Version 1.1 specification defines the use of signature confirmation. If you are

using WS-Security Version 1.0, this function is not available.

The signature confirmation value is stored in order to validate the signature confirmation with it after

the receiving message is returned. This method is called if the response message is expected to

attach the signature confirmation into the SOAP message.

 8. The WSSSignPart API specifies the part reference. The part reference specifies which parts of the

message to digitally sign.

The part reference refers to the message part that is digitally signed. The part attribute refers to the

name of the <Integrity> element when the <PartReference> element is specified for the signature.

You can specify multiple <PartReference> elements within the <SigningInfo> element. The

<PartReference> element has two child elements when it is specified for the signature verification:

<DigestTransform> and <Transform>.

 9. The WSSSignPart API specifies the digest method algorithm. The digest method algorithm specified

within the <DigestMethod> element is used in the <SigningInfo> element.

WebSphere Application Server supports the following pre-configured digest algorithms:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

10. The WSSSignPart API specifies the transform algorithm. The transform algorithm is that is specified

within the <Transform> element and specifies the transform algorithm for the signature. WebSphere

Application Server supports the following pre-configured transform algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

392 Developing and deploying applications

v http://www.w3.org/TR/1999/REC-xpath-19991116

Do not use this transform algorithm if you want to be compliant with the Basic Security Profile

(BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to ensure compliance.

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the generator must match the transform algorithm that you

select for the consumer.

Note: If both of the following conditions are true, WebSphere Application Server signs the referenced

token:

v You previously selected the Keyinfo or the Keyinfochildelements option

v You select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-
security-1.0#STR-Transform as the transform algorithm.

11. If you configure the client and server signing information correctly, but receive a Soap body not

signed error when running the client, you might need to configure the actor. Configure policy sets

using the administrative console to configure the same actor strings for the Web service on the

server, which processes the request and sends the response back.

The actor information on both the client and server must refer to the same exact string. When the

actor fields on the client and server match, the request or response is acted upon instead of being

forwarded downstream. The actor might be different when you have Web services acting as a

gateway to other Web services. However, in all other cases, make sure that the actor information

matches on the client and server. When Web services are acting as a gateway and they do not have

the same actor configured as the request passing through the gateway, Web services do not process

the message from a client. Instead, these Web services send the request downstream. The

downstream process that contains the correct actor string processes the request. The same situation

occurs for the response. Therefore, it is important that you verify that the appropriate client and server

actor fields are synchronized.

Results

After the WSSSignature and WSSSignPart APIs complete these steps, the signing information is

configured for the generator sections of the bindings files.

Example

The following example shows WSS API sample code to configure the signature, to generate the callback

handler, and to specify the X.509 token type as the security token:

WSSFactory factory = WSSFactory.getInstance();

// Instantiate a generation context

WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate the callback handler and specify the X.509 token

 X509GenerateCallbackHandler callbackhandler = generateCallbackHandler();

 SecurityToken token = factory.newSecurityToken(X509Token.class,

 callbackHandler);

// Set the signature information

WSSSignature sig = factory.newWSSSignature(token);

// Add the header using QName

 sig.addSignHeader(new QName("http://www.w3.org/2005/08/addressing", "To"));

 sig.addSignHeader(new QName("http://www.w3.org/2005/08/addressing", "MessageID"));

 sig.addSignHeader(new QName("http://www.w3.org/2005/08/addressing", "Action"));

// Apply the signature

Chapter 11. Securing Web services applications using the WSS APIs at the message level 393

gencont.add(sig);

// Secure the message

gencont.process(msgctx);

What to do next

You must configure similar signature information for the client-side request consumer (receiver) bindings

by completing the following verification tasks:

v Verify the signature

v Choose the signature algorithm methods.

v Change or add signed parts, as needed.

If signature verification is already configured, configure the encryption and decryption information, or

configure the consumer and generator tokens.

Configuring the signature information using the WSSSignature API

You can secure the SOAP messages, without using policy sets for configuration, by using the Web

services security APIs (WSS API). To configure the signature information for the generator binding sections

for the client-side request, use the WSSSignature API. The WSSSignature API is part of the

com.ibm.websphere.wssecurity.wssapi.signature package.

Before you begin

Either you can use the WSS API or you can configure the policy sets by using the administrative console

to enable the signing information. To secure SOAP messages, you must complete the following signature

tasks:

v Configure the signature information.

v Choose the signature methods.

v Add or change signed parts, as needed.

About this task

WebSphere Application Server uses the signing information for the default generator to sign parts of the

message, and uses XML digital signature with existing algorithms such as RSA-SHA1 and HMAC-SHA1.

XML signature defines many methods for describing key information and enables the definition of a new

method. XML canonicalization (C14N) is often needed when you use XML signature. Information can be

represented in various ways within serialized XML documents. The C14N process is used to canonicalize

XML information. Select an appropriate C14N algorithm because the information that is canonicalized

depends on this algorithm.

The signing information specifies the integrity constraints that are applied to generated messages. The

constraints include specifying which message parts within the generated message must be digitally signed,

and the message parts to attach digitally signed Nonce and timestamp elements to. The following

signature and related signature part information are configured:

394 Developing and deploying applications

Table 21. signature parts information

signature parts Description

keyword Adds a signature part using keywords. Use the following keywords for the

signature parts:

v ADDRESSING_HEADERS

v BODY

v TIMESTAMP

The WS-Addressing headers are not encrypted but can be signed.

xpath Adds a signature part by using an XPath expression.

part Adds a WSSSignPart object as a target of the signature part.

timestamp Adds a WSSTimestamp object as a target of the signature part. When

specified, the timestamp information also specifies when the message is

generated and when it expires.

header Adds the header, specified by QName, as a target of the signature part.

securityToken Adds a SecurityToken object as a target of the signature part.

For signing information, certain default behaviors occur. The simplest way to use the WSSSignature API is

to use the default behavior (see the example code). The default values are defined by the WSS API for

the signing method, the canonicalization method, the security token references, and the signature parts.

 Table 22. Signature default behaviors

Signature decisions Default behavior

Which keywords to use Sets the keywords. WebSphere Application Server supports the following

keywords by default:

v ADDRESSING_HEADERS

v BODY

v TIMESTAMP

Which signature method to use Sets the signature algorithm. The default signature method is RSA SHA1.

WebSphere Application Server supports the following pre-configured

signature methods:

v WSSSignature.RSA_SHA1: http://www.w3.org/2000/09/xmldsig#rsa-
sha1

v WSSSignature.HMAC_SHA1: http://www.w3.org/2000/09/xmldsig#hmac-
sha1

The DSA-SHA1 digital signature method (http://www.w3.org/2000/09/
xmldsig#dsa-sha1) is not supported.

Which canonicalization method to use Sets the canonicalization algorithm. The default canonicalization method is

EXC C14N. WebSphere Application Server supports the following

pre-configured canonicalization methods:

v WSSSignature.EXC_C14N; http://www.w3.org/2001/10/xml-exc-c14n#

v WSSSignature.C14N: http://www.w3.org/2001/10/xml-c14n#

Whether signature confirmation is

required

Sets whether to require signature confirmation. The default value is false.

Signature confirmation is defined in the OASIS Web Services Security

Version 1.1 specification. If required, the value of your signature

confirmation is stored in order to use it to validate the signature

confirmation after receiving back the message that generated the signature

confirmation in the response message. This method is for the requestor

side.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 395

Table 22. Signature default behaviors (continued)

Signature decisions Default behavior

Which security token to use Sets the SecurityToken. The token type specifies which type of token to

use for signing and validating messages. The X.509 token is the default

token type.

WebSphere Application Server provides the following pre-configured

consumer token types:

v Derived Key Token

v X509 tokens

You can also create custom token types, as needed.

Which token reference to set Sets the refType. SecurityToken.REF_STR is the default value for the type

of token reference. WebSphere Application Server supports these

pre-configured token references types:

v SecurityToken.REF_STR

v SecurityToken.REF_KEYID

v SecurityToken.REF_EMBEDDED

v SecurityToken.REF_THUMBPRINT

If WSSSignature.requireSignatureConfirmation() is called, then the WSSSignature API expects that the

response message will include the signature confirmation.

1. To configure the signing information in a SOAP message by using the WSS API, first ensure that the

application server is installed.

2. Use the WSSSignature API to sign the message parts and specify the algorithms in a SOAP message.

The WSS API process for signature follows these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSGenerationContext instance from the WSSFactory instance.

WSSGenerationContext must be called in a JAX-WS client application.

c. Creates the SecurityToken from WSSFactory to configure the key for signing.

d. Creates WSSSignature from the WSSFactory instance using the SecurityToken. The default

behavior of WSSSignature is to sign these signature parts: BODY, ADDRESSING_HEADERS, and

TIMESTAMP.

e. Adds the part to be signed, if the default part is not appropriate. If the digest method or transform

method is changed, creates WSSSignPart and add it to WSSSignature.

f. Creates WSSSignaturePart to WSSSignature. Calls the requiredSignatureConfirmation() method, if

the signature confirmation is to be applied.

g. Sets the canonicalization method, if the default is not appropriate.

h. Sets the signature method, if the default is not appropriate.

i. Sets the token reference, if the default is not appropriate.

j. Adds WSSSignature to WSSGenerationContext.

k. Calls WSSGenerationContext.process() with the SOAPMessageContext.

Results

You have completed the steps to configure the signature for the generator section of the bindings. If there

is an error condition when signing the message parts, a WSSException is provided. If successful, the

WSSGenerationContext.process() is called, and Web Services Security is applied to the SOAP message.

396 Developing and deploying applications

Example

The following example provides sample code that uses methods that are defined in the WSSignature API.

// Get the message context

 Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)

 WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSGenerationContext instance (step: b)

 WSSGenerationContext gencont = factory.newWSSGenerationContext();

// Generate the callback handler

 X509GenerateCallbackHandler callbackHandler = new

 X509GenerateCallbackHandler(

 "",

 "dsig-sender.ks",

 "jks",

 "client".toCharArray(),

 "soaprequester",

 "client".toCharArray(),

 "CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP", null);

// Generate the security token to be used for the signature (step: c)

 SecurityToken token = factory.newSecurityToken(X509Token.class,

 callbackHandler);

// Generate the WSSSignature instance (step: d)

 WSSSignature sig = factory.newWSSSignature(token);

// Set the part to be signed (step: e)

// DEFAULT: WSSSignature.BODY, WSSSignature.ADDRESSING_HEADERS,

// and WSSSignature.TIMESTAMP.

// Set the part in the SOAP Header specified by QName (step: e)

 sig.addSignHeader(new

 QName("http://www.w3.org/2005/08/addressing",

 "MessageID"));

// Set the part specified by the keyword (step: e)

 sig.addSignPart(WSSSignature.BODY);

// Set the part specified by SecurityToken (step: e)

 UNTGenerateCallbackHandler untCallbackHandler = new

 UNTGenerateCallbackHandler("Chris", "sirhC");

 SecurityToken unt = factory.newSecurityToken(UsernameToken.class,

 untCallbackHandler);

 sig.addSignPart(unt);

// Set the part specified by WSSSignPart (step: e)

 WSSSignPart sigPart = factory.newWSSSignPart();

 sigPart.setSignPart(WSSSignature.TIMESTAMP);

 sigPart.setDigestMethod(WSSSignPart.SHA256);

 sig.addSignPart(sigPart);

// Set the part specified by WSSTimestamp (step: e)

 WSSTimestamp timestamp = factory.newWSSTimestamp();

 sig.addSignPart(timestamp);

// Set the part specified by XPath expression (step: e)

 StringBuffer sb = new StringBuffer();

 sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

 and local-name()=’Envelope’]");

 sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

 and local-name()=’Body’]");

 sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’

 and local-name()=’Ping’]");

 sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’

 and local-name()=’Text’]");

 sig.addSignPartByXPath(sb.toString());

Chapter 11. Securing Web services applications using the WSS APIs at the message level 397

// Set to apply the signature confirmation (step: f)

 sig.requireSignatureConfirmation();

// Set the canonicalization method (step: g)

// DEFAULT: WSSSignature.EXC_C14N

 sig.setCanonicalizationMethod(WSSSignature.C14N);

// Set the signature method (step: h)

// DEFAULT: WSSSignature.RSA_SHA1

 sig.setSignatureMethod(WSSSignature.HMAC_SHA1);

// Set the token reference (step: i)

// DEFAULT: SecurityToken.REF_STR

 sig.setTokenReference(SecurityToken.REF_KEYID);

// Add the WSSSignature to WSSGenerationContext (step: j)

 gencont.add(sig);

// Generate the WS-Security header (step: k)

gencont.process(msgctx);

Note: The X509GenerationCallbackHandler needs the key password because the private key is used for

signing.

What to do next

Next, chose the algorithm methods if you want a method that is different from the default values. If the

algorithm methods do not need to be changed, next use the WSSVerification API to verify the signature

and specify the algorithm methods in the consumer section of the binding. Note that the WSSVerification

API is only supported on the response consumer (client side).

Adding signed parts using the WSSSignPart API

You can secure the SOAP messages, without using policy sets for configuration, by using the Web

Services Security APIs (WSS API). To configure parts to be signed for the request generator (client side)

bindings, use the WSSSignPart API to protect the integrity of messages and to configure the digest and

transform algorithm methods. The WSSSignPart API is part of the

com.ibm.websphere.wssecurity.wssapi.signature package.

Before you begin

Either you can use the WSS API or you can configure the policy sets by using the administrative console

to configure the signing information. To secure SOAP messages using the signing information, you must

complete one of the following tasks:

v Configure the signature information

v Configure signed parts, as needed.

About this task

WebSphere Application Server uses the signing information for the default generator to sign parts of the

message, and uses XML digital signature with existing digest and transform algorithms (for example,

SHA1 or TRANSFORM_EXC_C14N).

The signing information specifies the integrity constraints that are applied to generated messages. The

signed parts are used to protect the integrity of messages. You can specify the signed parts to add for

message integrity protection.

The following table shows the required signed parts when the digital signature security constraint (integrity)

is defined:

398 Developing and deploying applications

Table 23. Signed parts information

Signed parts Description

keyword Adds signed parts using keywords. WebSphere Application Server

supports the following keywords for signed parts:

v BODY

v ADDRESSING_HEADERS

v TIMESTAMP

The WS-Addressing headers are not encrypted but can be signed.

xpath Adds the required signed parts by using an XPath expression.

header Adds the header, specified by QName, as a signed part.

timestamp Adds a WSSTimestamp object as a signed part. If specified, the

timestamp information specifies when the message is generated and when

it expires.

Different message parts can be specified in the message protection for request on the generator side.

WSSSignPart allows for adding a transform algorithm, setting a digest method, setting objects as targets,

specifying whether an element, and the signed parts, such as: the SOAP body, the WS-Addressing

header, and timestamp information.

For signing information, certain default behaviors occur. The simplest way to use the WSSSignPart API is

to use the default behavior (see the example code). The signed parts default behaviors include:

 Signature decisions Default behavior

Which SOAP message parts to sign WebSphere Application Server supports the following SOAP message

parts to be signed and used for message protection:

v WSSSignature.BODY

v WSSSignature.ADDRESSING_HEADERS

v WSSSignature.TIMESTAMP

Which digest method to use Sets the digest algorithm method. The digest method algorithm that is

specified within the <DigestMethod> element is used in the <SigningInfo>

element.

WebSphere Application Server supports the following pre-configured digest

methods:

v WSSSignPart.SHA1 (the default value): http://www.w3.org/2000/09/
xmldsig#sha1

v WSSSignPart.SHA256: http://www.w3.org/2001/04/xmlenc#sha256

v WSSSignPart.SHA512: http://www.w3.org/2001/04/xmlenc#sha512

Chapter 11. Securing Web services applications using the WSS APIs at the message level 399

Signature decisions Default behavior

Which transform algorithms to use Adds the transform method. The transform algorithm is specified within the

<Transform> element and specifies the transform algorithm for the

signature.

WebSphere Application Server supports the following pre-configured

transform algorithms:

v WSSSignPart.TRANSFORM_EXC_C14N (the default value):

http://www.w3.org/2001/10/xml-exc-c14n#

v WSSSignPart.TRANSFORM_XPATH2_FILTER: http://www.w3.org/2002/
06/xmldsig-filter2

Use this transform method to ensure compliance with the Basic Security

Profile (BSP).

v WSSSignPart.TRANSFORM_STRT10: http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform

v WSSSignPart.TRANSFORM_ENVELOPED_SIGNATURE:

http://www.w3.org/2000/09/xmldsig#enveloped-signature

1. To enable Web Service Security by using the WSS API (WSSSignPart), first ensure that the application

server is installed.

2. Use the WSSSignPart API to sign the message parts and specify the algorithms in a SOAP message.

The WSS API process for signed parts follows these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSGenerationContext instance from the WSSFactory instance.

c. Creates the SecurityToken from WSSFactory to configure the key for signing.

d. Creates WSSSignature from the WSSFactory instance using the SecurityToken.

e. Creates WSSSignPart from the WSSFactory instance.

f. Sets the part to be signed and the digest method or transform method specified by step g or step h

if the default is not appropriate.

g. Sets the digest method if the default is not appropriate.

h. Sets the transform method if the default is not appropriate.

i. Adds WSSSignPart to WSSSignature. After any WSSSignPart is set to WSSSignature, the default

parts to be signed, which are specified in WSSSignature, are ignored.

j. Adds WSSSignature to WSSGenerationContext.

k. Calls WSSGenerationContext.process() with the SOAPMessageContext.

Results

You have completed the steps to configure the signed parts for the generator section of the bindings files.

If there is an error condition, a WSSException is provided. If successful, the

WSSGenerationContext.process() is called, and Web services security is applied to the SOAP message.

Example

The following example provides sample code that uses all of methods that are defined in the WSSSignPart

API:

// Get the message context

 Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)

 WSSFactory factory = WSSFactory.getInstance();

// Generate WSSGenerationContext instance (step: b)

 WSSGenerationContext gencont = factory.newWSSGenerationContext();

400 Developing and deploying applications

// Generate callback handler

 X509GenerateCallbackHandler callbackHandler = new

 X509GenerateCallbackHandler

 "",

 "dsig-sender.ks",

 "jks",

 "client".toCharArray(),

 "soaprequester",

 "client".toCharArray(),

 "CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP", null);

// Generate the security token used to the signature (step: c)

 SecurityToken token = factory.newSecurityToken(X509Token.class, callbackHandler);

// Generate WSSSignature instance (step: d)

 WSSSignature sig = factory.newWSSSignature(token);

// Set the part specified by WSSSignPart (step: e)

 WSSSignPart sigPart = factory.newWSSSignPart();

// Set the part specified by WSSSignPart (step: f)

 sigPart.setSignPart(WSSSignature.BODY);

// Set the digest method specified by WSSSignPart (step: g)

 sigPart.setDigestMethod(WSSSignPart.SHA256);

// Set the transform method specified by WSSSignPart (step: h)

 sigPart.setTransformMethod(WSSSignPart.TRANSFORM_STRT10);

// Add the part specified by WSSSignPart (step: i)

 sig.addSignPart(sigPart);

// Add the WSSSignature to the WSSGenerationContext (step: j)

 gencont.add(sig);

// Generate the WS-Security header (step: k)

gencont.process(msgcontext);

Note: The X509GenerationCallbackHandler needs the key password because the private key is used for

signing.

What to do next

Use the WSSVerifyPart API or configure policy sets using the administrative console to verify the signed

parts on the consumer side.

Configuring the client for request signing methods

Use the WSSSignature and WSSSignPart APIs to choose the signing methods. The request signing

methods include the signature, canonicalization, digest, and transform methods.

Before you begin

First, you must have specified which parts of the message sent by the client must be digitally signed using

the WSS APIs or configuring policy sets using the administrative console.

About this task

The following table describes the purpose of this information. Some of these definitions are based on the

XML-Signature specification, which is located at the following Web site http://www.w3.org/TR/xmldsig-core.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 401

http://www.w3.org/TR/xmldsig-core

Table 24. Signing methods

Name of method Description

Canonicalization algorithm Canonicalizes the <SignedInfo> element before the information is

digested as part of the signature operation.

Signature algorithm Calculates the signature value of the canonicalized <SignedInfo>

element. The algorithm selected for the client request sender

configuration must match the algorithm selected in the server request

receiver configuration.

Transform method Transforms the parts to be signed before the information is digested as

part of the signature operation.

Digest method Calculates the digest value of the transformed parts. The algorithm

selected for the client request sender configuration must match the

algorithms selected in the server request receiver configuration.

You can use the WSS APIs or configure policy sets using the administrative console to configure the

signing algorithm methods. If using the WSS APIs, use the WSSSignature and WSSSignPart APIs to

specify which message parts to digitally sign when configuring the client for request signing.

The WSSSignature and WSSSignPart APIs complete the following steps to configure the signature and

signed part algorithm methods:

1. For the generator binding, the WSSSignature API specifies the signature method. WebSphere

Application Server supports the following pre-configured signature methods:

v WSSSignature.RSA_SHA1 (the default value): http://www.w3.org/2000/09/xmldsig#rsa-sha1

v WSSSignature.HMAC_SHA1: http://www.w3.org/2000/09/xmldsig#hmac-sha1

For the WSS APIs, WebSphere Application Server does not support the DSA-SHA1 digital signature

method, http://www.w3.org/2000/09/xmldsig#dsa-sha1.

2. For the generator binding, the WSSSignature API specifies the canonicalization method. WebSphere

Application Server supports the following pre-configured canonicalization algorithms:

v WSSSignature.EXC_C14N (the default value): The exclusive canonicalization algorithm,

http://www.w3.org/2001/10/xml-exc-c14n#

v WSSSignature.C14N: The inclusive canonicalization algorithm, http://www.w3.org/2001/10/xml-c14n#

3. For the generator binding, the WSSSignPart API specifies the digest method. WebSphere Application

Server supports the following pre-configured digest methods:

v WSSSignPart.SHA1 (the default value): http://www.w3.org/2000/09/xmldsig#sha1

v WSSSignPart.SHA256: http://www.w3.org/2001/04/xmlenc#sha256

v WSSSignPart.SHA512: http://www.w3.org/2001/04/xmlenc#sha512

4. For the generator binding, the WSSSignPart API specifies the transform method. WebSphere

Application Server supports the following pre-configured transform algorithms:

v WSSSignPart.TRANSFORM_EXC_C14N (the default value): http://www.w3.org/2001/10/xml-exc-
c14n#

v WSSSignPart.TRANSFORM_XPATH2_FILTER: http://www.w3.org/2002/06/xmldsig-filter2

v WSSSignPart.TRANSFORM_STRT10: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0#STR-Transform

v WSSSignPart.TRANSFORM_ENVELOPED_SIGNATURE: http://www.w3.org/2000/09/
xmldsig#enveloped-signature

For the WSS APIs, WebSphere Application Server does not support the following transform algorithms:

v http://www.w3.org/TR/1999/REC-xpath-19991116

v http://www.w3.org/2002/07/decrypt#XML

402 Developing and deploying applications

Results

Using the WSS APIs, you have specified which algorithm methods are used to digitally sign a message

when the client sends a message to a server.

