
Load Balancer for  IPv4 and IPv6 

Administration  Guide  

   

���



ii Load Balancer  for IPv4 and IPv6 Administration  Guide



Contents  

Chapter 1. Product overview  . . . . . . 1 

New  in this  release   . . . . . . . . . . . . 2 

Functions  that  provide  load  balancing   . . . . . . 3  

High  availability  with  Load  Balancer   . . . . . . 4 

Managing  servers  . . . . . . . . . . . . . 7  

Types of cluster,  port,  and  server  configurations   . 8 

Chapter 2. welcome_installing.html  . . 11 

Installing  Load  Balancer   . . . . . . . . . . 11 

Installing  Load  Balancer  on  AIX  systems  . . . . 11 

Installing  Load  Balancer  on  HP-UX  systems   . . 14  

Installing  Load  Balancer  on  Linux  operating  

systems  . . . . . . . . . . . . . . . 16 

Installing  Load  Balancer  on  Solaris  operating  

systems  . . . . . . . . . . . . . . . 18 

Installing  Load  Balancer  on  Windows  operating  

systems  . . . . . . . . . . . . . . . 20 

Uninstalling  Load  Balancer   . . . . . . . . . 21 

Updating  Load  Balancer   . . . . . . . . . . 25  

Updating  Load  Balancer  for AIX,  HP-UX,  Linux,  

or Solaris  operating  systems  . . . . . . . . 26 

Updating  Load  Balancer  for Windows  operating  

systems  . . . . . . . . . . . . . . . 27 

Directory  conventions   . . . . . . . . . . . 28 

Chapter 3. welcome_config.html . . . . 31 

Methods  of configuration  . . . . . . . . . . 31 

Configuring  the  Load  Balancer  machine   . . . . . 33 

Configuring  the  server  machines   . . . . . . . 37 

Aliasing  the  network  interface  card  or loopback  

device   . . . . . . . . . . . . . . . 39 

Configuring  loopbacks  with  alternative  methods  42 

Quick  start  configuration   . . . . . . . . . . 43 

Load  balancing  a private  network   . . . . . . . 46 

Chapter 4. welcome_administering.html 49 

Enabling  advisors  to manage  load  balancing   . . . 49 

Advisors   . . . . . . . . . . . . . . 51 

List  of advisors   . . . . . . . . . . . . 52 

Getting  service-specific  advice  with  the  advisor  

request  or response  option   . . . . . . . . 55  

Configuring  the  LDAP  URI  advisor   . . . . . 56 

Getting  advice  with  Metric  Server   . . . . . . 56 

The  Workload  Management  Advisor   . . . . . 59 

Creating  a custom  advisor   . . . . . . . . 60  

Configuring  high  availability   . . . . . . . . 80 

How  high  availability  works   . . . . . . . 82 

Detecting  server  failures  with  heartbeats  and  

reach  targets   . . . . . . . . . . . . . 83  

High  Availability  recovery  strategy  for  failed  

servers   . . . . . . . . . . . . . . . 84 

Scripts  to run  with  high  availability   . . . . . 85  

Use  encapsulation  forwarding  to  forward  traffic  

across  network  segments   . . . . . . . . . . 86 

Quiesce  servers  for server  maintenance  windows  . . 87 

Optimize  connections  with  client-to-server  affinity  87 

Restricting  incoming  traffic  with  ipchains  and  

iptables  . . . . . . . . . . . . . . . . 89 

Logging  with  Load  Balancer  . . . . . . . . . 90  

Logging  server  statistics  with  binary  logging   . . 91 

Support  for  ICMP  forwarding  and  messaging   . . . 93  

Configure  rules  to manage  traffic  to  busy  or 

unavailable  servers   . . . . . . . . . . . . 93 

Sample  scripts  to generate  alerts  and  record  server  

failure   . . . . . . . . . . . . . . . . 95 

Chapter 5. welcome_tuning.html . . . . 97 

The  manager  report   . . . . . . . . . . . 97  

Optimizing  the  manager  interval   . . . . . . . 99 

Tuning the proportion  of importance  given  to  status  

information   . . . . . . . . . . . . . . 99 

Managing  traffic  with  server  weights   . . . . . 100 

Optimizing  the  sensitivity  threshold  . . . . . . 101  

Optimizing  the  smoothing  index   . . . . . . . 101 

Controlling  connection  records  with  the  

staletimeout  value  . . . . . . . . . . . . 102 

Chapter 6. Troubleshooting Load 

Balancer  . . . . . . . . . . . . . 105 

Problem:  Load  Balancer  will  not  run   . . . . . 109 

Problem:  Load  Balancer  requests  are  not  being  

balanced   . . . . . . . . . . . . . . . 109  

Problem:  Extra  routes  (Windows  2000)   . . . . . 109 

Problem:  Dispatcher,  Microsoft  IIS,  and  SSL  do  not 

work  (Windows  platform)   . . . . . . . . . 110 

Problem:  dscontrol  or lbadmin  command  fails   . . 110 

Problem:  Advisors  not  working  correctly   . . . . 110 

Problem:  “Cannot  find  the  file...″ error  message  

when  trying  to  view  online  Help  (Windows  

platform)   . . . . . . . . . . . . . . . 111 

Problem:  Graphical  user  interface  (GUI)  does  not 

start  correctly   . . . . . . . . . . . . . 111  

Problem:  Graphical  user  interface  (GUI)  does  not 

display  correctly   . . . . . . . . . . . . 111 

Problem:  On  Windows  platform,  help  windows  

sometimes  disappear  behind  other  open  windows   . 111 

Problem:  GUI  hangs  (or unexpected  behavior)  

when  trying  to  load  a large  configuration  file . . . 111 

Problem:  Korean  Load  Balancer  interface  displays  

overlapping  or undesirable  fonts  on AIX  and  Linux  

systems   . . . . . . . . . . . . . . . 112 

Problem:  On  Windows  platform,  unexpected  GUI  

behavior  when  using  Matrox  AGP  video  cards   . . 113 

Problem:  Slow  response  time  running  commands  

on Dispatcher  machine   . . . . . . . . . . 113 

Problem:  SSL  or HTTPS  advisor  not  registering  

server  loads   . . . . . . . . . . . . . . 113 

Problem:  Socket  pooling  is enabled  and  the Web 

server  is binding  to 0.0.0.0   . . . . . . . . . 113 

 

  iii



Problem:  On  Windows  systems,  corrupted  Latin-1  

national  characters  appear  in command  prompt  

window   . . . . . . . . . . . . . . . 114 

Problem:  On  Windows  systems,  advisors  and  reach  

targets  mark  all servers  down   . . . . . . . . 114 

Problem:  On  Windows  systems,  after  network  

outage,  advisors  not  working  in a high  availability  

setup   . . . . . . . . . . . . . . . . 115 

Problem:  On  Linux  systems,  do not  use  ″IP  address  

add″  command  when  aliasing  multiple  clusters  on  

the  loopback  device   . . . . . . . . . . . 115 

Problem:  On  Solaris  systems,  Load  Balancer  

processes  end  when  you  exit  the  terminal  window  

from  which  they  started   . . . . . . . . . . 115 

Problem:  Delay  occurs  while  loading  a Load  

Balancer  configuration   . . . . . . . . . . 116 

Problem:  On  Windows  systems,  an  IP  address  

conflict  error  message  appears  . . . . . . . . 116 

Problem:  On  Windows  systems,  ″Server  not  

responding″  error  occurs  when  issuing  dscontrol  or 

lbadmin   . . . . . . . . . . . . . . . 116 

Problem:  On  Linux,  Dispatcher  configuration  

limitations  when  using  zSeries  or S/390  servers  

that  have  Open  System  Adapter  (OSA)  cards  . . . 117  

Problem:  Linux  iptables  can  interfere  with  the  

routing  of packets   . . . . . . . . . . . . 118 

Problem:  Unable  to add  an IPv6  server  to the  Load  

Balancer  configuration  on  Solaris  systems   . . . . 119 

Problem:  Java  warning  message  appears  when  

installing  service  fixes   . . . . . . . . . . 119 

Upgrading  the  Java  file  set  provided  with  the  Load  

Balancer  installation   . . . . . . . . . . . 119 

Problem:  Client  requests  fail  when  using  IPv6  

MAC  forwarding  with  HP-UX  back-end  servers  . . 119 

Problem:  On  AIX  systems,  Load  Balancer  conflicts  

with  IP security  (IPsec)   . . . . . . . . . . 120  

Problem:  Installing  WebSphere  Edge  Server  using  

./install  on the  32-bit  Linux  operating  system  for  

zSeries  produces  a ″JVM  Not  Found″ message   . . 120 

Problem:  The  uninstall  process  for WebSphere  

Edge  Server  hangs  on Linux  operating  systems   . . 120 

Problem:  The  serverUp  script  might  run  when  you  

issue  commands  for  Load  Balancer  that  affect  the  

status  of servers   . . . . . . . . . . . . 121  

Chapter 7. welc_reference.html . . . . 123 

Advanced  configuration  . . . . . . . . . . 123 

Directory  conventions   . . . . . . . . . 123 

Types of cluster,  port,  and  server  configurations  123  

Custom  advisor  methods  and  function  calls   . . 125 

List  of advisors  . . . . . . . . . . . . 130 

Sample  scripts  to generate  alerts  and  record  

server  failure   . . . . . . . . . . . . 133 

High  Availability  recovery  strategy  for failed  

servers   . . . . . . . . . . . . . . 134 

Scripts  to run  with  high  availability   . . . . . 134  

Commands   . . . . . . . . . . . . . . 135 

dscontrol  advisor   . . . . . . . . . . . 136  

dscontrol  binlog   . . . . . . . . . . . 140 

dscontrol  cluster   . . . . . . . . . . . 140 

dscontrol  executor  . . . . . . . . . . . 142  

dscontrol  file   . . . . . . . . . . . . 142 

dscontrol  help   . . . . . . . . . . . . 143 

dscontrol  highavailability   . . . . . . . . 144 

dscontrol  logstatus   . . . . . . . . . . 146  

dscontrol  manager  . . . . . . . . . . . 147 

dscontrol  metric   . . . . . . . . . . . 150 

dscontrol  port   . . . . . . . . . . . . 151 

dscontrol  rule   . . . . . . . . . . . . 153  

dscontrol  server   . . . . . . . . . . . 155  

dscontrol  set . . . . . . . . . . . . . 158 

dscontrol  status  . . . . . . . . . . . . 158 

Examples  . . . . . . . . . . . . . . . 158 

Example:  Sample  advisor   . . . . . . . . 158  

Example:  Implementing  custom  advisors   . . . 162  

Glossary   . . . . . . . . . . . . . . . 172

 

iv Load Balancer  for IPv4 and IPv6 Administration  Guide



Chapter  1.  Product  overview  

Load  Balancer  is  a software  solution  for  distributing  incoming  client  requests  

across  servers.  It boosts  the  performance  of servers  by  directing  TCP/IP  session  

requests  to  different  servers  within  a group  of  servers;  in  this  way,  it balances  the  

requests  among  all  the  servers.  This  load  balancing  is transparent  to  users  and  

other  applications.  Load  Balancer  is useful  for  applications  such  as  e-mail  servers,  

World  Wide  Web servers,  distributed  parallel  database  queries,  and  other  TCP/IP  

applications.  

When  used  with  Web servers,  Load  Balancer  can  help  maximize  the  potential  of  

your  site  by  providing  a powerful,  flexible,  and  scalable  solution  to  peak-demand  

problems.  If  visitors  to  your  site  can  not  get  through  at  times  of greatest  demand,  

use  Load  Balancer  to  automatically  find  the  optimal  server  to handle  incoming  

requests,  thus  enhancing  your  customers’  satisfaction  and  your  profitability.  

What are the advantages to using Load Balancer? 

The  number  of  users  and  networks  connected  to the  global  Internet  is growing  

exponentially.  This  growth  is causing  scalability  problems  that  can  limit  users’  

access  to  popular  sites.  Currently,  network  administrators  are  using  numerous  

methods  to  try  to  maximize  access.  With  some  of  these  methods,  you  can  choose  a 

different  server  at  random  if an  earlier  choice  is slow  or  not  responding.  This  

approach  is  cumbersome,  annoying,  and  inefficient.  Another  method  is standard  

round-robin,  in  which  the  domain  name  server  selects  servers  in  turn  to  handle  

requests.  This  approach  is better,  but  still  inefficient  because  it forwards  traffic  

without  any  consideration  of  the  server  workload.  In  addition,  even  if a server  

fails,  requests  continue  to  be  sent  to it.  The  need  for  a more  powerful  solution  has  

resulted  in Load  Balancer.  It  offers  numerous  benefits  over  earlier  and  competing  

solutions:  

v   Scalability:  As  the  number  of  client  requests  increases,  you  can  add  servers  

dynamically,  providing  support  for  tens  of  millions  of  requests  per  day,  on  tens  

or  even  hundreds  of servers.  

v   Efficient  use  of  equipment:  Load  balancing  ensures  that  each  group  of  servers  

makes  optimum  use  of its  hardware  by  minimizing  the  hot-spots  that  frequently  

occur  with  a standard  round-robin  method.  

v    Easy  integration:  Load  Balancer  uses  standard  TCP/IP  protocols.  You can  add  it  

to  your  existing  network  without  making  any  physical  changes  to  the  network.  

It  is simple  to  install  and  configure.  

v   Low  overhead  Using  a simple  MAC  level  forwarding  method,  the  Dispatcher  

component  looks  at the  inbound  client-to-server  flows  only.  It  does  not  need  to  

see  the  outbound  server-to-client  flows.  This  significantly  reduces  its  impact  on  

the  application  compared  with  other  approaches  and  can  result  in  improved  

network  performance.  

v   High  availability:  The  Dispatcher  component  offers  built-in  high  availability,  

utilizing  a backup  machine  that  remains  ready  at all  times  to  take  over  load  

balancing  if the  primary  server  machine  fails.  When  one  of the  servers  fails,  

requests  continue  to  be  serviced  by  the  other  server.  This  process  eliminates  any  

server  as  a single  point  of  failure  and  makes  the  site  highly  available.  

 

© IBM Corporation  2003, 2005 1



v   Client  to  server  affinity:  The  affinity  feature  maps  a client  IP  address  to a 

back-end  server,  providing  a higher  level  of  efficiency  by  decreasing  the  memory  

and  CPU  utilization  when  compared  to  traditional  connection  forwarding.  

v   Load  balancing  a private  network:  You can  set  up  Dispatcher  and  the  TCP  

server  machines  using  a private  network.  This  configuration  can  reduce  the  

contention  on  the  public  or  external  network  that  can  affect  performance.  

v   Learn  how  you  can  manage  servers  using  Load  Balancer.  

Load  Balancer  balances  traffic  among  your  servers  through  a unique  

combination  of  load  balancing  and  management  software.  All  client  requests  

sent  to  the  Dispatcher  machine  are  directed  to  the  �best� server  according  to  

weights  that  are  set  dynamically.  You can  use  the  default  values  for  those  

weights  or  change  the  values  during  the  configuration  process.  

Dispatcher  can  also  detect  a failed  server  and  forward  traffic  around  it.  

Dispatcher  supports  HTTP,  FTP,  SSL,  SMTP,  NNTP,  IMAP,  POP3,  Telnet,  SIP,  and  

any  other  TCP  based  application.

Load  Balancer  is  the  key  to  stable,  efficient  management  of a large,  scalable  

network  of  servers.  You can  link  many  individual  servers  into  what  seems  to  be a 

single,  virtual  server.  Your site  is presented  as  a single  IP  address  to  the  world.  

Dispatcher  functions  independently  of a domain  name  server;  all  requests  are  sent  

to  the  IP  address  of  the  Dispatcher  machine.  

Dispatcher  brings  distinct  advantages  in balancing  traffic  load  to clustered  servers,  

resulting  in  stable  and  efficient  management  of  your  site.  

   Related  tasks  

   “Managing  servers”  on  page  7
You  can  load  balance  traffic  to existing  server  topologies  without  changing  the  

physical  configuration  of  the  machines  or  how  clients  will  connect  to your  site.
   Related  reference  

   “Types  of  cluster,  port,  and  server  configurations”  on  page  8
There  are  many  ways  that  you  can  configure  Load  Balancer  to  support  your  

site.

New in this release 

Load  Balancer  for  IBM  WebSphere  Application  Server  Version  7.0  contains  a 

number  of  new  features.  

The  most  significant  new  features  are:  

v   Load  Balancer  can  detect  changes  in  your  network  configuration  without  

requiring  you  to  restart  the  system.  

v   “Configuring  the  LDAP  URI  advisor”  on  page  56.  The  LDAP  URI  advisor  allows  

you  better  gauge  Lightweight  Directory  Access  Protocol  (LDAP)  availability  by  

processing  a complete  request  to  the  LDAP  server.  The  LDAP  URI  advisor  opens  

a connection  to  the  LDAP  serve  and  sends  a BIND  request  that  is  based  on  the  

advisorrequest  field  that  you  define  on  the  server  object.  The  advisor  then  waits  

for  a response  from  the  LDAP  server  and  returns  the  elapsed  time  as  a load.  

v   “Use  encapsulation  forwarding  to  forward  traffic  across  network  segments”  on  

page  86.  Use  encapsulation  forwarding  when  the  back-end  server  is not  located  

on  the  same  network  segment  or  if you  are  using  virtualization  technology  and  

need  to  forward  packets  that  are  otherwise  unable  to  be  forwarded.  

v   There  are  now  three  options  for  the  selection  algorithm  that  Load  Balancer  uses  

to  route  traffic:  

 

2 Load Balancer  for IPv4 and IPv6 Administration  Guide



–   connection  (default):  specifies  that  the  server  selection  is based  on  simple  

round-robin  selection.  

–   affinity:  specifies  that  the  server  selection  is based  on  client  affinity.  

–   conn+affin:  specifies  that  server  selection  is based  on  an  existing  connection.  

For  new  connections,  the  server  selection  is based  on  affinity.

Read  dscontrol  port  for  more  information  on  this  command  and  the  available  

options.  

v   Quiesce  a server  on  a daily  schedule.  You can  now  quiesce  servers  on  a 

scheduled  time  to  perform  upgrades  or  general  maintenance.  Read  more  about  

this  feature  in  “Quiesce  servers  for  server  maintenance  windows”  on  page  87.  

v   “Support  for  ICMP  forwarding  and  messaging”  on  page  93.  Load  Balancer  now  

supports  forwarding  and  processing  ICMP  messages  to improve  the  robustness  

of  connection  protocols  and  permit  Load  Balancer  to  receive  ICMP  

fragmentation  messages.  

v   Crossport  affinity  allows  you  to  expand  the  affinity  feature  across  multiple  ports  

so  that  client  requests  received  on  different  ports  can  still  be  sent  to  the  same  

server  for  subsequent  requests.  In order  to  use  this  feature,  the  ports  must:  

–   Share  the  same  cluster  address.  

–   Share  the  same  servers.  

–   Use  the  affinity  or  conn+aff  selection  algorithm.

Refer  to  the  “dscontrol  port”  on  page  151  command  for  more  information.  

v   Forward  UDP  packets.  Load  Balancer  includes  an  improved  algorithm  for  

handling  connectionless  UDP  packets.  

v   Configure  rules  for  servers  or  ports.  You can  configure  rules to  route  connections  

for  the  following  scenarios:  

–   active:  based  on  the  number  of active  connections  total  for  the  port.  This  rule 

will  work  only  if the  manager  is running.  

–   true:  specifies  that  this  rule will  always  evaluate  as true.

Functions that provide load balancing 

The  primary  functions  of Load  Balancer  interact  with  each  other  and  your  server  

configuration  to  balance  network  traffic  in  your  environment.  

Dispatcher  consists  of the  following  functions:  

v   dsserver  handles  requests  from  the  command  line  to the  executor,  manager,  and  

advisors.  

v   The  executor  supports  port-based  load  balancing  of TCP  connections.  It is able  

to  forward  connections  to  servers  based  on  the  type  of  request  received  (for  

example,  HTTP,  FTP,  SSL,  and  so  forth).  The  executor  always  runs when  the  

Dispatcher  component  is being  used  for  load  balancing.  

v   The  manager  sets  weights  used  by  the  executor  based  on:  

–   Internal  counters  in  the  executor  

–   Feedback  from  the  servers  provided  by  the  advisors  

–   Feedback  from  a system-monitoring  program,  such  as  Metric  Server  or  WLM.  

Using  the  manager  is optional.  However,  if the  manager  is not  used,  load  

balancing  is performed  using  weighted  round-robin  scheduling  based  on  the  

current  server  weights,  and  advisors  are  not  available.
v    The  advisors  query  the  servers  and  analyze  results  by  protocol  before  calling  the  

manager  to  set  weights  as appropriate.  Currently  there  are  advisors  available  for  

 

Chapter  1. Product overview  3



the  following  protocols:  HTTP,  FTP,  SSL,  SMTP,  NNTP,  IMAP,  POP3,  SIP,  and  

Telnet.  Dispatcher  also  offers  advisors  that  do  not  exchange  protocol-specific  

information,  such  as  the  DB2  advisor  that  reports  on  the  health  of  DB2  servers  

and  the  ping  advisor  that  reports  whether  the  server  responds  to a ping.  For  a 

complete  list  of  advisors,  see  “List  of advisors”  on  page  52.  You also  have  the  

option  of  writing  your  own  advisors  (see  “Creating  a custom  advisor”  on  page  

60).  Using  the  advisors  is optional  but  recommended.  

v   To configure  and  manage  the  executor,  advisors,  and  manager,  use  the  command  

line  (dscontrol) or  the  graphical  user  interface  (lbadmin).

The  three  key  functions  of  Dispatcher  (executor,  manager,  and  advisors)  interact  to  

balance  and  dispatch  the  incoming  requests  between  servers.  Along  with  load  

balancing  requests,  the  executor  monitors  the  number  of  new  connections,  active  

connections,  and  connections  in  a finished  state.  The  executor  also  does  garbage  

collection  of  completed  or  reset  connections  and  supplies  this  information  to  the  

manager.  

The  manager  collects  information  from  the  executor,  the  advisors,  and  a 

system-monitoring  program,  such  as  Metric  Server.  Based  on  the  information  the  

manager  receives,  it adjusts  how  the  server  machines  are  weighted  on  each  port  

and  gives  the  executor  the  new  weighting  for  use  in  its  balancing  of  new  

connections.  

The  advisors  monitor  each  server  on  the  assigned  port  to  determine  the  server’s  

response  time  and  availability  and  then  give  this  information  to the  manager.  The  

advisors  also  monitor  whether  a server  is up  or  down.  Without  the  manager  and  

the  advisors,  the  executor  does  round-robin  scheduling  based  on  the  current  server  

weights.  

High availability with Load Balancer 

The  Dispatcher  component  offers  a built-in  high  availability  feature,  eliminating  

Dispatcher  as  a single  point  of failure  from  your  network.  This  feature  involves  the  

use  of  a second  Dispatcher  machine  that  monitors  the  main,  or  primary,  machine  

and  stands  by  to  take  over  the  task  of  load  balancing  should  the  primary  machine  

fail  at  any  time.  

Functioning  in  conjunction  with  content  hosts,  such  as  WebSphere  Application  

Server,  the  Load  Balancer  Dispatcher  component  enables  you  to  enhance  your  

network’s  availability  and  scalability.  Load  Balancer  is used  by  enterprise  networks  

and  is installed  between  the  Internet  and  the  enterprise’s  back-end  servers.  

 

4 Load Balancer  for IPv4 and IPv6 Administration  Guide



Load  Balancer  acts  as  the  enterprise’s  single  point-of-presence  on  the  Internet,  even  

if the  enterprise  uses  multiple  back-end  servers  because  of high  demand  or  a large  

amount  of  content.  Availability  is achieved  through  load  balancing  multiple  

content  hosts  and  failover  support..  

Load balancing multiple content hosts 

You can  satisfy  high  demand  by  duplicating  content  on  multiple  hosts,  but  then  

you  need  a way  to  balance  the  load  among  them.  Domain  Name  Service  (DNS)  

can  provide  basic  round-robin  load  balancing,  but  there  are  several  situations  in 

which  it does  not  perform  well.  

A more  sophisticated  solution  for  load  balancing  multiple  content  hosts  is to use  

the  Dispatcher  component  as  depicted  below.  

1

1 3
2

1
1

4

5

X

5

X

5

X

  

 

Legend:  1--Client  2--Internet  3--Router/Gateway  4--Dispatcher  5--Content  host  

In  this  configuration,  all  of the  content  hosts  (the  machines  marked  5)  store  the  

same  content.  They  are  defined  to  form  a load-balanced  cluster,  and  one  of  the  

network  interfaces  of  the  Load  Balancer  machine  (4)  is assigned  a host  name  and  

IP  address  dedicated  to  the  cluster.  When  an  end  user  working  on  one  of  the  

machines  marked  1 requests  file  X,  the  request  crosses  the  Internet  (2)  and  enters  

 

Chapter  1. Product overview  5



the  enterprise’s  internal  network  through  its  Internet  gateway  (3).  The  Dispatcher  

intercepts  the  request  because  its  URL  is mapped  to  the  Dispatcher’s  host  name  

and  IP  address.  The  Dispatcher  determines  which  of  the  content  hosts  in  the  

cluster  is  currently  best  able  to service  the  request,  and  forwards  the  request  to that  

host,  which  returns  file  X directly  to  the  client  (that  is,  file  X does  not  pass  through  

Load  Balancer).  

By  default,  the  Dispatcher  uses  weighted  round-robin  load  balancing,  and  it  

addresses  many  of  DNS’s  inadequacies.  Unlike  DNS,  it tracks  whether  a content  

host  is  unavailable  or  inaccessible  and  does  not  continue  to  direct  clients  to  an  

unavailable  content  host.  Further,  it considers  the  current  load  on  the  content  hosts  

by  tracking  new, active,  and  finished  connections.  You can  further  optimize  load  

balancing  by  activating  Load  Balancer’s  optional  advisor  and  manager  

components,  which  track  a content  host’s  status  even  more  accurately  and  

incorporate  the  additional  information  into  the  load-balancing  decision  process.  