Example

The following example is sample code for specifying the signature information, HMAC_SHA1 as signature

method, C14N as a canonicalizaion method, SHA256 as a digest method, and EXC_C14N and

TRANSFORM_STRT10 as the transform methods:

 //get the message context

 Object msgcontext = getMessageContext();

 //generate WSSFactory instance

 WSSFactory factory = WSSFactory.getInstance();

 //generate WSSGenerationContext instance

 WSSGenerationContext gencont = factory.newWSSGenerationContext();

 //generate callback handler

 X509GenerateCallbackHandler callbackHandler = new X509GenerateCallbackHandler(

 "",

 "dsig-sender.ks",

 "jks",

 "client".toCharArray(),

 "soaprequester",

 "client".toCharArray(),

 "CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP",

 null);

 //generate the security token used to the signature

 SecurityToken token = factory.newSecurityToken(X509Token.class, callbackHandler);

 //generate WSSSignature instance

 WSSSignature sig = factory.newWSSSignature(token);

 //set the canonicalization method

 // DEFAULT: WSSSignature.EXC_C14N

 sig.setCanonicalizationMethod(WSSSignature.C14N);

 //set the signature method

 // DEFAULT: WSSSignature.RSA_SHA1

 sig.setSignatureMethod(WSSSignature.HMAC_SHA1);

 //set the part specified by WSSSignPart

 WSSSignPart sigPart = factory.newWSSSignPart();

 //set the digest method

 // DEFAULT: WSSSignPart.SHA1

 sigPart.setDigestMethod(WSSSignPart.SHA256);

 //add the transform method

 // DEFAULT: WSSSignPart.TRANSFORM_EXC_C14N

 sigPart.addTransformMethod(WSSSignPart.TRANSFORM_EXC_C14N);

 sigPart.addTransformMethod(WSSSignPart.TRANSFORM_STRT10);

 // add the WSSSignPart to the WSSSignature

 sig.addSignPart(sigPart);

 //add the WSSSignature to the WSSGenerationContext

 gencont.add(sig);

 //generate the WS-Security header

 gencont.process(msgcontext);

Chapter 11. Securing Web services applications using the WSS APIs at the message level 403

What to do next

After you configure the client to digitally sign the message and to choose the algorithm methods, you must

configure the server to verify the digital signature for request signing and to choose the algorithm methods.

Configure policy sets using the administrative console to configure the signature verification information

and methods on the server.

Digital signing methods using the WSSSignature API

You can configure the signing information for the generator binding using the WSS API. To configure the

client for request signing, choose the digital signing methods. The algorithm methods include the signing

and canonicalization methods.

You must configure generator signing information to protect message integrity by digitally signing SOAP

messages. Integrity refers to digital signature while confidentiality refers to encryption. Integrity decreases

the risk of data modification when you transmit data across a network.

After you have specified which message parts to digitally sign, you must specify which method is used to

digitally sign the message.

Methods

Methods that are used for the signing information include the:

Signature method

Sets the signature algorithm method.

Canonicalization method

Sets the canonicalization algorithm method.

Signature algorithms

The signature algorithms specify the algorithm that is used to sign the certificate. The signature algorithms

specify the Uniform Resource Identifiers (URI) of the signature method. WebSphere Application Server

supports the following pre-configured algorithms:

 Table 25. Signature algorithms

Algorithm Description

WSSSignature.HMAC_SHA1 A URI of the signature algorithm, HMAC:

http://www.w3.org/2000/09/xmldsig#hmac-sha1

WSSSignature.RSA_SHA1 (the default value) A URI of the signature algorithm, RSA:

http://www.w3.org/2000/09/xmldsig#rsa-sha1

For the WSS APIs, WebSphere Application Server does not support the DSA-SHA1 algorithm,

http://www.w3.org/2000/09/xmldsig#dsa-sha1

The signing algorithm that is specified for the request generator configuration must match the algorithm

that is specified for the request consumer configuration.

Canonicalization algorithms

The canonicalization algorithms specify the Uniform Resource Identifiers (URI) of the canonicalization

method. WebSphere Application Server supports the following pre-configured algorithms:

404 Developing and deploying applications

Table 26. Signature canonicalization algorithms

Algorithm Description

WSSSignature.EXC_C14N (the default value) A URI of the exclusive canonicalization algorithm

EXC_C14N: http://www.w3.org/2001/10/xml-exc-c14n#

WSSSignature.C14N A URI of the inclusive canonicalization algorithm, C14N:

http://www.w3.org/2001/10/xml-c14n#

The canonicalization algorithm that is specified for the request generator configuration must match the

algorithm that is specified for the request consumer configuration.

The following example provides sample WSS API code that specifies the HMAC_SHA1 as a signature

method and C14n as a canonicalization method:

 //generate WSSFactory instance

 WSSFactory factory = WSSFactory.getInstance();

 //generate WSSGenerationContext instance

 WSSGenerationContext gencont = factory.newWSSGenerationContext();

 //generate callback handler

 X509GenerateCallbackHandler callbackHandler = new

 X509GenerateCallbackHandler(

 "",

 "dsig-sender.ks",

 "jks",

 "client".toCharArray(),

 "soaprequester",

 "client".toCharArray(),

 "CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP",

 null);

 //generate the security token used to the signature

 SecurityToken token = factory.newSecurityToken(X509Token.class,

 callbackHandler);

 //generate WSSSignature instance

 WSSSignature sig = factory.newWSSSignature(token);

 //set the canonicalization method

 // DEFAULT: WSSSignature.EXC_C14N

 sig.setCanonicalizationMethod(WSSSignature.C14N);

 //set the signature method

 // DEFAULT: WSSSignature.RSA_SHA1

 sig.setSignatureMethod(WSSSignature.HMAC_SHA1);

 //add the WSSSignature to the WSSGenerationContext

 gencont.add(sig);

 //generate the WS-Security header

 gencont.process(msgcontext);

Signed parts methods using the WSSSignPart API

You can configure the signed parts information for the generator binding using the WSS API. The

algorithms include the digest and transform methods.

You can protect message integrity by configuring signed parts and key information. Integrity refers to

digital signature while confidentiality refers to encryption. Integrity decreases the risk of data modification

when you transmit data across a network.

Methods

Methods that are used for the signed parts include the:

Chapter 11. Securing Web services applications using the WSS APIs at the message level 405

Digest method

Sets the digest algorithm method.

Transform algorithm

Sets the transform algorithm method.

Digest algorithms

The digest method algorithm specified within the element is used in the element. WebSphere Application

Server supports the following pre-configured algorithms:

 Table 27. Signed parts digest methods

Digest method Description

WSSSignPart.SHA1 (the default value) A URI of the digest algorithm, SHA1:

http://www.w3.org/2000/09/xmldsig#sha1

WSSSignPart.SHA256 A URI of the digest algorithm, SHA256:

http://www.w3.org/2001/04/xmlenc#sha256

WSSSignPart.SHA512 A URI of the digest algorithm, SHA256:

http://www.w3.org/2001/04/xmlenc#sha512

Transform algorithms

The transform method algorithm specified within the element is used in the element. WebSphere

Application Server supports the following pre-configured algorithms:

 Table 28. Signed parts transform methods

Digest method Description

WSSSignPart.TRANSFORM_ENVELOPED_SIGNATURE A URI of the transform algorithm, enveloped signature:

http://www.w3.org/2000/09/xmldsig#enveloped-signature

WSSSignPart.TRANSFORM_STRT10 A URI of the transform algorithm, STR-Transform:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-soap-message-security-1.0#STR-Transform

WSSSignPart.TRANSFORM_EXC_C14N (the default

value)

A URI of the transform algorithm, Exc-C14N:

http://www.w3.org/2001/10/xml-exc-c14n#

WSSSignPart.TRANSFORM_XPATH2_FILTER A URI of the transform algorithm, XPath2 filter:

http://www.w3.org/2002/06/xmldsig-filter2

The transform algorithm is specified within the <Transform> element and specifies the transform algorithm

for the signed part.

For the WSS APIs, WebSphere Application Server does not support the following transform algorithms:

v http://www.w3.org/TR/1999/REC-xpath-19991116

v http://www.w3.org/2002/07/decrypt#XML

The following example provides sample WSS API code for specifying the signature and signed parts,

setting the signing key and adding the STR-Transform transform algorithm as signed parts:

 //get the message context

 Object msgcontext = getMessageContext();

 //generate WSSFactory instance

 WSSFactory factory = WSSFactory.getInstance();

 //generate WSSGenerationContext instance

 WSSGenerationContext gencont = factory.newWSSGenerationContext();

406 Developing and deploying applications

//generate callback handler

 X509GenerateCallbackHandler callbackHandler = new

 X509GenerateCallbackHandler(

 "",

 "dsig-sender.ks",

 "jks",

 "client".toCharArray(),

 "soaprequester",

 "client".toCharArray(),

 "CN=SOAPRequester, OU=TRL, O=IBM, ST=Kanagawa, C=JP",

 null);

 //generate the security token used to the signature

 SecurityToken token = factory.newSecurityToken(X509Token.class,

 callbackHandler);

 //generate WSSSignature instance

 WSSSignature sig = factory.newWSSSignature(token);

 //set the part specified by WSSSignPart

 WSSSignPart sigPart = factory.newWSSSignPart();

 //set the part specified by WSSSignPart

 sigPart.setSignPart(WSSSignature.BODY);

 //set the digest method specified by WSSSignPart

 sigPart.setDigestMethod(WSSSignPart.SHA256);

 //set the transform method specified by WSSSignPart

 sigPart.addTransform(WSSSignPart.TRANSFORM_STRT10);

 //set the part specified by WSSSignPart

 sig.addSignPart(sigPart);

 //add the WSSSignature to the WSSGenerationContext

 gencont.add(sig);

 //generate the WS-Security header

 gencont.process(msgcontext);

Attaching the generator token using WSS APIs to protect message

authenticity

When you specify the token generator, the information is used on the generator side to generate the

security token.

Before you begin

The token processing and pluggable token architecture in the Web Service Security run time reuses the

same security token interface and Java Authentication and Authorization Service (JAAS) Login Module

from the Web Services Security APIs (WSS API). The same implementation of token creation and

validation can be used in both the WSS API and the WSS SPI in the Web Service Security run time.

Note: The com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface is not used with JAX-WS

Web services. If you are using JAX-RPC Web services, this interface is still valid.

Note that the key name (KeyName) element is not supported in the application server because there is no

KeyName policy assertion defined in the current OASIS Web Services Security draft specification. For

similar reasons, a SAML token is not supported out of the box.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 407

About this task

The JAAS callback handler (CallbackHandler) and the JAAS login module (LoginModule) are responsible

for creating the security token on the generator side and validating (authenticating) the security token on

the consumer side.

For example, on the generator side, the Username token is created by the JAAS LoginModule and using

the JAAS CallbackHandler to pass the authentication data. The JAAS LoginModule creates the Username

SecurityToken object and passes it to the Web services security run time.

Then, on the consumer side, the Username Token XML format is passed to the JAAS LoginModule for

validation or authentication and the JAAS CallbackHandler is used to pass authentication data from the

Web services security run time to the LoginModule. After the token is authenticated, a Username

SecurityToken object is created and passed it to the Web Service Security run time.

Note: WebSphere Application Server does not support a stackable login module with the WebSphere

Application Server default login module implementation, meaning adding the login module before or

after the WebSphere Application Server login module implementation. If you want to stack the login

module implementations, you must develop the required login modules because there is no default

implementation.

The com.ibm.websphere.wssecurity.wssapi.token package provided by WebSphere Application Server

includes support for these classes:

v Security token (SecurityTokenImpl)

v Binary security token (BinarySecurityTokenImpl)

In addition, WebSphere Application Server provides the following pre-configured sub-interfaces for security

tokens:

v Derived key token

v Security context token (SCT)

v Username token

v LTPA token propagation

v LTPA token

v X509PKCS7 token

v X509PKIPath token

v X509v3 token

v Kerberos v5 token

The Username token, the X.509 tokens, and the LTPA tokens are used by default for message

authenticity. The derived key token and the X.509 tokens are used by default for signing and encryption.

The WSS API and WSS SPI are only supported on the client. To specify the security token type on the

generator side, you can also configure policy sets using the administrative console. You can also use the

WSS APIs or policy sets for matching consumer security tokens.

The default Login Module and Callback implementations are designed to be used as a pair, meaning both

a generator and a consumer part. To use the default implementations, select the appropriate generator

and consumer security token in a pair. For example, select system.wss.generate.x509 in the token

generator and system.wss.consume.x509 in the token consumer when the X.509 token is required.

To configure the generator-side security token, use the appropriate pre-configured token generator

interface from the WSS APIs to complete the following token configuration process steps:

 1. Generate the wssFactory instance.

408 Developing and deploying applications

2. Generate the wssGenerationContext instance.

The WSSGenerationContext interface stores the components for generating Web Services Security

(WS-Security), such as the signing and encryption information, the security token, and the time

stamp. When the generate() method is called, all of these components are generated.

 3. Create the generator-side components, such as the WSSSignature and the WSSEncryption objects.

 4. Specify a JAAS configuration by specifying the name of the JAAS login configuration. The Java

Authentication and Authorization Service (JAAS) configuration specifies the name of the JAAS

configuration. The JAAS configuration specifies how the token logs in on the consumer side. Do not

remove the predefined system or application login configurations. However, within these

configurations, you can add module class names and specify the order in which WebSphere

Application Server loads each module.

 5. Specifiy a token generator class name. The token generator class name specifies the required

information to generate the SecurityToken. The Username token, the X.509 tokens, and the LTPA

tokens are used by default for message authenticity.

 6. Specifiy the settings for the callback handler by specifying a callback handler class name and also

specifies the callback handler keys. This class name is the name of the callback handler

implementation class that is used for the plug-in to the security token framework.

The callback handler implementation obtains the required security token and passes it to the token

generator. The token generator inserts the security token in the Web services security header within

the SOAP message. Also, the token generator is a plug-in point for the pluggable security token

framework. Service providers can provide their own implementation, but the implementation must use

the WSSGenerationContext interface.

WebSphere Application Server provides the following default callback handler implementations for the

generator side:

com.ibm.websphere.wssecurity.callbackhandler.PropertyCallback

This class is a callback for handling the name-value pair in elements in the Web Services

Security (WS-Security) configuration XMI files.

com.ibm.websphere.wssecurity.callbackhandler.UNTGUIPromptCallbackHandler

This class is a callback handler for the Username token with the GUI prompt on the generator

side. This instance is used to set the WSSGenerationContext object to generate a Username

token.

com.ibm.websphere.wssecurity.callbackhandler.UNTGenerateCallbackHandler

This class is a callback handler for the Username token on the generator side. This instance

is used to set into WSSGenerationContext object to attach a Username token. Use this

implementation for a Java Platform, Enterprise Edition (Java EE) application client only.

com.ibm.websphere.wssecurity.callbackhandler.X509GenerateCallbackHandler

This class is a callback handler that is used to generate the X.509 certificate that is inserted

in the Web services security header within the SOAP message as a binary security token on

the generator side. This instance is used to generate the WSSSignature and WSSEncryption

objects, set the objects into the WSSGenerationContext object to generate the X.509 binary

security tokens. A keystore and a key definition are required for this callback handler. If you

use this implementation, a key store password, path, and type must be provided on the

generator side.

com.ibm.websphere.wssecurity.callbackhandler.LTPAGenerateCallbackHandler

This class is a callback handler for the Lightweight Third Party Authentication (LTPA) tokens

on the generator side. This instance is used to generate WSSSignature object and

WSSEncryption object to generate a LTPA token.

 This callback handler is used to validate the LTPA security token inserted in the Web services

security header within the SOAP message as a binary security token. However, if the user

name and password are specified, WebSphere Application Server authenticates the user

name and password to obtain the LTPA security token rather than obtaining it from the Run

Chapter 11. Securing Web services applications using the WSS APIs at the message level 409

As Subject. Use this callback handler only when the Web service is acting as a client on the

application server. It is recommended that you do not use this callback handler on a Java EE

application client. If you use this implementation, a basic authentication user ID and password

must have been provided on the generator side.

com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler

This class is a callback handler for the Kerberos v5 token on the generator side. This

instance is used to set the WSSGenerationContext object to generate the Kerberos v5

AP-REQ as a binary security token. The instance is also used to generate the WSSSignature

and WSSEncryption objects to use the Kerberos session key or derived key in the SOAP

message signature and encryption.

 7. If a X.509 token is specified, additional token information is also specified.

 storeRef The reference name of the keystore.

storePath The keystore file path from which the keystore is loaded, if needed. It is

recommended that you use the ${USER_INSTALL_ROOT} in the path name as this

variable expands to the WebSphere Application Server path on your machine. This

path is required when you use the X.509 tokens callback handler implementations.

storePassword The password that is used to check the integrity of the keystore, or the keystore

password that is used to unlock the keystore and to access the keystore file. The

keystore and its configuration are used for some of the default callback handler

implementations that are provided by WebSphere Application Server.

storeType The keystore type of keystore that is used for the key locator. This selection

indicates the format that is used by the keystore file. The following values are

available for selection:

JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS Use this option if the Java Cryptography Extension is configured in the

software development kit (SDK). The default IBM JCE is configured in

WebSphere Application Server. This option provides stronger protection for

stored private keys by using Triple DES encryption.

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS®

only).

PKCS11KS (PKCS11)

Use this format if your keystore uses the PKCS#11 file format. Keystores

using this format might contain RSA keys on cryptographic hardware or

might encrypt keys that use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore uses the PKCS#12 file format.

alias The key alias name. The key alias is used by the key locator to find the key within

the keystore file.

keyPassword The key password that is used for recovering the key. This password is needed to

access the key object within the keystore file.

keyName The name of the key. For digital signatures, the key name is used by the request

generator or response consumer signing information to determine which key is

used to digitally sign the message. For encryption, the key name is used to

determine the key used for encryption. The key name must be a fully qualified,

distinguished name (DN). For example, CN=Bob,O=IBM,C=US.

certStores A list of certificate stores. A collection certificate store includes a list of untrusted,

intermediary certificates and certificate revocation lists (CRLs). This step configures

a collection certificate store and certificate revocation lists for the generator

bindings.

410 Developing and deploying applications

identityAssertion Specifies whether identity assertion is used. Selects this item if identity assertion is

defined. This option indicates that only the identity of the initial sender is required

and inserted into the Web services security header within the SOAP message. For

an X.509 token generator, the application server sends the original signer

certification only.

requestorCertificate Specifies whether the certificate of the requestor is used.

The following can be specified for a X.509 token:

a. Without any keystore.

b. With a trust anchor. A trust anchor specifies a list of keystore configurations that contain trusted

root certificates. These configurations are used to validate the certificate path of incoming

X.509-formatted security tokens. For example, when you select the trust anchor or the certificate

store of a trusted certificate, you must configure the trust anchor and the certificate store before

setting the certificate path.

c. With a keystore that is used for the key locator.

First, you must have created the keystore file, by using a key tool utility, for example. The

keystore is used to retrieve the X.509 certificate. This entry specifies the password that is used to

access the keystore file. Keystore objects within trust anchors contain trusted root certificates that

are used by the CertPath API to validate the trustworthiness of a certificate chain.

d. With keystore that is used for the key locator and the trust anchor.

e. With a map that includes key-value pairs. For example, you might specify the value type name

and the value type Uniform Resource Identifier (URI). The value type specifies the namespace

URI of the value type for the generated token, and represents the token type of this class:

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509

Specifies an X.509 certificate token.

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

Specifies X.509 certificates in a public key infrastructure (PKI) path. This callback handler

is used to create X.509 certificates encoded with the PkiPath format. The certificate is

inserted in the Web services security header within the SOAP message as a binary

security token. A keystore is required for this callback handler. A CRL is not supported by

the callback handler; therefore, the collection certificate store is not required or used. If

you use this implementation, you must provide a key store password, path, and type on

this panel.

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#PKCS7

Specifies a list of X.509 certificates and certificate revocation lists in a PKCS#7 format.

This callback handler is used to create X.509 certificates encoded with the PKCS#7

format. The certificate is inserted in the Web services security header in the SOAP

message as a binary security token. A keystore is required for this callback handler. You

can specify a certificate revocation list (CRL) in the collection certificate store. The CRL is

encoded with the X.509 certificate in the PKCS#7 format. If you use this implementation,

you must provide a key store password, path, and type.

For some tokens, WebSphere Application Server provides a predefined local name for the value

type. When you specify the following local name, you do not need to specify a value type URI:

ValueType: http://www.ibm.com/websphere/appserver/tokentype/5.0.2

For an LTPA token, you can use LTPA for the value type local name. This local name

causes http://www.ibm.com/websphere/appserver/tokentype/5.0.2 to be specified for

the value type Uniform Resource Identifier (URI).

Chapter 11. Securing Web services applications using the WSS APIs at the message level 411

ValueType: http://www.ibm.com/websphere/appserver/tokentype/5.0.2

For LTPA token propagation, you can use LTPA_PROPAGATION for the value type local

name. This local name causeshttp://www.ibm.com/websphere/appserver/tokentype to be

specified for the value type Uniform Resource Identifier (URI).

 8. If the Username token is specified as the token generator class name, the following token information

can be specified:

a. Whether to use IdentityAssertion option. This option is selected if identity assertion is defined.

This option indicates that only the identity of the initial sender is required and inserted into the

Web services security header within the SOAP message. For example, WebSphere Application

Server sends only the user name of the original caller for a Username token generator.

b. Whether to use RunAsSubject identity option. This option is used if an identity assertion is defined

and you want to use the Run As identity instead of the initial caller identity for identity assertion in

a downstream call. This option is valid only if you have configured the Username token as the

token generator.

c. Whether to use sendRealm.

d. Whether to specify the nonce.

This option indicates whether a Nonce is included for the token generator. Nonce is a unique,

cryptographic number that is embedded in a message to help stop repeat, unauthorized attacks of

Username tokens. Nonce is valid only when the generated token type is a Username token, and it

is available only for the request generator binding.

e. Specifies the keyword of the time stamp. This option indicates whether to verify a time stamp in

the Username token. The time stamp is valid only when the incorporated token type is a

Username token.

f. Specifies a map that includes key-value pairs. For example, you might specify the value type

name and the value type Uniform Resource Identifier (URI). The value type specifies the

namespace URI of the value type for the generated token, and represents the token type of this

class:

URI value type: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#UsernameToken

Specifies a Username token.

 9. If the Kerberos v5 token is specified as the token generator class name, the following token

information can be specified:

 Token Information Description Default Value

name Kerberos client principal name

password Kerberos client password

realm Kerberos realm associated with the

Kerberos client

Default realm name in Kerberos

configuration file.

Specify null to use the default value.

targetService Kerberos service name associated

with the target Web Services.

targetHost Kerberos realm name associated with

the Kerberos service name.

tokenValueType Kerberos token value type in QName

defined by Oasis Kerberos Token

Profile v1.1 specification.

http://docs.oasis-open.org/wss/oasis-
wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ

targetRealm Kerberos realm name associated with

the Kerberos service name.

Default realm name in the Kerberos

configuration file

prompt A boolean value to enable the login

prompt.

false

412 Developing and deploying applications

Token Information Description Default Value

supportTokenRequireSHA1 A boolean value to require a SHA1

key that is used in subsequent

request messages when the Kerberos

token is used as a supporting token.

false

SHA1 key is consumed only if the

supporting Kerberos token is

protected. If set to true, the SHA1 key

is always consumed.

alwaysAPREQ A boolean value to indicate that the

client should always send the

Kerberos AP_REQ token in the

request messages.

false

The SHA1 key is used instead in the

subsequent messages. If set to true,

the Kerberos AP_REQ token is

always used.

requireDKT A boolean value to require a derived

key for message protection.

false

clabel The client label for the derived key. WS-SecureConversation

Specify null to use the default value.

slabel The service label for the derived key. WS-SecureConversation

Specify null to use the default value.

keylen The length of the derived key. 16

Specify zero to use the default value

noncelen The length of the nonce. 16

Specify zero to use the default value

encComponent An instance of WSSEncryption. Set encComponent and

sigComponent to null to initialize this

first for either the encryption or

signature component. Then, use the

initialized component only in the

callback handler constructor for the

second component.

sigComponent An instance of WSSSignature. Set encComponent and

sigComponent to null to initialize this

first for either the encryption or

signature component. Then, use the

initialized component only in the

callback handler constructor for the

second component.

Additional token value types are defined in the OASIS Kerberos Token Profile v1.1 specification.

Specify the token value type as the local name. It is not necessary to specify the value type URI for

the Kerberos v5 token.

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ4120

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ4120

Chapter 11. Securing Web services applications using the WSS APIs at the message level 413

10. If Secure Conversation is used for message protection, the following information must be specified:

 Information Description

bootstrapWSSGenerationContext The bootstrap configuration used to secure the

RequestSecurityToken (RST) token.

bootstrapWSSConmingContext The bootstrap configuration used for consuming a

secured RequestSecurityTokenResponse (RSTR).

ENDPOINT_URL The service end point URL.

EncryptionAlgorithm This determines the key size.

cLabel The client label used when creating the derived key.

sLabel The server label used when creating the derived key.

11. Set the components into the wssGenerationContext object.

12. Invoke the wssGenerationContext.process() method.

Results

Using the Web Services Security API (WSS API) process, you can configured the token generator.

What to do next

Next, you must specify a similar token consumer configuration.

Configuring the generator security tokens using the WSS API

You can secure the SOAP messages, without using policy sets, by using the Web Services Security APIs.

To configure the token on the generator side, use the Web Services Security APIs (WSS API). The

generator security tokens are part of the com.ibm.websphere.wssecurity.wssapi.token interface package.

Before you begin

The pluggable token framework in WebSphere Application Server has been redesigned so that the same

framework from the WSS API can be reused. The same implementation of creating and validating security

token can be used both for the Web Services Security runtime and for the WSS API application code. The

redesigned framework also simplifies the SPI programming model and will make it easier to add security

token types.

You can use the WSS API or you can configure the tokens by using the administrative console. To

configure tokens, you must complete the following token tasks:

v Configure the generator tokens.

v Configure the consumer tokens.

About this task

The JAAS CallbackHandler and JAAS LoginModule are responsible for creating the security token on the

generator side.

On the generator side, the token is created by using the JAAS LoginModule and by using JAAS

CallbackHandler to pass authentication data. Then, the JAAS LoginModule creates the securityToken

object, such as the UsernameToken, and passes it to the Web Service Security run time.

On the consumer side, the XML format is passed to the JAAS LoginModule for validation or authentication.

then the JAAS CallbackHandler is used to pass authentication data from the Web Service Security runtime

to the LoginModule. After the token is authenticated, a security token object is created, and the token is

passed it to the Web Service Security runtime.

414 Developing and deploying applications

When using the WSS API for generator token creation, certain default behaviors occur. The simplest way

to use the WSS API is to use the default behavior (see the example code). The WSS API provide default

values for the token type, the token value, and the JAAS confirmation name. The default token behaviors

include:

 Generator token decisions Default behavior

Which token type to use The token type specifies which type of token to use for message integrity,

message confidentiality, or message authenticity.

WebSphere Application Server provides the following pre-configured generator

token types for message integrity and message confidentiality:

v Derived key token

v X509 tokens

You can also create custom token types, as needed.

WebSphere Application Server also provides the following pre-configured

generator token types for the message authenticity:

v Username token

v LTPA tokens

v X509 tokens

You can also create custom token types, as needed.

What JAAS login configuration

name to specify

The JAAS login configuration name specifies which JAAS login configuration

name to use.

Which configuration type to use The JAAS login module specifies the configuration type. Only the pre-configured

generator configuration types can be used for generator token types.

The SecurityToken class (com.ibm.websphere.wssecurity.wssapi.token.SecurityToken) is the generic token

class and represents the security token that has methods to get the identity, the XML format, and the

cryptographic keys. Using the SecurityToken class, you can apply both the signature and encryption to the

SOAP message. However, to apply both, you must have two SecurityToken objects, one for the signature

and one for encryption, respectively.

The following tokens types are subclasses of the generic security token class:

 Table 29. Subclasses of the SecurityToken

Token type JAAS login configuration name

Username token system.wss.generate.unt

Security context token system.wss.generate.sct

Derived key token system.wss.generate.dkt

The following tokens types are subclasses of the binary security token class:

 Table 30. Subclasses of the BinarySecurityToken

Token type JAAS login configuration name

LTPA token system.wss.generate.ltpa

LTPA propagation token system.wss.generate.ltpaProp

X.509 token system.wss.generate.x509

X.509 PKI Path token system.wss.generate.pkiPath

X.509 PKCS7 token system.wss.generate.pkcs7

Chapter 11. Securing Web services applications using the WSS APIs at the message level 415

Notes®:

v For each JAAS login token generator configuration name, there is a respective token consumer

configuration name. For example, for the Username token, the respective token consumer configuration

name is system.wss.consume.unt.

v The LTPA and LTPA propagation tokens are only available to a requester that is running as a

server-based client. The LTPA and LTPA propagation tokens are not supported for the Java SE 6 or

Java EE application client.

1. To configure the securityToken package, com.ibm.websphere.wssecurity.wssapi.token, first ensure that

the application server is installed.

2. Use the Web Services Security token generator process to configure the tokens. For each token type,

the process is similar to the following process that demonstrates the UsernameToken token generator

process:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSGenerationContext instance from the WSSFactory instance.

c. Creates a JAAS CallbackHandler. The authentication data, such as the user name and password

are specified as part of the CallbackHandler. For example, the following code specifies Chris as the

user name and sirhC as the password: UNTGenerationCallbackHandler(″Chris″, ″sirhC″);

d. Calls any JAAS CallbackHandler parameters and reviews the token class information for which

parameters are required or optional. For example, for the UsernameToken, the following

parameters can be configured also:

Nonce

Indicates whether a nonce is included in the user name token for the token generator.

Nonce is a unique, cryptographic number that is embedded in a message to help stop

repeat, unauthorized attacks of user name tokens. The nonce value is valid only when the

generated token type is a UsernameToken and only when it applies to the request

generator binding.

Created timestamp

Indicates whether to insert a time stamp into the UsernameToken. The timestamp value is

valid only when the generated token type is a UsernameToken and only when it applies to

the request generator binding.

e. Creates the SecurityToken from WSSFactory.

By default, the UsernameToken API specifies the ValueType as: ″http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-username-token-profile-1.0#UsernameToken″

By default, the UsernameToken API provides the QName of this class and specifies the

NamespaceURI as http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-
1.0.xsd and also specifies the LocalPart as UsernameToken.

f. Optional: Specifies the JAAS login module configuration name. On the generator side, the

configuration type is always generate (for example, system.wss.generate.unt).

g. Adds the SecurityToken to the WSSGenerationContext.

h. Calls WSSGenerationContext.process() and generates the WS-Security header.

Results

If there is an error condition, a WSSException is provided. If successful, the WSSGenerationContext

process() is called, and the security token for the generator binding is attached.

Example

The following example code shows how the WSS API process creates a Username security token,

attaches the Username token to the SOAP message, and configures the Username token in the generator

binding.

416 Developing and deploying applications

// get the message context

 Object msgcontext = getMessageContext();

// generate WSSFactory instance

 WSSFactory factory = WSSFactory.getInstance();

// generate WSSGenerationContext instance

 WSSGenerationContext gencont = factory.newWSSGenerationContext();

// generate callback handler

 UNTGenerateCallbackHandler untCallbackHandler =

 new UNTGenerateCallbackHandler("Chris", "sirhC");

// generate the username token

 SecurityToken unt = factory.newSecurityToken(UsernameToken.class, untCallbackHandler);

// add the SecurityToken to the WSSGenerationContext

 gencont.add(unt);

// generate the WS-Security header

gencont.process(msgcontext);

The following example shows how to use secure conversation with the WSS APIs to configure the

generator tokens, as well as the consumer tokens. In this example, the SecurityContextToken token is

created using the WS-SecureConversation draft namespace: http://schemas.xmlsoap.org/ws/2005/02/
sc/sct. To use the WS-SecureConversation version 1.3 namespace, http://docs.oasis-open.org/ws-sx/
ws-secureconversation/200512/sct, specify SecurityContextToken13.class instead of

SecurityContextToken.class.

WSSGenerationContext bootstrapGenCon =

 wssFactory.newWSSGenerationContext();

 // Create a Timestamp

 ..

 //add Timestamp

 ..

 // Sign the SOAP Body, WS-Addressing headers, and Timestamp

 X509GenerateCallbackHandler btspReqSigCbHandler = new X509GenerateCallbackHandler(

 ...);

 SecurityToken btspReqSigToken = wssFactory.newSecurityToken(

 X509Token.class, btspReqSigCbHandler);

 WSSSignature bootstrapReqSig = wssFactory.newWSSSignature(btspReqSigToken);

 bootstrapReqSig.setCanonicalizationMethod(WSSSignature.EXC_C14N);

 //add Sign Parts

 ..

 bootstrapGenCon.add(bootstrapReqSig);

 // Encrypt the SOAP Body and the Signature

 X509GenerateCallbackHandler btspReqEncCbHandler = new X509GenerateCallbackHandler(

 ...);

 SecurityToken btspReqEncToken = wssFactory.newSecurityToken(X509Token.class, btspReqEncCbHandler);

 WSSEncryption bootstrapReqEnc = wssFactory.newWSSEncryption(btspReqEncToken);

 bootstrapReqEnc.setEncryptionMethod(WSSEncryption.AES128);

 bootstrapReqEnc.setKeyEncryptionMethod(WSSEncryption.KW_RSA15);

 // add Encryption parts

 ..

 ..

 bootstrapGenCon.add(bootstrapReqEnc);

 WSSConsumingContext bootstrapConCon = wssFactory.newWSSConsumingContext();

 X509ConsumeCallbackHandler btspRspVfyCbHandler = new X509ConsumeCallbackHandler(....);

 WSSVerification bootstrapRspVfy = wssFactory.newWSSVerification(X509Token.class, btspRspVfyCbHandler);

 bootstrapRspVfy.addAllowedCanonicalizationMethod(WSSVerification.EXC_C14N);

 //add Verify parts

 ..

 ..

 bootstrapConCon.add(bootstrapRspVfy);

 X509ConsumeCallbackHandler btspRspDecCbHandler = new X509ConsumeCallbackHandler(...);

 WSSDecryption bootstrapRspDec = wssFactory.newWSSDecryption(X509Token.class, btspRspDecCbHandler);

 bootstrapRspDec.addAllowedEncryptionMethod(WSSDecryption.AES128);

 bootstrapRspDec.addAllowedKeyEncryptionMethod(WSSDecryption.KW_RSA15);

 // add Decryption parts

 ..

 ..

 bootstrapConCon.add(bootstrapRspDec);

Chapter 11. Securing Web services applications using the WSS APIs at the message level 417

SCTGenerateCallbackHandler sctgch =

 new SCTGenerateCallbackHandler(bootstrapGenCon, bootstrapConCon,

 ENDPOINT_URL, WSSEncryption.AES128);

 SecurityToken[] scts = wssFactory.newSecurityTokens(new Class[]{SecurityContextToken.class}, sctgch);

 SecurityContextToken sct = (SecurityContextToken)scts[0];

 // Use the SCT to generate DKTs for Secure Conversation

 //Signature algorithm and client and service labels

 DerivedKeyToken dktSig = sct.getDerivedKeyToken(WSSSignature.HMAC_SHA1, "WS-SecureConversation", "WS-SecureConversation");

 //Encryption algorithm and client and service labels

 DerivedKeyToken dktEnc = sct.getDerivedKeyToken(WSSEncryption.AES128, "WS-SecureConversation", "WS-SecureConversation");

 // Create the application generation context for the request message

 WSSGenerationContext applicationGenCon = wssFactory.newWSSGenerationContext();

 // Create and add Timestamp

 ..

 ..

 // add the derived key token and Sign the SOAP Body and WS-Addressing headers

 WSSSignature appReqSig = wssFactory.newWSSSignature(dktSig);

 appReqSig.setSignatureMethod(WSSSignature.HMAC_SHA1);

 appReqSig.setCanonicalizationMethod(WSSSignature.EXC_C14N);

 ..

 ..

 applicationGenCon.add(appReqSig);

 // add the derived key token and Encrypt the SOAP Body and the Signature

 WSSEncryption appReqEnc = wssFactory.newWSSEncryption(dktEnc);

 appReqEnc.setEncryptionMethod(WSSEncryption.AES128);

 appReqEnc.setTokenReference(SecurityToken.REF_STR);

 appReqEnc.encryptKey(false);

 ..

 ..

 applicationGenCon.add(appReqEnc);

 // Create the application consuming context for the response message

 WSSConsumingContext applicationConCon = wssFactory.newWSSConsumingContext();

 //client and service labels and decryption algorithm

 SCTConsumeCallbackHandler sctCbHandler =

 new SCTConsumeCallbackHandler("WS-SecureConversation", "WS-SecureConversation", WSSDecryption.AES128);

 // Derive the token from SCT and use it to Decrypt the SOAP Body and the Signature

 WSSDecryption appRspDec = wssFactory.newWSSDecryption(SecurityContextToken.class, sctCbHandler);

 appRspDec.addAllowedEncryptionMethod(WSSDecryption.AES128);

 appRspDec.encryptKey(false);

 ..

 applicationConCon.add(appRspDec);

 //Derived the token from SCT and use it to Verify the signature on the SOAP Body, WS-Addressing headers, and Timestamp

 WSSVerification appRspVfy = wssFactory.newWSSVerification(SecurityContextToken.class, sctCbHandler);

 ..

 ..

 applicationConCon.add(appRspVfy);

 ..

 applicationGenCon.process(messageContext);

 applicationConCon.process(messageContext);

What to do next

For each token type, configure the token using the WSS APIs or using the administrative console. Next,

specify the similar consumer tokens if you have not done so.

If both the generator and consumer tokens are configured, continue securing SOAP messages either by

signing the SOAP message or by encrypting the message, as needed. You can use either the WSS APIs

or the administrative console to secure the SOAP messages.

Securing messages at the response consumer using WSS APIs

You can secure SOAP messages with signature verification, decryption, and consumer tokens to protect

message integrity, confidentiality, and authenticity, respectively. The response consumer (client-side)

configuration defines the Web services security requirements for the incoming SOAP response.

About this task

To secure Web services with WebSphere Application Server, you must configure the generator and the

consumer security constraints. You must specify several different configurations. Although there is no

418 Developing and deploying applications

specific sequence to specify these different configurations, some configurations reference other

configurations. For example, decryption configurations reference encryption configurations.

The response consumer (client-side) configuration requirements involve verifying that the integrity parts are

signed and that the signature is verified, verifying that the required confidential parts are encrypted and

that the parts are decrypted; and validating the security tokens.

You can use the following methods to configure Web services security and to define policy types to secure

the SOAP messages:

v Use the administrative console to configure policy sets.

v Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for the

client)

The following high-level steps use the WSS APIs:

v Verify consumer signing information to protect message integrity.

v Configure decryption to protect message confidentiality.

v Validate consumer tokens to protect message authenticity.

Results

After completing these procedures, you have secured messages at the response consumer level.

What to do next

Next, if not already configured, secure messages with signing information, encryption, and generator

tokens at the response (client-side) generator level.

Configuring decryption to protect message confidentiality using the

WSS APIs

You can configure decryption information for the response consumer (client side) section of the binding

file. Decryption information is used to specify how the consumers (receivers) decrypt incoming SOAP

messages. To configure decryption, specify which message parts to decrypt and specify which algorithm

methods and security tokens are to be used for decryption.

Before you begin

Confidentiality refers to encryption while integrity refers to digital signing. Confidentiality reduces the risk of

someone understanding the message flowing across the Internet. With confidentiality specifications, the

message is encrypted before it is sent and decrypted when it is received at the correct target. Prior to

configuring decryption, familiarize yourself with XML encryption.

About this task

For decryption, you must specify the following:

v Which parts of the message are to be decrypted.

v Which decryption algorithms to specify.

To configure decryption and decrypted parts on the client side, use the WSSDecryption and

WSSDecryptPart APIs, or configure policy sets using the administrative console.

WebSphere Application Server provides default values for bindings. However, an administrator must

modify the defaults for a production environment.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 419

WebSphere Application Server uses decryption information for the default consumer to decrypt parts of the

SOAP message. The WSSDecryption API configures the following required parts as decrypted parts.

 Table 31. Required decrypted parts

Decryption parts Description

Keywords Keywords are used to add the decrypted parts to the SOAP message.

XPath expression XPath expressions are used to add the decrypted parts to the SOAP

message.

WSSDencryptPart object This object adds the decrypted parts to the SOAP message.

WSSVerification object This object adds the signature verification component as a decrypted

part.

Header This part adds the header in the SOAP header, specified by QName,

as a decrypted part.

Security token object This object adds the security token as a decrypted part.

Web Services Security API (WSS API) supports symmetric encryption, by using a shared key, only when

Web Services Secure Conversation (WS-SecureConversation) is used.

The WSS APIs allow the use of either keywords or an XPath expression to specify the parts of the SOAP

message that are to be decrypted. WebSphere Application Server supports the use of the following

keywords:

 Table 32. Supported decryption keywords

Keyword References

BODY_CONTENT The keyword for the body contents of the SOAP message body as a

decryption target.

SIGNATURE The keyword for the signature element as a decryption target.

USERNAME_TOKEN, The keyword for the Username token element as a decryption target.

If configuring using the WSS APIs, the WSSDecryption and WSSDecryptPart APIs complete these

high-level steps:

1. Use the WSSDecryption API to configure encryption. The WSSDecryption API performs these tasks by

default:

a. Generates the callback handler.

b. Generates the consumer security token object.

c. Adds the security token reference type.

d. Adds the WSSEncryptPart object.

e. Adds the parts to be encrypted. Adds the default parts for decryption by using keywords and XPath

expressions.

f. Adds the verification component.

g. Adds the header in the SOAP message, specified by QName.

h. Sets the default data encryption method.

i. Specifies whether the key is to be decrypted using a Boolean value. Calls this method when the

shared key is encrypted.

j. Sets the default key encryption method.

2. Use the WSSEncryptPart API to configure encrypted parts or add a transform method. The

WSSEncryptPart API performs these tasks by default:

a. Sets the encrypted parts specified by using keywords or an XPath expression.

420 Developing and deploying applications

b. Sets the encrypted parts specified by an XPath expression.

c. Sets the signature component object, WSSSignature.

d. Sets the header in the SOAP message, specified by QName.

e. Sets the generator security token.

f. Adds the transform method, if needed.

3. Change from the default values for algorithm or message parts, as needed. For example: you could

change one or more of the following items:

v Add USERNAME_TOKEN as a target of decryption.

v Change the data encryption algorithm from the default value of AES 128.

v Change the key encryption algorithm from the default value of KW_RSA_OAEP.

v Specify to not encrypt the encryption key (false).

v Change the security token type from the default value of X.509 token.

v Only use BODY_CONTENT as an encryption part and not use SIGNATURE also.

Results

The decryption information is configured for the consumer binding.

Example

The following is an example of the WSSDecryption API:

WSSFactory factory = WSSFactory.getInstance();

WSSConsumingContext concont = factory.newWSSConsumingContext();

 X509ConsumeCallbackHandler callbackhandler = generateCallbackHandler();

// see X509ConsumeCallbackHandler

 WSSDecryption dec = factory.newWSSDecryption(X509Token.class,

 callbackhandler);

 concont.add(dec);

What to do next

You must configure similar encryption information for the client-side request generator (sender) bindings, if

you have not already configured the information.

Next, review the WSSDecryption API process.

Decrypting the SOAP message using the WSSDecryption API

You can secure the SOAP messages, without using policy sets for configuration, by using the Web

Services Security APIs (WSS API). To configure the client for decryption on the response (client) consumer

side, use the WSSDecryption API to decrypt the SOAP messages. The WSSDecryption API specifies

which request SOAP message parts to decrypt when configuring the client.

Before you begin

You can use the WSS API or use policy sets on the administrative console to enable decryption and add

consumer security tokens in the SOAP message. To secure SOAP messages, you must have completed

the following decryption tasks:

v Encrypted the SOAP message.

v Chosen the decryption method.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 421

About this task

The decryption information on the consumer side is used for decrypting an incoming SOAP message for

the response consumer (client side) bindings. The client consumer configuration must match the

configuration for the provider generator.

Confidentiality settings require that confidentiality constraints be applied to generated messages.

The following decryption parts can be configured:

 Table 33. Decryption parts

Decryption parts Description

part Adds the WSSDecryptPart object as a target of the decryption part.

keyword Adds the decryption part using keywords. WebSphere Application Server supports

the following keywords:

v BODY_CONTENT

v SIGNATURE

v USERNAME_TOKEN

xpath Adds the decryption part using an XPath expression.

verification Adds the WSSVerification instance as a target of the decryption part.

header Adds the SOAP header, specified by QName, as a target of the decryption part.

For decryption, certain default behaviors occur. The simplest way to use the WSS API for decryption is to

use the default behavior (see the example code). WSSDecryption provides defaults for the key encryption

algorithm, the data encryption algorithm, and the decryption parts such as the SOAP body content and the

signature. The decryption default behaviors include:

 Table 34. Decryption decisions

Decryption decisions Default behavior

Which parts to decrypt The default decryption parts are the BODY_CONTENT and SIGNATURE.

WebSphere Application Server supports using these keywords:

v WSSDecryption.BODY_CONTENT

v WSSDecryption.SIGNATURE

v WSSDecryption.USERNAME_TOKEN

After you specify which message parts to decrypt, you must specify which

method to use when decrypting the consumer request message. For

example, if both signature and body content are applied for encryption,

then the SOAP message parts that are decrypted include the same parts.

Whether to encrypt the key (isEncrypt) The default value is to encrypt the key (true).

Which data decryption algorithm to

choose (method)

The default data decryption algorithm method is AES128. WebSphere

Application Server supports these data encryption methods:

v WSSDecryption.AES128: http://www.w3.org/2001/04/xmlenc#aes128-cbc

v WSSDecryption.AES192: http://www.w3.org/2001/04/xmlenc#aes192-cbc

v WSSDecryption.AES256: http://www.w3.org/2001/04/xmlenc#aes256-cbc

v WSSDecryption.TRIPLE_DES: http://www.w3.org/2001/04/
xmlenc#tripledes-cbc

422 Developing and deploying applications

Table 34. Decryption decisions (continued)

Decryption decisions Default behavior

Which key decryption method to choose

(algorithm)

The default key decryption algorithm method is key wrap RSA OAEP.

WebSphere Application Server supports these key encryption methods:

v WSSDecryption.KW_AES128: http://www.w3.org/2001/04/xmlenc#kw-
aes128

v WSSDecryption.KW_AES192: http://www.w3.org/2001/04/xmlenc#kw-
aes192

v WSSDecryption.KW_AES256: http://www.w3.org/2001/04/xmlenc#kw-
aes256

v WSSDecryption.KW_RSA_OAEP: http://www.w3.org/2001/04/
xmlenc#rsa-oaep-mgf1p

v WSSDecryption.KW_RSA15: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v WSSDecryption.KW_TRIPLE_DES: http://www.w3.org/2001/04/
xmlenc#kw-tripledes

Which security token to specify The default security token type is the X509 token. WebSphere Application

Server provides the following pre-configured consumer token types:

v Derived key token

v X509 tokens

1. To decrypt the SOAP message using the WSSDecryption API, first ensure that the application server is

installed.

2. The WSS API process for decryption performs these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSConsumingContext instance from the WSSFactory instance. The

WSSConsumingContext must always be called in a JAX-WS client application.

c. Creates the callback handler for the consumer side.

d. Creates WSSDecryption with the class for the security token and the callback handler from the

WSSFactory instance. The default behavior of WSSDecryption is to assume that the body content

and the signature are encrypted.

e. Adds the parts to be decrypted, if the default is not appropriate.

f. Adds the candidates of the data encryption methods to use for decryption.

g. Adds the candidates of the key encryption methods to use for decryption.

h. Adds the candidates of the security token to use for decryption.

i. Calls WSSDecryption.encryptKey(false) if the application does not want the key to be encrypted in

the incoming message.

j. Adds WSSDecryption to WSSConsumingContext.

k. Calls WSSConsumingContext.process() with the SOAPMessageContext

Results

If there is an error condition during decryption, a WSSException is provided. If successful, the

WSSConsumingContext.process() is called, and Web services security is applied to the SOAP message.