The  manager  enables  you  to  assign  different  weights  to the  different  factors  used  

in  the  decision  process,  further  customizing  load  balancing  for  your  site.  

Failover support 

Load  Balancer  acts  as  a single  point-of-presence  for  your  enterprise’s  content  hosts.  

This  is  beneficial  because  you  advertise  the  cluster  host  name  and  address  in  DNS,  

rather  than  the  host  name  and  address  of each  content  host,  which  provides  a level  

of  protection  against  casual  attacks  and  provides  a unified  feel  for  your  enterprise’s  

Web site.  To further  enhance  Web site  availability,  configure  another  Load  Balancer  

to  act  as  a backup  for  the  primary  Load  Balancer,  as  depicted  in  below.  If  one  Load  

Balancer  fails  or  becomes  inaccessible  due  to  a network  failure,  end  users  can  still  

reach  the  content  hosts.  

1

1 3
2

1
1 4

5

X

6

X

6

X

6

  

 

Legend:  1--Client  2--Internet  3--Router/Gateway  4--Primary  Dispatcher  5--Backup  

Dispatcher  6--Content  host  

In  the  normal  case,  a browser  running  on  one  of  the  machines  marked  1 directs  its  

request  for  a file  X to  the  cluster  host  name  that  is mapped  to  the  primary  Load  

Balancer  (4).  The  Dispatcher  routes  the  request  to  the  content  host  (6)  selected  on  

the  basis  of  the  Dispatcher’s  load-balancing  criteria.  The  content  host  sends  file  X  

directly  to  the  browser,  routing  it through  the  enterprise’s  gateway  (3)  across  the  

Internet  (2)  but  bypassing  Load  Balancer.  The  backup  Dispatcher  (5)  does  not  

perform  load  balancing  as  long  as  the  primary  one  is operational.  The  primary  and  

backup  Dispatchers  track  each  other’s  status  by  periodically  exchanging  messages  

called  heartbeats.  If  the  backup  Dispatcher  detects  that  the  primary  has  failed,  it 

automatically  takes  over  the  responsibility  for  load  balancing  by  intercepting  

requests  directed  to  the  primary’s  cluster  host  name  and  IP  address.  

 

6 Load Balancer  for IPv4 and IPv6 Administration  Guide



Managing servers 

You can  load  balance  traffic  to  existing  server  topologies  without  changing  the  

physical  configuration  of the  machines  or  how  clients  will  connect  to  your  site.  

The  figure  below  shows  a physical  representation  of  the  site  using  an  Ethernet  

network  configuration.  

Internet

Client

Client

Client

Dispatcher
Server 2

Server 3Server 1

  

 

The  Dispatcher  machine  can  be  installed  without  making  any  physical  changes  to  

the  network.  After  a client  request  is directed  to  the  optimal  server  by  the  

Dispatcher,  the  response  is then  sent  directly  from  server  to  client  with  no  

involvement  by  the  Dispatcher.  

Read  “Types  of cluster,  port,  and  server  configurations”  on  page  8 for  examples  of  

the  different  types  of  configurations  you  can  use  with  Load  Balancer.  

Managing servers with Load Balancer and Metric Server 

The  figure  below  illustrates  a site  in  which  all  servers  are  on  a local  network.  The  

Dispatcher  component  is used  to  forward  requests,  and  the  Metric  Server  is used  

to  provide  system  load  information  to  the  Dispatcher  machine.  

 

Chapter  1. Product overview  7



In  this  example,  the  Metric  Server  daemon  is  installed  on  each  back-end  server.  

You can  use  Metric  Server  with  the  Dispatcher  component.  

For  more  information  on  Metric  Server  refer  to  “Getting  advice  with  Metric  Server”  

on  page  56  

Types  of cluster, port, and server configurations 

There  are  many  ways  that  you  can  configure  Load  Balancer  to support  your  site.  

1 cluster with 2 ports 

If you  have  only  one  host  name  for  your  site  to  which  all  of  your  customers  will  

connect,  you  can  define  a single  cluster  of servers.  For  each  of  these  servers,  

configure  a port  through  which  Load  Balancer  communicates.  

 

8 Load Balancer  for IPv4 and IPv6 Administration  Guide



Dispatcher
cluster

port
80

port
443

InternetClient

Server 1

Server 2

Server 3

Server 4

In  this  example  for  the  Dispatcher  component,  one  cluster  is defined  at 

www.productworks.com.  This  cluster  has  two  ports:  port  80  for  HTTP  and  port  443  

for  SSL.  A client  making  a request  to http://www.productworks.com  (port  80)  

goes  to  a different  server  than  a client  requesting  https://www.productworks.com  

(port  443).  

2 clusters, each with 1 port 

Another  way  of  configuring  Load  Balancer  might  be  appropriate  if you  have  a 

very  large  site  with  many  servers  dedicated  to  each  protocol  supported.  In  this  

case,  you  might  want  to define  a cluster  for  each  protocol  with  a single  port  but  

with  many  servers.  

cluster   port 80

www.productworks.com

www.testworks.com

cluster   port 443

InternetClient

Server 1

Server 4

Server 3

Server 6

Server 2

Server 5

Dispatcher

   

In  this  example  for  the  Dispatcher  component,  two  clusters  are  defined:  

www.productworks.com  for  port  80  (HTTP)  and  www.testworks.com  for  port  443  

(SSL).  A third  way  of  configuring  Load  Balancer  might  be  necessary  if your  site  

does  content  hosting  for  several  companies  or  departments,  each  one  coming  into  

your  site  with  a different  URL.  In  this  case,  you  might  want  to define  a cluster  for  

each  company  or  department  and  then  define  any  ports  to which  you  want  to  

 

Chapter  1. Product overview  9



receive  connections  at that  URL,  as  shown  in  the  configuration  for  2 clusters,  each  

with  two  ports.  

2 clusters, each with 2 ports 

Cluster

Cluster

www.productworks.com

www.testworks.com

port

80

port

80

port

23

port

23

Server 5

Server 1

Server 6

Server 2

Server 7

Server 3

Server 8

Server 4

DISPATCHER
InternetClient

   

In  this  example  for  the  Dispatcher  component,  two  clusters  are  defined  with  port  

80  for  HTTP  and  port  23  for  Telnet for  each  of  the  sites  at www.productworks.com  

and  www.testworks.com.  

 

10 Load Balancer  for IPv4 and IPv6 Administration  Guide



Chapter  2.  welcome_installing.html  

Installing Load Balancer 

Install  Load  Balancer  using  system  packaging  tools  or the  command  line  for  all  

operating  systems.  

For  information  on  hardware  and  software  requirements,  including  supported  

browsers,  refer  to  the  following  Web page:  http://www.ibm.com/support/
docview.wss?rs=180&uid=swg27006921.  

It is  important  to  note  that  any  previous  Load  Balancer  must  be  uninstalled  before  

installing  Load  Balancer  for  IPv4  and  IPv6.  Two Load  Balancers  cannot  be  installed  

on  the  same  machine.  If  you  have  an  earlier  version  installed,  uninstall  that  copy  

before  installing  the  current  version.  Refer  to  “Uninstalling  Load  Balancer”  on  page  

21  for  more  information.  

v   For  AIX  operating  systems,  read  “Installing  Load  Balancer  on  AIX  systems.”  

v   For  HP-UX  operating  systems,  read  “Installing  Load  Balancer  on  HP-UX  

systems”  on  page  14.  

v   For  Linux  operating  systems,  read  “Installing  Load  Balancer  on  Linux  operating  

systems”  on  page  16.  

v   For  Solaris  operating  systems,  read  “Installing  Load  Balancer  on  Solaris  

operating  systems”  on  page  18.  

v   For  Windows  operating  systems,  read  “Installing  Load  Balancer  on  Windows  

operating  systems”  on  page  20.

Installing Load Balancer on AIX systems 

This  topic  instructs  you  on  Load  Balancer  installation  using  system  packaging  tools  

and  requirements  for  AIX  operating  systems.  

For  information  on  hardware  and  software  requirements,  including  supported  

browsers,  refer  to  the  following  Web page:  http://www.ibm.com/support/
docview.wss?rs=180&uid=swg27006921.  

You cannot  have  two  installations  of the  Dispatcher  component  installed  on  the  

same  system.  If  you  have  a previous  version  of the  Edge  components  installed,  

uninstall  the  Dispatcher  component  before  starting  the  installation  process  for  Load  

Balancer  for  IPv4  and  IPv6.  Refer  to  “Uninstalling  Load  Balancer”  on  page  21  for  

more  information.  

The  Java  2 SDK  automatically  installs  with  Load  Balancer  on  all  platforms.  If you  

are  migrating  from  a previous  version  of Load  Balancer,  or  reinstalling  the  

operating  system,  prior  to installation  you  can  save  any  of  your  previous  

configuration  files  or  script  files  for  Load  Balancer.  

v   After  installation,  place  your  configuration  files  in  the  install_root/
configurations/dispatcher  directory.  

v   After  installation,  place  your  script  files  in the  install_root/servers/bin  directory  

in  order  to  run them.
1.   Log  in  as  root,  or  ensure  that  you  have  root  authority  to install  the  software.  

 

  11

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921


2.   Insert  the  product  media,  or  if you  are  installing  from  the  Web, copy  the  

installation  images  to  a directory.  

3.   Install  the  installation  image.  

The  following  is  the  list  of packages:  

 Table 1. AIX  Install  Images  

Package  Name  Install  Image  

Base  ibmulb-base-7.0.0-0.noarch-rte  

Dispatcher  ibmulb-disp-7.0.0-0.noarch.rte  

License  ibmulb-lic-7.0.0-0.noarch-rte  

Metric  Server  ibmulb-ms-7.0.0-0.noarch.rte  

Native  ibmulb-7.0.0-0.ppc64.rte  

Substitute  ppc  for ppc64  when  it is 

appropriate  for your  system.  

Messages  ibmulb-lang_language.7.0.0-0.noarch.rte  

where  language  can  be: 

v   cs_CZ  

v   en_US  

v   de_DE  

v   es_ES  

v   fr_FR  

v   hu_HU  

v   it_IT  

v   ja_JP  

v   ko_KR  

v   pl_PL  

v   pt_BR  

v   ru_RU  

v   zh_CN  

v   zh_TW
  

You can  choose  to  install  some  of  the  packages  if you  do  not  want  the  entire  

product  installated.  If  you  want  to install  Dispatcher,  install  the  following  

packages:  

v   Base  

v   Dispatcher  

v   License  

v   Native

If you  want  to  install  Metric  Server,  install  the  following  packages:  

v   Base  

v   Metric  Server  

v   Native

Note:  Use  SMIT  to  install  Load  Balancer  for  AIX  because  SMIT  will  ensure  that  

all  messages  are  installed  automatically.  

a.   Using  SMIT:  

1)   Select  Install  and  Update  Software  

 

12 Load Balancer  for IPv4 and IPv6 Administration  Guide



2)   Select  Install  and  update  from  latest  Available  Software  

3)   Enter  the  device  or  directory  containing  the  install  images  

4)   Select  Software  Installation  and  Maintenance  

5)   Enter  on  the  *SOFTWARE  to  Install  line,  the  appropriate  information  to 

specify  options  (or  select  List)  

6)   Press  OK.

When  the  command  completes,  press  Done, and  then  select  Exit  Smit  from  

the  Exit  menu  or  press  F12. If using  SMITTY,  press  F10  to  exit  the  program.  

b.    Using  the  Command  Line:  

1)   If  installing  from  a CD,  you  must  enter  the  following  commands  to  

mount  the  CD:  

mkdir  /cdrom  

mount  -v  cdrfs  -p -r /dev/cd0  /cdrom  

2)   Enter  the  following  command  to  install  the  desired  Load  Balancer  

packages  for  AIX  systems:  

installp  -acXgd  device  install_image  

where  install_image  corresponds  to  an  install  image  name  from  the  table  

above,  and  device  is:  

v   /cdrom  if you  are  installing  from  a CD.  

v   /dir  (the  directory  containing  the  install  images)  if you  are  installing  

from  a file  system.  

Ensure  that  the  result  column  in  the  summary  contains  SUCCESS  for  

each  part  of  Load  Balancer  that  you  are  installing.  Do  not  continue  until  

all  of  the  parts  you  want  to  install  are  successfully  applied.  

Note:  To generate  a list  of  file  sets  in  any  install  image,  including  all  

available  message  catalogs,  enter  the  following  command:  

installp  -ld device  

where  device  is:  

v   /cdrom  if you  are  installing  from  a CD.  

v   /dir  (the  directory  containing  the  install  images)  if you  are  installing  

from  a file  system.
c.   Unmount  the  CD-ROM.  Enter  the  following  command:  

unmount  /cdrom  

4.     Verify  that  the  product  is installed.  Enter  the  following  command:  

lslpp  -h | grep  ibmulb  

If  you  successfully  installed  the  full  product,  this  command  returns  a list  of  all  

the  packages.  

The  installation  process  does  not  add  the  command  directories  for  Load  Balancer  

into  the  PATH environment  variable.  To run Load  Balancer  commands  from  the  

system  root,  add  the  command  directories  to the  PATH environment  variable.  

Note:  If  you  had  previous  installation  of  the  Dispatcher  component  installed,  be 

aware  that  Load  Balancer  for  IPv4  versions  of  the  Dispatcher  component  used  

commands  in  the  /usr/bin  directory,  which  might  be  in  the  PATH variable.  Load  

 

Chapter  2. welcome_installing.html  13



Balancer  for  IPv4  and  IPv6  has  commands  in  the  install_root/bin  directory,  so  be  

aware  that  the  directory  entries  point  to the  appropriate  directories  for  the  dsserver  

and  dscontrol  command.  

   Related  tasks  

   “Installing  Load  Balancer”  on  page  11
Install  Load  Balancer  using  system  packaging  tools  or  the  command  line  for  all 

operating  systems.  

   “Uninstalling  Load  Balancer”  on  page  21

Installing Load Balancer on HP-UX systems 

This  topic  instructs  you  on  Load  Balancer  installation  using  system  packaging  tools  

and  requirements  for  HP-UX  operating  systems.  

For  information  on  hardware  and  software  requirements,  including  supported  

browsers,  refer  to  the  following  Web page:  http://www.ibm.com/support/
docview.wss?rs=180&uid=swg27006921.  

You cannot  have  two  installations  of  the  Dispatcher  component  installed  on  the  

same  system.  If  you  have  a previous  version  of  the  Edge  components  installed,  

uninstall  the  Dispatcher  component  before  starting  the  installation  process  for  Load  

Balancer  for  IPv4  and  IPv6.  Refer  to  “Uninstalling  Load  Balancer”  on  page  21  for  

more  information.  

The  Java  2 SDK  automatically  installs  with  Load  Balancer  on  all  platforms.  If you  

are  migrating  from  a previous  version  of Load  Balancer,  or  reinstalling  the  

operating  system,  prior  to installation  you  can  save  any  of your  previous  

configuration  files  or  script  files  for  Load  Balancer.  

v   After  installation,  place  your  configuration  files  in the  install_root/
configurations/dispatcher  directory.  

v   After  installation,  place  your  script  files  in  the  install_root/servers/bin  directory  

in  order  to  run them.
1.   Ensure  that  you  have  root  level  access,  and  login  as  the  local  superuser  root.  

Enter  the  following  command:  

su - root  

Password:  password  

2.   Issue  the  install  command:  

swinstall  -s /source  package_name  

where  source  is the  absolute  directory  path  for  the  location  of the  package,  and  

package_name  is  the  name  of the  package.  

The  following  is  the  list  of packages:  

 Table 2. HP-UX  Install  Images  

Package  Name  Install  Image  

Base  ibmulb-base-7.0.0-0.noarch.depot  

Dispatcher  ibmulb-disp-7.0.0-0.noarch.depot  

License  ibmulb-lic-7.0.0-0.noarch.depot  

Metric  Server  ibmulb-ms-7.0.0-0.noarch.depot  

Native  ibmulb-native-7.0.0-0.parisc.depot  

Substitute  ia64  for  parisc  when  it is 

appropriate  for your  system.  

 

14 Load Balancer  for IPv4 and IPv6 Administration  Guide

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921


Table 2. HP-UX  Install  Images  (continued)  

Package  Name  Install  Image  

Messages  ibmulb-lang_language.7.0.0-0.noarch.depot  

where  language  can  be: 

v   cs_CZ  

v   en_US  

v   de_DE  

v   es_ES  

v   fr_FR  

v   hu_HU  

v   it_IT  

v   ja_JP  

v   ko_KR  

v   pl_PL  

v   pt_BR  

v   ru_RU  

v   zh_CN  

v   zh_TW
  

You can  choose  to  install  some  of the  packages  if you  do  not  want  the  entire  

product  installated.  If  you  want  to install  Dispatcher,  install  the  following  

packages:  

v   Base  

v   Dispatcher  

v   License  

v   Native

If you  want  to  install  Metric  Server,  install  the  following  packages:  

v   Base  

v   Metric  Server  

v   Native
The  following  command  installs  just  the  base  package  for  Load  Balance,  

ibmulb.base,  if you  are  installing  the  packages  from  the  root  of  the  CD:  

swinstall  -s /source  ibmulb.base  

To install  all  the  packages  for  Load  Balancer  issue  the  following  command,  if 

you  are  installing  the  packages  from  the  root  of the  CD:  

swinstall  -s /source  ibmulb  

3.   Verify  the  installation  of  the  Load  Balancer  packages.  Issue  the  swlist  

command  to  list  all  the  packages  that  you  installed.  For  example:  

swlist  -l fileset  ibmulb  

The  installation  process  does  not  add  the  command  directories  for  Load  Balancer  

into  the  PATH environment  variable.  To run Load  Balancer  commands  from  the  

system  root,  add  the  command  directories  to the  PATH environment  variable.  

Note:  If  you  had  previous  installation  of  the  Dispatcher  component  installed,  be 

aware  that  Load  Balancer  for  IPv4  versions  of  the  Dispatcher  component  used  

commands  in  the  /usr/bin  directory,  which  might  be  in  the  PATH variable.  Load  

 

Chapter  2. welcome_installing.html  15



Balancer  for  IPv4  and  IPv6  has  commands  in  the  install_root/bin  directory,  so  be  

aware  that  the  directory  entries  point  to the  appropriate  directories  for  the  dsserver  

and  dscontrol  command.  

   Related  tasks  

   “Installing  Load  Balancer”  on  page  11
Install  Load  Balancer  using  system  packaging  tools  or  the  command  line  for  all 

operating  systems.  

   “Uninstalling  Load  Balancer”  on  page  21

Installing Load Balancer on Linux operating systems 

This  topic  instructs  you  on  Load  Balancer  installation  using  system  packaging  tools  

and  requirements  for  Linux  operating  systems.  

For  information  on  hardware  and  software  requirements,  including  supported  

browsers,  refer  to  the  following  Web page:  http://www.ibm.com/support/
docview.wss?rs=180&uid=swg27006921.  

You cannot  have  two  installations  of  the  Dispatcher  component  installed  on  the  

same  system.  If  you  have  a previous  version  of  the  Edge  components  installed,  

uninstall  the  Dispatcher  component  before  starting  the  installation  process  for  Load  

Balancer  for  IPv4  and  IPv6.  Refer  to  “Uninstalling  Load  Balancer”  on  page  21  for  

more  information.  

The  Java  2 SDK  automatically  installs  with  Load  Balancer  on  all  platforms.  If you  

are  migrating  from  a previous  version  of Load  Balancer,  or  reinstalling  the  

operating  system,  prior  to installation  you  can  save  any  of your  previous  

configuration  files  or  script  files  for  Load  Balancer.  

v   After  installation,  place  your  configuration  files  in the  install_root/
configurations/dispatcher  directory.  

v   After  installation,  place  your  script  files  in  the  install_root/servers/bin  directory  

in  order  to  run them.

   

Special  Considerations  for  Linux  systems  

v   Linux  on  zSeries  systems  require  libstdc++.so.5:  There  is a requirement  that  

Linux  on  zSeries  systems  must  have  rpm  package  libstdc++.so.5  in  order  to  

install  correctly,  otherwise  the  install  will  fail.  

v   Restriction  when  using  qeth/OSA  interface:  For  Linux  on  zSeries  systems,  there  

is a restrictions  when  using  a qeth/OSA  interface.  Forwarding  out  of  a 

qeth/OSA  interface  natively  is not  supported.  However,  there  is a workaround  

because  Linux  systems  run in user  space  and  can  support  Linux  tunneling.  

v   Use  layer2  OSA  with  Load  Balancer  for  IPv4  and  IPv6  protocols,  if  available:  

When  you  use  Load  Balancer  for  the  IPv4  and  IPv6  protocols  on  Linux  for  

zSeries  (s390x)  operating  system,  use  an  OSA/qeth  device  and  layer2  to  possibly  

improve  performance,  reduce  overhead,  and  simplify  some  configuration  

settings.  

Non-ethernet,  non-Address  Resolution  Protocol  (ARP)  interface  types  present  

specific  challenges  to Load  Balancer  because  Load  Balancer  uses  ARP  and  

ICMP6  (Internet  Control  Message  Protocol  for  IPv6)  to  advertise  and  move  

cluster  addresses  in  high  availability  mode.  The  most  effective  way  to  deploy  the  

Load  Balancer  Dispatcher  component  on  the  Linux  for  zSeries  operating  system  

is to  deploy  in  an  ethernet-like  environment.  Using  OSA/qeth  in  layer2  mode  

provides  this  capability.  

 

16 Load Balancer  for IPv4 and IPv6 Administration  Guide

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921


Special  configuration  steps  are  not  required  when  you  use  Load  Balancer  for  

IPv4  and  IPv6  with  layer-2  OSA  on  the  Linux  for  zSeries  operating  system.  

v   Linux  tunneling  support:  Load  Balancer  for  IPv4  and  IPv6  installations  can  

forward  across  tunnels  such  as IPIP  and  IPGRE.  When  using  Linux  on  zSeries  

machines  with  a qeth/OSA  interface,  a Linux  tunnel  may  be  defined  to  traverse  

the  qeth/OSA  interface.  Linux  systems  can  forward  between  machines  located  

on  the  same  or  other  qeth/OSA  devices,  or  anywhere  else  on  the  network.
1.   Prepare  to  install.  Log  in  as  root.  

2.   Issue  the  install  command  from  the  same  directory  where  the  RPM  files  reside.  

Issue  the  following  command  to  install  each  package:  

rpm  -i package.rpm 

The  following  is the  list  of packages:  

 Table 3. Linux  Install  Images  

Package  Name  Install  Image  

Base  ibmulb-base-7.0.0-0.noarch.rpm  

Dispatcher  ibmulb-disp-7.0.0-0.noarch.rpm  

License  ibmulb-lic-7.0.0-0.noarch.rpm  

Metric  Server  ibmulb-ms-7.0.0-0.noarch.rpm  

Native  ibmulb-native-7.0.0-0.i386.rpm  

where  i386  can  be 

v   i386  

v   ppc  

v   ppc64  

v   s390  

v   s390x  

v   x86_64  

Messages  ibmulb-lang_language.7.0.0-0.noarch.rpm  

where  language  can  be: 

v   cs_CZ  

v   en_US  

v   de_DE  

v   es_ES  

v   fr_FR  

v   hu_HU  

v   it_IT  

v   ja_JP  

v   ko_KR  

v   pl_PL  

v   pt_BR  

v   ru_RU  

v   zh_CN  

v   zh_TW
  

You can  choose  to  install  some  of the  packages  if you  do  not  want  the  entire  

product  installated.  If  you  want  to install  Dispatcher,  install  the  following  

packages:  

v   Base  

 

Chapter  2. welcome_installing.html  17



v   Dispatcher  

v   License  

v   Native

If you  want  to  install  Metric  Server,  install  the  following  packages:  

v   Base  

v   Metric  Server  

v   Native  

Red  Hat  Linux  systems:  Due  to a known  Red  Hat  Linux  problem,  you  will  also  

need  to  delete  the  _db*  RPM  files,  or  an  error  might  occur.  

3.   Verify  that  the  product  is installed.  Enter  the  following  command:  

rpm  -qa  | grep  ibmulb  

Installing  the  full  product  produces  a listing  like  the  following  example:  

ibmulb-base-7.0.0-0.noarch.rpm  

ibmulb-disp-7.0.0-0.noarch.rpm  

ibmulb-lic-7.0.0-0.noarch.rpm  

ibmulb-ms-7.0.0-0.noarch.rpm  

ibmulb-native-7.0.0-0.i386.rpm  

ibmulb-lang_language.7.0.0-0.noarch.rpm  

The  installation  process  does  not  add  the  command  directories  for  Load  Balancer  

into  the  PATH environment  variable.  To run Load  Balancer  commands  from  the  

system  root,  add  the  command  directories  to  the  PATH environment  variable.  

Note:  If  you  had  previous  installation  of  the  Dispatcher  component  installed,  be  

aware  that  Load  Balancer  for  IPv4  versions  of the  Dispatcher  component  used  

commands  in  the  /usr/bin  directory,  which  might  be  in  the  PATH variable.  Load  

Balancer  for  IPv4  and  IPv6  has  commands  in  the  install_root/bin  directory,  so  be  

aware  that  the  directory  entries  point  to the  appropriate  directories  for  the  dsserver  

and  dscontrol  command.  

   Related  tasks  

   “Installing  Load  Balancer”  on  page  11
Install  Load  Balancer  using  system  packaging  tools  or  the  command  line  for  all 

operating  systems.  

   “Uninstalling  Load  Balancer”  on  page  21

Installing Load Balancer on Solaris operating systems 

This  topic  instructs  you  on  Load  Balancer  installation  using  system  packaging  tools  

and  requirements  for  Solaris  operating  systems.  

For  information  on  hardware  and  software  requirements,  including  supported  

browsers,  refer  to  the  following  Web page:  http://www.ibm.com/support/
docview.wss?rs=180&uid=swg27006921.  