Example

The following example provides sample code for decrypting the SOAP message body content:

// Get the message context

 Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)

 WSSFactory factory = WSSFactory.getInstance();

Chapter 11. Securing Web services applications using the WSS APIs at the message level 423

// Generate the WSSConsumingContext instance (step: b)

 WSSConsumingContext gencont = factory.newWSSConsumingContext();

// Generate the callback handler (step: c)

 X509ConsumeCallbackHandler callbackHandler = new

 X509ConsumeCallbackHandler(

 "",

 "enc-sender.jceks",

 "jceks",

 "storepass".toCharArray(),

 "alice",

 "keypass".toCharArray(),

 "CN=Alice, O=IBM, C=US");

// Generate the WSSDecryption instance (step: d)

 WSSDecryption dec = factory.newWSSDecryption(X509Token.class,

 callbackHandler);

// Set the part to be encrypted (step: e)

// DEFAULT: WSSEncryption.BODY_CONTENT and WSSEncryption.SIGNATURE

// Set the part to be encrypted (step: e)

// DEFAULT: WSSEncryption.BODY_CONTENT and WSSEncryption.SIGNATURE

// Set the part specified by the keyword (step: e)

 dec.addRequiredDecryptPart(WSSDecryption.BODY_CONTENT);

// Set the part in the SOAP Header specified by QName (step: e)

 dec.addRequiredDecryptHeader(new

 QName("http://www.w3.org/2005/08/addressing",

 "MessageID"));

// Set the part specified by WSSVerification (step: e)

 X509ConsumeCallbackHandler verifyCallbackHandler =

 getCallbackHandler();

 WSSVerification ver = factory.newWSSVerification(X509Token.class,

 verifyCallbackHandler);

 dec.addRequiredDecryptPart(ver);

// Set the part specified by XPath expression (step: e)

 StringBuffer sb = new StringBuffer();

 sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

 and local-name()=’Envelope’]");

 sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

 and local-name()=’Body’]");

 sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’

 and local-name()=’Ping’]");

 sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’

 and local-name()=’Text’]");

 dec.addRequiredDecryptPartByXPath(sb.toString());

// Set the part in the SOAP header to be decrypted specified by QName (step: e)

 dec.addRequiredDecryptHeader(new

 QName("http://www.w3.org/2005/08/addressing",

 "MessageID"));

// Set the candidates for the data encryption method (step: f)

// DEFAULT : WSSDecryption.AES128

 dec.addAllowedEncryptionMethod(WSSDecryption.AES128);

 dec.addAllowedEncryptionMethod(WSSDecryption.AES192);

// Set the candidates for the key encryption method (step: g)

// DEFAULT : WSSDecryption.KW_RSA_OAEP

 dec.addAllowedKeyEncryptionMethod(WSSDecryption.KW_TRIPLE_DES);

// Set the candidate security token to used for the decryption (step: h)

 X509ConsumeCallbackHandler callbackHandler2 = getCallbackHandler2();

 dec.addToken(X509Token.class, callbackHandler2);

// Set whether or not the key should be encrypted in the incoming SOAP message (step: i)

// DEFAULT: true

424 Developing and deploying applications

dec.encryptKey(true);

// Add the WSSDecryption to the WSSConsumingContext (step: j)

 concont.add(dec);

// Validate the WS-Security header (step: k)

concont.process(msgcontext);

What to do next

Next, use the WSSDecryptPart API or configure the policy sets using the administrative console to add

decrypted parts for the consumer message.

Choosing the decryption methods for the consumer binding

To configure the client for response decryption for the consumer binding, specify which data and transform

algorithm methods to use when the client decrypts the SOAP messages.

Before you begin

Prior to completing these steps, read the XML encryption information to become familiar with encrypting

and decrypting SOAP messages.

To complete decryption configuration to secure SOAP messages, you must complete the following tasks:

v Configure decryption of the SOAP message parts

v Specify the decryption methods.

You can configure the decryption methods using the WSSDecryption and WSSDecryptPart APIs. Or you

can also configure policy sets using the administrative console to configure the decryption methods.

About this task

Some of the encryption-related definitions are based on the XML-Encryption specification. The following

information defines some data encryption-related terms:

Data encryption method algorithm

Data encryption algorithms specify the algorithm uniform resource identifier (URI) of the data

encryption method. This algorithm encrypts and decrypts data in fixed size, multiple octet blocks.

 By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength

ciphers. To use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms,

you must apply unlimited jurisdiction policy files.

For the AES256-cbc and the AES192-cbc algorithms, you must download the unrestricted Java™

Cryptography Extension (JCE) policy files from the following Web site: http://www.ibm.com/
developerworks/java/jdk/security/index.html.

Key encryption method algorithm

Key encryption algorithms specify the algorithm uniform resource identifier (URI) of the key

encryption method. The algorithm represents public key encryption algorithms that are specified for

encrypting and decrypting keys.

 By default, the RSA_OAEP algorithm uses the SHA1 message digest algorithm to compute a

message digest as part of the encryption operation. Optionally, you can use the SHA256 or

SHA512 message digest algorithm by specifying a key encryption algorithm property. The property

name is: com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the

following URIs of the digest method:

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

Chapter 11. Securing Web services applications using the WSS APIs at the message level 425

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

By default, the RSA_OAEP algorithm uses a null string for the optional encoding octet string for

the OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption

algorithm property. For the property name, you can specify

com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams. The property value is the base 64-encoded

value of the octet string.

Note: You can set these digest method and OAEPParams properties on the generator side only.

On the consumer side, these properties are read from the incoming SOAP message.

For the KW_AES256 and the KW_AES192 key encryption algorithms, you must download the

unrestricted JCE policy files from the following Web site: http://www.ibm.com/developerworks/java/
jdk/security/index.html.

To complete the decryption configuration, you must specify the algorithm uniform resource identifier (URI)

and its usage type. If the URI is used for multiple usage types, then you must define the URI to each

usage type. WebSphere Application Server supports the following decryption usage types:

 Table 35. Decryption usage types

Usage types Description

Data encryption Specifies the algorithm URI that is used for both encrypting and decrypting data.

Encrypts and decrypts data in fixed size, multiple octet blocks.

Key encryption Specifies the algorithm URI that is used for encrypting and decrypting the

encryption key.

To configure the decryption and decrypted part algorithms, use the WSSDecryption and WSSDecryptPart

APIs, or configure policy sets using the administrative console.

Note: Policy sets do not support symmetric key encryption. If you are using the WSS API for symmetric

key encryption, you will not be able to interoperate with Web services endpoints that use policy

sets.

If you are using the WSS APIs, the WSSDecryption and WSSDecryptPart APIs specify which algorithm

methods are used when the client decrypts the SOAP messages.

v Use the WSSDecryption API to configure the data encryption algorithm and the key encryption algorithm

methods.

v Use the WSSDecryptPart API to configure a transform algorithm method.

The WSS API process completes the following high-level steps to specify which decryption and decrypted

part algorithm methods to use when configuring the client for response decryption:

1. Using the WSSDecryption API, adds the required data encryption algorithm. The data encryption

algorithm is used for encrypting or decrypting parts of a SOAP message. Data decryption algorithms

specify the algorithm uniform resource identifier (URI) of the data encryption method.

The default data encryption algorithm is AES 128. The data encryption name is AES128, and the URI

of the data encryption algorithm, is http://www.w3.org/2001/04/xmlenc#aes128-cbc. WebSphere

Application Server supports the following pre-configured data decryption algorithms:

v AES128: http://www.w3.org/2001/04/xmlenc#aes128-cbc

The AES 128 algorithm is the default data algorithm method.

v AES256: http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this AES 256-cbc algorithm, you must download the unrestricted Java Cryptography

Extension (JCE) policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

v AES192: http://www.w3.org/2001/04/xmlenc#aes192-cbc

426 Developing and deploying applications

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

Do not use the 192-bit key encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

To use this AES 192-cbc algorithm, you must download the unrestricted Java Cryptography

Extension (JCE) policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

v TRIPLE_DES: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

2. As needed, changes the WSSEncryption API method to specify another data encryption algorithm. For

example, you might add the following code to change from the default AES 128 algorithm to the Triple

DES algorithm:

dec.addAllowedKeyEncryptionMethod(WSSDecryption.TRIPLE_DES);

3. Using the WSSDecryption API, adds the required key encryption algorithm. The key encryption

algorithm is used for encrypting the key that is used for encrypting the message parts within the SOAP

message. If no key for encrypting the data is needed, then you must specify

WSSDecryption.encryptKey(false).

The key encryption algorithm that you select for the consumer side must match the key encryption

method that you select for the generator side.

The default key encryption algorithm value is key wrap RSA_OAEP. The key encryption name is

KW_RSA_OAEP, and the URI of the key encryption algorithm is http://www.w3.org/2001/04/
xmlenc#rsa-oaep-mgf1p. WebSphere Application Server supports the following pre-configured key

encryption algorithms:

v KW_AES128: http://www.w3.org/2001/04/xmlenc#kw-aes128

v KW_AES192: http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this key wrap AES 192 algorithm, you must download the unrestricted Java Cryptography

Extension (JCE) policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/
security/index.html.

Note: Do not use the 192-bit key encryption algorithm if you want your configured application to be

in compliance with the Basic Security Profile (BSP).

v KW_AES256: http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this key wrap AES 256-cbc algorithm, you must download the unrestricted Java

Cryptography Extension (JCE) policy file from the following Web site: http://www.ibm.com/
developerworks/java/jdk/security/index.html.

v KW_RSA_OAEP: http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

The KW_RSA_OAEP algorithm is the default key algorithm method.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport

algorithms does not include this algorithm. This algorithm appears in the list of supported key

transport algorithms when running with SDK Version 1.5. See more information at

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

v KW_RSA_15: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v KW_TRIPLE_DES: http://www.w3.org/2001/04/xmlenc#kw-tripledes

Note: For Web Services Secure Conversation, the WSSEncryption API might specify addition

key-related information, such as the:

v algorithmName

v keyLength

4. As needed, uses the WSSDecryption API method to change to other key encryption algorithms. For

example, you might add the following code to change from the default key encryption algorithm

KW_RSA_OAEP to the TRIPLE_DES algorithm:

dec.addAllowedKeyEncryptionMethod(WSSDecryption.KW_TRIPLE_DES);

Chapter 11. Securing Web services applications using the WSS APIs at the message level 427

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

5. Using the WSSDecryptPart API, adds a transform algorithm, as needed. There is no default transform

algorithm. However, WebSphere Application Server provides a pre-configured decrypted part,

WSSDecryptPart.TRANSFORM_ATTACHMENT_CIPHERTEXT, that can be added.

Results

If there is an error condition, a WSSException is provided. If successful, the API calls the

WSSConsumerContext.process(), the WS-Security header is validated, and the SOAP message is now

secured using Web services security.

Example

The following example provides sample WSS API code for decrypting the body content as well as

changing the data encryption and key encryption algorithms from the default values:

// Get the message context

 Object msgcontext = getMessageContext();

// Generate the WSSFactory instance

 WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance

 WSSConsumingContext gencont = factory.newWSSConsumingContext();

// Generate the callback handler

 X509ConsumeCallbackHandler callbackHandler = new

 X509ConsumeCallbackHandler(

 "",

 "enc-sender.jceks",

 "jceks",

 "storepass".toCharArray(),

 "alice",

 "keypass".toCharArray(),

 "CN=Alice, O=IBM, C=US");

// Generate WSSDecryption instance

 WSSDecryption dec = factory.newWSSDecryption(X509Token.class,

 callbackHandler);

// Set the candidates for the data encryption method

// DEFAULT : WSSDecryption.AES128

 dec.addAllowedEncryptionMethod(WSSDecryption.AES128);

 dec.addAllowedEncryptionMethod(WSSDecryption.AES192);

// Set the candidates for the key encryption method

// DEFAULT : WSSDecryption.KW_RSA_OAEP

 dec.addAllowedKeyEncryptionMethod(WSSDecryption.KW_TRIPLE_DES);

// Add the WSSDecryption to WSSConsumingContext

 concont.add(dec);

// Validate the WS-Security header

concont.process(msgcontext);

Adding decrypted parts using the WSSDecryptPart API

You can secure the SOAP messages, without using policy sets for configuration, by using the Web

services security APIs (WSS API). To configure decrypted parts for the response consumer (client side)

bindings, use the WSSDecryptPart API to define and add to the listing of elements in the decrypted part.

WSSDecryptPart is an interface that is part of the com.ibm.websphere.wssecurity.wssapi.decryption

package.

Before you begin

You can use either the WSS APIs or configure the policy sets using the administrative console to configure

and add new encrypted parts. To secure SOAP messages using the WSSDecryptPart APIs, you must

428 Developing and deploying applications

configure the decrypted parts for the response consumer bindings.

About this task

Confidentiality settings require that confidentiality constraints be applied to generated messages. These

constraints include specifying which message parts within the generated message must be encrypted and

decrypted, and which message parts to attach encrypted elements to.

The WSSDecryptPart API specifies information related to decryption and sets the decrypted parts that

have been added for message confidentiality protection. Use the WSSDecryptPart to set the transform

method and to specify the part to which the transform method is to be applied. Sets the transform method

only if using SOAP with Attachments. The WSSDecryptPart is usually not needed except, in some case for

tasks such as setting the transform method.

The decrypted parts displayed in the following table are used to protect the confidentiality of messages.

 Table 36. Decrypted Parts

Decrypted parts Description

keyword Sets the decrypted part using keywords. The default decrypted parts that you can

add using keywords are the BODY_CONTENT and SIGNATURE. WebSphere

Application Server supports the following keywords:

v BODY_CONTENT

v SIGNATURE

v USERNAME_TOKEN

xpath Sets the decrypted part by using an XPath expression.

verification Sets the WSSVerification component as a decrypted part.

The WSSVerification part is applicable only if the SOAP message contains a

signature element.

header Sets the header, specified by QName, as a decrypted part.

For decrypted parts, certain default behaviors occur. The simplest way to use the WSSDecryptPart API is

to use the default behavior (see the example code).

WSSDecryptPart provides defaults for setting the transform algorithm, adding a transform method, setting

objects as targets, whether an element, and the encrypted parts, such as: the SOAP body content and the

signature.

 Table 37. Decrypted part decisions

Decryption decisions Default behavior

Which SOAP message parts to decrypt

using keywords

Specifies which keywords to use for the decrypted parts. WebSphere

Application Server sets the following SOAP message parts by default for

decryption:

v WSSDecryption.BODY_CONTENT

v WSSDecryption.SIGNATURE

Which transform algorithm to use

(algorithm)

WebSphere Application Server does not specify any transform algorithm

by default. Specify a transform method only if using SOAP with

Attachments.

1. To decrypt the SOAP message parts using the WSSDecryptPart API, first ensure that the application

server is installed.

2. The WSS API process using WSSDecryptPart follows these steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 429

b. Creates the WSSConsumingContext instance from the WSSFactory instance. Note that the

WSSConsumingContext must always be called in a JAX-WS client application.

c. Creates the SecurityToken from WSSFactory to configure decryption.

d. Creates WSSDecryption from the WSSFactory instance using SecurityToken.

e. Creates WSSDecryptPart from the WSSFactory instance. The default behavior of WSSDecryptPart

is to assume that the body content and signature are encrypted.

f. Adds the parts to be decrypted and to be applied with the transform in WSSDecryptPart.

WebSphere Application Server sets these encrypted parts by default for WSSDecryptPart: the

BODY_CONTENT and SIGNATURE. After you add other decrypted parts, the default values are no

longer valid. For example, if you call addDecryptPart(securityToken, false), only the security token is

encrypted, and not the signature and body content. So if you want to decrypt the security token, the

signature, and the body content, you must call addDecryptPart(securityToken, false),

addDecryptPart(WSSDecryption.SIGNATURE), and

addDecryptPart(WSSDecryption.BODY_CONTENT).

g. Sets the transform method.

h. Adds WSSDecryptPart to WSSDecryption.

i. Adds WSSDecryption to WSSConsumingContext.

j. Calls WSSConsumingContext.process() with the SOAPMessageContext

Results

If there is an error condition when decrypting the message, a WSSException is provided. If successful, the

API calls the WSSConsumingContext.process(), the WS-Security header is generated, and the SOAP

message is now secured using Web services security.

What to do next

After enabling decrypted parts for the response consumer (client side) binding, specify the generator and

consumer tokens, if the security tokens have not already been specified.

Decryption methods

The decryption algorithms specify the data and key encryption algorithms that are used to decrypt the

SOAP message. The WSS API for decryption (WSSDecryption) specifies the algorithm uniform resource

identifier (URI) of the data and key encryption methods. The WSSDecryption interface is part of the

com.ibm.websphere.wssecurity.wssapi.decryption package.

Data encryption algorithms

The data encryption algorithms are the algorithms that are used to encrypt and decrypt data. This

algorithm type is used for encrypting data to encrypt and decrypt various parts of the message, including

the body content and the signature.

Data decryption algorithms specify the algorithm uniform resource identifier (URI) of the data encryption

method. WebSphere Application Server supports the following pre-configured data decryption algorithms:

 Table 38. Supported pre-configured data decryption algorithms

WSS API URI

WSSDecryption.AES128 (the default value) A URI of data encryption algorithm, AES 128:

http://www.w3.org/2001/04/xmlenc#aes128-cbc

WSSDecryption.AES192 A URI of data encryption algorithm, AES 192:

http://www.w3.org/2001/04/xmlenc#aes192-cbc

WSSDecryption.AES256 A URI of data encryption algorithm, AES 256:

http://www.w3.org/2001/04/xmlenc#aes256-cbc

430 Developing and deploying applications

Table 38. Supported pre-configured data decryption algorithms (continued)

WSS API URI

WSSDecryption.TRIPLE_DES A URI of data encryption algorithm, TRIPLE DES:

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength ciphers. To

use 192-bit and 256-bit Advanced Encryption Standard (AES) encryption algorithms, you must apply

unlimited jurisdiction policy files.

For the AES256-cbc and the AES192-cbc algorithms, you must download the unrestricted Java™

Cryptography Extension (JCE) policy files from the following Web site: http://www.ibm.com/developerworks/
java/jdk/security/index.html.

The data encryption algorithm must match the data decryption algorithm that is configured for the

consumer.

Key encryption algorithms

The key encryption algorithms are the algorithms that are used to encrypt and decrypt keys.

This key information is used to specify the configuration that is needed to generate the key for digital

signature and encryption. The signing information and encryption information configurations can share the

key information. The key information on the consumer side is used for specifying the information about the

key that is used for validating the digital signature in the received message or for decrypting the encrypted

parts of the message. The request generator is configured for the client.

Key encryption algorithms specify the algorithm uniform resource identifier (URI) of the key encryption

method. WebSphere Application Server supports the following pre-configured key encryption algorithms:

 Table 39. Supported pre-configured key encryption algorithms

WSS API URI

WSSDecryption.KW_AES128 A URI of key encryption algorithm, key wrap AES 128:

http://www.w3.org/2001/04/xmlenc#kw-aes128

WSSDecryption.KW_AES192 A URI of key encryption algorithm, key wrap AES 192:

http://www.w3.org/2001/04/xmlenc#kw-aes192

Note: Do not use the 192-bit key encryption algorithm if you

want your configured application to be in compliance with the

Basic Security Profile (BSP).

WSSDecryption.KW_AES256 A URI of key encryption algorithm, key wrap AES 256:

http://www.w3.org/2001/04/xmlenc#kw-aes256

WSSDecryption.KW_RSA_OAEP (the default

value)

A URI of key encryption algorithm, key wrap RSA OAEP:

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

WSSDecryption.KW_RSA15 A URI of key encryption algorithm, key wrap RSA 1.5:

http://www.w3.org/2001/04/xmlenc#rsa-1_5

WSSDecryption.KW_TRIPLE_DES A URI of data encryption algorithm, key wrap TRIPLE DES:

http://www.w3.org/2001/04/xmlenc#kw-tripledes

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a message

digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512 message digest

algorithm by specifying a key encryption algorithm property. The property name is:

com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the following URIs of

the digest method: http://www.w3.org/2001/04/xmlenc#sha256 http://www.w3.org/2001/04/xmlenc#sha512

Chapter 11. Securing Web services applications using the WSS APIs at the message level 431

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the

OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption algorithm

property. For the property name, you can specify com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams.

The property value is the base 64-encoded value of the octet string.

Note: You can set these digest method and OAEPParams properties on the generator side only. On the

consumer side, these properties are read from the incoming SOAP message.

For the kw-aes256 and the kw-aes192 key encryption algorithms, you must download the unrestricted JCE

policy files from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/index.html.

The key encryption algorithm for the generator and the consumer must match.

The following example provides a sample of the WSS API code for the default algorithms that are used for

WebSphere Application Server decryption:

WSSFactory factory = WSSFactory.getInstance();

WSSConsumingContext concont = factory.newWSSConsumingContext();

// Required to attach username token into the message.

X509ConsumeCallbackHandler callbackHandler =

 new X509ConsumeCallbackHandler("",

 "enc-sender.jceks",

 "JCEKS",

 "storepass".toCharArray(),

 "alice",

 "keypass".toCharArray(),

 "CN=Alice, O=IBM, C=US");

// Set the decrypt component.

// Default encrypted part: Body-Content

// Default data encryption algorithm: AES128

// Default key encryption algorithm: KW-RSA-OAEP

WSSDecryption dec = factory.newWSSDecryption(X509Token.Type,

callbackHandler);

concont.add(dec);

// validate the WS-Security header.

concont.process(msgctx);

Verifying consumer signing information to protect message integrity

using WSS APIs

You can verify the signing information to protect message integrity for the response (client side) consumer

binding. Signing information includes the signature and the signed parts for the generator side as well as

signature verification and verify parts for the consumer side. To keep the integrity of the message, digital

signatures are typically applied.

Before you begin

Ensure that the signature and signed parts information has been configured. The signature verification

information must match what was configured on the generator side.

About this task

Integrity refers to digital signature while confidentiality refers to encryption. Integrity is provided by applying

a digital signature to a SOAP message. To configure the signing information to protect message integrity,

you must first digitally sign and then verify the signature for the SOAP messages. Integrity decreases the

risk of data modification when you transmit data across a network.

Also, message integrity is provided by verifying the digitally signed body, time stamp, and WS-Addressing

headers using the signature verification algorithm methods. The WSS APIs specify which algorithm is to be

432 Developing and deploying applications

http://www.ibm.com/developerworks/java/jdk/security/index.html

used to verify the certificate. The signature algorithms specify the Uniform Resource Identifiers (URI) of the

signature verification method. WebSphere Application Server supports several pre-configured verification

algorithm methods.

You can use the following interfaces to configure Web services security and to protect SOAP message

integrity:

v Use the administrative console to configure policy sets for signature verification.

v Use the Web Services Security APIs (WSS API) to configure the SOAP message context (only for the

client)

Perform the following verification tasks, using the WSS APIs, to configure the signing information and to

protect message integrity for the consumer binding.

v Configure the signing information using the WSSSignature API. Configure the signature verification

information for the consumer binding using the WSSVerification API. Signature verification information is

used to verify parts of a message including the SOAP body, the time stamp, and the WS-Addressing

headers. Both verifying and decryption can be applied to the same message parts, such as the SOAP

body.

v Add or change verify parts using the WSSVerifyPart API.

v Configure the client for request signing methods using the WSSVerification or WSSVerifyPart APIs. To

configure the client for response verification, choose the verification methods. Use the WSSVerification

API to configure the canonicalization and signature methods. Use the WSSVerifyPart API to configure

the digest and transform methods.

Results

By completing the steps in these tasks, you have configured the consumer verification information to

protect the integrity of messages.

Verifying the signature information for the consumer binding using the WSS APIs

You can configure the signing information for the client-side response consumer (receiver) bindings.

Signing information is used to sign and validate parts of a message including the SOAP body, the

timestamp information, and the Username token.

Before you begin

WebSphere Application Server uses XML digital signature with existing algorithms such as RSA, HMAC,

and SHA1. XML signature defines many methods for describing key information and enables the definition

of a new method. Prior to completing these steps, read the information about XML digital signature to

become familiar with signing and verifying digital signatures for digital content.

By including XML signature in SOAP messages, the following issues are realized: message integrity and

authentication. Integrity refers to digital signature whereas confidentiality refers to encryption. Integrity

decreases the risk of data modification while the data is transmitted across the Internet.

Before you can verify the signature and SOAP message signed parts, you must have completed the

following tasks:

v Configured the signature.

v Added signed parts, as needed.

v Chosen the signature and signed parts methods.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 433

About this task

Use the Web Services Security APIs (WSS API) to configure the signing verification information for the

response consumer (client side) section of the bindings file. Use the WSSVerification or WSSVerifyPart

APIs to configure the client for request signature verification and to specify which digitally signed message

parts to verify.