You cannot  have  two  installations  of  the  Dispatcher  component  installed  on  the  

same  system.  If  you  have  a previous  version  of  the  Edge  components  installed,  

uninstall  the  Dispatcher  component  before  starting  the  installation  process  for  Load  

Balancer  for  IPv4  and  IPv6.  Refer  to  “Uninstalling  Load  Balancer”  on  page  21  for  

more  information.  

The  Java  2 SDK  automatically  installs  with  Load  Balancer  on  all  platforms.  If you  

are  migrating  from  a previous  version  of Load  Balancer,  or  reinstalling  the  

operating  system,  prior  to installation  you  can  save  any  of your  previous  

configuration  files  or  script  files  for  Load  Balancer.  

 

18 Load Balancer  for IPv4 and IPv6 Administration  Guide

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921


v   After  installation,  place  your  configuration  files  in  the  install_root/
configurations/dispatcher  directory.  

v   After  installation,  place  your  script  files  in the  install_root/servers/bin  directory  

in  order  to  run them.
1.   Prepare  to  install.  

a.   Log  in  as root  user. 

b.   Insert  the  CD-ROM  that  contains  the  Load  Balancer  software  into  the  

appropriate  drive.
2.   Display  the  list  of  packages  to  install  and  choose  which  ones  you  would  like  to  

install.  

a.    At  the  command  prompt,  enter  the  command  to  display  the  list  of 

packages.  Enter  the  following:  

pkgadd  -d   /path_name/xxx.pkg  

where  path_name  is the  device  name  of  the  CD-ROM  drive  or  the  directory  

on  the  hard  drive  where  the  package  is located.  To use  the  CD-ROM,  for  

example,  enter  the  following:  pkgadd  -d  /cdrom/cdrom0/xxx.pkg. The  

following  is a list  of  packages:  

 Table 4. Solaris  Install  Images  

Package  Name  Install  Image  

Base  ibmulb-base-7.0.0-0.noarch.pkg  

Dispatcher  ibmulb-disp-7.0.0-0.noarch.pkg  

License  ibmulb-lic-7.0.0-0.noarch.pkg  

Metric  Server  ibmulb-ms-7.0.0-0.noarch.pkg  

Native  ibmulb-native-7.0.0-0.sparc.pkg  

Substitute  sparcv9  for  sparc  when  it is 

appropriate  for  your  system.  

Messages  ibmulb-lang_language.7.0.0-0.noarch.pkg  

where  language  can  be: 

v   cs_CZ  

v   en_US  

v   de_DE  

v   es_ES  

v   fr_FR  

v   hu_HU  

v   it_IT  

v   ja_JP  

v   ko_KR  

v   pl_PL  

v   pt_BR  

v   ru_RU  

v   zh_CN  

v   zh_TW
  

b.   Optional:  If you  want  to  install  some  of  the  components,  enter  the  names  

corresponding  to  the  packages  to  be  installed  separated  by  a space  or  

comma  and  press  return.  

 

Chapter  2. welcome_installing.html  19



You can  choose  to  install  some  of the  packages  if you  do  not  want  the  entire  

product  installated.  If you  want  to install  Dispatcher,  install  the  following  

packages:  

v   Base  

v   Dispatcher  

v   License  

v   Native

If you  want  to  install  Metric  Server,  install  the  following  packages:  

v   Base  

v   Metric  Server  

v   Native
3.   Verify  that  the  product  is installed.  Issue  the  following  command:  

pkginfo  | grep  ibm  

The  installation  process  does  not  add  the  command  directories  for  Load  Balancer  

into  the  PATH environment  variable.  To run Load  Balancer  commands  from  the  

system  root,  add  the  command  directories  to  the  PATH environment  variable.  

Note:  If  you  had  previous  installation  of  the  Dispatcher  component  installed,  be  

aware  that  Load  Balancer  for  IPv4  versions  of the  Dispatcher  component  used  

commands  in  the  /usr/bin  directory,  which  might  be  in  the  PATH variable.  Load  

Balancer  for  IPv4  and  IPv6  has  commands  in  the  install_root/bin  directory,  so  be  

aware  that  the  directory  entries  point  to the  appropriate  directories  for  the  dsserver  

and  dscontrol  command.  

   Related  tasks  

   “Installing  Load  Balancer”  on  page  11
Install  Load  Balancer  using  system  packaging  tools  or  the  command  line  for  all 

operating  systems.  

   “Uninstalling  Load  Balancer”  on  page  21

Installing Load Balancer on Windows operating systems 

This  topic  instructs  you  on  Load  Balancer  installation  using  system  packaging  tools  

and  requirements  for  Windows  operating  systems.  

For  information  on  hardware  and  software  requirements,  including  supported  

browsers,  refer  to  the  following  Web page:  http://www.ibm.com/support/
docview.wss?rs=180&uid=swg27006921.  

It  is important  to  note  that  any  previous  Load  Balancer  must  be  uninstalled  before  

installing  Load  Balancer.  Two Load  Balancers  cannot  be  installed  on  the  same  

machine.  If  you  have  an  earlier  version  installed,  uninstall  that  copy  before  

installing  the  current  version.  Refer  to  “Uninstalling  Load  Balancer”  on  page  21 for  

more  information.  

The  Java  2 SDK  automatically  installs  with  Load  Balancer  on  all  platforms.  If you  

are  migrating  from  a previous  version  of Load  Balancer,  or  reinstalling  the  

operating  system,  prior  to installation  you  can  save  any  of your  previous  

configuration  files  or  script  files  for  Load  Balancer.  

v   After  installation,  place  your  configuration  files  in the  install_root/
configurations/dispatcher  directory.  

v   After  installation,  place  your  script  files  in  the  install_root/servers/bin  directory  

in  order  to  run them.

 

20 Load Balancer  for IPv4 and IPv6 Administration  Guide

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921


1.   Insert  the  product  CD-ROM,  and  the  installation  launchpad  will  appear.  To 

manually  start  the  installation  program:  

a.   Click  Start. 

b.   Select  Run. 

c.   Specify  the  CD-ROM  disk  drive,  followed  by  launchpad.exe, for  example,  

type:  

E:\launchpad.exe  

2.   Select  the  option  to install  Edge  components  for  IPv4  and  IPv6.  

3.   Follow  the  instructions  of  the  setup  program.  

a.   Optional:  If you  want  to  change  the  drive  or  directory  in  which  Load  

Balancer  will  be  installed  click  Browse  

b.   Optional:  Choose  to  install  Typical  to install  all  of the  components,  or  

choose  Custom  to  choose  the  packages  based  on  your  preferences  and  

system  requirements.
4.   Reboot  the  system  when  you  are  prompted  by  the  setup  program.  

   Related  tasks  

   “Installing  Load  Balancer”  on  page  11
Install  Load  Balancer  using  system  packaging  tools  or  the  command  line  for  all  

operating  systems.  

   “Uninstalling  Load  Balancer”

Uninstalling Load Balancer 

You might  want  to  uninstall  Load  Balancer  before  upgrading  to a newer  version,  

or  if you  think  the  current  installation  is corrupted.  

v     First,  ensure  that  you  have  stopped  all  the  executors  and  the  servers.  Uninstall  

the  product  by  issuing  the  following  command:  installp  -u  package. 

–   To uninstall  the  entire  product,  enter  the  following  command:  

installp  -u ibmulb  

Use  the  previous  name  when  it is applicable,  for  example  intnd. 

–   To uninstall  specific  file  sets,  list  them  instead  of specifying  the  package  

name.  Uninstall  the  packages  in  the  reverse  order  in which  they  were  

installed  (reverse  the  order  of the  table  below):  

 Table 5. AIX  Install  Images  

Package  Name  Install  Image  

Base  ibmulb-base-7.0.0-0.noarch-rte  

Dispatcher  ibmulb-disp-7.0.0-0.noarch.rte  

License  ibmulb-lic-7.0.0-0.noarch-rte  

Metric  Server  ibmulb-ms-7.0.0-0.noarch.rte  

Native  ibmulb-7.0.0-0.ppc64.rte  

Substitute  ppc  for  ppc64  when  it is 

appropriate  for  your  system.  

 

Chapter  2. welcome_installing.html  21



Table 5. AIX  Install  Images  (continued)  

Package  Name  Install  Image  

Messages  ibmulb-lang_language.7.0.0-0.noarch.rte  

where  language  can  be: 

v   cs_CZ  

v   en_US  

v   de_DE  

v   es_ES  

v   fr_FR  

v   hu_HU  

v   it_IT  

v   ja_JP  

v   ko_KR  

v   pl_PL  

v   pt_BR  

v   ru_RU  

v   zh_CN  

v   zh_TW
  

v     First,  ensure  that  you  have  stopped  all  the  executors  and  the  servers.  Use  the  

swremove  command  to  uninstall  the  packages.  

–   To uninstall  all  the  Load  Balancer  packages:  

swremove  ibmulb  

–   To uninstall  an  individual  package,  for  example  the  Dispatcher  component,  

enter:  

swremove  ibmulb.disp  

The  package  names  are:  

 Table 6. HP-UX  Install  Images  

Package  Name  Install  Image  

Base  ibmulb-base-7.0.0-0.noarch.depot  

Dispatcher  ibmulb-disp-7.0.0-0.noarch.depot  

License  ibmulb-lic-7.0.0-0.noarch.depot  

Metric  Server  ibmulb-ms-7.0.0-0.noarch.depot  

Native  ibmulb-native-7.0.0-0.parisc.depot  

Substitute  ia64  for  parisc  when  it is 

appropriate  for your  system.  

 

22 Load Balancer  for IPv4 and IPv6 Administration  Guide



Table 6. HP-UX  Install  Images  (continued)  

Package  Name  Install  Image  

Messages  ibmulb-lang_language.7.0.0-0.noarch.depot  

where  language  can  be: 

v   cs_CZ  

v   en_US  

v   de_DE  

v   es_ES  

v   fr_FR  

v   hu_HU  

v   it_IT  

v   ja_JP  

v   ko_KR  

v   pl_PL  

v   pt_BR  

v   ru_RU  

v   zh_CN  

v   zh_TW
  

v   

   

First,  ensure  that  all  the  executors  and  all  the  servers  are  stopped.  To 

uninstall  the  entire  product,  enter:  

rpm  -e pkgname  

The  package  names  are:  

 Table 7. Linux  Install  Images  

Package  Name  Install  Image  

Base  ibmulb-base-7.0.0-0.noarch.rpm  

Dispatcher  ibmulb-disp-7.0.0-0.noarch.rpm  

License  ibmulb-lic-7.0.0-0.noarch.rpm  

Metric  Server  ibmulb-ms-7.0.0-0.noarch.rpm  

Native  ibmulb-native-7.0.0-0.i386.rpm  

where  i386  can  be 

v   i386  

v   ppc  

v   ppc64  

v   s390  

v   s390x  

v   x86_64  

 

Chapter  2. welcome_installing.html  23



Table 7. Linux  Install  Images  (continued)  

Package  Name  Install  Image  

Messages  ibmulb-lang_language.7.0.0-0.noarch.rpm  

where  language  can  be: 

v   cs_CZ  

v   en_US  

v   de_DE  

v   es_ES  

v   fr_FR  

v   hu_HU  

v   it_IT  

v   ja_JP  

v   ko_KR  

v   pl_PL  

v   pt_BR  

v   ru_RU  

v   zh_CN  

v   zh_TW
  

v     First,  ensure  that  you  have  stopped  all  the  executors  and  the  servers.  Then,  to  

uninstall  Load  Balancer  enter  the  pkgrm  command.  Enter  the  following:  

pkgrm  package  

The  package  names  are:  

 Table 8. Solaris  Install  Images  

Package  Name  Install  Image  

Base  ibmulb-base-7.0.0-0.noarch.pkg  

Dispatcher  ibmulb-disp-7.0.0-0.noarch.pkg  

License  ibmulb-lic-7.0.0-0.noarch.pkg  

Metric  Server  ibmulb-ms-7.0.0-0.noarch.pkg  

Native  ibmulb-native-7.0.0-0.sparc.pkg  

Substitute  sparcv9  for sparc  when  it is 

appropriate  for your  system.  

 

24 Load Balancer  for IPv4 and IPv6 Administration  Guide



Table 8. Solaris  Install  Images  (continued)  

Package  Name  Install  Image  

Messages  ibmulb-lang_language.7.0.0-0.noarch.pkg  

where  language  can  be: 

v   cs_CZ  

v   en_US  

v   de_DE  

v   es_ES  

v   fr_FR  

v   hu_HU  

v   it_IT  

v   ja_JP  

v   ko_KR  

v   pl_PL  

v   pt_BR  

v   ru_RU  

v   zh_CN  

v   zh_TW
  

v     To uninstall  using  the  Add/Remove  Programs  option:  

1.   Click  Start  > Settings  > Control  Panel. 

2.   Double-click  Add/Remove  Programs. 

3.   Select  IBM  WebSphere  Edge  Components  (or  previous  name,  for  example,  IBM  

Edge  Server). 

4.   Click  Change/Remove  button.  

   Related  tasks  

   “Installing  Load  Balancer”  on  page  11
Install  Load  Balancer  using  system  packaging  tools  or  the  command  line  for  all  

operating  systems.

Updating Load Balancer 

Use  these  instructions  for  obtaining  and  installing  updates  to installations  of Load  

Balancer  for  IPv4  and  IPv6.  

If  you  are  installing  refreshes  and  fix  packs  for  Load  Balancer,  the  only  prerequisite  

that  is  required  for  Edge  Components  Version  7.0  is the  license  file,  which  is 

nd70Full.LIC,  because  the  refresh  or  fix  pack  does  not  provide  the  license.  You can  

obtain  the  license  by  installing  the  Load  Balancer  license  package.  

You can  obtain  a fix  pack  in the  following  mediums:  

v   Product  CDs  for  newly  supported  operating  systems.  If  you  are  installing  Load  

Balancer  on  operating  systems  that  are  newly  supported  in  Version  7.0,  install  

the  product  from  the  product  CD  or  DVD.  

v   Downloadable  fix  packs  for  existing  installations  on  operating  systems  that  were  

previously  supported.  You can  find  the  link  to  the  refresh  packs  or  fix  packs  for  

Edge  Components  in  the  Support  &  downloads  web  site.  Find  the  corrective  

service  release  to which  you  are  upgrading  and  follow  the  link  to  the  download  

site.  Follow  the  instructions  on  the  site  to download  the  Edge  Components  

 

Chapter  2. welcome_installing.html  25

http://www.ibm.com/products/finder/us/en/finders?sid=015761221216268767909


refresh  pack.  You also  can  download  the  latest  Edge  components  fix  packs  from  

the  FTP  server  for  the  Edge  Components.  

v   For  information  on  hardware  and  software  requirements,  including  supported  

browsers,  refer  to  the  following  Web page:  http://www.ibm.com/support/
docview.wss?rs=180&uid=swg27006921.

v    Install  the  update  packages  for  AIX,  HP-UX,  Linux,  or  Solaris  operating  systems.  

v   Install  the  update  packages  for  Windows  operating  systems.

Updating Load Balancer for AIX, HP-UX, Linux, or Solaris 

operating systems 

Use  these  instructions  for  obtaining  and  installing  updates  to  installations  of  Load  

Balancer  for  IPv4  and  IPv6  on  AIX,  HP-UX,  Linux,  or  Solaris  operating  systems.  

Before  installing  the  refresh  or  fix  pack,  stop  and  uninstall  any  existing  versions  of  

Load  Balancer  that  are  earlier  than  Version  7.0.  Refer  to “Uninstalling  Load  

Balancer”  on  page  21  for  more  information.  

1.   Ensure  that  you  have  the  license  package  installed  from  the  CD.  You don’t  have  

to  have  the  entire  product  installed;  you  only  need  to have  the  license  installed.  

The  license  package  only  comes  on  the  CD,  so you  need  the  CD  to  install  the  

license  package.  

2.   Go  to  a command  prompt  with  root  authority.  

3.   Obtain  the  Load  Balancer  refresh  or  fix  pack  and  place  it in  a temporary  

directory.  

4.   Uncompress  and  untar  the  build  package.  This  results  in  a number  of separate  

file  sets.  

5.    Install  the  software  using  the  system-specific  commands  in  the  following  table.  

Use  the  following  table  for  the  commands  to  use  for  your  operating  system:  

 Operating  system  Update  commands  

AIX  1.   If a .toc  file is not  already  present,  

generate  a .toc  file by  issuing  the 

command:  

inutoc  

2.   Install  the  packages  for Load  Balancer.  

For  example,  to install  the  base  package  

from  the  current  directory,  issue  the 

following  command:  

installp  -acXd  . package_name  

HP-UX  swinstall  -s /source  package_name  

where  source  is the  directory  for the  location  

of the package,  and  package_name  is the  

name  of the  package.  

For example,  to install  the  base  package  

from  the current  directory,  issue  the 

following  command:  

swinstall  -s /lb  package_name  

 

26 Load Balancer  for IPv4 and IPv6 Administration  Guide

ftp://ftp.software.ibm.com/software/websphere/edgeserver
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921


Operating  system  Update  commands  

Linux  rpm -iv  package_name  

where  package_name  is the name  of the  

package.  

For example,  the  following  command  installs  

all of the packages  for Load  Balancer  when  

the packages  reside  in the  current  directory:  

rpm -iv  ibmulb*.rpm  

Note:  You can  use  the nodeps  option  to 

successfully  install  all of the packages  in any  

order. 

Solaris  pkgadd  -d source  package_name  

where  source  is the  directory  for  the location  

of the  package,  and  package_name  is the  

name  of the package.  

For example,  to install  the  administration  

package  from  the  current  directory,  issue  the  

following  command:  

pkgadd  -d . ibmulbadm  

  

6.   Restore  any  configuration  files  and  start  scripts  that  you  saved  or  modified  

during  a previous  uninstall.  

After  you  install  an  update  for  Edge  Components,  the  previous  configuration  for  

Edge  Components  is maintained.  When  new  functions  or  enhancements  are  

delivered  with  a refresh  or  fix  pack,  it might  be  necessary  to add  directives  to  the  

configuration  files  to  enable  the  features.  

Note:  When  you  update  the  Load  Balancer  component,  you  must  manually  save  

and  restore  configuration  files  to maintain  the  previous  configuration  for  Load  

Balancer.  See  “Installing  Load  Balancer”  on  page  11 for  more  information.  

Rejecting  an  update  

v   On  HP-UX,  Linux,  or  Solaris  operating  systems,  to remove  a refresh  or  fix  pack  

and  return  to  a prepatched  state,  uninstall  the  product  and  reinstall  the  previous  

version.  

v   The  mechanism  that  the  AIX  operating  system  provides  for  rejecting  a patch  

requires  that  the  patch  be  produced  in refresh  or  fix  pack  format.  The  Edge  

Components  refresh  or  fix  pack  is  provided  with  product  format  packaging  only,  

not  refresh  or  fix  pack  format  packaging.  Therefore,  you  cannot  use  the  AIX  

SMIT  mechanisms  for  installing  and  removing  patches.  To reject  a patch  on  an  

AIX  system,  you  must  uninstall  the  file  sets  and  reinstall  the  previous  version.

Updating Load Balancer for Windows operating systems 

Use  these  instructions  for  obtaining  and  installing  updates  to installations  of Load  

Balancer  for  IPv4  and  IPv6  on  Windows  operating  systems.  

Before  installing  the  refresh  or  fix  pack,  stop  and  uninstall  any  existing  versions  of  

Load  Balancer  that  are  earlier  than  Version  7.0.  Refer  to  “Uninstalling  Load  

Balancer”  on  page  21  for  more  information.  

 

Chapter  2. welcome_installing.html  27



1.   To prevent  the  currently  installed  Load  Balancer  from  starting,  edit  any  start  

scripts  that  you  have  created  to  temporarily  suppress  any  commands  that  will  

start  Load  Balancer  upon  reboot.  

2.   Use  the  Add  or  Remove  Programs  option  to  uninstall  the  current  Load  

Balancer,  if it  is  present.  

3.   Download  the  Edge  Components  refresh  or  fix  pack.  

4.   Run  the  installation  program.  

v   From  a command  prompt:  

–   For  a refresh  pack,  change  to  the  /ulb  directory,  and  enter  the  following:  

setup  

–   For  a fix  pack,  the  Load  balancer  fix  pack  only  contains  Load  balancer  

installation  files  and  does  not  include  the  /ulb  folder.  Unzip  the  

downloaded  package  to  a folder  and  enter  setup  from  that  folder.  For  

example,  navigate  to  the  unzipped  files,  and  enter  the  following:  

setup  

v   From  the  Start  menu:  

a.   Click  Run. 

b.   Click  Browse. 

–   For  a refresh  pack,  change  to  the  /ulb  directory,  and  select  setup.  

–   For  a fix  pack,  the  Load  balancer  fix  pack  only  contains  Load  balancer  

installation  files  and  does  not  include  the  /ulb  folder.  Select  the  

installation  files  for  your  operating  system,  and  select  setup.
c.   Click  Open. 

d.   Click  OK. 

e.   

5.   Enter  information  as  requested  by  the  installation  program.  

6.   Restart  the  system.  

After  you  install  an  update  for  Edge  Components,  the  previous  configuration  for  

Edge  Components  is maintained.  When  new  functions  or  enhancements  are  

delivered  with  a refresh  or  fix  pack,  it might  be  necessary  to add  directives  to the  

configuration  files  to  enable  the  features.  

Note:  When  you  update  the  Load  Balancer  component,  you  must  manually  save  

and  restore  configuration  files  to maintain  the  previous  configuration  for  Load  

Balancer.  See  “Installing  Load  Balancer”  on  page  11 for  more  information.  

Rejecting  an  update  

1.   Use  the  Add  or  Remove  Programs  option  to  uninstall  the  current  Load  

Balancer.  

2.   Select  Remove  on  the  Maintenance  Options  window  for  the  setup  program.  

3.   Use  the  setup  program  for  Edge  Components  to  reinstall  the  previous  version.

Directory conventions 

References  in  product  information  to  install_root  and  other  directories  infer  specific  

default  directory  locations.  This  topic  describes  the  conventions  in  use  for  IBM  

WebSphere  Edge  Components.  

 

28 Load Balancer  for IPv4 and IPv6 Administration  Guide



These  file  paths  are  default  locations.  You can  install  the  product  and  other  

components  in  any  directory  where  you  have  write  access.  You can  create  profiles  

in  any  valid  directory  where  you  have  write  access.  

    

   

  

install_root  - the  root  directory  in  which  the  product  was  installed  

Load  Balancer  install  paths  include  the  following:  

v   Administration  - /opt/ibm/edge/ulb/admin  

v   Load  Balancer  - /opt/ibm/edge/ulb/servers  

v   Metric  Server  - /opt/ibm/edge/ulb/ms  

v   Documentation  - /opt/ibm/edge/ulb/docs/

  

install_root  - the  root  directory  in  which  the  product  was  installed  

Load  Balancer  install  paths  include  the  following:  

v   Administration  - C:\Program  Files\IBM\edge\ulb\admin  

v   Load  Balancer  - C:\Program  Files\IBM\edge\ulb\servers  

v   Metric  Server  - C:\Program  Files\IBM\edge\ulb\ms  

v   Documentation  - C:\Program  Files\IBM\edge\ulb\docs

 

Chapter  2. welcome_installing.html  29



30 Load Balancer  for IPv4 and IPv6 Administration  Guide



Chapter  3.  welcome_config.html  

Methods of configuration 

There  are  four  methods  you  can  use  to  configure  Load  Balancer:  the  command  

line,  scripts,  the  graphical  user  interface  (GUI),  and  the  configuration  wizard.  The  

Information  Center  assumes  use  of  the  command  line.  

There  are  four  basic  methods  of configuring  the  Dispatcher:  

v   “Command  line”  

v   “Scripts”  on  page  32 

v   Graphical  User  Interface  (GUI)  

v   “The  configuration  wizard”  on  page  33.

Command line 

This  is  the  most  direct  means  of  configuring  the  Dispatcher.  The  command  

parameter  values  must  be  entered  in  English  characters.  The  only  exceptions  are  

host  names  (used  in  cluster,  server,  and  high  availability  commands)  and  file  

names  (used  in  file  commands).  

To start  the  Dispatcher  from  the  command  line:  

1.   Start  dsserver:  

v       

   

  From  the  command  prompt,  issue  the  following:  

dsserver  

To stop  the  service,  type:  

dsserver  stop  

v     Click  Start  > Control  Panel  > Administrative  Tools  > Services.  Right-click  

IBM  Dispatcher  (ULB)  and  select  Start. To stop  the  service,  follow  the  same  

steps  and  select  Stop.
2.   Issue  the  Dispatcher  control  commands  you  want  in  order  to  set  up  your  

configuration.  The  command  is dscontrol. For  more  information  about  

commands,  see  “Commands”  on  page  135.

You  can  use  a minimized  version  of  the  dscontrol  command  parameters  by  typing  

the  unique  letters  of the  parameters.  For  example,  to get  help  on  the  file  save  

command,  you  can  type  

dscontrol  he f 

instead  of  

dscontrol  help  file  

To start  up  the  command  line  interface  issue  dscontrol  to  receive  an  dscontrol  

command  prompt.  To end  the  command  line  interface  issue  the  commands  exit  or  

quit. 

 

  31



Scripts 

You can  enter  commands  for  configuring  Dispatcher  into  a configuration  script  file  

and  run them  together.  See  Sample  Load  Balancer  configuration  files.  To quickly  

run the  content  of  a script  file  (for  example,  myscript),  use  either  of the  following  

commands:  

v   To update  the  current  configuration,  run the  following  executable  commands  

from  your  script  file:  

dscontrol  file  appendload  myscript  

v   To completely  replace  the  current  configuration,  run the  following  executable  

commands  from  your  script  file:  

dscontrol  file  newload  myscript  

To save  the  current  configuration  into  a script  file  (for  example,  savescript),  run the  

following  command:  

dscontrol  file  save  savescript  

This  command  will  save  the  configuration  script  file  in the  install_root/servers/
configurations/dispatcher  directory.  

GUI 

To start  the  GUI,  follow  these  steps:  

1.   Ensure  dsserver  is running:  

v       

   

  Run  the  following  as  root  user:  

dsserver  

v     dsserver  runs as  a service  that  starts  automatically.
2.   Start  the  Load  Balancer  GUI:  

v       

   

  Run  the  following:  

lbadmin  

v     Click  Start  >  Programs  > IBM  WebSphere  > Edge  Components  > IBM  

Load  Balancer  > Load  Balancer

To  configure  the  Dispatcher  component  from  the  GUI,  you  must  first  select  

Dispatcher  in  the  tree  structure.  You can  start  the  executor  and  manager  after  you  

connect  to  a Host. You can  also  create  clusters  containing  ports  and  servers,  and  

start  advisors  for  the  manager.  

The  GUI  can  be  used  to do  anything  that  you  would  do  with  the  dscontrol  

command.  For  example,  to  define  a cluster  using  the  command  line,  you  would  

enter  dscontrol  cluster  add  cluster  command.  To define  a cluster  from  the  GUI,  

right-click  Executor, then  in  the  popup  menu,  left-click  Add  Cluster. Enter  the  

cluster  address  in  the  popup  window,  then  click  OK. 

Pre-existing  Dispatcher  configuration  files  can  be  loaded  using  the  Load  New  

Configuration  (for  completely  replacing  the  current  configuration)  and  Append  to  

Current  Configuration  (for  updating  the  current  configuration)  options  presented  

in  the  Host  popup  menu.  You should  save  your  Dispatcher  configuration  to a file  

periodically  using  the  Save  Configuration  File  As  option  also  presented  in  the  

Host  popup  menu.  The  File  menu  located  at the  top  of  the  GUI  will  allow  you  to  

save  your  current  host  connections  to a file  or  restore  connections  in  existing  files  

across  all  Load  Balancer  components.  

 

32 Load Balancer  for IPv4 and IPv6 Administration  Guide



In  order  to  run a command  from  the  GUI:  

1.   Highlight  the  Host  node  from  the  GUI  tree  and  select  Send  command...  from  

the  Host  pop-up  menu.  

2.   In  the  command  entry  field,  type  the  command  that  you  want  to  run, for  

example:  

executor  report  

The  results  and  history  of  the  commands  run in  the  current  session  and  appear  

in  the  window  provided.

You  can  access  Help  by  clicking  the  question  mark  icon  in  the  upper  right  corner  

of  the  Load  Balancer  window.  

v   Help:  Field  level  --  describes  each  field,  default  values  

v   Help:  How  do  I --  lists  tasks  that  can  be  done  from  that  screen  

v   InfoCenter  --  provides  centralized  access  to  product  information

The configuration wizard 

The  wizard  guides  you  step  by  step  through  the  process  of  creating  a basic  

configuration  for  the  Dispatcher  component.  You will  be  asked  questions  about  

your  network.  You will  be  guided  through  the  setup  of  a cluster  for  Dispatcher  to  

load  balance  traffic  between  a group  of servers.  

If  you  are  using  the  configuration  wizard,  follow  these  steps:  

1.   Start  the  dsserver  on  Dispatcher:  

v       

   

  Run  the  following  as  root  user:  

dsserver  

v     dsserver  runs as  a service  that  starts  automatically.
2.   Start  the  wizard  function  of  Dispatcher  by  issuing  the  following  command:  

dswizard  

Configuring the Load Balancer machine 

Configure  Load  Balancer  for  IPv4  and  IPv6  on  the  machine  that  you  will  use  to  

load  balance  server  traffic.  

Before  setting  up  the  Dispatcher  machine,  you  must  be  the  root  user  (for  AIX,  

HP-UX,  Linux,  or  Solaris  systems)  or  the  Administrator  on  Windows  systems.  

For  the  Dispatcher  machine  you  will  need  at least  two  valid  IP  addresses.  

The  figure  below  shows  an  example  of  Load  Balancer  set  up  with  a single  cluster,  

two  ports,  and  three  servers.  

 

Chapter  3. welcome_config.html  33



Client

204.0.0.1

204.0.0.3

204.0.0.2

80

443

204.67.172.72
www.productworks.com

nonforwarding address
204.67.32.54

Dispatcher

You must  configure  the  machine  on  which  Load  Balancer  is installed  before  you  

can  load  balance  traffic  in  your  network  environment.  

Note:  Be  aware  of  the  following  back-end  server  restrictions:  

Solaris  back-end  server  

There  is  no  support  for  load  balancing  IPv6  traffic  to back-end  Solaris  5.8  

servers.  On  Solaris  5.8,  there  is an  incompatibility  with  a MAC-forwarded  

IPv6  packet  and  the  Solaris  IPv6  stack.  When  the  cluster  is configured  on  a 

Solaris  5.8  back-end  server  using  the  ifconfig  lo0  (loopback)  command,  the  

packet  arrives  at the  Solaris  5.8  node,  but  is not  accepted.  However,  you  

can  use  Load  Balancer  for  IPv4  and  IPv6  installations  to  load  balance  IPv4  

traffic  to  back-end  Solaris  5.8  servers.  

z/OS  back-end  servers  

There  is  no  support  for  load-balancing  IPv6  traffic  to  back-end  z/OS  

servers.  However,  you  can  load  balance  IPv4  traffic  to back-end  z/OS  

servers  using  Load  Balancer  for  IPv4  and  IPv6  installations.
1.       

   

  Start  the  server  function.  To start  the  server  function,  type  the  

following  at  a command  prompt:  

dsserver  

Note:  A default  configuration  file  (default.cfg)  gets  automatically  loaded  when  

starting  dsserver.  If the  user  decides  to  save  the  Dispatcher  configuration  in 

default.cfg,  then  everything  saved  in this  file  is automatically  loaded  next  time  

dsserver  gets  started.  

2.   Start  the  executor  function.  

a.   Optional:  If  you  are  using  IPv6  addresses,  enable  the  processing  of  IPv6  

packets.  

  

   

  Prior  to  starting  the  executor  (dscontrol  executor  start),  the  

following  must  be  issued  from  the  command  line  as  root:  

v     

autoconf6  

To enable  uninterrupted  processing  of  IPv6  packets,  even  after  a system  

reboot,  edit  the  etc/rc.tcpip  file  and  uncomment  the  following  line,  and  

add  the  -A  flag:  

start  usr/bin/autoconf6  " " -A 

v   

   

modprobe  ipv6  

 

34 Load Balancer  for IPv4 and IPv6 Administration  Guide



v     

netsh  interface  ipv6  install  

These  commands  enable  processing  of  IPv6  packets  in the  respective  

operating  systems.  Issue  this  command  only  once.  Thereafter,  you  can  start  

and  stop  the  executor  as  often  as  you  need.  If you  do  not  issue  the  

command  to  enable  processing  of IPv6  packets  on  these  systems,  the  

executor  will  not  start.  

    Using  the  ifconfig  command,  IPv6  addresses  must  be  plumbed  and  an  

interface  configured  in  order  for  Dispatcher  to  inspect  IPv6  packets.  If you  

do  not  issue  these  commands,  the  executor  will  start,  but  no  IPv6  packets  

can  be  viewed.  Prior  to  starting  the  executor  (dscontrol  executor  start),  issue  

the  following  from  the  command  line  as  root:  

v     

ifconfig  device  inet6  up 

v     Change  the  device  to  your  device  name,  and  change  the  IPv6  IP  address  

and  prefix  to your  address  and  prefix  values:  

ifconfig  device  inet6  plumb  

ifconfig  device  inet6  address/prefix  up 

b.   To start  the  executor  function,  enter  the  dscontrol  executor  start  command.  

You may  also  change  various  executor  settings  at this  time.
3.   Optional:  Define  the  non-forwarding  address  if it is different  from  the  host  

name.  The  non-forwarding  address  is used  to  connect  to  the  machine  for  

administrative  purposes,  such  as  using  Telnet  or  SMTP  to  this  machine.  

By  default,  this  address  is the  hostname.  To define  the  non-forwarding  address,  

enter  the  following  command,  or  edit  the  configuration  file:  

dscontrol  executor  set  nfa  IP_address  

where  IP_address  is either  the  symbolic  name  or  the  IP  address.  

4.   Define  a cluster  and  set  cluster  options.  Dispatcher  will  balance  the  requests  

sent  to  the  cluster  address  to  the  servers  configured  on  the  ports  for  that  

cluster.  The  cluster  is either  the  symbolic  name,  the  dotted  decimal  address,  or  

the  special  address  0.0.0.0  that  defines  a wildcard  cluster.  Wildcard  clusters  can  

be  used  to  match  multiple  IP  addresses  for  incoming  packets  to  be  load  

balanced.  

a.   To define  a cluster,  issue  the  dscontrol  cluster  add  command:  

dscontrol  cluster  add cluster  

b.   To set  cluster  options,  use  the  dscontrol  cluster  set  command.  Issue  the  

following  command:  

dscontrol  cluster  set options  

c.   

   

If you  use  a qeth/OSA  implementation  on  Linux  on  zSeries,  the  

following  additional  configuration  steps  are  required  to setup  Load  

Balancer:  

1)   1.  Configure  the  cluster  address  using  ip  or  ifconfig  command:  

ip -version  addr  add  cluster_address/prefix_length  dev device  

For  example:  

ip -4 addr  add  12.42.38.125/24  dev  eth0  

ip -6 addr  add  3ffe:34::24:45/64  dev eth0  

2)   Add  an  iptables  rule to  drop  incoming  packets  destined  to  the  cluster  

address:  

For  IPv4  addresses:  

 

Chapter  3. welcome_config.html  35



iptables  -t filter  -A INPUT  -d cluster_address  -j DROP  

For  IPv6  addresses:  

ip6tables  -t filter  -A INPUT  -d cluster_address  -j DROP  

For  example:  

iptables  -t filter  -A INPUT  -d 12.42.38.125  -j DROP  

ip6tables  -t filter  -A INPUT  -d 3ffe:34::24:45  -j DROP  

3)   To undo  the  above  configuration,  use  the  following  commands:  

ip -version  addr  del  cluster_address/prefix_length  dev  device  

iptables  -t filter  -D INPUT  -d cluster_address  -j DROP  

ip6tables  -t filter  -D INPUT  -d cluster_address  -j DROP  

5.   Define  ports  and  set  port  options  with  the  dscontrol  port  add  command.  You 

must  define  and  configure  all  servers  for  a port.  

a.   Define  a port.  Enter  the  following  command:  

dscontrol  port  add cluster@port  

v   cluster  is  either  the  symbolic  name  or the  IP  address  

v   port  is  the  number  of  the  port  you  are  using  for  that  protocol
b.   Change  various  port  settings.  Read  “dscontrol  port”  on  page  151  for  more  

information  on  this  command  and  the  available  options.

Note:  You can  select  a new  option  for  the  selection  algorithm  that  Load  

Balancer  uses  to route  traffic:  

v   conn+affinity:  Specifies  that  server  selection  is based  on  an  existing  

connection.  For  new  connections,  the  server  selection  is based  on  affinity.

You  can  also  edit  the  sample  configuration  file  or  use  the  GUI.  

6.   Define  the  load-balanced  server  machines.  To define  a load-balanced  server  

machine,  enter  the  following  command:  

dscontrol  server  add  cluster@port@server 

You can  also  edit  the  sample  configuration  file  or  use  the  GUI.  Cluster  is  either  

the  symbolic  name  or  the  IP  address,  and  port  is  the  number  of  the  port  you  

are  using  for  that  protocol.  You must  define  more  than  one  server  to  a port  on  

a cluster  in  order  to perform  load  balancing.  

a.   Configure  IPv6  link-local  address:  With  IPv6  addressing,  each  machine  in 

the  Load  Balancer  configuration  must  have  an  IPv6  link-local  address.  The  

link-local  address  is the  address  used  for  neighbor  discovery  traffic  for  IPv6,  

and  without  this  address  on  the  Load  Balancer  machine  and  on  the  

back-end  servers  neighbor  discovery  does  not  occur,  and  the  machines  are  

not  known  to  each  other. Load  Balancer  for  IPv6  cannot  forward  traffic  

without  a link-local  IPv6  address  configured  on  an  interface  of  each  

machine  in  the  Load  Balancer  configuration.  

b.   Optional:  Bind-specific  servers:  If  the  Dispatcher  component  is load  

balancing  to  bind-specific  servers,  then  the  servers  must  be  configured  to  

bind  to  the  cluster  address.  Because  the  Dispatcher  forwards  packets  

without  changing  the  destination  IP  address,  when  the  packets  reach  the  

server,  the  packets  will  still  contain  the  cluster  address  as  the  destination.  If 

a server  has  been  configured  to  bind  to an  IP  address  other  than  the  cluster  

address,  then  the  server  will  be  unable  to  accept  requests  destined  for  the  

cluster.  

To determine  if the  server  is  bind  specific,  issue  the  netstat  -an  command  

and  look  for  the  server@port. If the  server  is not  bind  specific,  the  result  

 

36 Load Balancer  for IPv4 and IPv6 Administration  Guide



from  this  command  will  be  0.0.0.0@80.  If  the  server  is bind  specific,  you  will  

see  an  address  such  as 192.168.15.103@80.
7.   Optional:  Start  the  manager  function.  The  manager  function  improves  load  

balancing.  To start  the  manager,  enter  the  dscontrol  manager  start  command,  

edit  the  sample  configuration  file,  or  use  the  GUI.  For  example:  

dscontrol  manager  start  

8.   Optional:  Start  the  advisor  function.  The  advisors  give  the  manager  more  

information  about  the  ability  of the  load-balanced  server  machines  to respond  

to  requests.  An  advisor  is specific  to a protocol.  For  example,  to  start  the  HTTP  

advisor,  issue  the  following  command:  

dscontrol  advisor  start  http  port  

For  a list  of  advisors  along  with  their  default  ports,  see  “List  of  advisors”  on  

page  52.  

a.   Set  cluster  proportions,  as  required.  If  you  start  advisors,  you  may  modify  

the  proportion  of importance  given  to  advisor  information  being  included  

in  the  load  balancing  decisions.  To set  the  cluster  proportions,  issue  the  

dscontrol  cluster  set  cluster  proportions  command.  For  more  information,  

see  “Tuning  the  proportion  of importance  given  to  status  information”  on  

page  99
9.   Configure  the  server  machines.

Configuring the server machines 

You need  to  configure  each  of the  back-end  server  machines  in  your  topology  

before  Load  Balancer  will  be  able  to properly  work  in your  environment.  

Dispatcher  will  only  load  balance  across  servers  that  allow  the  loopback  adapter  to  

be  configured  with  an  additional  IP  address,  for  which  the  back-end  server  will  

never  respond  to  ARP  (address  resolution  protocol)  requests.  

1.   Alias  the  loopback  device.  

If  you  are  using  certain  types  of Linux  operating  systems,  you  may  need  to use  

an  alternative  method  for  aliasing  the  network  card  and  loopback  devices.  Read  

“Configuring  loopbacks  with  alternative  methods”  on  page  42  for  more  

information.  

2.   Check  for  an  extra  route.  On  some  operating  systems,  a default  route  may  have  

been  created  and  needs  to  be  removed.  If problems  are  encountered  with  

routing  after  aliasing,  remove  the  alias  and  add  it back  using  a different  

netmask.

Note:  Any  extra  routes  should  be  ignored  on  Windows  2003.  

v     Check  for  an  extra  route  on  Windows  operating  systems  with  the  following  

command:  

route  print  

For  example:  

a.   After  route  print  is entered,  a table  similar  to  the  following  example  will  

be  displayed.  This  example  shows  finding  and  removing  an  extra  route  to  

cluster  9.67.133.158  with  a default  netmask  of  255.0.0.0.  

Active  Routes:  

  

Network  Address     Netmask             Gateway  Address        Interface           Metric  

0.0.0.0             0.0.0.0             9.67.128.1             9.67.133.67          1 

9.0.0.0             255.0.0.0           9.67.133.158           9.67.133.158         1 

9.67.128.0          255.255.248.0       9.67.133.67            9.67.133.67          1

 

Chapter  3. welcome_config.html  37



9.67.133.67         255.255.255.255     127.0.0.1              127.0.0.1            1 

9.67.133.158        255.255.255.255     127.0.0.1              127.0.0.1            1 

9.255.255.255       255.255.255.255     9.67.133.67            9.67.133.67          1 

127.0.0.0           255.0.0.0           127.0.0.1              127.0.0.1            1 

224.0.0.0           224.0.0.0           9.67.133.158           9.67.133.158         1 

224.0.0.0           224.0.0.0           9.67.133.67            9.67.133.67          1 

255.255.255.255     255.255.255.255     9.67.133.67            9.67.133.67          1 

b.   Find  your  cluster  address  under  the  “Gateway  Address”  column.  If you  

have  an  extra  route,  the  cluster  address  will  appear  twice.  In  the  example  

given,  the  cluster  address  (9.67.133.158)  appears  in  row  2 and  row  8. 

c.   Find  the  network  address  in each  row  in  which  the  cluster  address  

appears.  You need  one  of  these  routes  and  will  need  to delete  the  other  

route,  which  is extraneous.  The  extra  route  to be  deleted  is the  one  whose  

network  address  begins  with  the  first  digit  of the  cluster  address,  

followed  by  three  zeroes.  In  the  example  shown,  the  extra  route  is the  one  

in  row  two,  which  has  a network  address  of 9.0.0.0:  

Network  Address     Netmask             Gateway  Address        Interface           Metric  

9.0.0.0             255.0.0.0           9.67.133.158           9.67.133.158         1 

v       

   

  Check  for  an  extra  route  on  all  Linux  and  UNIX  systems  with  

the  following  command:  

netstat  -nr  

3.   Delete  any  extra  route.  You must  delete  the  extra  route.  Use  the  command  for  

your  operating  system  shown  below:  

v     

route  delete  -net  network_address  cluster_address  

v     

route  delete  cluster_address  cluster_address  

v     

route  delete  network_address  cluster_address  

Note:  You must  delete  the  extra  route  every  time  you  reboot  the  server.  

To delete  the  extra  route  as  shown  in  the  �Active  Routes� example  above,  

enter:  

route  delete  9.0.0.0  9.67.133.158  

On  Windows  2003,  it is  not  possible  to  delete  routes.  Any  extra  routes  should  

be  ignored  on  Windows  2003.  If problems  are  encountered  with  routing  after  

aliasing,  remove  the  alias  and  add  it  back  using  a different  netmask.
4.   Verify  server  is  properly  configured.  To verify  if a back-end  server  is properly  

configured,  perform  the  following  steps  from  a different  machine  on  the  same  

subnet  when  the  Load  Balancer  is not  running  and  cluster  is unconfigured:  

a.   Issue  the  arp  command.  For  example:  

arp  -d cluster  

b.   Issue  the  ping  command.  For  example:  

ping  cluster  

There  should  be  no  response.  If there  is a response  to the  ping,  ensure  that  

you  did  not  ifconfig  the  cluster  address  to  the  interface.  Ensure  that  no  

machine  has  a published  arp  entry  to the  cluster  address.  

c.   Ping  the  back-end  server,  then  immediately  issue  the  arp  -a command  For  

example:  

arp  -a 

In the  output  from  the  command,  you  should  see  the  MAC  address  of your  

server.  Issue  the  command:  

 

38 Load Balancer  for IPv4 and IPv6 Administration  Guide



arp  -s cluster  server_MAC_address  

d.   Ping  the  cluster.  You should  get  a response.  Issue  a http,  telnet,  or  other  

request  that  is addressed  to  the  cluster  that  you  expect  your  back-end  server  

to  handle.  Ensure  that  it works  properly.  

e.   Issue  the  arp  -d  command.  For  example:  

arp  -d cluster  

f.   Ping  the  cluster.  There  should  be  no  response.  If there  is a response,  issue  an  

arp  cluster  instruction  to  get  the  MAC  address  of  the  machine  that  is not  

configured  correctly,  and  repeat  steps  1 through  6.

Aliasing the network interface card or loopback device 

To alias  the  loopback  device  on  servers  that  are  being  load-balanced,  you  must  use  

the  operating  system’s  adapter  configure  commands.  For  the  load-balanced  server  

machines  to  work,  you  must  set,  or  preferably  alias,  the  loopback  device,  which  is  

often  called  lo0,  to  the  cluster  address.  By  setting  or  aliasing  the  loopback  device  to  

the  cluster  address,  the  load  balanced  server  machines  will  accept  a packet  that  

was  addressed  to  the  cluster  address.  

If  you  have  an  operating  system  that  supports  network  interface  aliasing  (such  as  

AIX,  HP-UX,  Linux,  Solaris,  or  Windows  systems),  you  should  alias  the  loopback  

device  to  the  cluster  address.  The  benefit  of  using  an  operating  system  that  

supports  aliases  is  that  you  have  the  ability  to  configure  the  load-balanced  server  

machines  to  serve  multiple  cluster  addresses.

Note:  

   

See  “Configuring  loopbacks  with  alternative  methods”  on  page  42.  

If  you  have  a server  with  an  operating  system  that  does  not  support  aliases  you  

must  set  the  loopback  device  to  the  cluster  address.  

v     Use  the  following  commands  to  alias  the  network  interface  and  the  loopback  

device  (interface_name) for  AIX  systems  : 

–   For  IPv4  addresses:  

-   AIX  4.3  or  earlier:  

ifconfig  lo0  alias  cluster_address  netmask  netmask  

Note:  Use  the  netmask  of  the  primary  adapter  

-   AIX  5.x:  

ifconfig  lo0  alias  cluster_address  netmask  255.255.255.255  

–   For  IPv6  addresses:  

ifconfig  interface_name  inet6  cluster_address/prefix_length  alias  

For  example,  to  alias  the  loopback  device  on  servers  that  are  being  

load-balanced:  

ifconfig  lo0  inet6  2002:4a::541:56/128  alias  

v     Use  these  commands  to alias  the  network  interface  and  the  loopback  device  

(interface_name) for  HP-UX  systems:  

–   For  IPv4  addresses:  

ifconfig  lo0:1  cluster_address  up 

–   For  IPv6  addresses:  

ifconfig  interface_name:alias inet6  cluster_address  up prefix  prefix_length  

For  example,  to  alias  the  loopback  device  on  servers  that  are  being  

load-balanced:  

ifconfig  lo0:1  inet6  3ffe:34::24:45  up prefix  128  

 

Chapter  3. welcome_config.html  39



Note:  When  using  bind-specific  server  applications  that  bind  to  a list  of  IP  

addresses  that  do  not  contain  the  server’s  IP,  use  the  arp  publish  command  

instead  of  ifconfig  to dynamically  set  an  IP  address  on  the  Load  Balancer  

machine.  For  example:  

arp  -s  <cluster> <Load  Balancer’s  MAC  address> pub  

v   

   

Use  these  commands  to  alias  the  network  interface  and  the  loopback  

device  (interface_name)  for  Linux  systems:  

–   For  IPv6  or  IPv4  addresses:  

ip -version  addr  add cluster_address/prefix_length  dev  lo 

For  example,  to  alias  the  loopback  device  on  servers  that  are  being  

load-balanced:  

ip -6 addr  add  3ffe:34::24:45/128  dev  lo 

ip -4 addr  add  12.42.38.125/32  dev  lo 

Note:  You can  also  use  the  ifconfig  command.  See  below  to  alias  the  loopback  

device  using  the  ifconfig  command.  Once  you  issue  one  of  the  configuration  

commands  on  your  machine,  it is important  to  consistently  use  the  same  

configuration  command  (ip  or  ifconfig),  or  unexpected  results  can  occur.  

–   Using  the  ifconfig  command:  

ifconfig  lo:1  cluster_address  netmask  255.255.255.255  up 

v   Use  these  commands  to alias  the  network  interface  and  the  loopback  device  

(interface_name  for  an  OS2  system).  

ifconfig  lo cluster_address  

v   Use  these  commands  to alias  the  network  interface  and  the  loopback  device  

(interface_name)  for  OS390  systems.  

–   In the  IP  parameter  member  (file),  an  Administrator  will  need  to  create  an  

entry  in  the  Home  address  list.  For  example  

HOME  

;Address               Link  

192.168.252.11         tr0 

192.168.100.100        1tr1  

192.168.252.12         loopback  

–   Several  addresses  can  be  defined  for  the  loopback.  

–   The  loopback  address  of  127.0.0.1  is configured  by  default.
v      The  following  commands  can  be  used  to  alias  the  network  interface  and  the  

loopback  device  (interface_name)  for  Solaris  systems.  

–   For  IPv4  addresses:  

-   For  Solaris  7:  

ifconfig  lo0:1  cluster_address  127.0.0.1  up 

-   For  Solaris  8,  9, and  10:  

ifconfig  lo0:1  plumb  cluster_address  netmask  netmask  up 

–   For  IPv6  addresses:  

ifconfig  interface_name  inet6  addif  cluster_address/prefix_length  up 

For  example,  to  alias  the  loopback  device  on  servers  that  are  being  

load-balanced:  

 ifconfig  lo0  inet6  addif  3ffe:34::24:45/128  up 

Note:  When  using  bind-specific  server  applications  that  bind  to  a list  of  IP  

addresses  that  do  not  contain  the  server’s  IP,  use  the  arp  publish  command  

instead  of  ifconfig  to dynamically  set  an  IP  address  on  the  Load  Balancer  

machine.  For  example:  

 

40 Load Balancer  for IPv4 and IPv6 Administration  Guide



arp  -s <cluster> <Load  Balancer’s  MAC  address> pub  

v     Use  these  commands  to alias  the  network  interface  and  the  loopback  device  for  

Windows  operating  systems.  