WebSphere Application Server uses the signing information on the consumer side to verify the integrity of

the received SOAP message by validating that the message parts (such as the body, time stamp, and

Username token) are signed.

On the client side, use the WSS APIs, or configure policy sets using the administrative console to specify

which parts of the message are signed and to configure the key information that is referenced by the key

information references. To verify the signature and signed parts, use the WSSVerification and

WSSVerifyPart APIs.

WebSphere Application Server provides default values for bindings. However, an administrator must

modify the defaults for a production environment.

The WSSVerification and WSSVerifyPart APIs complete the following steps to specify which digitally

signed message parts to verify when configuring the client for response consumer signing:

1. The WSSVerification API adds the required verify parts of the SOAP message.

The part reference refers to the message part that is digitally signed. The part attribute refers to the

name of the <Integrity> element when the <PartReference> element is specified for the signature. You

can specify multiple <PartReference> elements within the <SigningInfo> element. The

<PartReference> element has two child elements when it is specified for the signature:

<DigestTransform> and <Transform>.

The WSSVerification API configures the following parts as verification parts:

 Security token Adds information for the security token that is used for

the signature verification.

SOAP header and the QName as a target Adds the SOAP header, specified by QName, as a

verification part.

The WSS APIs allow the use of keywords or an XPath expression to specify which parts of the

message are to be verified. WebSphere Application Server supports the use of the following keywords:

 Keyword References

WSSVerification.ADDRESSING_HEADERS The Web Services Addressing (WS-Addressing) headers.

WSSVerification.BODY The SOAP message body. The body is the user data

portion of the message.

WSSVerification.TIMESTAMP The creation and expiration timestamp information.

2. The WSSVerification API adds the required header to the SOAP message. The header, specified by

QName, is a required verification header.

3. The WSSVerification API adds a security token. Adds information about the security token that is to be

used for the signature verification, such as:

v The class for security token.

v The callback handler

v The name of the JAAS login configuration.

4. The WSSVerification API adds the signature method algorithm. The signature method is the algorithm

that is used to convert the canonicalized <SignedInfo> element in the binding file into the

<SignatureValue> element. The algorithm that is specified for the consumer, which is the response

434 Developing and deploying applications

consumer configuration, must match the algorithm specified for the request generator configuration.

WebSphere Application Server supports the following pre-configured signature algorithms:

v WSSVerification.RSA_SHA1:http://www.w3.org/2000/09/xmldsig#rsa-sha1

v WSSVerification.HMAC_SHA1:http://www.w3.org/2000/09/xmldsig#hmac-sha1

WebSphere Application Server does not support the following algorithm for DSA-SHA1:

http://www.w3.org/2000/09/xmldsig#dsa-sha1. You cannot use the DSA-SHA1 algorithm if you want to

be compliant with the Basic Security Profile (BSP).

5. The WSSVerification API adds a canonicalization method. The canonicalization method algorithm is

used to canonicalize the <SignedInfo> element before it is incorporated as part of the digital signature

operation. The canonicalization algorithm that you specify for the generator must match the algorithm

for the consumer.

WebSphere Application Server supports the following pre-configured canonicalization algorithms:

v WSSVerification.EXC_C14N: http://www.w3.org/2001/10/xml-exc-c14n#

v WSSVerification.C14N: http://www.w3.org/TR/xml-c14n

6. The WSSVerification API verifies whether a signature confirmation is required. The OASIS Web

Services Security (WS-Security) Version 1.1 specification defines the use of signature confirmation. If

you are using WS-Security Version 1.0, this function is not available.

The signature confirmation value is stored in order to validate the signature confirmation with it after

the receiving message is returned. This method is called if the response message is expected to

attach the signature confirmation into the SOAP message.

7. The WSSVerifyPart API adds a digest method. For each part reference in the signing information, the

API specifies both a digest method algorithm and a transform algorithm.

WebSphere Application Server supports the following pre-configured digest algorithms:

v WSSVerifyPart.SHA1: http://www.w3.org/2000/09/xmldsig#sha1

v WSSVerifyPart.SHA256: http://www.w3.org/2001/04/xmlenc#sha256

v WSSVerifyPart.SHA512: http://www.w3.org/2001/04/xmlenc#sha512

8. The WSSVerifyPart API adds a transform method. For each part reference in the signing information,

the API specifies both a digest method algorithm and a transform algorithm.

WebSphere Application Server supports the following pre-configured transform algorithms:

v WSSVerifyPart.TRANSFORM_EXC_C14N (the default value): http://www.w3.org/2001/10/xml-exc-
c14n#

v WSSVerifyPart.TRANSFORM_XPATH2_FILTER: http://www.w3.org/2002/06/xmldsig-filter2

v WSSVerifyPart.TRANSFORM_STRT10: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0#STR-Transform

v WSSVerifyPart.TRANSFORM_ENVELOPED_SIGNATURE: http://www.w3.org/2000/09/
xmldsig#enveloped-signature

For the WSS APIs, WebSphere Application Server does not support these algorithms:

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/TR/1999/REC-xpath-19991116

The transform algorithm for the consumer must match the transform algorithm for the generator.

Results

You have completed the steps to configure the signing information for the client-side response consumer

sections of the bindings files.

Example

The following example shows WSS API sample code to verify the signature and to verify the X.509 token

type as the security token:

Chapter 11. Securing Web services applications using the WSS APIs at the message level 435

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/TR/xml-c14n

WSSFactory factory = WSSFactory.getInstance();

WSSConsumingContext concont = factory.newWSSConsumingContext();

// Generate the X.509 Callback Handler on the consumer side

 X509ConsumeCallbackHandler callbackhandler = generateCallbackHandler();

 WSSVerification ver = factory.newWSSVerification(X509Token.class,

 callbackhandler);

concont.add(ver);

What to do next

If not already configured, specify a similar signing information configuration for the generator bindings.

Next, if already configured, configure the encryption and decryption information, or configure the consumer

and generator tokens.

Verifying the signature using the WSSVerification API

You can secure the SOAP messages, without using policy sets for configuration, by using the Web

services security APIs (WSS API). To verify the signing information for the consumer binding sections for

the client side request, use the WSSVerification API. You must also specify which algorithm methods and

which signature parts of the SOAP message are to be verified. The WSSVerification API is part of the

com.ibm.websphere.wssecurity.wssapi.verification package.

Before you begin

Use the WSS APIs, or configure the policy sets by using the administrative console to verify the signing

information. To secure SOAP messages, you must complete the following signature tasks:

v Configure the signature information.

v Choose the algorithm methods for signature and signature verification.

v Verify the signature information.

About this task

WebSphere Application Server uses the signing information for the default generator to sign parts of the

message, and uses XML digital signature with existing algorithms such as RSA-SHA1 and HMAC-SHA1.

XML signature defines many methods for describing key information and enables the definition of a new

method. XML canonicalization (C14N) is often needed when you use XML signature. Information can be

represented in various ways within serialized XML documents. The C14N process is used to canonicalize

XML information. Select an appropriate C14N algorithm because the information that is canonicalized

depends on this algorithm.

The following table shows the required and optional binding information when the digital signature security

constraint (integrity) is defined.

 Table 40. Signature verification parts

Verification parts Description

keywords Adds required signature parts as targets of verification by using keywords .

Different message parts can be specified in the message protection for

request on the generator side. Use the following keywords for the required

signature verification parts:

v ADDRESSING_HEADERS

v BODY

v TIMESTAMP

The WS-Addressing headers are not encrypted but can be signed.

xpath Adds verification parts by using an XPath expression.

436 Developing and deploying applications

Table 40. Signature verification parts (continued)

Verification parts Description

part Adds the WSSVerifyPart object as a verification part.

header Adds the header, specified by QName, as a verification part.

For signature verification information, certain default behaviors occur. The simplest way to use the

WSSVerification API is to use the default behavior.

The default values are defined by the WSS API for the digest method, the transform method, the security

token, and the required verification parts.

 Table 41. Signature verification default behaviors

Signature verification decisions Default behavior

Which signature method to use

(algorithm)

Sets the signature algorithm method. Both the data encryption and the

signature and the canonicalization can be specified. The default signature

method is RSA SHA1. WebSphere Application Server supports the

following pre-configured signature methods:

v WSSVerification.RSA_SHA1: http://www.w3.org/2000/09/xmldsig#rsa-
sha1

v WSSVerification.HMAC_SHA1: http://www.w3.org/2000/09/
xmldsig#hmac-sha1

The DSA-SHA1 digital signature method (http://www.w3.org/2000/09/
xmldsig#dsa-sha1) is not supported.

Which canonicalization method to use

(algorithm)

Sets the canonicalization algorithm method. Both the data encryption and

the signature and the canonicalization can be specified. The default

signature method is EXC_C14N. WebSphere Application Server supports

the following pre-configured canonicalization methods:

v WSSVerification.EXC_C14N: http://www.w3.org/2001/10/xml-exc-c14n#

v WSSVerification.C14N: http://www.w3.org/2001/10/xml-c14n#

Whether signature confirmation is

required

If the WSSSignature API specifies that signature confirmation is required,

then the WSSVerification API verifies the signature confirmation value in

the response message that has the signature confirmation value attached

to it when received. Signature confirmation is defined in the OASIS Web

Services Security Version 1.1 specification.

The default signature confirmation is false.

Which security token to specify

(securityToken)

Adds the securityToken object as a signature part. WebSphere Application

Server sets the token information to use for verification.

WebSphere Application Server supports the following pre-configured

tokens for signing:

v X.509 Token

v Derived Key Token

Information required for tokens include the class for the token, the callback

handler information, and the name of the JAAS login module.

1. To verify the signature in a SOAP message by using the WSSVerification API, first ensure that the

application server is installed.

2. Use the WSSVerification API to set the message parts to be verified and to specify the algorithms in a

SOAP message. The WSS API process for signature verification follows these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSConsumingContext instance from the WSSFactory instance.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 437

c. Ensures that WSSConsumingContext is called in the JAX-WS Provider implementation class. Due

to the nature of the JAX-WS programming model, a JAX-WS provider needs to be implemented

and must call the WSSConsumingContext to verify the SOAP message signature.

d. Creates WSSVerification from the WSSFactory instance.

e. Adds the part to be verified. If the digest method or the transform method are changed, create

WSSVerifyPart and set it into WSSVerification.

f. Sets the candidates of the canonicalization method, if the default is not appropriate.

g. Sets the candidates of the signature method, if the default is not appropriate.

h. Sets the candidate security token, if the default is not appropriate.

i. Calls the requireSignatureConfirmation(), if the signature confirmation is applied.

j. Adds WSSVerification to WSSConsumingContext.

k. Calls WSSConsumingContext.process() with the SOAP message context.

Results

You have completed the steps to verify the signature for the consumer section of the bindings. If there is

an error condition, a WSSException is provided. If successful, the WSSConsumingContext.process() is

called, and Web Services Security is applied to the SOAP message.

Example

The following example provides sample code that uses methods that are defined in the WSSVerification

API:

// Get the message context

 Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)

 WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance (step: b)

 WSSConsumingContext concont = factory.newWSSConsumingContext();

// Generate the certificate list

 String certpath = "c:/WebSphere/AppServer/etc/ws-security/samples/intca2.cer";

// The location of the X509 certificate file

 X509Certificate x509cert = null;

 try {

 InputStream is = new FileInputStream(certpath);

 CertificateFactory cf = CertificateFactory.getInstance("X.509");

 x509cert = (X509Certificate)cf.generateCertificate(is);

 } catch(FileNotFoundException e1){

 throw new WSSException(e1);

 } catch (CertificateException e2) {

 throw new WSSException(e2);

 }

 Set<Object> eeCerts = new HashSet<Object>();

 eeCerts.add(x509cert);

// Create the certificate store

 java.util.List<CertStore> certList = new java.util.ArrayList<CertStore>();

 CollectionCertStoreParameters certparam = new CollectionCertStoreParameters(eeCerts);

 CertStore cert = null;

 try {

 cert = CertStore.getInstance("Collection", certparam, "IBMCertPath");

 } catch (NoSuchProviderException e1) {

 throw new WSSException(e1);

 } catch (InvalidAlgorithmParameterException e2) {

 throw new WSSException(e2);

 } catch (NoSuchAlgorithmException e3) {

 throw new WSSException (e3);

 }

 if(certList != null){

438 Developing and deploying applications

certList.add(cert);

 }

// Generate the callback handler

 X509ConsumeCallbackHandler callbackHandler = new X509ConsumeCallbackHandler(

 "dsig-receiver.ks",

 "jks",

 "server".toCharArray(),

 certList,

 java.security.Security.getProvider("IBMCertPath")

);

// Generate the WSSVerification instance (step: d)

 WSSVerification ver = factory.newWSSVerification(X509Token.class, callbackHandler);

// Set the part to be verified (step: e)

// DEFAULT: WSSVerification.BODY, WSSSignature.ADDRESSING_HEADERS,

// and WSSSignature.TIMESTAMP.

// Set the part in the SOAP header to be specified by QName (step: e)

 ver.addRequiredVerifyHeader(new QName("http://www.w3.org/2005/08/addressing", "MessageID"));

// Set the part to be specified by the keyword (step: e)

 ver.addRequiredVerifyPart(WSSVerification.BODY);

// Set the part to be specified by WSSVerifyPart (step: e)

 WSSVerifyPart verPart = factory.newWSSVerifyPart();

 verPart.setRequiredVerifyPart(WSSVerification.BODY);

 verPart.addAllowedDigestMethod(WSSVerifyPart.SHA256);

 ver.addRequiredVerifyPart(verPart);

// Set the part specified by XPath expression (step: e)

 StringBuffer sb = new StringBuffer();

 sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

 and local-name()=’Envelope’]");

 sb.append("/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

 and local-name()=’Body’]");

 sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’

 and local-name()=’Ping’]");

 sb.append("/*[namespace-uri()=’http://xmlsoap.org/Ping’

 and local-name()=’Text’]");

 ver.addRequiredVerifyPartByXPath(sb.toString());

// Set one or more canonicalization method candidates for verification (step: f)

// DEFAULT : WSSVerification.EXC_C14N

 ver.addAllowedCanonicalizationMethod(WSSVerification.C14N);

 ver.addAllowedCanonicalizationMethod(WSSVerification.EXC_C14N);

// Set one or more signature method candidates for verification (step: g)

// DEFAULT : WSSVerification.RSA_SHA1

 ver.addAllowedSignatureMethod(WSSVerification.HMAC_SHA1);

// Set the candidate security token to used for the verification (step: h)

 X509ConsumeCallbackHandler callbackHandler2 = getCallbackHandler2();

 ver.addToken(X509Token.class, callbackHandler2);

// Set the flag to require the signature confirmation (step: i)

 ver.requireSignatureConfirmation();

// Add the WSSVerification to the WSSConsumingContext (step: j)

 concont.add(ver);

//Validate the WS-Security header (step: k)

concont.process(msgcontext);

What to do next

After verifying the signature and setting algorithm methods for the SOAP message, you can set either the

digest method or the transform method. If you want to set these methods, use the WSSVerifyPart API, or

Chapter 11. Securing Web services applications using the WSS APIs at the message level 439

configure policy sets using the administrative console.

Verifying the signed parts using the WSSVerifyPart API

To secure SOAP messages on the consumer side, use the Web Services Security APIs (WSS API) to

configure the verify parts information for the consumer binding on the response consumer (client side). You

can specify which algorithm methods and which parts of the SOAP message are to be verified. Use the

WSSVerifyPart API to change the digest method or the transform method. The WSSVerifyPart API is part

of the com.ibm.websphere.wssecurity.wssapi.verification package.

Before you begin

To secure SOAP messages using the signing verification information, you must complete one of the

following tasks:

v Configure the signature verification information using the WSSVerification API.

v Configure verify parts using the WSSVerifyPart API, as needed.

The WSSVerifyPart is used for specify the transform or digest methods for the verification. Use the

WSSVerifyPart API or configure policy sets using the administrative console.

About this task

WebSphere Application Server uses the signing information for the default consumer to verify the signed

parts of the message. The WSSVerifyPart API is only supported on the response consumer (requester).

The following table shows the required verification parts when the digital signature security constraint

(integrity) is defined:

 Table 42. Verify parts information

Verify parts information Description

keyword Sets the verify parts using the following keywords:

v BODY

v ADDRESSING_HEADERS

v TIMESTAMP

The WS-Addressing headers are not decrypted but can be signed and

verified.

xpath Sets the verify parts using an XPath expression.

header Sets the header, specified by QName, as a required verify part.

For signature verification, certain default behaviors occur. The simplest way to use the WSSVerification

API is to use the default behavior (see the example code). The default values are defined by the WSS API

for the signing algorithm and the canonicalization algorithm, and the verify parts.

 Table 43. Verify parts default behaviors

Verify parts decisions Default behavior

Which keywords to specify The different SOAP message parts to be signed and used for message

protection. WebSphere Application Server supports the following keywords:

v WSSVerification.BODY

v WSSVerification.ADDRESSING_HEADERS

v WSSVerification.TIMESTAMP

440 Developing and deploying applications

Table 43. Verify parts default behaviors (continued)

Verify parts decisions Default behavior

Which transform method to use

(algorithm)

Adds the transform method. The transform algorithm is specified within the

<Transform> element and specifies the transform algorithm for the

signature. The default transform method is TRANSFORM_EXC_C14N.

WebSphere Application Server supports the following pre-configured

transform algorithms:

v WSSVerifyPart.TRANSFORM_EXC_C14N (the default value):

http://www.w3.org/2001/10/xml-exc-c14n#

v WSSVerifyPart.TRANSFORM_XPATH2_FILTER: http://www.w3.org/
2002/06/xmldsig-filter2

Use this transform method to ensure compliance with the Basic Security

Profile (BSP).

v WSSVerifyPart.TRANSFORM_STRT10: http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-soap-message-security-1.0#STR-Transform

v WSSVerifyPart.TRANSFORM_ENVELOPED_SIGNATURE:

http://www.w3.org/2000/09/xmldsig#enveloped-signature

Which digest method to use (algorithm) Sets the digest algorithm method. The digest method algorithm that is

specified within the <DigestMethod> element is used in the <SigningInfo>

element. The default digest method is SHA1.

WebSphere Application Server supports the following digest method

algorithms:

v WSSVerifyPart.SHA1: http://www.w3.org/2000/09/xmldsig#sha1

v WSSVerifyPart.SHA256: http://www.w3.org/2001/04/xmlenc#sha256

v WSSVerifyPart.SHA512: http://www.w3.org/2001/04/xmlenc#sha512

1. To verify signed parts by using the WSSVerifyPart API, first ensure that the application server is

installed.

2. Use the Web Services Security API to verify the verification in a SOAP message. The WSS API

process for verifying the signature follows these process steps:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSConsumingContext instance from the WSSFactory instance. Ensures that

WSSConsumingContext is called in the JAX-WS Provider implementation class. Due to the nature

of the JAX-WS programming model, a JAX-WS provider needs to be implemented and must call

the WSSConsumingContext to verify the SOAP message signature.

c. Creates the CallbackHandler to use for verification.

d. Create the WSSVerification object from the WSSFactory instance.

e. Creates WSSVerifyPart from the WSSFactory instance.

f. Sets the part to be verified, if the default is not appropriate.

g. Sets the candidates for the digest method, if the default is not appropriate.

h. Sets the candidates for the transform method, if the default is not appropriate.

i. Adds WSSVerifyPart to WSSVerification.

j. Adds WSSVerification to WSSConsumingContext.

k. Calls WSSConsumingContext.process() with the SOAPMessageContext.

Results

You have completed the steps to verify to verify the signed parts on the consumer side. If there is an error

condition when verifying the signing information, a WSSException is provided. If successful, the

WSSConsumingContext.process() is called, and Web Services Security is verified for the SOAP message.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 441

Example

The following example provides sample code for the WSSVerification API process for verifying the signing

information in a SOAP message:

// Get the message context

 Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)

 WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance (step: b)

 WSSConsumingContext concont = factory.newWSSConsumingContext();

// Generate the certificate list

 String certpath =

 "c:/WebSphere/AppServer/etc/ws-security/samples/intca2.cer";

// The location of the X509 certificate file

 X509Certificate x509cert = null;

 try {

 InputStream is = new FileInputStream(certpath);

 CertificateFactory cf = CertificateFactory.getInstance("X.509");

 x509cert = (X509Certificate)cf.generateCertificate(is);

 } catch(FileNotFoundException e1){

 throw new WSSException(e1);

 } catch (CertificateException e2) {

 throw new WSSException(e2);

 }

 Set<Object> eeCerts = new HashSet<Object>();

 eeCerts.add(x509cert);

// create certStore

 java.util.List<CertStore> certList = new

 java.util.ArrayList<CertStore>();

 CollectionCertStoreParameters certparam = new

 CollectionCertStoreParameters(eeCerts);

 CertStore cert = null;

 try {

 cert = CertStore.getInstance("Collection",

 certparam, "IBMCertPath");

 } catch (NoSuchProviderException e1) {

 throw new WSSException(e1);

 } catch (InvalidAlgorithmParameterException e2) {

 throw new WSSException(e2);

 } catch (NoSuchAlgorithmException e3) {

 throw new WSSException (e3);

 }

 if(certList != null){

 certList.add(cert);

 }

// generate callback handler (step: c)

 X509ConsumeCallbackHandler callbackHandler = new

 X509ConsumeCallbackHandler(

 "dsig-receiver.ks",

 "jks",

 "server".toCharArray(),

 certList,

 java.security.Security.getProvider("IBMCertPath")

);

// Generate the WSSVerification instance (step: d)

 WSSVerification ver = factory.newWSSVerification(X509Token.class,

 callbackHandler);

// Set the part to be specified by WSSVerifyPart (step: e)

 WSSVerifyPart verPart = factory.newWSSVerifyPart();

// Set the part to be specified by the keyword (step: f)

 verPart.setRequiredVerifyPart(WSSVerification.BODY);

442 Developing and deploying applications

// Set the candidates for the digest method for verification (step: g)

// DEFAULT : WSSVerifyPart.SHA1

 verPart.addAllowedDigestMethod(WSSVerifyPart.SHA256);

// Set the candidates for the transform method for verification (step: h)

// DEFAULT : WSSVerifypart.TRANSFORM_EXC_C14N : String

 verPart.addAllowedTransform(WSSVerifyPart.TRANSFORM_STRT10);

// Set WSSVerifyPart to WSSVerification (step: i)

 ver.addRequiredVerifyPart(verPart);

// Add WSSVerification to WSSConsumingContext (step: j)

 concont.add(ver);

//Validate the WS-Security header (step: k)

concont.process(msgcontext);

What to do next

You have completed configuring the signed part to be verified.

Configuring the client for response signature verification methods

Use the WSSVerification and WSSVerifyPart APIs to choose the signing verification methods. The request

signing verification methods include the digest algorithm and the transport methods.

Before you begin

To complete configuration of the signature verification information to secure SOAP messages, you must

perform the following algorithm tasks:

v Use the WSSVerification API to configure the canonicalization and signature methods.

v Use the WSSVerifyPart API to configure the digest and transform methods.

to configure the algorithm methods to use when configuring the client for request signing.

About this task

The following table describes the purpose of this information. Some of these definitions are based on the

XML-Signature specification, which is located at the following Web site http://www.w3.org/TR/xmldsig-core.

 Name of method Purpose

Digest algorithm Applies to the data after transforms are applied, if

specified, to yield the <DigestValue> element. Signing the

<DigestValue> element binds the resource content to the

signer key. The algorithm selected for the client request

sender configuration must match the algorithm selected in

the client request receiver configuration.

Transform algorithm Applies to the <Transform> element.

Signature algorithm Specifies the Uniform Resource Identifiers (URI) of the

signature verification method.

Canonicalization algorithm Specifies the Uniform Resource Identifiers (URI) of the

canonicalization method.