1.   Use  the  ipconfig  /all  command  to determine  the  interface  name  for  the  

loopback  device.  This  command  locates  the  connection  with  a description  of  

the  Microsoft  Loopback  Adapter.  The  following  example  is  the  output  from  

the  ipconfig  /all  command,  where  the  Microsoft  Loopback  Adapter  is 

Ethernet  adapter  Local  Area  Connection  2, so  the  connection  is Local  Area  

Connection  2:  

Windows  IP Configuration  

  

 Host  Name  . . . . . . . . . . . . : ndserv10  

 Primary  Dns  Suffix  . . . . . . .  : rtp.raleigh.ibm.com  

 Node  Type  . . . . . . . . . . . . : Unknown  

 IP Routing  Enabled.  . . . . . . . : No 

 WINS  Proxy  Enabled.  . . . . . . . : No 

 DNS  Suffix  Search  List.  . . . . . : rtp.raleigh.ibm.com  

  

Ethernet  adapter  Local  Area  Connection  2: 

  

 Connection-specific  DNS  Suffix  . : 

 Description  . . . . . . . . . . . : Microsoft  Loopback  Adapter  

 Physical  Address.  . . . . . . . . : 02-00-4C-4F-4F-50  

 DHCP  Enabled.  . . . . . . . . . . : No 

 IP Address.  . . . . . . . . . . . : 9.42.92.158  

 Subnet  Mask  . . . . . . . . . . . : 255.255.252.0  

 IP Address.  . . . . . . . . . . . : 9.42.92.159  

 Subnet  Mask  . . . . . . . . . . . : 255.255.252.0  

 IP Address.  . . . . . . . . . . . : 2002:92a:8f7a:162:9:42:92:160  

 IP Address.  . . . . . . . . . . . : 2002:92a:8f7a:162:9:42:92:159  

 IP Address.  . . . . . . . . . . . : fe80::4cff:fe4f:4f50%4  

 Default  Gateway  . . . . . . . . . : 

 DNS  Servers  . . . . . . . . . . . : 127.0.0.1  

                                     fec0:0:0:ffff::1%1  

                                     fec0:0:0:ffff::2%1  

                                     fec0:0:0:ffff::3%1  

2.   Add  the  cluster  address  to  the  loopback  using  the  netsh  command.  For  

example:  

netsh  interface  ipv6  add  address  "Local  Area  Connection  2" 

   2002:92a:8f7a:162:9:42:92:161  

Note:  If  you  are  using  a high-availability  configuration,  and  the  machine  is 

running  as the  primary  machine,  do  not  alias  to  the  loopback  device  because  

this  scenario  prevents  traffic  to the  cluster  address  from  being  routed  by  the  

Load  Balancer  machine.  

3.   Issue  the  following  ipconfig  /all  command  again,  and  you  should  see  the  

address  added  on  the  loopback  adapter.  For  example,  issue  the  following  

command:  

ipconfig  /all  

You should  see  output  that  is similar  to  the  following:  

Ethernet  adapter  Local  Area  Connection  2: 

  

 Connection-specific  DNS  Suffix  . : 

 Description  . . . . . . . . . . . : Microsoft  Loopback  Adapter  

 Physical  Address.  . . . . . . . . : 02-00-4C-4F-4F-50  

 DHCP  Enabled.  . . . . . . . . . . : No 

 IP Address.  . . . . . . . . . . . : 9.42.92.158  

 Subnet  Mask  . . . . . . . . . . . : 255.255.252.0  

 IP Address.  . . . . . . . . . . . : 9.42.92.159

 

Chapter  3. welcome_config.html  41



Subnet  Mask  . . . . . . . . . . . : 255.255.252.0  

 IP Address.  . . . . . . . . . . . : 2002:92a:8f7a:162:9:42:92:161  

 IP Address.  . . . . . . . . . . . : 2002:92a:8f7a:162:9:42:92:160  

 IP Address.  . . . . . . . . . . . : 2002:92a:8f7a:162:9:42:92:159  

 IP Address.  . . . . . . . . . . . : fe80::4cff:fe4f:4f50%4  

 Default  Gateway  . . . . . . . . . : 

 DNS  Servers  . . . . . . . . . . . : 127.0.0.1  

                                     fec0:0:0:ffff::1%1  

                                     fec0:0:0:ffff::2%1  

                                     fec0:0:0:ffff::3%1  

4.   Enable  forwarding  for  all  the  interfaces  in  the  machine  using  the  netsh  

interface  ipv6  show  interface  command.  Any  interfaces  listed  with  a name  

of  Local  Area  Connection  must  have  IP  forwarding  enabled.  For  example:  

netsh  interface  ipv6>show  interface  

Querying  active  state...  

  

Idx   Met   MTU    State          Name  

---   ----  -----  ------------   -----  

6    2    1280   Disconnected   Teredo  Tunneling  Pseudo-Interface  

5    0    1500   Connected      Local  Area  Connection  

4    0    1500   Connected      Local  Area  Connection  2 

3    1    1280   Connected      6to4  Pseudo-Interface  

2    1    1280   Connected      Automatic  Tunneling  Pseudo-Interface  

1    0    1500   Connected      Loopback  Pseudo-Interface  

  

netsh  interface  ipv6>set  interface  "Local  Area  Connection"  

   forwarding=enabled  

Ok.  

  

netsh  interface  ipv6>set  interface  "Local  Area  Connection  2" 

   forwarding=enabled  

Ok.  

5.   Verify  that  the  forward  packets  for  each  Local  Area  Connection  is  set  to  

″Yes.″ Use  the  following  commands:  

netsh  interface  ipv6>show  interface  "Local  Area  Connection"  

  

netsh  interface  ipv6>show  interface  "Local  Area  Connection  2" 

Configuring loopbacks with alternative methods 

Some  versions  of  Linux  systems  issue  ARP  responses  for  any  IP  address  configured  

on  the  machine  on  any  interface  present  on  the  machine.  It  may  also  choose  an  

ARP  source  IP  address  for  ARP  who-has  queries  based  on  all  IP  addresses  present  

on  the  machine,  regardless  of  the  interfaces  on  which  those  addresses  are  

configured.  This  causes  all  cluster  traffic  to  be  directed  to  a single  server  in  an 

indeterminate  manner.  

With  Dispatcher’s  forwarding  method,  a mechanism  must  be  employed  to  ensure  

that  cluster-addressed  traffic  can  be  accepted  by  the  stacks  of the  back-end  servers.  

In  most  cases,  you  must  alias  the  cluster  address  on  the  loopback;  therefore,  

back-end  servers  must  have  the  cluster  aliased  on  the  loopback.  To ensure  that  

Linux  systems  do  not  advertise  addresses  on  the  loopback,  you  can  use  any  of 

these  four  solutions  to  make  Linux  systems  compatible.  

v   Use  a kernel  that  does  not  advertise  the  addresses.  This  is the  preferred  option,  

as  it  does  not  incur  a per-packet  overhead  and  it does  not  require  per-kernel  

reconfiguration.  

 

42 Load Balancer  for IPv4 and IPv6 Administration  Guide



–   United  Linux  1 / SLES8  with  SP2(x86)  or  SP3  (all  other  architectures)  and  

higher  contains  the  Julian  ARP  hidden  patch.  Ensure  that  it  is always  in effect  

before  aliasing  the  cluster  address  with  the  command:  

# sysctl  -w net.ipv4.conf.all.hidden=1  net.ipv4.conf.lo.hidden=1  

Clusters  can  then  be  aliased  in  the  normal  way,  such  as:  

 # ifconfig  lo:1  $CLUSTER_ADDRESS  netmask  255.255.255.255  up 

–   Use  the  arp_ignore  sysctl  available  in  2.4.25  and  2.6.5  and  higher,  but  note  

that  distributions  sometimes  backport  features.  Ensure  that  it is enabled  

before  aliasing  the  cluster  addresses  with  the  commands:  

# sysctl  -w net.ipv4.conf.all.arp_ignore=3  

net.ipv4.conf.all.arp_announce=2  

Clusters  must  then  be  aliased  with  the  following  command:  

# ip addr  add  $CLUSTER_ADDRESS/32  scope  host  dev  lo 

Note:  When  using  sysctl,  ensure  that  these  settings  survive  reboot  by  adding  

the  settings  to  the  install_root/etc/sysctl.conf  file.
v    Use  IP  tables  to  redirect  all  incoming  cluster  traffic  to  the  localhost.  If you  use  

this  method,  do  not  configure  the  loopback  adapter  with  an  alias.  Instead,  use  

the  command:  

# iptables  -t nat  -A PREROUTING  -d $CLUSTER_ADDRESS  -j REDIRECT  

This  command  causes  Linux  systems  to do  destination  NAT on  each  packet,  

converting  the  cluster  address  to the  interface  address.  This  method  has  about  a 

6.4%  connections-per-second  throughput  penalty.  This  method  works  on  any  

supported  stock  distribution;  no  kernel  module  or  kernel  patch+build+install  is  

needed.  

v   Apply  the  noarp  module  version  1.2.0  or  higher.  The  kernel  source  must  be  

available  and  properly  configured,  and  development  tools  (gcc,  gnu  make,  and  

so  forth)  must  be  available.  You must  build  and  install  the  module  every  time  

the  kernel  is  upgraded.  It  is available  at http://www.masarlabs.com/noarp/.  

Because  the  kernel  code  itself  is not  modified,  it is much  less  intrusive  than  

solution  4,  and  it  is much  less  prone  to error.  It also  must  be  configured  before  

any  cluster  address  is aliased  on  the  loopback.  For  example:  

# modprobe  noarp  # noarpctl  add  $CLUSTER_ADDRESS  nic-primary-addr  

where  nic-primary-addr  is an  address  in  the  same  subnet  as  the  cluster  address.  

Clusters  can  then  be  aliased  in  the  normal  way,  such  as:  

 # ifconfig  lo:1  cluster  address  netmask  255.255.255.255  up 

v   Obtain  the  Julian  patch  from  the  following  Web site:  http://www.ssi.bg/~ja/
#hidden.  Follow  your  distribution  instructions  for  patching  and  compiling  a 

kernel  suitable  for  use  with  that  distribution.  After  you  build,  install,  and  run 

your  kernel  with  the  Julian  hidden  patch,  following  the  instructions  under  the  

first  solution  listed  for  enabling  the  patch.

Note:  Distribution  support  implications  might  exist  for  running  a custom  kernel.

Quick start configuration 

This  quick  start  example  shows  how  to configure  three  locally  attached  

workstations  to  load-balance  Web traffic  between  two  Web servers.  

For  the  quick  start  example,  you  need  three  workstations  and  four  IP  addresses.  

One  workstation  is the  Dispatcher  machine;  the  other  two  workstations  are  the  

Web servers.  Each  Web server  requires  one  IP  address.  The  Dispatcher  workstation  

 

Chapter  3. welcome_config.html  43

http://www.masarlabs.com/noarp/
http://www.ssi.bg/~ja/#hidden
http://www.ssi.bg/~ja/#hidden


requires  two  addresses:  the  non-forwarding  address  (NFA),  and  the  cluster  address  

(the  address  which  is load  balanced)  that  you  provide  to clients  to  access  your  Web 

site.  

Note:  The  NFA is  the  address  that  is returned  by  the  hostname  command.  This  

address  is  used  for  administrative  purposes.  

(Cluster address -- Used by clients)

9.67.67.104
www.company.com

Server 2
9.67.67.102

Port 80

Server 3
9.67.67.103

Port 80

nonforwarding address
9.67.67.101

(NFA — For maintenance)

Client Dispatcher

  

For  more  information  on  the  different  ways  Load  Balancer  can  be  setup,  read  

“Types  of  cluster,  port,  and  server  configurations”  on  page  8 to  help  you  design  

your  topology.  

Use  this  configuration  method  for  a quick  way  to  establish  a connection  between  

servers  and  the  dispatcher  machine.  This  method  does  not  include  configuring  

advisors  or  tuning  performance.  For  a full  configuration,  read  “Configuring  the  

Load  Balancer  machine”  on  page  33  and  “Configuring  the  server  machines”  on  

page  37.  

1.   Prepare  your  servers.  

a.   For  this  locally  attached  configuration  example,  set  up  your  workstations  on  

the  same  LAN  segment.  Ensure  that  network  traffic  between  the  three  

machines  does  not  have  to  pass  through  any  routers  or  bridges.  

b.   Configure  the  network  adapters  of the  three  workstations.  For  this  example,  

we  will  assume  you  have  the  following  network  configuration,  and  each  of  

the  workstations  contains  only  one  standard  Ethernet  network  interface  

card:  

 Table 9. Sample  network  configuration  

Workstation  Name  IP Address  

1 server1.Intersplashx.com  2002:92a:8f7a:162:9:42:92:160  

2 server2.Intersplashx.com  2002:92a:8f7a:162:9:42:92:161  

3 server3.Intersplashx.com  9.47.47.103  

Netmask  = 255.255.255.0
  

c.   3.  Ensure  that  all  the  servers  can  communicate  with  each  other.  

1)   Ensure  that  server1.Intersplashx.com  can  ping  both  

server2.Intersplashx.com  and  server3.Intersplashx.com.  

 

44 Load Balancer  for IPv4 and IPv6 Administration  Guide



2)   Ensure  that  server2.Intersplashx.com  and  server3.Intersplashx.com  can  

ping  server1.Intersplashx.com.
d.   Ensure  that  content  is identical  on  the  two  Web servers  (Server  2 and  Server  

3).  This  can  be  done  by  replicating  data  on  both  workstations,  by  using  a 

shared  file  system  such  as NFS,  AFS®, or  DFS™, or  by  any  other  means  

appropriate  for  your  site.  

e.   Ensure  that  Web servers  on  server2.Intersplashx.com  and  

server3.Intersplashx.com  are  operational.  Use  a Web browser  to  request  

pages  directly  from  http://server2.Intersplashx.com  and  

http://server3.Intersplashx.com.  

f.   Obtain  another  valid  IP  address  for  this  LAN  segment.  This  is the  address  

you  will  provide  to clients  who  wish  to access  your  site.  For  this  example  

we  will  use:  

Name=  www.Intersplashx.com  

IP=9.47.47.104  

g.   Configure  the  two  Web server  workstations  to accept  traffic  for  

www.Intersplashx.com.  Add  an  alias  for  www.Intersplashx.com  to  the  

loopback  interface  on  server2.Intersplashx.com  and  

server3.Intersplashx.com:  

v     

ifconfig  lo0  alias  www.Intersplashx.com  netmask  255.255.255.255  

v     

ifconfig  lo0:1  plumb  www.Intersplashx.com  netmask  255.255.255.0  up 

v   For  other  operating  systems  see  your  operating  system’s  instructions  in 

“Aliasing  the  network  interface  card  or  loopback  device”  on  page  39.
h.   Delete  any  extra  route  that  may  have  been  created  as  a result  of aliasing  the  

loopback  interface.  See  Step  2 in  Configuring  the  server  machines.  

i.   

2.   Configure  Load  Balancer  using  the  command  line,  the  GUI,  or  the  

configuration  wizard.  

v   Configuring  with  the  command  line:  

a.   Start  the  dsserver  on  Dispatcher:  

–       

   

  Run  the  following  command  as  root  user:  

dsserver  

–     dsserver  runs as  a service  that  starts  automatically
b.   Start  the  executor  function  of Dispatcher.  Enter  the  command  

dscontrol  executor  start  

c.   Add  the  cluster  address  to the  Dispatcher  configuration:  

dscontrol  cluster  add www.Intersplashx.com  

d.   Add  the  HTTP  protocol  port  to  the  Dispatcher  configuration:  

dscontrol  port  add  www.Intersplashx.com@80  

e.   Add  each  of the  Web servers  to  the  Dispatcher  configuration:  

dscontrol  server  add www.Intersplashx.com@80@server2.Intersplashx.com  

dscontrol  server  add www.Intersplashx.com@80@server3.Intersplashx.com  

f.   Start  the  manager  function  of Dispatcher:  

dscontrol  manager  start  

Dispatcher  will  now  do  load  balancing  based  on  server  performance.  

g.   Start  the  advisor  function  of Dispatcher:  

dscontrol  advisor  start  http  80 

 

Chapter  3. welcome_config.html  45



Dispatcher  will  now  make  sure  that  client  requests  are  not  sent  to a failed  

Web server.
v   Configuring  with  the  configuration  wizard:  

a.   Start  the  dsserver  on  Dispatcher:  

–       

   

  Run  the  following  command  as  root  user:  dsserver  

–     dsserver  runs as  a service  that  starts  automatically
b.   Start  the  wizard  function  of  Dispatcher:  

dswizard  

The  wizard  guides  you  step-by-step  through  the  process  of  creating  a 

basic  configuration  for  the  Dispatcher  component.  It asks  questions  about  

your  network  and  guides  you  through  the  setup  of a cluster  for  

Dispatcher  to  load  balance  the  traffic  for  a group  of  servers.  The  

configuration  wizard  contains  the  following  panels:  

–   Introduction  to the  wizard  

–   What  is  going  to  happen  

–   Preparing  for  the  setup  

–   Defining  a cluster  

–   Adding  a port  

–   Adding  a server  

–   Starting  an  advisor  

–   Server  machine  setup
v    Configuring  with  the  GUI:  

–     

   

    At  a command  prompt,  enter  the  following:  

lbadmin  

–     Click  Start  > Programs  > IBM  WebSphere  > Edge  Components  > IBM  

Load  Balancer  > Load  Balancer.
3.   Test your  configuration.  

a.   From  a Web browser,  go  to  location  http://www.Intersplashx.com.  If a page  

is  displayed,  the  configuration  is working.  

b.   Reload  the  page  in  the  Web browser.  

c.   Look  at  the  results  of the  following  command:  

dscontrol  server  report  www.Intersplashx.com@80@  

The  total  connections  column  of the  two  servers  should  add  up  to  “2.”

Load balancing a private network 

You can  set  up  Dispatcher  and  the  TCP  server  machines  using  a private  network.  

This  configuration  can  reduce  the  contention  on  the  public  or  external  network  that  

can  affect  performance.  

To create  a private  network,  each  machine  must  have  at least  two  LAN  cards,  with  

one  of  the  cards  connected  to the  private  network.  You must  also  configure  the  

second  LAN  card  on  a different  subnet.  

 

46 Load Balancer  for IPv4 and IPv6 Administration  Guide

http://www.Intersplashx.com


When  you  configure  a private  network,  the  Load  Balancer  machine  will  then  send  

the  client  requests  to the  TCP  server  machines  through  this  network.  

  For  AIX  systems,  this  configuration  can  also  take  advantage  of the  fast  speeds  of  

the  SP™ High  Performance  Switch  if you  are  running  Dispatcher  and  the  TCP  

server  machines  on  nodes  in  an  SP  Frame.  

The  servers  added  using  the  dscontrol  server  add  command  must  be  added  

using  the  private  network  addresses.  For  example,  a sample  command  could  be  

coded  as:  

dscontrol  server  add  cluster_address@80@10.0.0.1  

not  as  

dscontrol  server  add  cluster_address@80@9.67.131.18  

 

Chapter  3. welcome_config.html  47



48 Load Balancer  for IPv4 and IPv6 Administration  Guide



Chapter  4.  welcome_administering.html  

Enabling advisors to manage load balancing 

Advisors  are  software  agents  that  work  within  Load  Balancer  to  provide  

information  about  the  load  on  a given  server.  A  different  advisor  exists  for  each  

standard  protocol  (HTTP,  SSL,  and  others).  Periodically,  the  Load  Balancer  base  

code  performs  an  advisor  cycle,  during  which  it  individually  evaluates  the  status  

of  all  servers  in  its  configuration.  

Advisors  are  agents  within  Load  Balancer.  Their  purpose  is to assess  the  health  

and  loading  of  server  machines.  They  do  this  with  a proactive  client-like  exchange  

with  the  servers.  Advisors  can  be  considered  as  lightweight  clients  of  the  

application  servers.  

By  writing  your  own  advisors  for  the  Load  Balancer,  you  can  customize  how  your  

server  machines’  load  is determined.  

For  more  information  on  how  advisors  work,  read  “Advisors”  on  page  51.  

When  using  IPv6  protocols:  If you  are  using  IPv6  protocol  on  your  machine  and  

want  to  use  advisors,  you  must  modify  the  protocol  file.  To enable  IPv6,  insert  the  

following  line  in  the  protocol  file:  

ipv6-icmp  58 IPv6-ICMP  # IPv6  interface  control  message  protocol  

The  protocol  file  is in  the  following  directory:  

v       

   

  

/etc/protocols  

v     

C:\windows\system32\drivers\etc\

The  product  provides  several  protocol-specific  advisors  for  the  most  popular  

protocols.  However,  it does  not  make  sense  to use  all  of the  provided  advisors  

with  Load  Balancer.  Load  Balancer  also  supports  the  concept  of  a “custom  advisor”  

that  allows  users  to write  their  own  advisors.  

Limitation  on  using  advisors  with  bind-specific  server  applications:  

v   In order  to  use  advisors  on  bind  specific  servers,  start  two  instances  of  the  

server:  One  instance  to  bind  on  the  cluster@port  and  the  other  instance  to  bind  

on  the  server@port. To determine  if the  server  is bind  specific,  issue  the  netstat  

-an  command  and  look  for  the  server@port. If  the  server  is not  bind  specific,  the  

result  from  this  command  will  be  0.0.0.0:80.  If  the  server  is bind  specific,  you  

will  see  an  address  such  as  192.168.15.103:80.  

v     If  using  arp  publish  instead  of  the  ifconfig  alias  command,  Load  Balancer  

will  support  the  use  of  advisors  when  load-balancing  servers  with  bind-specific  

server  applications  when  they  are  binding  to  the  cluster  IP  address.

You  can  start  an  advisor  for  a particular  port  across  all  clusters  (group  advisor).  Or,  

you  can  choose  to  run different  advisors  on  the  same  port,  but  on  different  clusters  

(cluster  specific  advisor).  

 

  49



Note:  If  Load  Balancer  is running  on  a computer  with  multiple  network  adapter  

cards,  you  cannot  force  the  source  IP  address  of the  packet  to  a specific  address  

when  you  want  the  advisor  traffic  to  flow  over  a particular  adapter.  

1.   Start  the  advisor  of  your  choice.  For  a list  of possible  advisors,  refer  to the  list  

of  advisors,  or  create  a custom  advisor.  

v   Cluster  specific  advisor:  To start  an  advisor  on  port  80  for  clusterA,  for  

example,  specify  both  the  cluster  and  port:  

dscontrol  advisor  start  ADV_name  clusterA@80  

This  command  will  start  an  advisor  on  port  80  for  clusterA.  This  advisor  will  

advise  on  all  servers  attached  to port  80  for  clusterA.  

v   Group  advisor:  To start  an  advisor  on  port  80  for  all  other  clusters,  simply  

specify  the  port:  

dscontrol  advisor  start  ADV_name  80 

This  command  will  start  the  advisor  on  port  80  for  all  clusters  and  sites  that  

do  not  currently  have  a cluster  or  site  specific  advisor.  Your advisor  will  

advise  on  all  servers  attached  to port  80.
a.   Optional:  If  you  are  starting  the  HTTP  or  HTTPS  advisor,  you  might  want  

to  define  a unique  client  URL  string  to  allow  the  advisor  to  monitor  

individual  services  in  the  server.  For  more  information  on  this  option,  refer  

to  “Getting  service-specific  advice  with  the  advisor  request  or  response  

option”  on  page  55.  

b.   Optional:  If  you  are  using  the  self  advisor  in  two-tiered  WAN  configuration,  

read  rprf_selfadv2tier.dita  for  more  information  on  how  the  self  advisor  

garners  information.
2.   Optional:  Set  the  advisor  interval.  The  advisor  interval  sets  how  often  an  

advisor  asks  for  status  from  the  servers  on  the  port  it is monitoring  and  then  

reports  the  results  to the  manager.  If the  advisor  interval  is too  low, it can  mean  

poor  performance  as a result  of  the  advisor  constantly  interrupting  the  servers.  

If  the  advisor  interval  is too  high,  it  can  mean  that  the  manager’s  decisions  

about  weighting  will  not  be  based  on  accurate,  up-to-date  information.

Note:  The  advisor  defaults  should  work  efficiently  for  the  great  majority  of  

possible  scenarios.  Be  careful  when  entering  values  other  than  the  defaults.  

For  example,  to  set  the  interval  to  3 seconds  for  the  HTTP  advisor  for  port  80,  

enter  the  following  command:  

dscontrol  advisor  interval  http  80 3 

It  does  not  make  sense  to specify  an  advisor  interval  that  is smaller  than  the  

manager  interval.  The  default  advisor  interval  is 7 seconds.  

3.   Optional:  Set  the  advisor  report  timeout.  To make  sure  that  out-of-date  

information  is  not  used  by  the  manager  in  its  load-balancing  decisions,  the  

manager  will  not  use  information  from  the  advisor  whose  time  stamp  is older  

than  the  time  set  in  the  advisor  report  timeout.  The  advisor  report  timeout  

should  be  larger  than  the  advisor  polling  interval.  If  the  timeout  is smaller,  the  

manager  will  ignore  reports  that  logically  should  be  used.  By  default,  advisor  

reports  do  not  timeout  —  the  default  value  is  unlimited.  

For  example,  to  set  the  advisor  report  timeout  to  30  seconds  for  the  HTTP  

advisor  for  port  80,  enter  the  following  command:  

dscontrol  advisor  timeout  http  80 30 

For  more  information  on  setting  the  advisor  report  timeout,  see  “dscontrol  

advisor”  on  page  136.  

 

50 Load Balancer  for IPv4 and IPv6 Administration  Guide



4.   Optional:  Set  the  advisors  connect  and  receive  timeout  values.  For  Load  

Balancer,  you  can  set  the  advisor’s  timeout  values  at which  it detects  a 

particular  port  on  the  server  (a service)  is failed.  The  failed-server  timeout  

values  (connecttimeout  and  receivetimeout)  determine  how  long  an  advisor  

waits  before  reporting  that  either  a connect  or  receive  has  failed.  

To obtain  the  fastest  failed-server  detection,  set  the  advisor  connect  and  receive  

timeouts  to  the  smallest  value  (one  second),  and  set  the  advisor  and  manager  

interval  time  to  the  smallest  value  (one  second).

Note:  If  your  environment  experiences  a moderate  to  high  volume  of  traffic  

such  that  server  response  time  increases,  be  careful  not  to set  the  

connecttimeout  and  receivetimeout  values  too  small,  or  the  advisor  may  

prematurely  mark  a busy  server  as  failed.  

For  example,  to  set  the  connecttimeout  and  receivetimeout  to  9 seconds  for  the  

HTTP  advisor  on  port  80,  type  the  following  command:  

dscontrol  advisor  connecttimeout  http  80  9 

  

dscontrol  advisor  receivetimeout  http  80  9 

The  default  for  connect  and  receive  timeout  is 3 times  the  value  specified  for  

the  advisor  interval  time.  

5.   Optional:  Set  the  advisor  retry  value.  Advisors  have  the  ability  to  retry  a 

connection  before  marking  a server  down.  The  advisor  will  not  mark  a server  

down  until  the  server  query  has  failed  the  number  of  retries  plus  1.  The  retry  

value  should  be  no  larger  than  3.  

The  following  command  sets  a retry  value  of  2 for  the  LDAP  advisor  on port  

389:  

dscontrol  advisor  retry  ldap  389 2 

Advisors 

Advisors  periodically  open  a TCP  connection  with  each  server  and  send  a request  

message  to  the  server.  The  content  of the  message  is specific  to the  protocol  

running  on  the  server.  For  example,  the  HTTP  advisor  sends  an  HTTP  “HEAD”  

request  to  the  server.  

Advisors  then  listen  for  a response  from  the  server.  After  getting  the  response,  the  

advisor  makes  an  assessment  of the  server.  To calculate  this  “load”  value,  most  

advisors  measure  the  time  for  the  server  to  respond,  and  then  use  this  value  (in  

milliseconds)  as  the  load.  

Advisors  then  report  the  load  value  to the  manager  function,  where  it  appears  in  

the  manager  report  in  the  “Port”  column.  The  manager  then  calculates  aggregate  

weight  values  from  all  its  sources,  per  its  proportions,  and  sets  these  weight  values  

into  the  executor  function.  The  Executor  will  then  use  these  weights  for  load  

balancing  new  incoming  client  connections.  

If  the  advisor  determines  that  a server  is alive  and  functioning  properly,  it will  

report  a positive,  non-zero  load  number  to  the  Manager.  If the  advisor  determines  

that  a server  is not  active,  it will  return  a special  load  value  of  negative  one  (-1).  

The  Manager  and  the  Executor  will  not  forward  any  further  connections  to  that  

server  until  that  server  has  come  back  up.

Note:  Before  sending  the  initial  request  message,  the  advisor  will  ping  the  server.  

This  is  intended  to  provide  quick  status  to  determine  if the  machine  is  online.  

 

Chapter  4. welcome_administering.html  51



After  the  server  responds  to the  ping,  no  more  pings  are  sent.  To disable  the  pings,  

add  -DLB_ADV_NB_PING  to the  Load  Balancer  start  script  file.  

List of advisors 

Advisors  are  agents  within  Load  Balancer.  Their  purpose  is to  assess  the  health  

and  loading  of  server  machines.  This  list  of  advisors  are  already  provided  with  

Load  Balancer,  but  you  can  also  write  a custom  advisor  to  suit  specific  needs.  

 Table 10.  List  of advisors  

Advisor  Name  Description  

connect  The  connect  advisor  does  not  exchange  any  

protocol-specific  data  with  the  server.  It 

simply  measures  the  time  it takes  to open  

and  close  a TCP  connection  with  the server.  

This  advisor  is useful  for  server  applications  

which  use TCP,  but  with  a higher-level  

protocol  for  which  an IBM-supplied  or 

custom  advisor  is not  available.  

Custom  advisors  Dispatcher  provides  the  ability  for a 

customer  to write  a custom  (customizable)  

advisor.  This  enables  support  for  proprietary  

protocols  (on  top  of TCP)  for  which  IBM  has 

not  developed  a specific  advisor.  For more  

information,  see “Creating  a custom  

advisor”  on page  60. 

db2  The  DB2  advisor  works  in conjunction  with  

the DB2  servers.  Dispatcher  has  the  built  in 

capability  of checking  the  health  of DB2  

servers  without  the  need  for customers  to 

write  their  own  custom  advisors.  The  DB2  

advisor  communicates  with  the  DB2  

connection  port  only,  not  the  Java  connection  

port.  

dns  The  DNS  advisor  opens  a connection,  sends  

a pointer  query  for  DNS,  waits  for a 

response,  closes  the  connection  and  returns  

the elapsed  time  as a load.  

ftp  The  FTP  advisor  opens  a connection,  sends  a 

SYST  request,  waits  for a response,  closes  

the connection,  and  returns  the  elapsed  time  

as a load.  

http  The  HTTP  advisor  opens  a connection,  sends  

a HEAD  request  by default,  waits  for  a 

response  connection,  and  returns  the  elapsed  

time  as a load.  See  “Getting  service-specific  

advice  with  the  advisor  request  or response  

option”  on page  55for  more  information  on 

how  to change  the type  of request  sent  by 

the HTTP  advisor.  

 

52 Load Balancer  for IPv4 and IPv6 Administration  Guide



Table 10.  List  of advisors  (continued)  

Advisor  Name  Description  

https  The  HTTPS  advisor  is a �heavyweight� 

advisor  for  SSL  connections.  It performs  a 

full SSL  socket  connection  with  the  server.  

The  HTTPS  advisor  opens  an SSL  

connection,  sends  an  HTTPS  request,  waits  

for a response,  closes  the  connnection,  and  

returns  the  elapsed  time  as a load.  (See  also  

the SSL  advisor,  which  is a �lightweight�  

advisor  for  SSL  connections.)  

Note:  The  HTTPS  advisor  has no 

dependency  upon  server  key  or certificate  

content,  but  they  must  not  be expired.  

imap  The  IMAP  advisor  opens  a connection,  waits  

for an initial  message  from  the server, sends  

a quit  command,  closes  the connection,  and  

returns  the  elapsed  time  as a load.  

ldap  The  LDAP  advisor  opens  a connection,  

sends  an anonymous  BIND  request,  waits  

for a response,  closes  the  connection,  and  

returns  the  elapsed  time  as a load.  

ldapuri  Note:  The  LDAP  URI  advisor  allows  you  

better  gauge  LDAP  availability  by 

processing  a complete  request  to the LDAP  

server.  

The  advisor:  

1.   Opens  a connection.  

2.   Sends  a BIND  request,  which  is based  on 

the  advisorrequest  field  that  you  define  

on the  server  object.  

3.   Waits for a response.  

4.   Closes  the  connection.  

5.   Returns  the  elapsed  time  as a load.

Read  “Configuring  the LDAP  URI  advisor”  

on page  56 for more  information  on 

configuring  this  advisor.  

nntp  The  NNTP  advisor  opens  a connection,  

waits  for  an initial  message  from  the server,  

sends  a quit  command,  closes  the 

connection,  and  returns  the  elapsed  time  as 

a load.  

ping  The  ping  advisor  does  not  open  a TCP  

connection  with  the  servers,  but  instead  

reports  whether  the  server  responds  to a 

ping.  While  the  ping  advisor  may  be used  

on any  port,  it is also  designed  for 

configurations  using  the  wildcard  port,  over  

which  multiple  protocol  traffic  may  be 

flowing.  It is also  useful  for configurations  

using  non-TCP  protocols  with  their  servers.  

 

Chapter  4. welcome_administering.html  53



Table 10.  List  of advisors  (continued)  

Advisor  Name  Description  

pop3  The  POP3  advisor  opens  a connection,  waits  

for an initial  message  from  the  server,  sends  

a quit  command,  closes  the  connection,  and  

returns  the  elapsed  time  as a load.  

reach  The  reach  advisor  pings  its target  machines.  

This  advisor  is also  designed  for the  

Dispatcher’s  high  availability  components  to 

determine  reachability  of its reach  targets.  Its 

results  flow  to high  availability  component  

and  do  not  appear  in the manager  report.  

Unlike  the  other  advisors,  the  reach  advisor  

starts  automatically  by  the  manager  function  

of the Dispatcher  component.  

sip  The  SIP  advisor  opens  a connection,  sends  

an OPTIONS  request,  waits  for a response,  

closes  the connection,  and  returns  the  

elapsed  time  as a load.  The  SIP advisor  that  

is supported  runs  on TCP  only  and  requires  

an application  to be installed  on a server  

that  responds  to an OPTIONS  request.  

smtp  The  SMTP  advisor  opens  a connection,  waits  

for an initial  message  from  the  server,  sends  

a quit,  closes  the connection,  and  returns  the 

elapsed  time  as a load.  

ssl  The  SSL  advisor  is a �lightweight�  advisor  

for SSL  connections.  It does  not  establish  a 

full SSL  socket  connection  with  the server.  

The  SSL  advisor  opens  a connection,  sends  

an SSL  CLIENT_HELLO  request,  waits  for a 

response,  closes  the  connection,  and  returns  

the elapsed  time  as a load.  (See  also  the  

HTTPS  advisor,  which  is a �heavyweight� 

advisor  for  SSL  connections.)  

Note:  The  SSL  advisor  has  no dependency  

upon  key  management  or certificates.  

ssl2http  The  ssl2http  advisor  starts  and  advises  on 

the servers  listed  under  port  443,  but  the  

advisor  will  open  a socket  to the  “mapport� 

for HTTP  requests.  

self  The  self  advisor  collects  load  status  

information  on back-end  servers.  You can 

use  the  self  advisor  when  using  Dispatcher  

in a two–tiered  configuration,  where  the 

Dispatcher  furnishes  information  from  the  

self  advisor  to  the top-tiered  Load  Balancer.  

The  self  advisor  specifically  measures  the 

connections  per  second  rate  on back-end  

servers  of the  Dispatcher  at the  executor  

level.  See  rprf_selfadv2tier.dita  for more  

information.  

telnet  The  Telnet advisor  opens  a connection,  waits  

for an initial  message  from  the  server,  closes  

the connection,  and  returns  the  elapsed  time  

as a load.  

 

54 Load Balancer  for IPv4 and IPv6 Administration  Guide



Table 10.  List  of advisors  (continued)  

Advisor  Name  Description  

was  The  WAS (WebSphere  Application  Server)  

advisor  works  in conjunction  with  the 

WebSphere  Application  servers.  

Customizable  sample  files  for  this  advisor  

are  provided  in the  installation  directory.  For  

more  information,  see “Example:  

Implementing  the  WAS advisor”  on page  77. 

wlm  The  WLM  (Workload  Manager)  advisor  is 

designed  to work  in conjunction  with  

servers  on  OS/390  mainframes  running  the 

MVS™ Workload  Manager  (WLM)  

component.  For  more  information,  see  “The  

Workload  Management  Advisor”  on page  

59.
  

Getting service-specific advice with the advisor request or 

response option 

After  you  have  started  an  HTTP  or  HTTPS  advisor,  you  can  define  a unique  client  

HTTP  URL  string,  specific  for  the  service  that  you  want  to  query  on  the  server.  

This  allows  the  advisor  to  assess  the  health  of the  individual  services  within  a 

server.  

For  each  defined  logical  server  under  the  HTTP  port  you  can  specify  a unique  

client  HTTP  URL  string,  specific  for  the  service  that  you  want  to  query  on  the  

server.  The  HTTP  or  HTTPS  advisor  uses  the  advisorrequest  string  to  query  the  

health  of  the  servers.  The  default  value  is  ″HEAD  / HTTP/1.0.″ 

The  advisorresponse  string  is the  response  that  the  advisor  scans  for  in  the  HTTP  

response.  The  advisor  uses  the  advisorresponse  string  to compare  to the  real  

response  that  is received  from  the  server.  The  default  value  is null.  

v   Issue  the  server  set  command  with  the  advisorrequest  and  advisorresponse  

parameters.  

–   When  issuing  the  command  from  the  dscontrol>>  shell  prompt,  you  must  

place  quotes  around  the  string  if a blank  is contained  within  the  string.  For  

example:  

server  set  cluster@port@server advisorrequest  "head  / http/1.0"  

  

server  set  cluster@port@server advisorresponse  "HTTP  200  OK"  

–   When  issuing  the  dscontrol  command  from  the  operating  system  prompt,  

you  must  precede  the  text  with  �\�  and  follow  the  text  with  \″″.  For  

example:  

dscontrol  server  set  cluster@port@server  advisorrequest  "\"head  / http/1.0\""  

  

dscontrol  server  set  cluster@port@server  advisorresponse  "\"HTTP  200  OK\""  

When  you  create  the  request  that  the  HTTP  or  HTTPS  advisor  sends  to back-end  

servers  to  see  if they  are  functioning,  you  type  the  start  of  the  HTTP  request  and  

Load  Balancer  completes  the  end  of  the  request  with  the  following:  

\r\nAccept:  

*/*\r\nUser-Agent:IBM_Network_Dispatcher_HTTP_Advisor\r\n\r\n  

v   Optional:  If you  want  to add  other  HTTP  header  fields  before  Load  Balancer  

appends  this  string  to the  end  of the  request,  you  can  do  so  by  including  your  

 

Chapter  4. welcome_administering.html  55



own  \r\n  string  in  the  request.  The  following  is an  example  of  what  you  might  

type  to  add  the  HTTP  host  header  field  to your  request:  

GET  /pub/WWW/TheProject.html  HTTP/1.0  \r\nHost:  www.w3.org  

Note:  After  starting  an  HTTP  or  HTTPS  advisor  for  a specified  HTTP  port  

number,  the  advisor  request  and  response  value  is enabled  for  servers  under  

that  HTTP  port.  See  “dscontrol  server”  on  page  155  for  more  information.

Configuring the LDAP URI advisor 

The  LDAP  URI  advisor  allows  you  better  gauge  Lightweight  Directory  Access  

Protocol  (LDAP)  availability  by  processing  a complete  request  to the  LDAP  server.  

The  LDAP  URI  advisor  opens  a connection  to the  LDAP  serve  and  sends  a BIND  

request  that  is based  on  the  advisorrequest  field  that  you  define  on  the  server  

object.  The  advisor  then  waits  for  a response  from  the  LDAP  server  and  returns  

the  elapsed  time  as a load.  

In  situations  in  which  you  cannot  perform  an  anonymous  bind  request  to  an  LDAP  

server,  you  can  use  the  LDAP  URI  advisor  to  bind  with  an  LDAP  server  that  

requires  a user  name  and  password.  The  LDAP  URI  advisor  might  provide  a more  

precise  measurement  of  workload,  since  the  LDAP  server  will  be  required  to  

process  a complete  request  rather  perform  only  an  anonymous  bind.  

1.   Set  the  advisorrequest  field  for  the  server  that  will  use  the  LDAP  URI  advisor.  

a.    Set  the  advisorrequest  field  on  the  server  object  with  the  dscontrol  server  

command.  Use  the  following  guidelines  for  setting  the  advisorrequest  field:  

v   Set  the  advisorrequest  field  to an  LDAP://  URL  request  that  is  compliant  

with  the  RFC2255  - The  LDAP  URL  Format.  

v   Use  the  bindname  extension  to  perform  a bind  request  that  is not  

anonymous.  

v   Load  Balancer  extends  the  LDAP  URL  base  with  the  bindpass  extension,  

allowing  you  to supply  the  password  for  the  LDAP  server  on  the  URL  

line.  This  password  must  be  provided  as  an  optional  extension  to  

preserve  the  portability  of  the  URL.

For  example:  

dscontrol  server  set  cluster@server@port advisorrequest  "ldap://ldap1.mycompany.com:389/ou=development,o=mycompany.com??sub?(mail=user@mycompany.

Note:  Be  aware  of  the  ?!bindpass=MYPASS  extension  that  is  used  above.  

Replace  MYPASS  with  the  password  that  is used  to  authenticate  the  LDAP  

request.  

b.   Optional:  Set  the  advisorresponse  field  on  the  server  object.  If you  set  this  

field,  you  must  set  the  value  to  a substring  that  is expected  to  be  present  in  

the  response  from  the  LDAP  server.
2.   Start  the  LDAP  URI  advisor.  To start  the  LDAP  URI  advisor,  use  the  dscontrol  

advisor  command:  

dscontrol  advisor  start  ldapuri  cluster@port 

Note:  Verify  that  you  are  using  the  LDAP  URI  advisor,  and  not  the  LDAP  

advisor.  The  LDAP  advisor  only  supports  anonymous  bind  requests  to LDAP  

servers.

Getting advice with Metric Server 

Metric  Server  provides  server  load  information  to  the  Load  Balancer  in  the  form  of 

system-specific  metrics,  reporting  on  the  health  of the  servers.  

 

56 Load Balancer  for IPv4 and IPv6 Administration  Guide

http://www.ietf.org/rfc/rfc2255.txt


The  Metric  Server  agent  must  be  installed  and  running  on  all  servers  that  are  being  

load  balanced.  

If  you  are  using  IPv6  protocol  on  your  machine  and  want  to  use  Metric  Server,  you  

must  check  to  see  if protocol  58  is defined  to  be  ICMPv6  in the  protocol  file.  

When  using  IPv6  protocols:  If you  are  using  IPv6  protocol  on  your  machine  and  

want  to  use  advisors,  you  must  modify  the  protocol  file.  To enable  IPv6,  insert  the  

following  line  in  the  protocol  file:  

ipv6-icmp  58 IPv6-ICMP  # IPv6  interface  control  message  protocol  

The  protocol  file  is in  the  following  directory:  

v       

   

  

/etc/protocols  

v     

C:\windows\system32\drivers\etc\

Metric  Server  Restriction:  Like  the  Metric  Server  agent,  the  WLM  agent  reports  on  

server  systems  as  a whole,  rather  than  on  individual  protocol-specific  server  

daemons.  Metric  Server  and  WLM  place  their  results  into  the  system  column  of  the  

manager  report.  As  a consequence,  running  both  the  WLM  advisor  and  Metric  

Server  at  the  same  time  is not  supported.  

The  Load  Balancer  manager  queries  the  Metric  Server  agent  residing  on  each  of  the  

servers,  assigning  weights  to the  load  balancing  process  using  the  metrics  gathered  

from  the  agents.  The  results  are  also  placed  into  the  manager  report.  

Note:  When  two  or  more  metrics  are  gathered  and  normalized  for  each  server  into  

a single  system  load  value,  rounding  errors  may  occur.  

1.   Configure  Metric  Server  on  the  Load  Balancer  machine.  

a.   Start  dsserver.  Start  the  executor,  and  add  clusters,  ports  and  servers  to  

your  configuration.  

b.   Start  the  manager.  Issue  the  command:  

dscontrol  manager  start  manager.log  port  

where  port  is the  RMI  port  chosen  for  all  the  Metric  Server  agents  to  run on.  

The  default  RMI  port  that  is  set  in  the  metricserver.cmd  file  is 10004.  

c.   Add  the  system  metric  script  to  the  cluster.  Issue  the  command:  

dscontrol  metric  add  cluster@systemMetric  

systemMetric  is the  name  of  the  script  (residing  on  the  back-end  server)  

which  should  run on  each  of  the  servers  in  the  configuration  under  the  

specified  cluster.  Two  scripts  are  provided  for  the  customer  - cpuload  and  

memload  - or  you  can  create  custom  system  metric  scripts.  

The  script  contains  a command  which  should  return  a numeric  value  in  the  

range  of  0-100  or  a value  of  -1 if the  server  is down.  This  numeric  value  

should  represent  a load  measurement,  not  an  availability  value.

Note:    If  the  name  of  your  System  Metric  script  has  an  extension  other  

than  �.exe�, you  must  specify  the  full  name  of the  file  (for  example,  

�mysystemscript.bat�).  This  is  due  to a Java  limitation.  

d.   Add  to  the  configuration  only  servers  that  contain  a Metric  Server  agent  

running  on  the  port  specified  in the  metricserver.cmd  file.  The  port  should  

match  the  port  value  specified  in  the  manager  start  command.

 

Chapter  4. welcome_administering.html  57



Note:  To ensure  security:  

v   On  the  Load  Balancer  machine,  create  a key  file  (using  the  lbkeys  create  

command).  

v   On  the  back-end  server  machine,  copy  the  resulting  key  file,  for  the  

component  you  are  using,  to  the  install_root/admin/keys  directory.  Verify  

that  the  key  file’s  permissions  enable  the  file  to  be  readable  by  the  root.
2.   Configure  Metric  Server  on  the  server  machines.  

a.   Install  the  Metric  Server  package  from  the  Load  Balancer  installation  files.  

b.   Check  the  metric  server  script  in  the  install_root/ms/bin  directory  to  verify  

that  the  desired  RMI  port  is  being  used.  The  default  RMI  port  is 10004.  

Note:  The  RMI  port  value  specified  must  be  the  same  value  as  the  RMI  

port  value  that  was  specified  in  the  manager  start  command  in  Step  1b.  

c.   Optional:  You can  write  their  own  customized  metric  script  files  which  

define  the  command  that  the  Metric  Server  will  issue  on  the  server  

machines.  Ensure  that  any  custom  scripts  are  executable  and  located  in the  

install_root/ms/script  directory.  Custom  scripts  must  return  a numeric  load  

value  in  the  range  of 0-100.  

Note:  A custom  metric  script  must  be  a valid  program  or  script  with  a 

�.bat� or  �.cmd� extension.  

    

   

  Specifically,  for  Linux  and  other  UNIX-based  systems,  scripts  

must  begin  with  the  shell  declaration,  otherwise  they  may  not  properly  run. 

The  following  two  scripts  are  provided  for  the  customer  in  the  

install_root/ms/script  directory:  

v   cpuload:  returns  the  percentage  of cpu  in  use  ranging  from  0-100  

v   memload:  returns  the  percentage  of  memory  in  use  ranging  from  0-100.
d.   Start  the  metric  server  agent.  On  a command  line  of  each  server  machine  

where  Metric  Server  resides,  type  

metricserver  start  

  Click  Start  > Control  Panel  > Administrative  Tools  > Services.  Right-click  

IBM  Metric  Server  (ULB)  and  select  Start. 

e.   Optional:  Stop  the  metric  server  agent.  

   

  To stop  the  Metric  Server  agent,  issue  this  command  on  every  

server  machine  where  Metric  Server  resides:  

metricserver  stop  

  Click  Start  > Control  Panel  > Administrative  Tools  > Services.  Right-click  

IBM  Metric  Server  (ULB)  and  select  Stop.
3.   Optional:  Change  the  log  level  in  the  Metric  Server  startup  script.  You can  

specify  a log  level  range  of  0 through  5,  similar  to the  log  level  range  in  Load  

Balancer  logs.  This  will  generate  an  agent  log  in  the  install_root/ms/logs  

directory.  

4.   Optional:  To have  Metric  Server  run on  an  address  other  than  the  local  host,  

you  need  to  edit  the  metricserver  file  on  the  load  balanced  server  machine.  

Note:  When  gathering  metrics  across  different  domains,  you  must  explicitly  set  

the  java.rmi.server.hostname  in  the  server  script  (dsserver,  etc)  to  the  fully  

qualified  domain  name  (FQDN)  of  the  machine  that  is  requesting  the  metrics.  

This  is  necessary  because  InetAddress.getLocalHost.getHostName()  might  not  

return  the  FQDN.

 

58 Load Balancer  for IPv4 and IPv6 Administration  Guide



a.   After  the  occurrence  of �java� in  the  metricserver  file,  insert  the  following:  

-Djava.rmi.server.hostname=OTHER_ADDRESS  

b.    Before  the  �if�  statements  in  the  metricserver  file,  add  the  following  line:  

hostname  OTHER_ADDRESS  

c.     You will  also  need  to  alias  the  OTHER_ADDRESS  on  the  Microsoft  stack  

of  the  Metric  Server  machine.  For  example:  

call  netsh  interface  ip add address  "Local  Area  Connection"  

  addr=9.37.51.28  mask=255.255.240.0  

5.   Optional:  Configure  Metric  Server  for  IPv4  only  or  IPv6  only.  In  a Load  

Balancer  configuration  that  supports  both  IPv4  and  IPv6  clusters,  servers  that  

run the  Metric  Server  function  can  be  configured  as  an  IPv4  server  only  or  as  

an  IPv6  server  only,  but  not  both.  To force  Metric  Server  to  use  a particular  IP 

protocol,  specify  the  Java  property  java.rmi.server.hostname  in  the  metricserver  

script.  

Note:  The  host  name  specified  in  the  Java  property  must  be  the  physical  IP 

address  of  the  Metric  Server.  

v     

   

    For  Metric  Server  to communicate  over  the  IPv6  address  

2002:92a:8f7a:162:9:42:92:67,  specify  the  Java  property  after  $LB_CLASSPATH  

in  the  metricserver  startup  script,  in  the  install_root/bin  directory,  as  follows:  

 install_root/java/jre/bin/java  .....  $ULB_CLASSPATH  

-Djava.rmi.server.hostname=2002:92a:8f7a:162:9:42:92:67  

com.ibm.internet.nd.sma.SMA_Agent  $LB_RMIPORT  $LOG_LEVEL  $LOG_SIZE  $LOG_DIRECTORY  $KEYS_DIRECTORY  

$SCRIPT_DIRECTORY  & 

v     For  Metric  Server  to  communicate  over  the  IPv6  address  

2002:92a:8f7a:162:9:42:92:67,  you  must  edit  the  metricserver.cmd  file,  in  the  

install_root/bin  directory,  as  follows:  

start  

/min  /wait  %IBMULBPATH%\java\jre\bin\java  

-Djava.rmi.server.hostname=2002:92a:8f7a:162:9:42:92:67  

-Djava.net.preferIPv4Stack=false  

-Djava.net.preferIPv6Stack=true  -Xrs  -cp  

%LB_CLASSPATH%  com.ibm.internet.nd.sma.SMA_Agent  

%RMI_PORT%  %LOG_LEVEL%  %LOG_SIZE%  %LOG_DIRECTORY%  %KEYS_DIRECTORY%  

%SCRIPT_DIRECTORY%  

goto  done  

  

:stop  

%IBMLBPATH%\java\jre\bin\java  

-Djava.rmi.server.hostname=2002:92a:8f7a:162:9:42:92:67  

-Djava.net.preferIPv4Stack=false  

-Djava.net.preferIPv6Stack=true  -cp  %LB_CLASSPATH%  com.ibm.internet.nd.sma.SMA_AgentStop  %RMI_PORT%  

:done  

The Workload  Management Advisor 

WLM  is  code  that  runs on  MVS  mainframes.  It can  be  queried  to ask  about  the  

load  on  the  MVS  machine.  When  MVS  Workload  Management  has  been  configured  

on  your  OS/390  system,  Dispatcher  can  accept  capacity  information  from  WLM  

and  use  it in  the  load  balancing  process.  