After configuring the client to digitally sign the message, you must configure the client to verify the digital

signature. You can use the WSS APIs or configure policy sets using the administrative console to verify

the digital signature and to choose the verification and verify part algorithms. If using the WSS APIs to

configure, use the WSSVerification and WSSVerifyPart APIs to specify which digitally signed message

parts to verify and to specify which algorithm methods to use when configuring the client for request

signing.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 443

http://www.w3.org/TR/xmldsig-core

The WSSVerification and WSSVerifyPart APIs perform the following steps to configure the signature

verification and verify parts algorithm methods:

1. For the consumer binding, the WSSVerification API specifies the signature methods to allow for the

signature verification. WebSphere Application Server supports the following pre-configured signature

methods:

v WSSVerification.RSA_SHA1 (the default value): http://www.w3.org/2000/09/xmldsig#rsa-sha1

v WSSVerification.HMAC_SHA1: http://www.w3.org/2000/09/xmldsig#hmac-sha1

The DSA-SHA1 digital signature method (http://www.w3.org/2000/09/xmldsig#dsa-sha1) is not

supported.

2. For the consumer binding, the WSSVerification API specifies the canonicalization method to allow for

the signature verification. WebSphere Application Server supports the following pre-configured

canonicalization methods by default:

v WSSVerification.EXC_C14N (the default value): http://www.w3.org/2001/10/xml-exc-c14n#

v WSSVerification.C14N: http://www.w3.org/2001/10/xml-c14n#

3. For the consumer binding, the WSSVerifyPart API specifies the digest method, as needed. WebSphere

Application Server supports the following digest method algorithms for signed parts verification:

v WSSVerifyPart.SHA1 (the default value): http://www.w3.org/2000/09/xmldsig#sha1

v WSSVerifyPart.SHA256: http://www.w3.org/2001/04/xmlenc#sha256

v WSSVerifyPart.SHA512: http://www.w3.org/2001/04/xmlenc#sha512

4. For the consumer binding, the WSSVerifyPart API specifies the transform method. WebSphere

Application Server supports the following transform algorithms for verify parts:

v WSSVerifyPart.TRANSFORM_EXC_C14N (the default value): http://www.w3.org/2001/10/xml-exc-
c14n#

v WSSVerifyPart.TRANSFORM_XPATH2_FILTER: http://www.w3.org/2002/06/xmldsig-filter2

v WSSVerifyPart.TRANSFORM_STRT10: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0#STR-Transform

v WSSVerifyPart.TRANSFORM_ENVELOPED_SIGNATURE: http://www.w3.org/2000/09/
xmldsig#enveloped-signature

For the WSS APIs, WebSphere Application Server does not support these algorithms:

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/TR/1999/REC-xpath-19991116

Results

You have specified which method to use when verifying a digital signature when the client sends a

message.

Example

The following example provides sample WSS API code that specifies the verification information, the body

as a part to be verified, the HMAC_SHA1 as a signature method, C14N and EXC_C14N as the candidates

of canonicalization methods, TRANSFORM_STRT10 as a transform method, and SHA256 as a digest

method.

// Get the message context

 Object msgcontext = getMessageContext();

// Generate the WSSFactory instance

 WSSFactory factory = WSSFactory.getInstance();

// Generate the WSSConsumingContext instance

 WSSConsumingContext concont = factory.newWSSConsumingContext();

// Generate the certificate list

444 Developing and deploying applications

String certpath = "intca2.cer";

// The location of the X509 certificate file

 X509Certificate x509cert = null;

 try {

 InputStream is = new FileInputStream(certpath);

 CertificateFactory cf = CertificateFactory.getInstance("X.509");

 x509cert = (X509Certificate)cf.generateCertificate(is);

 } catch(FileNotFoundException e1){

 throw new WSSException(e1);

 } catch (CertificateException e2) {

 throw new WSSException(e2);

 }

 Set<Object> eeCerts = new HashSet<Object>();

 eeCerts.add(x509cert);

// Create the certStore

 java.util.List<CertStore> certList = new

 java.util.ArrayList<CertStore>();

 CollectionCertStoreParameters certparam = new

 CollectionCertStoreParameters(eeCerts);

 CertStore cert = null;

 try {

 cert = CertStore.getInstance("Collection",

 certparam,

 "IBMCertPath");

 } catch (NoSuchProviderException e1) {

 throw new WSSException(e1);

 } catch (InvalidAlgorithmParameterException e2) {

 throw new WSSException(e2);

 } catch (NoSuchAlgorithmException e3) {

 throw new WSSException (e3);

 }

 if(certList != null){

 certList.add(cert);

 }

// Generate the callback handler

 X509ConsumeCallbackHandler callbackHandler = new

 X509ConsumeCallbackHandler(

 "dsig-receiver.ks",

 "jks",

 "server".toCharArray(),

 certList,

 java.security.Security.getProvider(

 "IBMCertPath")

);

// Generate the WSSVerification instance

 WSSVerification ver = factory.newWSSVerification(X509Token.class,

 callbackHandler);

// Set one or more candidates of the signature method used for

// verification (step. 1)

// DEFAULT : WSSVerification.RSA_SHA1

 ver.addAllowedSignatureMethod(WSSVerification.HMAC_SHA1);

// Set one or more candidates of the canonicalization method used for

// verification (step. 2)

// DEFAULT : WSSVerification.EXC_C14N

 ver.addAllowedCanonicalizationMethod(WSSVerification.C14N);

 ver.addAllowedCanonicalizationMethod(WSSVerification.EXC_C14N);

// Set the part to be specified by WSSVerifyPart

 WSSVerifyPart verPart = factory.newWSSVerifyPart();

// Set the part to be specified by the keyword

 verPart.setRequiredVerifyPart(WSSVerification.BODY);

// Set the candidates of digest methods to use for verification (step. 3)

// DEFAULT : WSSVerifypart.TRANSFORM_EXC_C14N : String

 verPart.addAllowedTransform(WSSVerifyPart.TRANSFORM_STRT10);

Chapter 11. Securing Web services applications using the WSS APIs at the message level 445

// Set the candidates of digest methods to use for verification (step. 4)

// DEFAULT : WSSVerifyPart.SHA1

 verPart.addAllowedDigestMethod(WSSVerifyPart.SHA256);

// Set WSSVerifyPart to WSSVerification

 ver.addRequiredVerifyPart(verPart);

// Add the WSSVerification to the WSSConsumingContext

 concont.add(ver);

// Validate the WS-Security header

concont.process(msgcontext);

What to do next

You have completed configuring the signature verification algorithms. Next, configure the encryption or

decryption algorithms, if not already configured. Or, configure the security token information, as needed.

Signature verification methods using the WSSVerification API

You can verify the signing or signature information using the WSS API for the consumer binding. The

signature and canonicalization algorithm methods are used for the generator binding. The WSSVerification

API is provided in the com.ibm.websphere.wssecurity.wssapi.verification package.

To configure consumer signing information to protect message integrity, you must first digitally sign and

then verify the signature for the SOAP messages. Integrity refers to digital signature while confidentiality

refers to encryption. Integrity decreases the risk of data modification when you transmit data across a

network.

Methods

Methods that are used for the signature verification include the:

Signature method

Sets the signature algorithm method.

Canonicalization method

Sets the canonicalization algorithm method.

The algorithm that is specified for the request generator configuration must match the algorithm that is

specified for the response consumer configuration.

Signature algorithms

The signature algorithms specify the signature verification algorithm that is used to sign the certificate. The

signature algorithms specify the Uniform Resource Identifiers (URI) of the signature verification method.

WebSphere Application Server supports the following pre-configured algorithms:

 Table 44. Signature verification algorithms

Algorithm Description

WSSVerification.HMAC_SHA1 A URI of the signature algorithm, HMAC:

http://www.w3.org/2000/09/xmldsig#hmac-sha1

WSSVerification.RSA_SHA1 (the default value) A URI of the signature algorithm, RSA:

http://www.w3.org/2000/09/xmldsig#rsa-sha1

WebSphere Application Server does not support the algorithm for DSA-SHA1: http://www.w3.org/2000/09/
xmldsig#dsa-sha1

446 Developing and deploying applications

Canonicalization algorithms

The canonicalization algorithms specify the Uniform Resource Identifiers (URI) of the canonicalization

method. WebSphere Application Server supports the following pre-configured algorithms:

 Table 45. Verification canonicalization algorithms

Algorithm Description

WSSVerification.C14N A URI of the inclusive canonicalization algorithm, C14N:

http://www.w3.org/2001/10/xml-c14n#

WSSVerification.EXC_C14N (the default value) A URI of the exclusive canonicalization algorithm

EXC_C14N: http://www.w3.org/2001/10/xml-exc-c14n#

The following example provides sample WSS API code that specifies the X.509 token security token for

signature verification:

WSSFactory factory = WSSFactory.getInstance();

WSSConsumingContext concont = factory.newWSSConsumingContext();

// X509ConsumeCallbackHandler

X509ConsumeCallbackHandler callbackHandler = new

 X509ConsumeCallbackHandler("dsig-receiver.ks",

 "jks",

 "server".toCharArray(),

 certList,

 java.security.Security.getProvider("IBMCertPath")46);

// Set the verification component

// DEFAULT verification parts: Body, WS-Addressing header, and Timestamp

// DEFAULT data encryption algorithm: RSA-SHA1

// DEFAULT digest algorithm: SHA1

// DEFAULT canonicalization algorithm: exc-c14n

WSSVerification ver = factory.newWSSVerification(X509Token.class,

 callbackhandler);

concont.add(ver);

// Validate the WS-Security header

concont.validate(msgctx);

Choosing the verify parts methods using the WSSVerifyPart API

You can configure the signing verification information for the consumer binding using the WSS API. The

transform algorithm and digest methods are used for the consumer binding. Use the WSSVerifyPart API to

configure the algorithm methods. The WSSVerifyPart API is provided in the

com.ibm.websphere.wssecurity.wssapi.verification package.

To configure consumer verify parts information to protect message integrity, you must first digitally sign and

then verify the signature and signed parts for the SOAP messages. Integrity refers to digital signature

while confidentiality refers to encryption. Integrity decreases the risk of data modification when you

transmit data across a network.

Methods

Methods that are used for the signing information include the:

Digest method

Sets the digest method.

Transform method

Sets the transform algorithm method.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 447

Digest algorithms

The digest method algorithm is specified within the element is used in the <Digest> element. WebSphere

Application Server supports the following pre-configured digest algorithms:

 Table 46. Verify parts digest methods

Digest method Description

WSSVerifyPart.SHA1 (the default value) A URI of the digest algorithm, SHA1:

http://www.w3.org/2000/09/xmldsig#sha1

WSSVerifyPart.SHA256 A URI of the digest algorithm, SHA256:

http://www.w3.org/2001/04/xmlenc#sha256

WSSVerifyPart.SHA512 A URI of the digest algorithm, SHA256:

http://www.w3.org/2001/04/xmlenc#sha512

Transform algorithms

The transform algorithm is specified within the <Transform> element and specifies the transform algorithm

for the signed part. WebSphere Application Server supports the following pre-configured transform

algorithms:

 Table 47. Verify parts transform methods

Digest method Description

WSSVerifyPart.TRANSFORM_ENVELOPED_SIGNATURE A URI of the transform algorithm, enveloped signature:

http://www.w3.org/2000/09/xmldsig#enveloped-signature

WSSVerifyPart.TRANSFORM_STRT10 A URI of the transform algorithm, STR-Transform:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-soap-message-security-1.0#STR-Transform

WSSVerifyPart.TRANSFORM_EXC_C14N (the default

value)

A URI of the transform algorithm, Exc-C14N:

http://www.w3.org/2001/10/xml-exc-c14n#

WSSVerifyPart.TRANSFORM_XPATH2_FILTER A URI of the transform algorithm, XPath2 filter:

http://www.w3.org/2002/06/xmldsig-filter2

For the WSS APIs, WebSphere Application Server does not support the following transform algorithms:

v http://www.w3.org/TR/1999/REC-xpath-19991116

v http://www.w3.org/2002/07/decrypt#XML

The following example provides sample WSS API code that verifies the body using SHA256 as the digest

method and TRANSFORM_EXC_14N and TRANSFORM_STRT10 as the transform methods:

 // get the message context

 Object msgcontext = getMessageContext();

 // generate WSSFactory instance

 WSSFactory factory = WSSFactory.getInstance();

 // generate WSSConsumingContext instance

 WSSConsumingContext concont = factory.newWSSConsumingContext();

 // generate the cert list

 String certpath = "intca2.cer";// The location of the X509

 certificate file X509Certificate x509cert = null;

 try {

 InputStream is = new FileInputStream(certpath);

 CertificateFactory cf = CertificateFactory.getInstance("X.509");

 x509cert = (X509Certificate)cf.generateCertificate(is);

 } catch(FileNotFoundException e1){

448 Developing and deploying applications

throw new WSSException(e1);

 } catch (CertificateException e2) {

 throw new WSSException(e2);

 }

 Set<Object> eeCerts = new HashSet<Object>();

 eeCerts.add(x509cert);

 // create certStore

 java.util.List<CertStore> certList = new java.util.ArrayList<CertStore>();

 CollectionCertStoreParameters certparam = new

 CollectionCertStoreParameters(eeCerts);

 CertStore cert = null;

 try {

 cert = CertStore.getInstance("Collection", certparam, "IBMCertPath");

 } catch (NoSuchProviderException e1) {

 throw new WSSException(e1);

 } catch (InvalidAlgorithmParameterException e2) {

 throw new WSSException(e2);

 } catch (NoSuchAlgorithmException e3) {

 throw new WSSException (e3);

 }

 if(certList != null){

 certList.add(cert);

 }

 // generate callback handler

 X509ConsumeCallbackHandler callbackHandler = new

 X509ConsumeCallbackHandler(

 "dsig-receiver.ks",

 "jks",

 "server".toCharArray(),

 certList,

 java.security.Security.getProvider("IBMCertPath")

);

 //generate WSSVerification instance

 WSSVerification ver = factory.newWSSVerification(X509Token.class,

 callbackHandler);

 //set one or more candidates of the signature method used for the

 //verification (step. 1)

 // DEFAULT : WSSVerification.RSA_SHA1

 ver.addAllowedSignatureMethod(WSSVerification.HMAC_SHA1);

 //set one or more candidates of the canonicalization method used

 //for the verification (step. 2)

 // DEFAULT : WSSVerification.EXC_C14N

 ver.addAllowedCanonicalizationMethod(WSSVerification.C14N);

 ver.addAllowedCanonicalizationMethod(WSSVerification.EXC_C14N);

 //set the part to be specified by WSSVerifyPart

 WSSVerifyPart verPart = factory.newWSSVerifyPart();

 //set the part to be specified by the keyword

 verPart.setRequiredVerifyPart(WSSVerification.BODY);

 //set the candidates of digest methods to use for verification (step. 3)

 // DEFAULT : WSSVerifypart.TRANSFORM_EXC_C14N

 verPart.addAllowedTransform(WSSVerifyPart.TRANSFORM_EXC_C14N);

 verPart.addAllowedTransform(WSSVerifyPart.TRANSFORM_STRT10);

 //set the candidates of digest methods to use for verification (step. 4)

 // DEFAULT : WSSVerifyPart.SHA1

 verPart.addAllowedDigestMethod(WSSVerifyPart.SHA256);

 //set WSSVerifyPart to WSSVerification

 ver.addRequiredVerifyPart(verPart);

 //add the WSSVerification to the WSSConsumingContext

Chapter 11. Securing Web services applications using the WSS APIs at the message level 449

concont.add(ver);

 //validate the WS-Security header

 concont.process(msgcontext);

Validating the consumer token to protect message authenticity

The token consumer information is used on the consumer side to incorporate and validate the security

token. The Username token, X509 tokens, and LTPA tokens by default are used for message authenticity.

Before you begin

The token processing and pluggable token architecture in the Web Service Security run time reuses the

same security token interface and Java Authentication and Authorization Service (JAAS) Login Module

from the Web Services Security APIs (WSS API). The same implementation of token creation and

validation can be used in both the WSS API and the WSS SPI in the Web Service Security run time.

Note: The com.ibm.wsspi.wssecurity.token.TokenConsumingComponent interface is not used with

JAX-WS Web services. If you are using JAX-RPC Web services, this interface is still valid.

Note that the key name (KeyName) element is not supported because there is no KeyName policy

assertion defined in the current OASIS Web Services Security draft specification. For similar reasons, a

SAML token is not supported.

About this task

The JAAS callback handler (CallbackHandler) and the JAAS login module (LoginModule) are responsible

for creating the security token on the generator side and validating (authenticating) the security token on

the consumer side.

For example, on the generator side, the Username token is created by the JAAS LoginModule and using

the JAAS CallbackHandler to pass the authentication data. The JAAS LoginModule creates the Username

SecurityToken object and passes it to the Web services security run time.

Then, on the consumer side, the Username Token XML format is passed to the JAAS LoginModule for

validation or authentication and the JAAS CallbackHandler is used to pass authentication data from the

Web services security run time to the LoginModule. After the token is authenticated, a Username

SecurityToken object is created and passed it to the Web Service Security run time.

Note: WebSphere Application Server does not support a stackable login module with the WebSphere

Application Server default login module implementation, meaning adding the login module before or

after the WebSphere Application Server login module implementation. If you want to stack the login

module implementations, you must develop the required login modules because there is no default

implementation.

The com.ibm.websphere.wssecurity.wssapi.token package provided by WebSphere Application Server

includes support for these classes:

v Security token (SecurityTokenImpl)

v Binary security token (BinarySecurityTokenImpl)

In addition, WebSphere Application Server provides the following pre-configured sub-interfaces for security

tokens:

v Derived key token

v Security context token (SCT)

v Username token

v LTPA token propagation

450 Developing and deploying applications

v LTPA token

v X509PKCS7 token

v X509PKIPath token

v X509v3 token

v Kerberos v5 token

The Username token, the X.509 tokens, and the LTPA tokens are used by default for message

authenticity. The derived key token and the X.509 tokens are used by default for signing and encryption.

The WSS API and WSS SPI are only supported on the client. To specify the security token type on the

consumer side, you can also configure policy sets using the administrative console. You can also use the

WSS APIs or policy sets for matching generator security tokens.

The default Login Module and Callback implementations are designed to be used as a pair, meaning both

a generator and a consumer part. To use the default implementations, select the appropriate generator

and consumer security token in a pair. For example, select system.wss.generate.x509 in the token

generator and system.wss.consume.x509 in the token consumer when the X.509 token is required.

To configure the consumer-side security token, use the appropriate pre-configured token consumer

interface from the WSS APIs to complete the following token configuration process steps:

 1. Generate the wssFactory instance.

 2. Generate the wssConsumingContext instance.

The WSSConsumingContext interface stores the components for consuming Web Services Security

(WS-Security), such as verification, decryption, the security token, and the time stamp. When the

validate() method is called, all of these components are validated.

 3. Create the consumer-side components, such as the WSSVerification and the WSSDecryption objects.

 4. Specify a JAAS configuration by specifying the name of the JAAS login configuration. The Java

Authentication and Authorization Service (JAAS) configuration specifies the name of the JAAS

configuration. The JAAS configuration specifies how the token logs in on the consumer side. Do not

remove the predefined system or application login configurations. However, within these

configurations, you can add module class names and specify the order in which WebSphere

Application Server loads each module.

 5. Specify a token consumer class name. The token consumer class name specifies the required

information to validate the SecurityToken. The Username token, the X.509 tokens, and the LTPA

tokens are used by default for message authenticity.

 6. Specify the settings for the callback handler by specifying a callback handler class name and also

specifies the callback handler keys. This class name is the name of the callback handler

implementation class that is used for the plug-in to the security token framework.

WebSphere Application Server provides the following default callback handler implementations for the

consumer side:

com.ibm.websphere.wssecurity.callbackhandler.PropertyCallback

This class is a callback for handling the name-value pair in elements in the Web Services

Security (WS-Security) configuration XMI files.

ccom.ibm.websphere.wssecurity.callbackhandler.UNTConsumeCallbackHandler

This class is a callback handler for the Username token on the consumer side. This instance

is used to set into WSSConsumingContext object to validate a Username token. Use this

implementation for a Java Platform, Enterprise Edition (Java EE) application client only.

com.ibm.websphere.wssecurity.callbackhandler.X509ConsumeCallbackHandler

This class is a callback handler that is used to validate the X.509 certificate that is inserted in

the Web services security header within the SOAP message as a binary security token on the

consumer side. This instance is used to generate the WSSVerification object and

Chapter 11. Securing Web services applications using the WSS APIs at the message level 451

WSSDecryption objects, set the objects into WSSConsumingContext object to validate the

X.509 binary security tokens. A keystore and a key definition are required for this callback

handler. If you use this implementation, a key store password, path, and type must have been

provided on the generator side.

com.ibm.websphere.wssecurity.callbackhandler.LTPAConsumeCallbackHandler

This class is a callback handler for the Lightweight Third Party Authentication (LTPA) tokens

on the consumer side. This instance is used to generate the WSSVerification and

WSSDecryption objects to validate an LTPA token.

 This callback handler is used to validate the LTPA security token inserted in the Web services

security header within the SOAP message as a binary security token. However, if the user

name and password are specified, WebSphere Application Server authenticates the user

name and password to obtain the LTPA security token rather than obtaining it from the Run

As Subject. Use this callback handler only when the Web service is acting as a client on the

application server. It is recommended that you do not use this callback handler on a Java EE

application client. If you use this implementation, a basic authentication user ID and password

must have been provided on the generator side.

com.ibm.websphere.wssecurity.callbackhandler.KRBTokenConsumeCallbackHandler

This class is a callback handler for the Kerberos v5 token on the consumer side. This

instance is used to set the WSSConsumingContext object to consume the Kerberos v5

AP-REQ as a binary security token. The instance is also used to generate the

WSSVerification and WSSDecryption objects to use the Kerberos session key or derived key

in the SOAP message verification and decryption.

 7. If a X.509 token is specified, additional token information is also specified.

 keyStoreRef The reference name of the keystore that is used for the key locator.

keyStorePath The keystore file path from which the keystore is loaded, if needed. It is

recommended that you use the ${USER_INSTALL_ROOT} in the path name as this

variable expands to the WebSphere Application Server path on your machine. This

path is required when you use the X.509 tokens callback handler implementations.

keyStorePassword The password that is used to check the integrity of the keystore, or the keystore

password that is used to unlock the keystore and to access the keystore file. The

keystore and its configuration are used for some of the default callback handler

implementations that are provided by WebSphere Application Server.

keyStoreType The keystore type of keystore that is used for the key locator. This selection

indicates the format that is used by the keystore file. The following values are

available for selection:

JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS Use this option if the Java Cryptography Extension is configured in the

software development kit (SDK). The default IBM JCE is configured in

WebSphere Application Server. This option provides stronger protection for

stored private keys by using Triple DES encryption.

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS

only).

PKCS11KS (PKCS11)

Use this format if your keystore uses the PKCS#11 file format. Keystores

using this format might contain RSA keys on cryptographic hardware or

might contain encrypt keys that use cryptographic hardware to ensure

protection.

PKCS12KS (PKCS12)

Use this option if your keystore uses the PKCS#12 file format.

452 Developing and deploying applications

alias The key alias name. The key alias is used by the key locator to find the key within

the keystore file.

keyPassword The key password that is used for recovering the key. This password is needed to

access the key object within the keystore file.

keyName The name of the key. For digital signatures, the key name is used by the request

generator or response consumer signing information to determine which key is

used to digitally sign the message. For encryption, the key name is used to

determine the key used for encryption. The key name must be a fully qualified,

distinguished name (DN). For example, CN=Bob,O=IBM,C=US.

trustAnchorPath The file path from which the trust anchor is loaded.

trustAnchorType The type of trust anchor.

trustAnchorPassword The password that is used to check the integrity of the trust anchor or the password

used to unlock the keystore.

certStores A list of certificate stores. A collection certificate store includes a list of untrusted,

intermediary certificates and certificate revocation lists (CRLs). The collection

certificate store is used to validate the certificate path of the incoming

X.509-formatted security tokens.

provider The security provider.

The following can be specified for a X.509 token:

a. Without any keystore.

b. With a trust anchor. A trust anchor specifies a list of keystore configurations that contain trusted

root certificates. These configurations are used to validate the certificate path of incoming

X.509-formatted security tokens. For example, when you select the trust anchor or the certificate

store of a trusted certificate, you must configure the trust anchor and the certificate store before

setting the certificate path.

c. With a keystore that is used for the key locator.