Using  the  WLM  advisor,  Dispatcher  will  periodically  open  connections  through  the  

WLM  port  on  each  server  in  the  Dispatcher  host  table  and  accept  the  capacity  

integers  returned.  Because  these  integers  represent  the  amount  of  capacity  that  is 

still  available  and  Dispatcher  expects  values  representing  the  loads  on  each  

machine,  the  capacity  integers  are  inverted  by  the  advisor  and  normalized  into  

 

Chapter  4. welcome_administering.html  59



load  values  (that  is,  a large  capacity  integer  but  a small  load  value  both  represent  a 

healthier  server).  The  resulting  loads  are  placed  into  the  System  column  of  the  

manager  report.  

There  are  several  important  differences  between  the  WLM  advisor  and  other  

Dispatcher  advisors:  

v   Other  advisors  open  connections  to the  servers  using  the  same  port  on  which  

flows  normal  client  traffic.  The  WLM  advisor  opens  connections  to  the  servers  

using  a port  different  from  normal  traffic.  The  WLM  agent  on  each  server  

machine  must  be  configured  to  listen  on  the  same  port  on  which  the  Dispatcher  

WLM  Advisor  is started.  The  default  WLM  port  is 10007.  

v   Other  advisors  only  assess  those  servers  defined  in the  Dispatcher  

cluster@port@server  configuration  for  which  the  server’s  port  matches  the  

advisor’s  port.  The  WLM  advisor  advises  upon  every  server  in  the  Dispatcher  

configuration  (regardless  of  the  cluster@port).  Therefore  you  must  not  define  any  

non-WLM  servers  when  using  the  WLM  advisor.  

v   Other  advisors  place  their  load  information  into  the  manager  report  under  its  

“Port”  column.  The  WLM  advisor  places  its  load  information  into  the  manager  

report  under  its  system  column.  

v   It is possible  to  use  both  protocol-specific  advisors  along  with  the  WLM  advisor.  

The  protocol-specific  advisors  will  poll  the  servers  on  their  normal  traffic  ports,  

and  the  WLM  advisor  will  poll  the  system  load  using  the  WLM  port.

Metric  Server  Restriction:  Like  the  Metric  Server  agent,  the  WLM  agent  reports  on  

server  systems  as  a whole,  rather  than  on  individual  protocol-specific  server  

daemons.  Metric  Server  and  WLM  place  their  results  into  the  system  column  of the  

manager  report.  As  a consequence,  running  both  the  WLM  advisor  and  Metric  

Server  at  the  same  time  is not  supported.  

Creating a custom advisor 

A  custom  advisor  is  a small  piece  of  Java  code,  provided  as  a class  file,  that  is 

called  by  the  Load  Balancer  base  code  to determine  the  load  on  a server.  The  base  

code  provides  all  necessary  administrative  services,  including  starting  and  

stopping  an  instance  of  the  custom  advisor,  providing  status  and  reports,  recording  

history  information  in  a log  file,  and  reporting  advisor  results  to the  manager  

component.  

Custom  advisors  are  called  after  native,  or  standard,  advisors  have  been  searched.  

If the  Load  Balancer  does  not  find  a specified  advisor  among  the  list  of standard  

advisors,  it  consults  the  list  of  custom  advisors.  When  the  Load  Balancer  base  code  

calls  a custom  advisor,  the  following  steps  happen:  

1.   The  Load  Balancer  base  code  opens  a connection  with  the  server  machine.  

2.   If  the  socket  opens,  the  base  code  calls  the  specified  advisor’s  GetLoad  

function.  

3.   The  advisor’s  GetLoad  function  performs  the  steps  that  the  user  has  defined  for  

evaluating  the  server’s  status,  including  waiting  for  a response  from  the  server.  

The  function  terminates  execution  when  the  response  is received.  

4.   The  Load  Balancer  base  code  closes  the  socket  with  the  server  and  reports  the  

load  information  to the  manager.  Depending  on  whether  the  custom  advisor  

operates  in  normal  mode  or  in  replace  mode,  the  base  code  sometimes  does  

additional  calculations  after  the  GetLoad  function  terminates.

 

60 Load Balancer  for IPv4 and IPv6 Administration  Guide



Custom  advisors  can  be  designed  to  interact  with  the  Load  Balancer  in  either  

normal  mode  or  replace  mode.  The  choice  for  the  mode  of operation  is specified  in  

the  custom  advisor  file  as  a parameter  in  the  constructor  method.  (Each  advisor  

operates  in  only  one  of  these  modes,  based  on  its  design.)  

v   Normal  mode:  the  custom  advisor  exchanges  data  with  the  server,  and  the  base  

advisor  code  times  the  exchange  and  calculates  the  load  value.  The  base  code  

then  reports  this  load  value  to  the  manager.  The  custom  advisor  returns  the  

value  zero  to  indicate  success,  or  negative  one  to indicate  an  error. 

To specify  normal  mode,  set  the  replace  flag  in  the  constructor  to false.  

v   Replace  mode:  the  base  code  does  not  perform  any  timing  measurements.  The  

custom  advisor  code  performs  whatever  operations  are  specified,  based  on  its  

unique  requirements,  and  then  returns  an  actual  load  number.  The  base  code  

accepts  the  load  number  and  reports  it, unaltered,  to the  manager.  For  best  

results,  normalize  your  load  numbers  between  10  and  1000,  with  10  representing  

a fast  server  and  1000  representing  a slow  server.  

To specify  replace  mode,  set  the  replace  flag  in  the  constructor  to  true.

Like  all  advisors,  a custom  advisor  extends  the  functionality  of  the  advisor  base  

class,  which  is  called  ADV_Base.  The  advisor  base  performs  most  of  the  advisor’s  

functions,  such  as  reporting  loads  back  to  the  manager  for  use  in  the  manager’s  

weight  algorithm.  The  advisor  base  also  performs  socket  connect  and  close  

operations  and  provides  send  and  receive  methods  for  use  by  the  advisor.  The  

advisor  is  used  only  for  sending  and  receiving  data  on  the  specified  port  for  the  

server  that  is  being  investigated.  The  TCP  methods  provided  within  the  advisor  

base  are  timed  to  calculate  load.  A  flag  within  the  constructor  of the  advisor  base  

overwrites  the  existing  load  with  the  new  load  returned  from  the  advisor,  if 

desired.

Note:  Based  on  a value  set  in the  constructor,  the  advisor  base  supplies  the  load  to 

the  weight  algorithm  at specified  intervals.  If the  advisor  has  not  completed  

processing  and  cannot  return  a valid  load,  the  advisor  base  uses  the  previously  

reported  load.  

1.   Name  your  advisor.  Custom  advisor  file  names  must  follow  the  form  

ADV_name.java,  where  name  is the  name  that  you  choose  for  your  advisor.  

Note:   

v   You must  use  the  ADV_  prefix  for  the  advisor  name.  

v   You must  name  the  custom  advisor  using  lower-case  alphabetic  characters  to 

eliminate  case  sensitivity  when  an  operator  types  commands  on  a command  

line.  

v   The  custom  advisor  class  must  be  located  within  the  install_root/lib/
CustomAdvisors  subdirectory.  

v   According  to  Java  conventions,  the  name  of  the  class  defined  within  the  file  

must  match  the  name  of  the  file.
2.   Write your  custom  advisor.  Read  “Custom  advisor  methods  and  function  calls”  

on  page  62  for  a list  of methods  and  function  calls  to use  in  your  advisor.  Be  

aware  that  custom  advisors  need  to  have  all  the  required  routines.  Advisors  

must  have  the  following  base  class  methods:  

v   A constructor  routine.  The  constructor  calls  the  base  class  constructor.  

v   An  ADV_AdvisorInitialize  method.  This  method  provides  a way  to  perform  

additional  steps  after  the  base  class  completes  its  initialization.  

 

Chapter  4. welcome_administering.html  61



v   A getLoad  routine.  The  base  advisor  class  performs  the  socket  opening;  the  

getLoad  function  only  needs  to issue  the  appropriate  send  and  receive  

requests  to  complete  the  advising  cycle.  

3.   Compile  the  advisor.  

v   You must  write  custom  advisors  in  the  Java  language  and  compile  them  with  

a Java  compiler  that  is at the  same  level  as the  Load  Balancer  code.  To check  

the  version  of  Java  on  your  system,  run the  following  command  from  the  

install_root/java/bin  directory:  

java  -fullversion  

If the  current  directory  is not  part  of your  path,  you  will  need  to specify  that  

Java  should  be  run from  the  current  directory  to  ensure  you  are  getting  the  

correct  version  information.  In  this  case,  run the  following  command  from  

the  install_root/java/bin  directory:  

./java  -fullversion  

v   The  following  files  are  referenced  during  compilation:  

–   The  custom  advisor  file.  

–   The  base  classes  file,  ibmnd.jar,  which  is found  in  the  

install_root/servers/lib  directory.
v    Your classpath  environment  variable  must  point  to  both  the  custom  advisor  

file  and  the  base  classes  file  during  the  compilation.  A  compile  command  

might  have  the  following  format,  if your  advisor  is in  the  current  directory:  

install_path/java/bin/javac  -classpath  install_root/servers/lib/ibmlb.jar  ADV_name.java  

v   The  output  of  the  compilation  is a class  file,  for  example,  ADV_name.class.  

Before  starting  the  advisor,  copy  the  class  file  to the  install_root/servers/
lib/CustomAdvisors/  directory.

Note:  You can  compile  custom  advisors  on  one  operating  system  and  run on  

another  operating  system.  For  example,  you  can  compile  your  advisor  on  a 

Windows  system,  copy  the  resulting  class  file,  in  binary  format,  to  a Linux  

machine,  and  run the  custom  advisor  there.  For  AIX,  HP-UX,  Linux,  and  Solaris  

operating  systems,  the  syntax  is  similar.  

4.   Run  your  custom  advisor.  Custom  advisors  are  called  after  native,  or  standard,  

advisors  are  searched.  If  Load  Balancer  does  not  find  a specified  advisor  among  

the  list  of  standard  advisors,  it consults  the  list  of  custom  advisors.  

a.   If  you  have  not  already  done  so,  copy  the  advisor’s  class  file  to  the  

CustomAdvisors  subdirectory  on  the  Load  Balancer  machine.  For  example,  

for  a custom  advisor  named  myping,  the  file  path  is install_root/servers/
lib/CustomAdvisors/ADV_myping.class.  

b.   Configure  the  Load  Balancer,  start  its  manager  function,  and  issue  the  

command  to  start  your  custom  advisor.  The  custom  advisor  is specified  by 

its  name,  excluding  the  ADV_  prefix  and  the  file  extension:  

dscontrol  advisor  start  name.ext  port  

The  port  number  specified  in the  command  is the  port  on  which  the  advisor  

will  open  a connection  with  the  target  server.

Custom advisor methods and function calls 

Use  the  following  advisor  methods  and  function  calls  in  your  custom  advisors.  

Be  aware  that  custom  advisors  need  to have  all  the  required  routines.  Advisors  

must  have  the  following  base  class  methods:  

v   A constructor  routine.  The  constructor  calls  the  base  class  constructor.  

 

62 Load Balancer  for IPv4 and IPv6 Administration  Guide



v   An  ADV_AdvisorInitialize  method.  This  method  provides  a way  to  perform  

additional  steps  after  the  base  class  completes  its  initialization.  

v   A getLoad  routine.  The  base  advisor  class  performs  the  socket  opening;  the  

getLoad  function  only  needs  to  issue  the  appropriate  send  and  receive  requests  

to  complete  the  advising  cycle.

Constructor (provided by advisor base) 

public  <advisor_name> { 

  String  sName;  

  String  sVersion;  

  int  iDefaultPort;  

  int  iInterval;  

  String  sDefaultLogFileName;  

  boolean  replace  

) 

sName  

The  name  of the  custom  advisor  

sVersion  

The  version  of the  custom  advisor.  

iDefaultPort  

The  port  number  on  which  to contact  the  server  if no  port  number  is specified  

in  the  call.  

iInterval   

The  interval  at  which  the  advisor  will  query  the  servers.  

sDefaultLogFileName  

This  parameter  is required  but  not  used.  The  only  acceptable  value  is a null  

string,  ″″  

replace  

Whether  or  not  this  advisor  functions  in  replace  mode.  Possible  values  are  the  

following:  

v   true  – Replace  the  load  calculated  by  the  advisor  base  code  with  the  value  

reported  by  the  custom  advisor.  

v   false  – Add  the  load  value  reported  by  the  custom  advisor  to  the  load  value  

calculated  by  the  advisor  base  code.

ADV_AdvisorInitialize() method 

void  ADV_AdvisorInitialize()  

This  method  is  provided  to  perform  any  initialization  that  might  be  required  for  

the  custom  advisor.  This  method  is called  after  the  advisor  base  module  starts.  In 

many  cases,  including  the  standard  advisors,  this  method  is not  used  and  its  code  

consists  of  a return  statement  only.  This  method  can  be  used  to call  the  

“suppressBaseOpeningSocket()”  on  page  66  method,  which  is valid  only  from  

within  this  method.  

In  many  cases,  including  the  standard  advisors,  this  method  is not  used  and  its  

code  consists  of  a return  statement  only.  You can  use  this  method  to  call  the  

suppressBaseOpeningSocket  method,  which  is valid  only  from  within  the  

ADV_AdvisorInitialize  method.  

 

Chapter  4. welcome_administering.html  63



ADVLOG() method 

The  ADVLOG  function  allows  a custom  advisor  to write  a text  message  to  the  

advisor  base  log  file.  The  format  follows:  

void  ADVLOG  (int  logLevel,  String  message) 

This  command  has  the  following  parameters:  

logLevel  

The  status  level  at which  the  message  is written  to  the  log  file.  The  advisor  log  

file  is  organized  in  stages;  the  most  urgent  messages  are  given  status  level  0 

and  less  urgent  messages  receive  higher  numbers.  The  most  verbose  type  of 

message  is given  status  level  5.  These  levels  are  used  to  control  the  types  of 

messages  that  the  user  receives  in  real  time  (The  dscontrol  command  is used  to  

set  verbosity).  Catastrophic  errors  should  always  be  logged  at  level  0.  

message  

The  message  to  write  to the  log  file.  The  value  for  this  parameter  is a standard  

Java  string.

getAdvisorName function 

The  getAdvisorName  function  returns  a Java  string  with  the  suffix  portion  of your  

custom  advisor  name.  For  example,  for  an  advisor  named  ADV_cdload.java,  this  

function  returns  the  value  cdload.  

This  function  does  not  take  parameters.  

Note:  It  is  not  possible  for  this  value  to  change  during  one  instantiation  of  an  

advisor.  

caller.getCurrentServerId() 

The  getCurrentServerId  function  returns  a Java  string  which  is a unique  

representation  for  the  current  server.  Typically,  this  value  changes  each  time  you  

call  your  custom  advisor,  because  the  advisor  base  code  queries  all  server  

machines  in series.  

This  function  takes  no  parameters.  

caller.getCurrentClusterId() 

The  getCurrentClusterId  function  call  returns  a Java  string  which  is a unique  

representation  for  the  current  cluster.  Typically,  this  value  changes  each  time  you  

call  your  custom  advisor,  because  the  advisor  base  queries  all  clusters  in  series.  

This  function  takes  no  parameters.  

caller.getSocket() 

The  getSocket  function  call  returns  a Java  socket  which  represents  the  socket  

opened  to  the  current  server  for  communication.  

This  function  takes  no  parameters.  

 

64 Load Balancer  for IPv4 and IPv6 Administration  Guide



caller.getLatestLoad() 

The  getLatestLoad  function  allows  a custom  advisor  to  obtain  the  latest  load  value  

for  a given  server  object.  The  load  values  are  maintained  in  internal  tables  by  the  

advisor  base  code  and  the  manager  daemon.  This  function  call  is useful  if you  

want  to  make  the  behavior  of one  protocol  or  port  dependent  on  the  behavior  of  

another.  For  example,  you  might  use  this  function  call  in  a custom  advisor  that  

disabled  a particular  application  server  if the  Telnet server  on  that  same  machine  

was  disabled.  

The  syntax  is:  

int  caller.getLatestLoad  (String  clusterId, int port, String  serverId) 

The  three  arguments  together  define  one  server  object.  

This  command  has  the  following  parameters:  

clusterId  

The  cluster  identifier  of  the  server  object  for  which  to  obtain  the  current  load  

value.  This  argument  must  be  a Java  string.  

port  

The  port  number  of the  server  object  for  which  to obtain  the  current  load  

value.  

serverId  

The  server  identifier  of the  server  object  for  which  to  obtain  the  current  load  

value.  This  argument  must  be  a Java  string.  The  return  value  is an  integer.  

v   A positive  return  value  represents  the  actual  load  value  assigned  for  the  

object  that  was  queried.  

v   The  value  -1 indicates  that  the  server  asked  about  is  down.  

v   The  value  -2 indicates  that  the  status  of  the  server  asked  about  is unknown.

caller.receive() 

The  receive  function  gets  information  from  the  socket  connection.  The  syntax  is:  

caller.receive(StringBuffer  *response)  

This  command  has  the  following  parameters:  

response  

This  is a string  buffer  into  which  the  retrieved  data  is placed.  Additionally,  the  

function  returns  an  integer  value  with  the  following  significance:  

v   0 indicates  data  was  sent  successfully.  

v   A negative  number  indicates  an  error.

caller.send() 

The  send  function  uses  the  established  socket  connection  to  send  a packet  of data  

to  the  server,  using  the  specified  port.  The  syntax  is as  follows:  

caller.send(String  command) 

This  command  has  the  following  parameters:  

command  

This  is a string  containing  the  data  to  send  to  the  server.  The  function  returns  

an  integer  value  with  the  following  significance:  

 

Chapter  4. welcome_administering.html  65



v   0 indicates  data  was  sent  successfully.  

v   A negative  number  indicates  an  error.

getLoad() 

int  getLoad(  int  iConnectTime;  ADV_Thread  *caller  ) 

This  function  has  the  following  parameters:  

iConnectTime  

The  length  of  time,  in  milliseconds,  that  it took  the  connection  to  complete.  

This  load  measurement  is performed  by  the  advisor  base  code  and  passed  to 

the  custom  advisor  code,  which  can  use  or  ignore  the  measurement  when  

returning  the  load  value.  If the  connection  fails,  this  value  is set  to  -1.  

caller  

The  instance  of  the  advisor  base  class  where  advisor  base  methods  are  

provided.Function  calls  available  to  custom  advisors:  The  methods,  or  

functions,  described  in  the  following  sections  can  be  called  from  custom  

advisors.  These  methods  are  supported  by  the  advisor  base  code.  Some  of  

these  function  calls  can  be  made  directly,  for  example,  function_name(),  but  

others  require  the  prefix  caller.  Caller  represents  the  base  advisor  instance  that  

supports  the  custom  advisor  that  is being  executed.

getAdviseOnPort() 

The  getAdviseOnPort  function  returns  the  port  number  on  which  the  calling  

custom  advisor  is  running.  

The  return  value  is a Java  integer  (int),  and  the  function  does  not  take  parameters.

Note:  It  is  not  possible  for  this  value  to  change  during  one  instantiation  of  an  

advisor.  

getAdvisorName() 

The  getAdvisorName  function  returns  a Java  string  with  the  suffix  portion  of your  

custom  advisor’s  name.  For  example,  for  an  advisor  named  ADV_cdload.java,  this  

function  returns  the  value  cdload.  This  function  takes  no  parameters.  Note  that  it 

is not  possible  for  this  value  to  change  during  one  instantiation  of an  advisor.  

getInterval() 

The  getInterval  function  returns  the  advisor  interval,  that  is,  the  number  of  seconds  

between  advisor  cycles.  This  value  is equal  to the  default  value  set  in  the  custom  

advisor’s  constructor,  unless  the  value  has  been  modified  at run time  by  using  the  

dscontrol  command.  The  return  value  is a Java  integer  (int).  

The  function  takes  no  parameters.  

suppressBaseOpeningSocket() 

The  suppressBaseOpeningSocket  function  call  allows  a custom  advisor  to  specify  

whether  the  base  advisor  code  opens  a TCP  socket  to the  server  on  the  custom  

advisor’s  behalf.  If  your  advisor  does  not  use  direct  communication  with  the  

server  to  determine  its  status,  it might  not  be  necessary  to open  this  socket.  This  

function  call  can  be  issued  only  once,  and  it must  be  issued  from  the  

“ADV_AdvisorInitialize()  method”  on  page  63  routine.  

 

66 Load Balancer  for IPv4 and IPv6 Administration  Guide



The  function  takes  no  parameters.  

   Related  tasks  

   “Creating  a custom  advisor”  on  page  60
A  custom  advisor  is a small  piece  of  Java  code,  provided  as  a class  file,  that  is 

called  by  the  Load  Balancer  base  code  to  determine  the  load  on  a server.  The  

base  code  provides  all  necessary  administrative  services,  including  starting  and  

stopping  an  instance  of  the  custom  advisor,  providing  status  and  reports,  

recording  history  information  in a log  file,  and  reporting  advisor  results  to  the  

manager  component.
   Related  reference  

   “Example:  Sample  advisor”
This  is  a sample  advisor  file  called  ADV_sample.

Example: Sample advisor 

This  is  a sample  advisor  file  called  ADV_sample.  

/ * * 

 * ADV_sample:  The  Load  Balancer  HTTP  advisor  

 * 

 * 

 * This  class  defines  a sample  custom  advisor  for  Load  Balancer.  Like  all 

 * advisors,  this  custom  advisor  extends  the  function  of the  advisor  base,  

 * called  ADV_Base.  It is the  advisor  base  that  actually  performs  most  of 

 * the  advisor’s  functions,  such  as reporting  loads  back  to the Load  Balancer  

 * for  use  in the  Load  Balancer’s  weight  algorithm.  The advisor  base  also  

 * performs  socket  connect  and  close  operations  and  provides  send  and receive  

 * methods  for  use  by the advisor.  The advisor  itself  is used  only  for  

 * sending  and  receiving  data  to and  from  the  port  on  the server  being  

 * advised.  The  TCP  methods  within  the advisor  base  are timed  to calculate  

 * the  load.  A flag  within  the  constructor  in the ADV_base  overwrites  the 

 * existing  load  with  the  new  load  returned  from  the  advisor  if desired.  

 * 

 * Note:  Based  on a value  set  in the  constructor,  the  advisor  base  supplies  

 * the  load  to the  weight  algorithm  at specified  intervals.  If the  actual  

 * advisor  has  not  completed  so that  it can  return  a valid  load,  the advisor  

 * base  uses  the  previous  load.  

 * 

 * NAMING  

 * 

 * The  naming  convention  is as follows:  

 * 

 *  - The  file  must  be located  in the following  Load  Balancer  directory:  

 * 

 *     ulb/servers/lib/CustomAdvisors/  (ulb\servers\lib\CustomAdvisors  on Windows)  

 * 

 *  - The  Advisor  name  must  be preceded  with  "ADV_".  The  advisor  can be 

 *    started  with  only  the name,  however;  for  instance,  the  "ADV_sample"  

 *    advisor  can  be started  with  "sample".  

 * 

 *  - The  advisor  name  must  be in lowercase.  

 * 

 * With  these  rules  in mind,  therefore,  this  sample  is referred  to as:  

 * 

 *     <base  directory="">/lib/CustomAdvisors/ADV_sample.class  

 * 

 * 

 * Advisors,  as with  the  rest  of Load  Balancer,  must  be compiled  with  the  

 * prerequisite  version  of Java.  To ensure  access  to Load  Balancer  classes,  make  

 * sure  that  the  ibmlb.jar  file  (located  in the  lib  subdirectory  of the  base  

 * directory)  is included  in the system’s  CLASSPATH.  

 * 

 * Methods  provided  by ADV_Base:  

 * 

 * - ADV_Base  (Constructor):

 

Chapter  4. welcome_administering.html  67



* 

 *   - Parms  

 *     - String  sName  = Name  of the advisor  

 *     - String  sVersion  = Version  of the advisor  

 *     - int  iDefaultPort  = Default  port  number  to advise  on 

 *     - int  iInterval  = Interval  on which  to advise  on the  servers  

 *     - String  sDefaultName  = Unused.  Must  be passed  in as "".  

 *     - boolean  replace  = True  - replace  the  load  value  being  calculated  

 *                                by the  advisor  base  

 *                         False  - add  to the  load  value  being  calculated  

 *                                 by the advisor  base  

 *   - Return  

 *     - Constructors  do not  have  return  values.  

 * 

 * Because  the  advisor  base  is thread  based,  it has  several  other  methods  

 * available  for  use  by an advisor.  These  methods  can  be referenced  using  

 * the  CALLER  parameter  passed  in getLoad().  

 * 

 * These  methods  are  as follows:  

 * 

 * - send  - Send  a packet  of  information  on the  established  socket  connection  

 *          to the  server  on the  specified  port.  

 * - Parms  

 *   - String  sDataString  - The data  to  be sent  in the form  of a string  

 * - Return  

 *   - int  RC - Whether  the  data  was sucessfully  sent  or not:  zero  indicates  

 *              data  was  sent;  a negative  integer  indicates  an error.  