First, you must have created the keystore file, by using a key tool utility, for example. The

keystore is used to retrieve the X.509 certificate. This entry specifies the password that is used to

access the keystore file. Keystore objects within trust anchors contain trusted root certificates that

are used by the CertPath API to validate the trustworthiness of a certificate chain. The names of

the trust anchor and the collection certificate store are created in the certificate path under your

token consumer.

d. With a keystore that is used for the key locator and the trust anchor.

e. With a map that includes key-value pairs. For example, you might specify the value type name

and the value type Uniform Resource Identifier (URI). The value type specifies the namespace

URI of the value type for the consumer token, and represents the token type of this class:

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509

Specifies an X.509 certificate token.

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

Specifies X.509 certificates in a public key infrastructure (PKI) path. This callback handler

is used to create X.509 certificates encoded with the PkiPath format. The certificate is

inserted in the Web services security header within the SOAP message as a binary

security token. A keystore is required for this callback handler. A CRL is not supported by

the callback handler; therefore, the collection certificate store is not required or used. If

you use this implementation, you must provide a key store password, path, and type on

this panel.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 453

ValueType: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#PKCS7

Specifies a list of X.509 certificates and certificate revocation lists in a PKCS#7 format.

This callback handler is used to create X.509 certificates encoded with the PKCS#7

format. The certificate is inserted in the Web services security header in the SOAP

message as a binary security token. A keystore is required for this callback handler. You

can specify a certificate revocation list (CRL) in the collection certificate store. The CRL is

encoded with the X.509 certificate in the PKCS#7 format. If you use this implementation,

you must provide a key store password, path, and type.

For some tokens, WebSphere Application Server provides a predefined local name for the value

type. When you specify the following local name, you do not need to specify a value type URI:

ValueType: http://www.ibm.com/websphere/appserver/tokentype/5.0.2

For an LTPA token, you can use LTPA for the value type local name. This local name

causes http://www.ibm.com/websphere/appserver/tokentype/5.0.2 to be specified for

the value type Uniform Resource Identifier (URI).

ValueType: http://www.ibm.com/websphere/appserver/tokentype/5.0.2

For LTPA token propagation, you can use LTPA_PROPAGATION for the value type local

name. This local name causeshttp://www.ibm.com/websphere/appserver/tokentype to be

specified for the value type Uniform Resource Identifier (URI).

 8. If the Username token is specified as the token consumer class name, the following token information

can be specified:

a. Whether to specify the nonce.

This option indicates whether a Nonce is included for the token consumer. Nonce is a unique,

cryptographic number that is embedded in a message to help stop repeat, unauthorized attacks of

Username tokens. Nonce is valid only when the validating token type is a Username token, and it

is available only for the response consumer binding.

b. Specifies the keyword of the time stamp. This option indicates whether to verify a time stamp in

the Username token. The time stamp is valid only when the incorporated token type is a

Username token.

c. Specifies a map that includes key-value pairs. For example, you might specify the value type

name and the value type Uniform Resource Identifier (URI). The value type specifies the

namespace URI of the value type for the consumer token, and represents the token type of this

class:

URI value type: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#UsernameToken

Specifies a Username token.

 9. If a Kerberos v5 token is specified as the token generator class name, the following token information

can be specified:

 Token Information Description Default Value

tokenValueType Kerberos token value type in QName

defined by Oasis Kerberos Token

Profile v1.1 specification.

http://docs.oasis-open.org/wss/oasis-
wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ

requireDKT A boolean value to require a derived

key for message protection.

false

clabel The client label for the derived key. WS-SecureConversation

Specify null to use the default value.

slabel The service label for the derived key. WS-SecureConversation

Specify null to use the default value.

454 Developing and deploying applications

Token Information Description Default Value

keylen The length of the derived key. 16

Specify zero to use the default value

supportTokenRequireSHA1 A boolean value to require a SHA1

key that is used in subsequent

request messages when the Kerberos

token is used as a supporting token.

false

SHA1 key is consumed only if the

supporting Kerberos token is

protected. If set to true, the SHA1 key

is always consumed.

decComponent An instance of WSSDecryption . Set decComponent and

verComponent to null to initialize this

first for either the decryption or

verification component. Then, use the

initialized component only in the

callback handler constructor for the

second component.

verComponent An instance of WSSVerfication. Set decComponent and

verComponent to null to initialize this

first for either the decryption or

verification component. Then, use the

initialized component only in the

callback handler constructor for the

second component.

Additional token value types are defined in the OASIS Kerberos Token Profile v1.1 specification.

Specify the token value type as the local name. It is not necessary to specify the value type URI for

the Kerberos v5 token.

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ1510

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-1.1#Kerberosv5_AP_REQ4120

v http://docs.oasis-open.org/wss/oasis-wss-kerberos-token-profile-
1.1#GSS_Kerberosv5_AP_REQ4120

10. If secure conversation is used for message protection, then the following information must be

specified:

 Information Description

EncryptionAlgorithm This determines the key size.

cLabel The client label used when creating the derived key.

sLabel The server label used when creating the derived key.

11. Set the components into the wssConsumingContext object.

12. Invoke the wssConsumingContext.process() method.

Results

Using the WSS APIs, you have configured the token consumer.

What to do next

You must specify a similar token generator configuration, if not already completed.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 455

Configuring the consumer security tokens using the WSS API

You can secure the SOAP messages, without using policy sets, by using the Web Services Security APIs.

To configure the token on the consumer side, use the Web Services Security APIs (WSS API). The

consumer security tokens are part of the com.ibm.websphere.wssecurity.wssapi.token interface package.

Before you begin

The pluggable token framework in WebSphere Application Server has been redesigned so that the same

framework from the WSS API can be reused. The same implementation of creating and validating security

token can be used both for the Web Service Security run time and for the WSS API application code. The

redesigned framework also simplifies the SPI programming model and will make it easier to add security

token types.

You can use the WSS API or you can configure the tokens by using the administrative console. To

configure tokens, you must have completed the following token task: configure the generator tokens, as

needed.

About this task

On the generator side, the JAAS CallbackHandler and JAAS LoginModule are responsible for creating the

security token. The token is created by using the JAAS LoginModule and by using JAAS CallbackHandler

to pass authentication data. Then, the JAAS LoginModule creates the securityToken object, such as the

UsernameToken, and passes it to the Web Service Security run time.

On the consumer side, the XML format is passed to the JAAS LoginModule for validation or authentication.

then the JAAS CallbackHandler is used to pass authentication data from the Web Service Security run

time to the LoginModule. After the token is authenticated and a security token object is created, then the

token is passed it to the Web Service Security run time.

When using the WSS API for consumer token validation, certain default behaviors occur. The simplest way

to use the WSS API is to use the default JAAS login module and callback handler. The example uses the

default for them so the example does not specify the JAAS login module name.

The simplest way to use the WSS API is to use the default behavior (see the example code). The WSS

API provide defaults for the token type, the token value, and the JAAS configuration name. The default

token behaviors include:

 Table 48. Default token behaviors

Consumer token decisions Default behavior

Which token type to use The token type specifies which type of token to use for signing and

validating messages. The X.509 token is the default token type.

WebSphere Application Server provides the following pre-configured

consumer token types:

v Security context token

v Derived key token

v X509 tokens

You can also create custom token types, as needed.

What JAAS login configuration name to

specify

The JAAS login configuration name specifies which JAAS login

configuration name to use.

Which configuration type to use The JAAS login module configuration type. Only the pre-configured

consumer configuration types can be used for consumer token types.

456 Developing and deploying applications

The SecurityToken class (com.ibm.websphere.wssecurity.wssapi.token.SecurityToken) is the generic token

class and represents the security token that has methods to get the identity, XML format, and

cryptographic keys. Using the SecurityToken class, you can apply both the signature and encryption to the

SOAP message. However, to apply both, you must have two SecurityToken objects, one for the signature

and one for encryption, respectively.

The following token types are subclasses of the generic security token class:

 Table 49. Subclasses of the SecurityToken

Token type JAAS login configuration name

Security context token system.wss.consume.sct

Derived key token system.wss.consume.dkt

The following token types are subclasses of the binary security token class:

 Table 50. Subclasses to the BinarySecurityToken

Token type JAAS login configuration name

X.509 token system.wss.consume.x509

X.509 PKI Path token system.wss.consume.pkiPath

X.509 PKCS7 token system.wss.consume.pkcs7

Notes:

v For each JAAS login token consumer configuration name, there is a respective token generator

configuration name. For example, for the X509Token, the respective token generator configuration name

is system.wss.generate.x509.

v The LTPA and LTPA propagation tokens are only available to a requester that is running as a

server-based client. The LTPA and LTPA propagation tokens are not supported for the Java SE 6 or

Java EE application client.

To validate the X509Token to the SOAP message on the consumer side, the <X509Token> element must

be in the <wsse:Security> element.

1. To validate the securityToken package, com.ibm.websphere.wssecurity.wssapi.token, first ensure that

the application server is installed.

2. If using the default values, configures the tokens for the Web Services Security token consumer

process. , for each token type, the process is similar to the following token consumer process:

a. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

b. Creates the WSSConsumingContext instance from the WSSFactory instance. Note that the

WSSConsumingContext must always be called in a JAX-WS client application.

c. Creates a JAAS CallbackHandler with information that is required to validate the security token.

Review the token class information for which parameters are required or optional. For example, for

an X.509 token, you could configure the following:

 keyStoreRef Indicates the reference name of the keystore that is stored in the

cryptographic card. It can be specified when the card is set to the

hardware.

keyStorePath Indicates the path of the keystore file. It is not necessary to specify the

keyStorePath if the keyStoreRef is set.

keyStorePassword Indicates the password of the keystore file.

keyStoreType Indicates the type of keystore file.

alias Indicates the alias of the key.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 457

keyPassword Indicates the password of the key.

keyName Indicates the subject name of the key.

d. Sets the callback handler into WSSDecryption, WSSVerification, or WSSConsumingContext.

e. If the callback handler is set into the WSSDecryption or WSSVerification, adds either one into

WSSConsumingContext.

f. Calls WSSConsumingContext.process().

3. If using other than the default values, configures the tokens for the Web Services Security token

consumer process. For each token type, the process is similar to the following token consumer

process:

a. If you do not use the default JAAS login module and callback handler, you need to prepare a

custom one and register the name of JAAS login configuration using the administrative console in

advance.

b. Uses WSSFactory.getInstance() to get the WSS API implementation instance.

c. Creates the WSSConsumingContext instance from the WSSFactory instance. Note that the

WSSConsumingContext must always be called in a JAX-WS client application.

d. Creates a callback handler with information that is required to validate the security token. Review

the token class information for which parameters are required or optional. For example, for a X.509

token, you can configure the following:

 keyStoreRef Indicates the reference name of the keystore that is stored in the

cryptographic card. It can be specified when the card is set to the

hardware.

keyStorePath Indicates the path of the keystore file. It is not necessary to specify the

keyStorePath if the keyStoreRef is set.

keyStorePassword Indicates the password of the keystore file.

keyStoreType Indicates the type of keystore file.

alias Indicates the alias of the key.

keyPassword Indicates the password of the key.

keyName Indicates the subject name of the key.

e. Sets JAAS configuration name and callback handler into WSSDecryption or WSSVerification, or

WSSConsumingContext.

f. If JAAS configuration name and callback handler are set into the WSSDecryption or

WSSVerification, adds either one into WSSConsumingContext.

g. Calls WSSConsumingContext.process().

Results

If there is an error condition, a WSSException is provided. If successful, the

WSSConsumingContext.process() is called, and the security token on the consumer side is validated

(authenticated).

Example

The following sample code provides the WSS API example code for decryption using the default JAAS

login module and callback handler:

// Get the message context

 Object msgcontext = getMessageContext();

// Generate the WSSFactory instance (step: a)

 WSSFactory factory = WSSFactory.getInstance();

458 Developing and deploying applications

// Generate the WSSConsumingContext instance (step: b)

 WSSConsumingContext gencont = factory.newWSSConsumingContext();

// Generate the callback handler (step: c)

 X509ConsumeCallbackHandler callbackHandler = new

 X509ConsumeCallbackHandler(

 "",

 "enc-sender.jceks",

 "jceks",

 "storepass".toCharArray(),

 "alice",

 "keypass".toCharArray(),

 "CN=Alice, O=IBM, C=US");

// Generate the WSSDecryption instance (step: d)

 WSSDecryption dec = factory.newWSSDecryption(X509Token.class,

 callbackHandler);

// Add WSSDecryption to WSSConsumingContext (step: e)

 concont.add(dec);

// Validate the WS-Security header (step: f)

concont.process(msgcontext);

What to do next

For each token type, configure the token using the WSS APIs or using the administrative console. Next,

specify the similar generator tokens if you have not done so.

If both the generator and consumer tokens are configured, continue securing SOAP messages at the

response consumer using the WSS APIs or configure the tokens using the administrative console.

If both the generator and consumer tokens are configured, continue securing SOAP messages either by

verifying the signature or by decrypting the message, as needed. You can use either the WSS APIs or the

administrative console to secure the SOAP messages.

Configuring Web services security using the WSS APIs

The Web Services Security application programming interfaces (WSS API) provide support for securing

SOAP message.

Before you begin

Web Service Security supports the following programming models:

v Programming API for securing SOAP message with Web Service Security (WSS API).

The API programming model design has been redesigned. The new design is an interface-based

programming model and is based on Web Services Security Version 1.1 standards but the design also

includes support for Web Services Security Version 1.0 for securing the SOAP message. The WSS API

programming model implementation is a simplified version, which is based on an early draft proposal of

JSR-183, which is the JSR for defining Java API binding for Web Service Security. By design, because

the application code is programmed to the interface, any application code that is programmed with the

open source implementation should be able to run on the WebSphere Application Server with minimal

changes or no changes at all.

v Service Programming Interfaces (SPI) for a service provider

Similarly, the Web Service Security run time token generation and token consuming SPI have been

redesign so that the same security token interface and JAAS Login Module implementation can be used

for both the WSS API and the SPI. The WSS SPI for the service provider extend the security token

types and provide keys and deriving keys for signing, signature verification, encryption and decryption.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 459

About this task

These programming models extend the following functions :

v Security token types and deriving keys for signing

v Signature and verification

v Encryption and decryption

The following figure demonstrates how to use the simplified WSS APIs to secure a SOAP message by

using XML digital signature and XML encryption.

The configuration model for Web services has also been redesigned from a deployment descriptor model

to a policy set model. The configuration programming model is based on configuring policy sets using a

security policy to specify security constraints.

The functions provided by the policy set configurations are the same as the functions supported by the

WSS API for the Web Service Security run time. However, the security policy that is defined using policy

sets has a higher priority over the WSS API. When the WSS API and the policy set are both used in the

application, the default behavior is for the security policy from the policy set to be enforced and the WSS

API to be ignored. To use the WSS API in the application, you must make sure that there is no policy set

attached to the application or to the application resources, or make sure there is no security policy in the

attached policy set.

Web Service Security can be enabled by either using a policy set that is configured by using the

administrative console, or by using the WSS API for configuration.

Using the WSS API, complete the following high-level steps to secure the SOAP message:

 1. Use the WSSSignature API to configure the signing information for the request generator (client side)

binding. Different message parts can be specified in the message protection for a request on the

generator side. The default required parts are BODY, ADDRESSING_HEADERS, and TIMESTAMP.

The WSSSignature API also specifies the different algorithm methods to be used with the signature

for message protection. The default signature method is RSA_SHA1. The default canonicalization

method is EXC_C14N.

 2. Use the WSSSignPart API if you want to add or change the signed parts to be used for message

protection. The default signed parts are WSSSignature.BODY,

WSSSignature.ADDRESSING_HEADERS, and WSSSignature.TIMESTAMP.

The WSSSignPart API also specifies the different algorithm methods to be used if you added or

changed the signed parts. The default digest method is SHA1. The default transform method is

TRANSFORM_EXC_C14N. For example, use the WSSSignPart API if you want to generate the

signature for the SOAP message using the SHA256 digest method instead of the default value of

SHA1.

 3. Use the WSSEncryption API to configure the encryption information on the request generator side.

The encryption information on the generator side is used for encrypting an outgoing SOAP message

for the request generator (client side) bindings. The default targets of encryption are

BODY_CONTENT and SIGNATURE

The WSSEncryption API also specifies the different algorithm methods to be used to protect message

confidentiality. The default data encryption method is AES128. The default key encryption method is

KW_RSA_OAEP.

 4. Use the WSSEncryptPart API if you want to add or change the encrypted parts to be used for

message confidentiality. For example, if you want to change the data encryption method from the

default value of AES128 to TRIPLE_DES.

No algorithm methods are required for encrypted parts.

 5. Use the WSS API to attach the token on the generator side. The requirements for the security token

depend on the token type. The JAAS Login Module and the JAAS CallbackHandler are responsible

460 Developing and deploying applications

for creating the security token on the generator side. Different standalone tokens can be sent in

request or response. The default token is the X509Token. The other token that can be used for

signing is the DerivedKeyToken, which is used only with Web Services Secure Conversation

(WS-SecureConversation).

 6. Use the WSSVerification API to verify the signature for the response consumer (client side) binding.

Different message parts can be specified in the message protection for a response on the consumer

side. The required targets for verification are BODY, ADDRESSING_HEADERS, and TIMESTAMP.

The WSSVerification API also specifies the different algorithm methods to be used for verifying the

signature and for message protection. The default signature method is RSA_SHA1. The default

canonicalization method is EXC_C14N.

 7. Use the WSSVerifyPart API to add or change the verify signed parts to be used for message

protection. The required verify parts are WSSVerification.BODY,

WSSVerification.ADDRESSING_HEADERS, and WSSVerification.TIMESTAMP.

The WSSVerifyPart API also specifies the different algorithm methods to be used if you added or

changed the verification parts. The default digest method is SHA1. The default transform method is

TRANSFORM_EXC_C14N.

 8. Use the WSSDecryption API to configure the decryption information for the response consumer (client

side) binding. The decryption information on the consumer side is used for decrypting an incoming

SOAP message. The default targets of decryption are BODY_CONTENT and SIGNATURE. The

default data encryption method is AES128. The default key encryption method is KW_RSA_OAEP.

No algorithm methods are required for decryption.

 9. Use the WSSDecryptPart API if you want to add or change the decrypted parts to be used for

message confidentiality. For example, if you want to change the data encryption method from the

default value of AES128 to TRIPLE_DES.

No algorithm methods are required for decrypted parts.

10. Use the WSS API to configure the token on the consumer side. The requirements for the security

token depend on the token type. The JAAS Login Module and the JAAS CallbackHandler are

responsible for validating (authenticating) the security token on the consumer side. Different

standalone tokens can be sent in request or response.

The WSS API adds the information for the candidate token that is used for decryption. The default

token is X509Token.

Results

What to do next

The Web Service Security run time token generation and token consuming Service Programming

Interfaces (SPI) have been redesign so that the same Security Token interface and JAAS Login Module

implementation can be used in both the WSS API and the SPI. See the SPI information for detail

descriptions.

Web services security APIs

The Web services security programming model provides application programming interfaces (WSS API) for

securing the SOAP message. The WSS API model is based on Web Services Security Version 1.1

standards but also includes support for Web Services Security Version 1.0.

The Web services security APIs (WSS APIs) can generate and process the following SOAP-related

bindings for XML security:

v XML signature and signature verification

v XML encryption and decryption

Chapter 11. Securing Web services applications using the WSS APIs at the message level 461

The token processing and pluggable token architecture in the Web service security run time has been

redesign to reuse the same Security Token interface and the JAAS Login Module as those used for the

WSS APIs.

The following table lists the WSS API interfaces that are provided with WebSphere Application Server and

used to configure signing and encryption information in the SOAP bindings for the generator and

consumer bindings.

 Table 51. WSS API interfaces

WSS API interfaces Description

WSSDecryption Package: com.ibm.websphere.wssecurity.wssapi.decryption

This interface is responsible for specifying decryption. The default values for

decryption include:

v Targets: BODY_CONTENT, SIGNATURE

v Data encryption method: AES128

v Key encryption method: KW_RSA_OAEP

v Security token: X.509

WSSDecryptPart Package: com.ibm.websphere.wssecurity.wssapi.decryption

This interface is responsible for adding decrypted parts, as needed. If specified, the

default values for decrypted parts include:

v Security token: X.509

v Transform method: N/A (not applicable)

WSSEncryption Package: com.ibm.websphere.wssecurity.wssapi.encryption

This interface is responsible for the encryption component. The default values for

encryption include:

v Targets: BODY_CONTENT, SIGNATURE

v Data encryption method: AES128

v Key encryption method: KW_RSA_OAEP

v Security token: X.509

v refType: SecurityToken.REF_KEYID

v mtomOptimize: false

WSSEncryptPart Package: com.ibm.websphere.wssecurity.wssapi.encryption

This interface is responsible for adding encrypted parts, as needed. If specified, the

default values for encrypted parts include:

v Transform method: N/A (not applicable)

WSSSignature Package: com.ibm.websphere.wssecurity.wssapi.signature

This interface is responsible for specifying the signature. The default values for

signature include:

v Targets: BODY, ADDRESSING_HEADERS, TIMESTAMP

v Signature method: RSA_SHA1

v Canonicalization method: EXC_C14N

v Security token: X.509

v Type of token reference: SecurityToken.REF_STR

462 Developing and deploying applications

Table 51. WSS API interfaces (continued)

WSS API interfaces Description

WSSSignPart Package: com.ibm.websphere.wssecurity.wssapi.signature

This interface is responsible for adding signed parts, as needed. If specified, the

default values for signed parts include:

v Transform method : TRANSFORM_EXC_C14N

v Digest method: SHA1

WSSVerification Package: com.ibm.websphere.wssecurity.wssapi.verification

This interface is responsible for specifying the signature verification. The default

values for verification include:

v Targets: BODY, ADDRESSING_HEADERS, TIMESTAMP

v Signature method: RSA_SHA1

v Canonicalization method: EXC_C14N

v Security token: X.509

WSSVerifyPart Package: com.ibm.websphere.wssecurity.wssapi.verification

This interface is responsible for adding verify parts, as needed. If specified, the

default values for verify parts include:

v Digest method: SHA1

v Transform method: TRANSFORM_EXC_C14N

Also see the information about pre-configured generator and consumer tokens.

Web services security configuration considerations when using the

WSS API

To secure Web services security for WebSphere Application Server, you can specify several different

configurations using the Web Services Security APIs (WSS API). The Web services security specification

provides a flexible way to secure Web services messages using XML digital signature, XML encryption,

and attaching security tokens. You can enable Web services security by either configuring a policy set or

by using the Web services security APIs (WSS API). The implementation for WSS API has default values

for which message parts are to be signed or encrypted. The default values for the WSS APIs help end

users to enable Web services security quickly.

Different message parts can be specified in the message protection for request or response, and different

standalone tokens can be sent in request or response. However, there is only one symmetric or one

asymmetric binding assertion to describe the token type and the algorithm that is used for message

protection.

Using the WSS API, you can override any default values. However, when you alter the protection parts,

note that all the default protection parts are cleared. For example, if you specify that you want to encrypt

the Username token instead of the default X.509 token, all the default values of the encrypting protection

parts are cleared.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 463

The following table shows an example of the relationships between each of the configurations:

 Table 52. Request generator and response consumer configurations

Type of

configuration

Configuration

name Configurations and default values

Request generator Signing information v Canonicalization method: WSSSignature.EXC_C14N

v Signature method: WSSSignature.RSA_SHA1

v Digest method: WSSSignPart.SHA1

v Transform method: WSSSignPart.TRANSFORM_EXC_C14N

v Signed part - Body: WSSSignature.BODY

v Signed part - Addressing: WSSSignature.ADDRESSING_HEADERS

v Signed part - Timestamp: WSSSignature.TIMESTAMP

v Token reference: SecurityToken.REF_STR

v Token - Value type: X509Token.ValueType

v Token - JAAS login configuration name: system.wss.generate.x509

Response consumer Signature

verification

information

v Canonicalization method: WSSVerification.EXC_C14N

v Signature method: WSSVerification.RSA_SHA1

v Transform method: WSSVerifyPart.TRANSFORM_EXC_C14N

v Signed part - Body: WSSVerification.BODY

v Signed part - Addressing:

WSSVerification.ADDRESSING_HEADERS

v Signed part - Timestamp: WSSVerification.TIMESTAMP

v Token - Value type: X509Token.ValueType

v Token - JAAS login configuration name: system.wss.consume.x509

Request generator Encryption

information

v Encrypted key: true

v Key encryption method: WSSEncryption.KW_RSA_OAEP

v Data encryption method: WSSEncryption.AES128

v Encryption part: WSSEncryption.BODY_CONTENT

v Token reference: SecurityToken.REF_KEYID

v Token - Value type: X509Token.ValueType

v Token - JAAS login configuration name: system.wss.generate.x509

Response consumer Decryption

information

v Encrypted key: true

v Key decryption method: WSSDecryption.KW_RSA_OAEP

v Data decryption method: WSSDecryption.AES128

v Decryption part: WSSDecryption.BODY_CONTENT

v Token - Value type: 509Token.ValueType

v Token - JAAS login configuration name: system.wss.consume.x509

Encrypted SOAP headers

The encrypted header element provides a standard way of encrypting SOAP headers. As one of the

extensions to the OASIS SOAP message security specification, the encrypted header element indicates

that the responder has processed the request. Encrypting SOAP headers and parts help to provide more

secure message-level security.

The EncryptedHeader or <wsse11:EncryptedHeader> element is a part of the updated Web Services

Security Version 1.1 standard and enables interoperability with other vendors that support the Version 1.1

standards, such as Microsoft .NET.

464 Developing and deploying applications

Use the EncryptedHeader element for encrypting SOAP header blocks. The EncryptedHeader element

allows Web Services Security to be compliant with the SOAP mustUnderstand processing guidelines and

to prevent disclosure of information that is contained in attributes on a SOAP header block.

The <wsse11:EncryptedHeader> element must contain one <xenc:EncryptedData> element. Only one

<xenc:EncryptedData> element per encrypted header element is permitted.

Encrypted data element

Normally, the programming model, such as JAX-WS, deserializes the SOAP message to a Java binding

object before dispatching the call to the application code. However, if the SOAP message is encrypted, the

deserialization fails because, before encryption, the original content is replaced with the EncryptedData

XML element from the XML Encryption standard.

In certain cases, it might be desirable for the token that is included in the <wsse:Security> header to be

encrypted for the recipient processing role.

Follow these guidelines when using the EncryptedData element:

v The EncryptedHeader element must contain one EncryptedData element.

v The <xenc:EncryptedData> element may be used to contain a security token and include it in the

<wsse:Security> header.

v The <xenc:EncryptedData> must not include an XML ID for referencing the contained security token.

v All <xenc:EncryptedData> tokens must either have an embedded encryption key or must be referenced

by a separate encryption key.

v If compliance with Basic Security Profile 1.1 is desired, the <xenc:EncryptedData> element must have

an Id attribute.

Policy assertion for encrypted parts

The EncryptedParts policy assertion specifies which header is to be encrypted in the security policy. The

following table describes the elements and attributes that can be used for EncryptedParts.

 Table 53. Attributes and elements of the EncryptedParts element

Element or attribute Description

/sp:EncryptedParts/sp:Header Optional. Presence of this optional element indicates that a specific SOAP

header (or set of such headers) must be protected. You can have multiple

sp:Header elements within a single EncryptedParts element.

Each header (or set of headers) must be encrypted, and this encryption will

encrypt the elements by using Web Services Security Version 1.1 encrypted

headers. As such, if WS-Secuirty 1.1 Encrypted Headers are not supported

by a service, then the headers cannot be encrypted by using message-level

security.

If multiple SOAP headers with the same local name but different

namespace names are to be encrypted, multiple sp:Header elements are

required, either as part of a single sp:EncryptedParts assertion or as part of

separate sp:EncryptedParts assertions.

/sp:EncryptedParts/sp:Header/@Name Optional. This attribute indicates the local name of the SOAP header to be

confidentiality protected. If this attribute is not specified, all SOAP headers

whose namespace matches the Namespace attribute are to be protected.

/sp:EncryptedParts/sp:Header/
@Namespace

Required. This attribute indicates the namespace of the SOAP headers to

be confidentiality protected.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 465

The following message example shows what the EncryptedHeader element looks like on a message

where the EncryptedParts policy assertion for the encrypted header has been specified on the policy:

<S:Envelope xmlns:S="..." xmlns:wsse="..." xmlns:wsse11="..." xmlns:wsu="..."

 xmlns:xenc="..." xmlns:ds="...">

 <S:Header>

 <wsse:Security>

 <!-- Tokens etc. -->

 <xenc:EncryptedKey>

 <xenc:EncryptionMethod Algorithm="..."/>

 <ds:KeyInfo>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#hdrID"/>

 </xenc:ReferenceList>

 </xenc:EncryptedKey>

 </wsse:Security>

 <wsse11:EncryptedHeader wsu:Id="hdrID">

 <xenc:EncryptedData Id="encDataID">

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 ...

 </xenc:EncryptedData>

 </wsse11:EncryptedHeader>

 </S:Header>

 <S:Body>

 ...

 </S:Body>

</S:Envelope>

To encrypt headers in the Web Services Security Version 1.0 specification format, specify the

com.ibm.wsspi.wssecurity.encryptedHeader.generate.WSS1.0 property with a value of true on the

<encryptionInfo> element in the binding. When this property is specified, the target header for encryption is

replaced by an <EncryptedData> element, instead of an <EncryptedHeader> element that contains an

<EncryptedData> element.

For Web Services Security Version 1.1 behavior that is equivalent to WebSphere Application Server

versions prior to version 7.0, specify the

com.ibm.wsspi.wssecurity.encryptedHeader.generate.WSS1.1.pre.V7 property with a value of true on the

<encryptionInfo> element in the binding. When this property is specified, the <EncryptedHeader> element

includes a wsu:Id parameter and the <EncryptedData> element omits the Id parameter. This property

should only be used if compliance with Basic Security Profile 1.1 is not required.

For complete information about the EncryptedHeader element and the EncryptedData element, see the

Web Services Security Version 1.1 specification.

Signature confirmation

Web services security signature confirmation is an enhanced XML digital signature, and it is included in

the Web services security standard. XML digital signature is used for signing elements of the SOAP

envelope.

466 Developing and deploying applications

As one of the extensions to the OASIS SOAP message security specification, the signature confirmation

element incorporates the elements that are needed within the response message in order to confirm the

signature that is contained in a request message. XML digital signature and signature confirmation help to

provide more secure message-level security.

Web Services Security Version 1.0 for SOAP message security did not provide any guidance on how to

confirm mutual understanding of the request that prompted this response. The SignatureConfirmation or

<wsse11:SignatureConfirmation> element has been added to the Web Services Security Version 1.1

specification. The <wsse11:SignatureConfirmation> element ensures that the signature is processed by the

intended recipient and indicates that the responder has processed the signature in the request. The

signature confirmation element is part of the updated Web Services Security standard and enables

interoperability with other vendors that support the Version 1.1 standards, such as Microsoft .NET.

Because of the stateless nature of Web services and due to different message exchange patterns (MEPs),

consider the following assumptions:

v Assume that session affinity is enabled if a cluster is enabled for the clients that are running in

WebSphere Application Server. When session affinity is enabled, it implies that the response is sent

back to the initiating client of the server.

v Assume WS-Addressing is enabled for asynchronous message exchange patterns. When

WS-Addressing is enabled, it allows the run time to relate the response back to the request. An

asynchronous response is sent back to the application of the initiating WebSphere Application Server.

Syntax

The SignatureConfirmation element indicates that the responder has processed the signature in the

request. When this element is not present in a response, the initiator interprets that the responder is not

compliant.

The format for the signature confirmation element is as follows:

<wsse11:SignatureConfirmation wsu:Id="..." Value="..." />

where:

wsu:Id

The identifier that is used when referencing this element in the <ds:SignedInfo> reference list of

the signature of the associated response message. This attribute is required so that unambiguous

references are made to this <wsse11:SignatureConfirmation> element.

Value This attribute is optional and contains the contents of a <ds:SignatureValue> that is copied from

the associated request. If the request is unsigned, this attribute must not be present. If this

attribute is specified without a value (empty), the initiator interprets this as incorrect behavior and

processes it accordingly. When this attribute is not present, the initiator interprets this to mean that

the response is based on a request that was not signed.

Configuration

To configure signature confirmation, configure the policy file using the administrative console, and select

Require signature confirmation. To process Signature Confirmation correctly, the initiator of the request

needs to preserve the signatures during request generator processing and later needs to retrieve the

signatures for confirmation checks.

Chapter 11. Securing Web services applications using the WSS APIs at the message level 467

Response generation rules

Additional SOAP security elements for the SOAP responder are used to confirm that the response is in

relationship to a particular request. The responder must include the contents of the <ds:SignatureValue>

element of the request signature as the value of the @Value attribute of the

<wsse11:SignatureConfirmation> element.

The following response generation rules apply when using the SignatureConfirmation policy assertion:

v If there are no signatures on the request, the response contains one SignatureConfirmation element,

without a value. For MEPs where there are multiple requests (all without signatures) and one response,

the response contains one SignatureConfirmation element without a value.

v If there are signatures on the request, the response contains a SignatureConfirmation element for each

signature, with a value that matches the signature value on the request. For MEPs where there are

multiple requests, with at least one containing a signature, and one response, the response contains a

SignatureConfirmation element for each signature that is found on the requests, with a value that

matches the signature value on the request.

v For MEPs where there is one request and multiple responses, each response contains the appropriate

SignatureConfirmation elements as noted in the first and second bullets.

v If the SOAP request contains multiple signatures, the requester will find all of the signature confirmation

elements contained in the response, and will check the values of the value fields of the signature

confirmation elements against the values of the signatures in the original SOAP request.

468 Developing and deploying applications

Appendix. Directory conventions

References in product information to app_server_root, profile_root, and other directories infer specific

default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations - IBM i

These file paths are default locations. You can install the product and other components in any directory

where you have write access. You can create profiles in any valid directory where you have write access.

Multiple installations of WebSphere Application Server products or components require multiple locations.

app_client_root

The default installation root directory for the Java EE WebSphere Application Client is the

/QIBM/ProdData/WebSphere/AppClient/V7/client directory.

app_client_user_data_root

The default Java EE WebSphere Application Client user data root is the /QIBM/UserData/
WebSphere/AppClient/V7/client directory.

app_client_profile_root

The default Java EE WebSphere Application Client profile root is the /QIBM/UserData/WebSphere/
AppClient/V7/client/profiles/profile_name directory.

app_server_root

The default installation root directory for WebSphere Application Server - Express is the

/QIBM/ProdData/WebSphere/AppServer/V7/Express directory.

cip_app_server_root

The default installation root directory is the /QIBM/ProdData/WebSphere/AppServer/V7/Express/
cip/cip_uid directory for a customized installation package (CIP) produced by the Installation

Factory.

 A CIP is a WebSphere Application Server - Express product bundled with optional maintenance

packages, an optional configuration archive, one or more optional enterprise archive files, and

other optional files and scripts.

cip_profile_root

The default profile root directory is the /QIBM/UserData/WebSphere/AppServer/V7/Express/cip/
cip_uid/profiles/profile_name directory for a customized installation package (CIP) produced by the

Installation Factory.

cip_user_data_root

The default user data root directory is the /QIBM/UserData/WebSphere/AppServer/V7/Express/cip/
cip_uid directory for a customized installation package (CIP) produced by the Installation Factory.

if_root This directory represents the root directory of the IBM WebSphere Installation Factory. Because

you can download and unpack the Installation Factory to any directory on the file system to which

you have write access, this directory’s location varies by user. The Installation Factory is an

Eclipse-based tool which creates installation packages for installing WebSphere Application Server

in a reliable and repeatable way, tailored to your specific needs.

iip_root

This directory represents the root directory of an integrated installation package (IIP) produced by

the IBM WebSphere Installation Factory. Because you can create and save an IIP to any directory

on the file system to which you have write access, this directory’s location varies by user. An IIP is

an aggregated installation package created with the Installation Factory that can include one or

more generally available installation packages, one or more customized installation packages

(CIPs), and other user-specified files and directories.

© IBM Corporation 2005, 2007 469

java_home

The following directories are the root directories for all supported Java Virtual Machines (JVMs).

 JVM Directory

Classic JVM /QIBM/ProdData/Java400/jdk6

32–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/32bit

64–bit IBM Technology for Java /QOpenSys/QIBM/ProdData/JavaVM/jdk60/64bit

plugins_profile_root

The default Web server plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V7/
webserver/profiles/profile_name directory.

plugins_root

The default installation root directory for Web server plug-ins is the /QIBM/ProdData/WebSphere/
Plugins/V7/webserver directory.

plugins_user_data_root

The default Web server plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V7/
webserver directory.

product_library
product_lib

This is the product library for the installed product. The product library for each Version 7.0

installation on the system contains the program and service program objects (similar to .exe, .dll,

.so objects) for the installed product. The product library name is QWAS7x (where x is A, B, C,

and so on). The product library for the first WebSphere Application Server Version 7.0 product

installed on the system is QWAS7A. The app_server_root/properties/product.properties file contains

the value for the product library of the installation, was.install.library, and is located under the

app_server_root directory.

profile_root

The default directory for a profile named profile_name for WebSphere Application Server - Express

is the /QIBM/UserData/WebSphere/AppServer/V7/Express/profiles/profile_name directory.

shared_product_library

The shared product library, which contains all of the objects shared by all installations on the

system, is QWAS7. This library contains objects such as the product definition, the subsystem

description, the job description, and the job queue.

updi_root

The default installation root directory for the Update Installer for WebSphere Software is the

/QIBM/ProdData/WebSphere/UpdateInstaller/V7/updi directory.

user_data_root

The default user data directory for WebSphere Application Server - Express is the

/QIBM/UserData/WebSphere/AppServer/V7/Express directory.

 The profiles and profileRegistry subdirectories are created under this directory when you install the

product.

web_server_root

The default web server path is /www/web_server_name.

470 Developing and deploying applications

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and verification of

operation in conjunction with other products, except those expressly designated by IBM, is the user’s

responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries,

in writing, to:

 IBM Director of Intellectual Property & Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 USA

© Copyright IBM Corp. 2008 471

472 Developing and deploying applications

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business

Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked

terms are marked on their first occurrence in this information with a trademark symbol (® or

™), these

symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information

was published. Such trademarks may also be registered or common law trademarks in other countries. For

a current list of IBM trademarks, visit the IBM Copyright and trademark information Web site

(www.ibm.com/legal/copytrade.shtml).

Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or

both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java is a trademark of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

© Copyright IBM Corp. 2008 473

http://www.ibm.com/legal/copytrade.shtml

	Contents
	How to send your comments
	Changes to serve you more quickly
	Chapter 1. Overview and new features for developing and deploying applications
	Assembly tools
	Enterprise (Java EE) applications
	System applications
	Common deployment framework

	Business-level applications
	Assets
	EJB 3.0 deployment overview
	Service Data Objects: Resources for learning

	Chapter 2. Debugging applications
	Debugging components in the IBM Rational Application Developer for WebSphere

	Chapter 3. Assembling applications
	Application assembly and enterprise applications
	Assembly tools
	Generating code for Web service deployment
	Assembling applications: Resources for learning

	Chapter 4. Class loading
	Class loaders
	Configuring class loaders of a server
	Class loader collection
	Class loader ID
	Class loader order
	Class loader settings
	Class loader ID
	Class loader order

	Configuring application class loaders
	Configuring Web module class loaders
	Class loading: Resources for learning

	Chapter 5. Deploying and administering enterprise applications
	Enterprise (Java EE) applications
	System applications
	Common deployment framework

	Installing enterprise application files
	Installable enterprise module versions
	Ways to install enterprise applications or modules
	Installing enterprise application files with the console
	Preparing for application installation settings
	Preparing for application installation binding settings
	Select installation options settings
	Provide options to perform the EJB Deploy settings
	Bind listeners for message-driven beans settings

	Example: Installing an EAR file using the default bindings
	Example: Installing a Web Services Sample with the console
	Installing enterprise modules with JSR-88
	Customizing modules using DConfigBeans

	Enterprise application collection
	Name
	Application Status
	Startup order
	Enterprise application settings
	Name
	Application reference validation

	Configuring enterprise application files
	Application bindings
	Configuring application startup
	Startup behavior settings

	Configuring binary location and use
	Application binary settings

	Configuring the use of class loaders by an application
	Class loading and update detection settings

	Manage modules settings
	Clusters and servers
	Module
	URI
	Module type
	Server

	Mapping modules to servers
	Mapping virtual hosts for Web modules
	Virtual hosts settings

	Mapping properties for a custom login or trusted connection configuration
	Name
	Value
	Description

	Viewing deployment descriptors
	Metadata for module settings
	Module
	URI
	metadata-complete attribute

	Starting or stopping enterprise applications
	Disabling automatic starting of applications
	Target specific application status
	Target
	Node
	Version
	Auto Start
	Application Status

	Exporting enterprise applications
	Exporting enterprise application files
	Exporting DDL files
	Updating enterprise application files
	Ways to update enterprise application files
	Updating enterprise applications with the console
	Preparing for application update settings
	Application to be updated
	Replace the entire application
	Replace or add a single module
	Replace or add a single file
	Replace, add, or delete multiple files

	Hot deployment and dynamic reloading
	Changing or adding application files
	Changing or adding WAR files
	Changing or adding EJB Jar files
	Changing the HTTP plug-in configuration

	Uninstalling enterprise applications
	Removing enterprise files
	Deploying and administering applications: Resources for learning

	Chapter 6. Managing applications through programming
	Application management
	Accessing the application management function
	Installing an application through programming
	Starting an application through programming

	Uninstalling an application through programming
	Manipulating additional attributes for a deployed application
	Sharing sessions for application management
	Updating an application through programming
	Adding to, updating, or deleting part of an application through programming
	Editing applications
	Preparing a module and adding it to an existing application through programming
	Preparing and updating a module through programming
	Deleting a module through programming
	Adding a file through programming
	Updating a file through programming
	Deleting a file through programming
	Extending application management operations through programming

	Chapter 7. Deploying and administering business-level applications
	Business-level applications
	Assets
	Composition units
	Importing assets
	Upload asset settings
	Path to the asset

	Asset settings
	Asset name
	Asset description
	Asset binaries destination URL
	Asset type aspects
	File permissions
	Current asset relationships
	Validate asset

	Managing assets
	Asset collection
	Name
	Description

	Updating assets
	Update asset settings

	Deleting assets
	Exporting assets

	Creating business-level applications
	Creating business-level applications with the console
	Business-level application collection
	New business-level application settings
	Shared library relationship and mapping settings
	Add composition unit settings
	Add asset settings
	Set options settings
	Map target settings
	Deployable unit relationship settings

	Business-level application settings
	Name
	Description
	Deployed assets
	Business-level applications

	Composition unit settings
	Name
	Description
	Backing identifier
	Starting weight
	Start on distribution
	Recycle behavior on update
	Current target

	Example: Creating a business-level application

	Starting business-level applications
	Stopping business-level applications
	Updating business-level applications
	Deleting business-level applications

	Chapter 8. Administering business-level applications using programming
	Creating an empty business-level application using programming
	Importing an asset using programming
	Adding a composition unit using programming
	Starting a business-level application using programming
	Stopping a business-level application using programming
	Checking the status of a business-level application using programming
	Deleting a business-level application using programming
	Deleting an asset using programming
	Deleting a composition unit using programming
	Exporting an asset using programming
	Listing assets using programming
	Listing composition units using programming
	Listing business-level applications using programming
	Editing a composition unit using programming
	Editing an asset using programming
	Editing a business-level application using programming
	Updating an asset using programming
	Viewing a composition unit using programming
	Viewing an asset using programming
	Viewing a business-level application using programming
	Listing control operations using programming

	Chapter 9. Troubleshooting deployment
	Application deployment problems
	Application deployment troubleshooting tips
	A client program does not work
	Application startup errors
	Application startup problems
	Web resource is not displayed
	Application uninstallation problems

	Chapter 10. Adding logging and tracing to your application
	Configuring Java logging using the administrative console
	Java logging
	Log level settings
	Loggers
	Log handlers
	Log levels
	Log filters
	Log formatters
	Using loggers in an application
	Using a logger
	Configuring the logger hierarchy
	Creating log resource bundles and message files
	Changing the message IDs used in log files
	Example: Creating custom log handlers with java.util.logging
	Example: Creating custom filters with java.util.logging
	Example: Creating custom formatters with java.util.logging
	Example: Adding custom handlers, filters, and formatters

	HTTP error, FRCA, and NCSA access log settings
	Enable logging service at server start-up
	Enable NCSA access logging
	NCSA access log file path
	NCSA access log maximum size
	Maximum number of historical files
	NCSA access log format
	Enable error logging
	Error log file path
	Error log maximum size
	Maximum number of historical files
	Error log level

	Logger.properties file for configuring logger settings
	Example: Sample security policy for logging

	Configuring applications to use Jakarta Commons Logging
	Jakarta Commons Logging
	Configurations for the WebSphere Application Server logger

	Programming with the JRas framework
	JRas logging toolkit
	JRas Extensions
	JRas extension classes
	JRas framework (deprecated)
	Programming model summary

	JRas messages and trace event types
	Instrumenting an application with JRas extensions
	Creating JRas resource bundles and message files
	JRas manager and logger instances
	Setting up for integrated JRas operation
	Setting up for combined JRas operation
	Setting up for stand-alone JRas operation

	Logging Common Base Events in WebSphere Application Server
	The Common Base Event in WebSphere Application Server
	Types of problem determination events
	Common Base Event structure
	Sample Common Base Event instance
	Sample Common Base Event template
	Component identification for problem determination

	Logging with Common Base Event API and the Java logging API
	Generate Common Base Event content with the default event factory
	Common Base Event content handler
	Creating custom Common Base Event content handlers
	Common Base Event factory home
	Creating custom Common Base Event factory homes
	Common Base Event factory context
	Common Base Event factory

	java.util.logging -- Java logging programming interface
	Logger.properties file
	Logging Common Base Events in WebSphere Application Server

	Chapter 11. Securing Web services applications using the WSS APIs at the message level
	Securing messages at the request generator using WSS APIs
	Configuring encryption to protect message confidentiality using the WSS APIs
	Encrypting the SOAP message using the WSSEncryption API
	Choosing the encryption methods for the generator binding
	Encryption methods
	Adding encrypted parts using the WSSEncryptPart API

	Configuring generator signing information to protect message integrity using the WSS APIs
	Configuring the signing information using the WSS APIs
	Configuring the signature information using the WSSSignature API
	Adding signed parts using the WSSSignPart API
	Configuring the client for request signing methods
	Digital signing methods using the WSSSignature API
	Signed parts methods using the WSSSignPart API

	Attaching the generator token using WSS APIs to protect message authenticity
	Configuring the generator security tokens using the WSS API

	Securing messages at the response consumer using WSS APIs
	Configuring decryption to protect message confidentiality using the WSS APIs
	Decrypting the SOAP message using the WSSDecryption API
	Choosing the decryption methods for the consumer binding
	Adding decrypted parts using the WSSDecryptPart API
	Decryption methods

	Verifying consumer signing information to protect message integrity using WSS APIs
	Verifying the signature information for the consumer binding using the WSS APIs
	Verifying the signature using the WSSVerification API
	Verifying the signed parts using the WSSVerifyPart API
	Configuring the client for response signature verification methods
	Signature verification methods using the WSSVerification API
	Choosing the verify parts methods using the WSSVerifyPart API

	Validating the consumer token to protect message authenticity
	Configuring the consumer security tokens using the WSS API

	Configuring Web services security using the WSS APIs
	Web services security APIs
	Web services security configuration considerations when using the WSS API

	Encrypted SOAP headers
	Signature confirmation

	Appendix. Directory conventions
	Notices
	Trademarks and service marks