 * 

 * - receive  - Receive  information  from  the  socket  connection.  

 *   - Parms  

 *     - StringBuffer  sbDataBuffer  - The data  received  during  the  receive  call  

 *   - Return  

 *     - int  RC - Whether  the data  was  successfully  received  or not;  zero  

 *                indicates  data  was  sent;  a negative  integer  indicates  

 *                an error.  

 * 

 * If the  function  provided  by the  advisor  base  is not  sufficient,  

 * you  can  create  the  appropriate  function  within  the  advisor  and  

 * the  methods  provided  by the  advisor  base  will  then  be ignored.  

 * 

 * An important  question  regarding  the  load  returned  is whether  to apply  

 * it to the  load  being  generated  within  the advisor  base,  

 * or to replace  it;  there  are  valid  instances  of both  situations.  

 * 

 * This  sample  is essentially  the Load  Balancer  HTTP  advisor.  It functions  

 * very  simply:  a send  request--an  http  head  request--is  issued.  Once  a 

 * response  is received,  the getLoad  method  terminates,  flagging  the advisor  

 * base  to stop  timing  the  request.  The method  is then  complete.  The  

 * information  returned  is not  parsed;  the  load  is based  on the  time  

 * required  to perform  the  send  and  receive  operations.  

 */ 

  

package  CustomAdvisors;  

import  com.ibm.internet.nd.advisors.*;  

  public  class  ADV_sample  extends  ADV_Base  implements  ADV_MethodInterface  

  { 

    String  COPYRIGHT  = 

              "(C)  Copyright  IBM Corporation  1997,  All  Rights  Reserved.\n";  

    static  final  String  ADV_NAME  = "Sample";  

    static  final  int  ADV_DEF_ADV_ON_PORT  = 80;  

    static  final  int  ADV_DEF_INTERVAL  = 7; 

  

    //  Note:  Most  server  protocols  require  a carriage  return  ("\r")  and line  

    //  feed  ("\n")  at the  end  of messages.  If so, include  them  in 

    //  your  string  here.  

  

    static  final  String  ADV_SEND_REQUEST  =

 

68 Load Balancer  for IPv4 and IPv6 Administration  Guide



"HEAD  / HTTP/1.0\r\nAccept:   */ *\r\nUser-Agent:  " + 

       "IBM_Load_Balancer_HTTP_Advisor\r\n\r\n";  

  

    /**  

     * Constructor.  

     * 

     * Parms:  None;  but  the  constructor  for ADV_Base  has several  parameters  

     *        that  must  be passed  to it. 

     * 

     */ 

     public  ADV_sample()  

     { 

       super(  ADV_NAME,  

          "2.0.0.0-03.27.98",  

               ADV_DEF_ADV_ON_PORT,  

               ADV_DEF_INTERVAL,  

               "",  // not used  false);  

       super.setAdvisor(  this  ); 

     } 

  

  

     /**  

      * ADV_AdvisorInitialize  

      * 

      * Any  Advisor-specific  initialization  that  must  take  place  after  the 

      * advisor  base  is  started.  This  method  is called  only  once  and  is 

      * typically  not  used.  

      */ 

      public  void  ADV_AdvisorInitialize()  

      { 

        return;  

      } 

  

      /**  

       * getLoad()  

       * 

       * This  method  is called  by the advisor  base  to complete  the advisor’s  

       * operation,  based  on details  specific  to the  protocol.  In this  sample  

       * advisor,  only  a single  send  and  receive  are  necessary;  if more  complex  

       * logic  is necessary,  multiple  sends  and  receives  can be  issued.  For 

       * example,  a response  might  be received  and parsed.  Based  on the  

       * information  learned  thereby,  another  send  and receive  could  be issued.  

       * 

       * Parameters:  

       * 

       * - iConnectTime  - The current  load  as it refers  to the  length  of time  it  

       *                  took  to  complete  the connection  to the server  through  

       *                  the specified  port.  

       * 

       * - caller  - A reference  to the  advisor  base  class  where  the  Load  

       *            Balancer-supplied  methods  are  to perform  simple  TCP requests,  

       *            mainly  send  and  receive.  

       * 

       * Results:  

       * 

       * - The  load  - A value,  expressed  in milliseconds,  that  can either  be added  

       *   to the  existing  load,  or that  can replace  the  existing  load,  as  

       *   determined  by the  constructor’s  "replace"  flag.  

       * 

       *   The  larger  the load,  the longer  it took  the  server  to respond;  

       *   therefore,  the lower  the  weight  will  become  within  the Load  Balancer.  

       * 

       *   If the  value  is negative,  an error  is assumed.  An error  from  an 

       *   advisor  indicates  that  the server  the advisor  is trying  to reach  is not  

       *   accessible  and has  been  identified  as being  down.  Load  Balancer  will  

       *   not  attempt  to load  balance  to a server  that  is down.  Load  Balancer  will  

       *   resume  load  balancing  to the  server  when  a positive  value  is received.

 

Chapter  4. welcome_administering.html  69



* 

       */ 

      public  int  getLoad(int  iConnectTime,  ADV_Thread  caller)  

      { 

        int  iRc;  

        int  iLoad  = ADV_HOST_INACCESSIBLE;  // -1 

  

        // Send  tcp  request  iRc  = caller.send(ADV_SEND_REQUEST);  

        if (iRc  >=  0)  

        { 

            // Perform  a receive  

            StringBuffer  sbReceiveData  = new  StringBuffer("");  

            iRc  = caller.receive(sbReceiveData);  

  

         /**  

          * In the  normal  advisor  mode  ("replace"  flag  is false),  the load  

          * returned  is either  0 or 1 indicating  the server  is up or down.  

          * If the  receive  is successful,  a load  of zero  is returned  

          * indicating  that  the load  built  within  the base  advisor  is to be used.  

          * 

          * Otherwise  ("replace"  flag  is true),  return  the  desired  load  value.  

          */ 

  

          if (iRc  >= 0) 

          { 

             iLoad  = 0; 

          } 

        } 

        return  iLoad;  

      } 

  } // End  - ADV_sample  

Example:  Implementing  standard  advisors:   

The  following  example  demonstrates  how  to use  a standard  custom  advisor.  

 This  sample  source  code  is similar  to  the  standard  Load  Balancer  HTTP  advisor.  It 

functions  as  follows:  

1.   A send  request,  a ″HEAD/HTTP″  command,  is issued.  

2.   A response  is  received.  The  information  is not  parsed,  but  the  response  causes  

the  getLoad  method  to  terminate.  

3.   The  getLoad  method  returns  0 to  indicate  success  or  -1  to  indicate  a failure.

This  advisor  operates  in  normal  mode,  so the  load  measurement  is based  on  the  

elapsed  time  in  milliseconds  required  to  perform  the  socket  open,  send,  receive,  

and  close  operations.  

package  CustomAdvisors;  

import  com.ibm.internet.lb.advisors.*;  

public  class  ADV_sample  extends  ADV_Base  implements  ADV_MethodInterface  { 

  static  final  String  ADV_NAME  ="Sample";  

  static  final  int  ADV_DEF_ADV_ON_PORT  = 80; 

  static  final  int  ADV_DEF_INTERVAL  = 7; 

  static  final  String  ADV_SEND_REQUEST  = 

    "HEAD  / HTTP/1.0\r\nAccept:  */*\r\nUser-Agent:  " + 

    "IBM_Load_Balancer_HTTP_Advisor\r\n\r\n";  

  

  //--------  

  // Constructor  

    public  ADV_sample()  { 

      super(ADV_NAME,  "3.0.0.0-03.31.00",  

            ADV_DEF_ADV_ON_PORT,  ADV_DEF_INTERVAL,  "", 

            false);  

      super.setAdvisor(  this  );

 

70 Load Balancer  for IPv4 and IPv6 Administration  Guide



} 

  

  //--------  

  //  ADV_AdvisorInitialize  

    public  void  ADV_AdvisorInitialize()  { 

      return;                                // usually  an empty  routine  

    } 

  

  //--------  

  //  getLoad  

  

    public  int  getLoad(int  iConnectTime,  ADV_Thread  caller)  { 

      int  iRc;  

      int  iLoad  = ADV_HOST_INACCESSIBLE;            // initialize  to inaccessible  

  

      iRc  = caller.send(ADV_SEND_REQUEST);          // send  the  HTTP  request  to 

                                                   // the  server  

      if (0 <=  iRc)  {                              // if the  send  is successful  

        StringBuffer  sbReceiveData  = new  StringBuffer("");       // allocate  a buffer  

                                                                //  for the  response  

      iRc  = caller.receive(sbReceiveData);          // receive  the result  

  

      // parse  the  result  here  if you  need  to 

  

      if (0 <=  iRc)  {                              // if the  receive  is successful  

        iLoad  = 0;                                 // return  0 for  success  

      }                                            // (advisor’s  load  value  is ignored  by 

    }                                              // base  in normal  mode)  

    return  iLoad;  

  } 

} 

Example:  Implementing  a side  stream  advisor:   

The  following  example  demonstrates  how  a side  stream  advisor  can  be  

implemented.  This  sample  illustrates  suppressing  the  standard  socket  opened  by 

the  advisor  base.  Instead,  this  advisor  opens  a side  stream  Java  socket  to query  a 

server.  This  procedure  can  be  useful  for  servers  that  use  a different  port  from  

normal  client  traffic  to listen  for  an  advisor  query.  

 In  this  example,  a server  is listening  on  port  11999  and  when  queried  returns  a 

load  value  with  a hexadecimal  int  ″4″.  This  sample  runs in  replace  mode,  that  is,  

the  last  parameter  of  the  advisor  constructor  is set  to  true and  the  advisor  base  

code  uses  the  returned  load  value  rather  than  the  elapsed  time.  

Note  the  call  to  supressBaseOpeningSocket()  in  the  initialization  routine.  

Suppressing  the  base  socket  when  no  data  will  be  sent  is not  required.  For  

example,  you  might  want  to  open  the  socket  to ensure  that  the  advisor  can  contact  

the  server.  Examine  the  needs  of  your  application  carefully  before  making  this  

choice.  

package  CustomAdvisors;  

import  java.io.*;  

import  java.net.*;  

import  java.util.*;  

import  java.util.Date;  

import  com.ibm.internet.lb.advisors.*;  

import  com.ibm.internet.lb.common.*;  

import  com.ibm.internet.lb.server.SRV_ConfigServer;  

  

public  class  ADV_sidea  extends  ADV_Base  implements  ADV_MethodInterface  { 

  static  final  String  ADV_NAME  = "sidea";  

  static  final  int  ADV_DEF_ADV_ON_PORT  = 12345;  

  static  final  int  ADV_DEF_INTERVAL  = 7;

 

Chapter  4. welcome_administering.html  71



// create  an array  of bytes  with  the  load  request  message  

  static  final  byte[]  abHealth  = {(byte)0x00,  (byte)0x00,  (byte)0x00,  

                                  (byte)0x04};  

  

  public  ADV_sidea()  { 

    super(ADV_NAME,  "3.0.0.0-03.31.00",  ADV_DEF_ADV_ON_PORT,  

          ADV_DEF_INTERVAL,  "",  

          true);                      // replace  mode  parameter  is true  

    super.setAdvisor(  this  ); 

  } 

  

//--------  

// ADV_AdvisorInitialize  

  public  void  ADV_AdvisorInitialize()  

  { 

    suppressBaseOpeningSocket();         // tell  base  code  not  to open  the  

                                        // standard  socket  

    return;  

  } 

  

//--------  

// getLoad  

  public  int  getLoad(int  iConnectTime,  ADV_Thread  caller)  { 

    int  iRc;  

    int  iLoad  = ADV_HOST_INACCESSIBLE;     // -1 

    int  iControlPort  = 11999;              // port  on which  to communicate  

                                          // with  the  server  

    String  sServer  = caller.getCurrentServerId();  // address  of server  to query  

    try  { 

      socket  soServer  = new  Socket(sServer,  iControlPort);    //  open  socket  to 

                                                             // server  

      DataInputStream  disServer  = new  DataInputStream(  

                                                      soServer.getInputStream());  

      DataOutputStream  dosServer  = new  DataOutputStream(  

                                                      soServer.getOutputStream());  

      int  iRecvTimeout  = 10000;            // set  timeout  (in milliseconds)  

                                          // for  receiving  data  

      soServer.setSoTimeout(iRecvTimeout);  

      dosServer.writeInt(4);               // send  a message  to the server  

      dosServer.flush();  

      iLoad  = disServer.readByte();        // receive  the  response  from  the  server  

  

    } catch  (exception  e) { 

      system.out.println("Caught  exception  " + e); 

    } 

    return  iLoad;                          // return  the  load  reported  from  the  server  

  } 

} 

Example:  Implementing  a two-port  advisor:   

The  following  example  shows  how  to implement  a two-port  advisor.  This  custom  

advisor  sample  demonstrates  the  capability  to detect  failure  for  one  port  of  a 

server  based  upon  both  its  own  status  and  on  the  status  of a different  server  

daemon  that  is running  on  another  port  on  the  same  server  machine.  

 For  example,  if the  HTTP  daemon  on  port  80  stops  responding,  you  might  also  

want  to  stop  routing  traffic  to  the  SSL  daemon  on  port  443.  

This  advisor  is more  aggressive  than  standard  advisors,  because  it considers  any  

server  that  does  not  send  a response  to  have  stopped  functioning,  and  marks  it as  

 

72 Load Balancer  for IPv4 and IPv6 Administration  Guide



down.  Standard  advisors  consider  unresponsive  servers  to  be  very  slow. This  

advisor  marks  a server  as  down  for  both  the  HTTP  port  and  the  SSL  port  based  on  

a lack  of  response  from  either  port.  

To use  this  custom  advisor,  the  administrator  starts  two  instances  of  the  advisor:  

one  on  the  HTTP  port,  and  one  on  the  SSL  port.  The  advisor  instantiates  two  static  

global  hash  tables,  one  for  HTTP  and  one  for  SSL.  Each  advisor  tries  to  

communicate  with  its  server  daemon  and  stores  the  results  of this  event  in  its  hash  

table.  The  value  that  each  advisor  returns  to the  base  advisor  class  depends  on  

both  the  ability  to  communicate  with  its  own  server  daemon  and  the  ability  of  the  

partner  advisor  to  communicate  with  its  daemon.  

The  following  custom  methods  are  used.  

v   ADV_nte()  is  a simple  container  object  to  hold  information  about  a server.  These  

objects  are  stored  in  the  hash  table  as  table  elements.  Each  object  has  a time  

stamp  that  is used  to determine  whether  the  element  is current.  

v   putNte()  and  getNte()  are  synchronized  methods  that  ensure  that  the  two  

advisor  instances  access  the  hash  table  in  a controlled  fashion.  

v   getLoadHTTP  is a method  that  queries  the  responsiveness  of an  HTTP  server.  It 

is a low-level  routine  and  does  not  gather  or  use  information  about  SSL.  

v   getLoadSSL()  is a method  that  queries  the  responsiveness  of  an  SSL  server.  It is a 

low-level  routine  and  does  not  gather  or  use  information  about  HTTP.  

v   getLoad()  is  the  entry  point  routine  for  this  custom  advisor.  It  can  handle  both  

protocols  and  can  store  and  fetch  information  from  the  hash  table.  This  is the  

routine  that  links  the  two  ports.

The  following  error  conditions  are  detected:  

v   Unresponsive  server  machine  - The  base  advisor  classes  periodically  send  a ping  

signal  to  the  server  address.  If  the  address  is not  reachable,  the  base  advisor  

classes  marks  the  server  down.  Neither  of the  two  instances  of  the  custom  

advisor  is  called,  and  both  servers  on  that  machine  are  marked  down.  

v   One  daemon  on  a server  machine  becomes  unresponsive,  but  the  other  is 

working  - When  the  base  code  attempts  to  open  a socket  with  the  server,  the  

connection  is refused,  and  the  base  advisor  for  this  protocol  marks  the  server  as 

down.  The  custom  advisor  code  for  that  protocol  is  not  called.  Although  the  

custom  advisor  for  the  other  protocol  continues  communicating  with  its  server,  it 

learns  from  the  hash  table  that  the  other  custom  advisor  cannot  communicate  

with  its  server  daemon.  Therefore,  the  second  protocol’s  advisor  also  marks  its  

server  as  down.  

v   One  daemon  does  not  send  a response,  but  the  other  daemon  does  - The  custom  

advisor  for  the  unresponsive  protocol  detects  the  failure  to  communicate,  marks  

the  server  as  down,  and  stores  the  data  in  the  hash  table.  The  custom  advisor  for  

the  other  port  learns  that  information  from  the  hash  table  and  marks  its  server  

as  down.

This  sample  is  written  to  link  ports  80  for  HTTP  and  443  for  SSL,  but  it can  be  

tailored  to  any  combination  of  ports:  

package  CustomAdvisors;  

import  java.io.*;  

import  java.net.*;  

import  java.util.*;  

import  java.util.Date;  

import  com.ibm.internet.lb.advisors.*;  

import  com.ibm.internet.lb.common.*;  

import  com.ibm.internet.lb.manager.*;

 

Chapter  4. welcome_administering.html  73



import  com.ibm.internet.lb.server.SRV_ConfigServer;  

  

//--------  

// Define  the  table  element  for  the hash  tables  used  in this  custom  advisor  

  

class  ADV_nte  implements  Cloneable  { 

  private  String  sCluster;  

  private  int  iPort;  

  private  String  sServer;  

  private  int  iLoad;  

  private  Date  dTimestamp;  

  

//--------  

// constructor  

  

  public  ADV_nte(String  sClusterIn,  int iPortIn,  String  sServerIn,  

                 int  iLoadIn)  { 

    sCluster  = sClusterIn;  

    iPort  = iPortIn;  

    sServer  = sServerIn;  

    iLoad  = iLoadIn;  

    dTimestamp  = new  Date();  

  } 

  

//--------  

// check  whether  this  element  is current  or expired  

  public  boolean  isCurrent(ADV_twop  oThis)  { 

    boolean  bCurrent;  

    int  iLifetimeMs  = 3 * 1000  * oThis.getInterval();      // set lifetime  as 

                                                          // 3 advisor  cycles  

    Date  dNow  = new  Date();  

    Date  dExpires  = new  Date(dTimestamp.getTime()  + iLifetimeMs);  

  

    if  (dNow.after(dExpires))  { 

      bCurrent  = false;  

    } else  { 

      bCurrent  = true;  

    } return  bCurrent;  

  } 

  

//--------  

// value  accessor(s)  

  

 public  int  getLoadValue()  { return  iLoad;  } 

  

//--------  

// clone  (avoids  corruption  between  threads)  

  

 public  synchronized  Object  Clone()  { 

   try  { 

     return  super.clone();  

   } catch  (cloneNotSupportedException  e) { 

     return  null;  

    } 

  } 

  

} 

  

//--------  

// define  the  custom  advisor  

  

public  class  ADV_twop  extends  ADV_Base  

   implements  ADV_MethodInterface,  ADV_AdvisorVersionInterface  { 

   static  final  int  ADV_TWOP_PORT_HTTP  = 80; 

   static  final  int  ADV_TWOP_PORT_SSL  = 443;  

  

   //--------

 

74 Load Balancer  for IPv4 and IPv6 Administration  Guide



// define  tables  to hold  port-specific  history  information  

  

   static  HashTable  htTwopHTTP  = new  Hashtable();  

   static  HashTable  htTwopSSL  = new  Hashtable();  

   static  final  String  ADV_TWOP_NAME  = "twop";  

   static  final  int  ADV_TWOP_DEF_ADV_ON_PORT  = 80;  

   static  final  int  ADV_TWOP_DEF_INTERVAL  = 7; 

   static  final  String  ADV_HTTP_REQUEST_STRING  = 

      "HEAD  / HTTP/1.0\r\nAccept:  */*\r\nUser-Agent:  " + 

      "IBM_LB_Custom_Advisor\r\n\r\n";  

  

   //--------  

   // create  byte  array  with  SSL  client  hello  message  

  

   public  static  final  byte[]  abClientHello  = { 

     (byte)0x80,  (byte)0x1c,  

     (byte)0x01,                                 // client  hello  

     (byte)0x03,  (byte)0x00,                     //  SSL  version  

     (byte)0x00,  (byte)0x03,                     //  cipher  spec  len (bytes)  

     (byte)0x00,  (byte)0x00,                     //  session  ID len  (bytes)  

     (byte)0x00,  (byte)0x10,                     //  challenge  data  len  (bytes)  

     (byte)0x00,  (byte)0x00,  (byte)0x03,         // cipher  spec  

     (byte)0x1A,  (byte)0xFC,  (byte)0xE5,  (byte)Ox20,     // challenge  data  

     (byte)0xFD,  (byte)0x3A,  (byte)0x3C,  (byte)0x18,  

     (byte)0xAB,  (byte)0x67,  (byte)0xB0,  (byte)0x52,  

     (byte)0xB1,  (byte)0x1D,  (byte)0x55,  (byte)0x44,  (byte)0x0D,  (byte)0x0A  };  

  

  //--------  

  //  constructor  

  

  public  ADV_twop()  { 

    super(ADV_TWOP_NAME,  VERSION,  ADV_TWOP_DEF_ADV_ON_PORT,  

          ADV_TWOP_DEF_INTERVAL,  "",  

          false);                          // false  = load  balancer  times  the  response  

    setAdvisor  ( this  ); 

  } 

  

  //--------  

  //  ADV_AdvisorInitialize  

  

  public  void  ADV_AdvisorInitialize()  { 

    return;  } 

  

  //--------  

  //  synchronized  PUT and  GET  access  routines  for  the  hash  tables  

  

  synchronized  ADV_nte  getNte(Hashtable  ht, String  sName,  String  sHashKey)  { 

    ADV_nte  nte  = (ADV_nte)(ht.get(sHashKey));  

    if (null  != nte)  { 

      nte  = (ADV_nte)nte.clone();  

    } 

    return  nte;  

  } 

 synchronized  void  putNte(Hashtable  ht,  String  sName,  String  sHashKey,  

                          ADV_nte  nte)  { ht.put(sHashKey,nte);  return;  

} 

  

  

  //--------  

  //  getLoadHTTP  - determine  HTTP  load  based  on server  response  

  

  int  getLoadHTTP(int  iConnectTime,  ADV_Thread  caller)  { 

    int  iLoad  = ADV_HOST_INACCESSIBLE;  

    int  iRc  = caller.send(ADV_HTTP_REQUEST_STRING);    // send  request  message  

                                                    // to server  

    if (0 <= iRc)  {                                 // did  the request  return  a failure?  

      StringBuffer  sbReceiveData  = new  StringBuffer("")  // allocate  a buffer

 

Chapter  4. welcome_administering.html  75



// for the  response  

      iRc  = caller.receive(sbReceiveData);               // get response  from  server  

  

      if (0 <= iRc)  {                             // did the  receive  return  a failure?  

        if (0  < sbReceiveData.length())  {         // is data  there?  

          iLoad  = SUCCESS;                         // ignore  retrieved  data  and 

                                                  // return  success  code  

      } 

    } 

  } 

  return  iLoad;  

} 

  

  

//--------  

// getLoadSSL()  - determine  SSL load  based  on server  response  

  

int  getLoadSSL(int  iConnectTime,  ASV_Thread  caller)  { 

  int  iLoad  = ADV_HOST_INACCESSIBLE;  

  int  iRc;  

  

  CMNByteArrayWrapper  cbawClientHello  = new  CMNByteArrayWrapper(  

                                                  abClientHello);  

  Socket  socket  = caller.getSocket();  

  

  try  { 

      socket.getOutputStream().write(abClientHello);  // Perform  a receive.  

      socket.getInputStream().read();                 // If receive  is successful,  

                                                     // return  load  of 0. We  are not 

                                                     // concerned  with  data’s  contents,  

                                                     // and  the  load  is  calculated  by 

                                                     // the  ADV_Thread  thread.  

      iLoad  = 0; 

  } catch  (IOException  e) {           // Upon  error,  iLoad  will  default  to it. 

  } 

  return  iLoad;  

} 

  

  

//--------  

// getLoad  - merge  results  from  the HTTP  and SSL  methods  

  

public  int  getLoad(int  iConnectTime,  ADV_Thread  caller)  { 

  int  iLoadHTTP;  

  int  iLoadSSL;  

  int  iLoad;  

  int  iRc;  

  

  String  sCluster  = caller.getCurrentClusterId();   // current  cluster  address  

  int  iPort  = getAdviseOnPort();  

  String  sServer  = caller.getCurrentServerId();  

  String  sHashKey  = sCluster  = ":"  + sServer;       // hash  table  key  

  

  if (ADV_TWOP_PORT_HTTP  == iPort)  {                // handle  an HTTP  server  

    iLoadHTTP  = getLoadHTTP(iConnectTime,  caller);   // get the load  for  HTTP  

  

    ADV_nte  nteHTTP  = newADV_nte(sCluster,  iPort,  sServer,  iLoadHTTP);  

    putNte(htTwopHTTP,  "HTTP",  sHashKey,  nteHTTP);      // save  HTTP  load  

                                                       // information  

    ADV_nte  nteSSL  = getNte(htTwopSSL,  "SSL",  sHashKey);   // get  SSL  

                                                          // information  

      if (null  != nteSSL)  { 

        if (true  == nteSSL.isCurrent(this))  {              // check  the time  stamp  

          if (ADV_HOST_INACCESSIBLE  != nteSSL.getLoadValue())  {    // is  SSL  

                                                                   // working?  

            iLoad  = iLoadHTTP;  

          } else  {                      // SSL  is not working,  so mark  the  HTTP server  down

 

76 Load Balancer  for IPv4 and IPv6 Administration  Guide



iLoad=  ADV_HOST_INACCESSIBLE;  

          } 

        } else  {                 // SSL  information  is expired,  so  mark  the  

                                 // HTTP  server  down  

          iLoad  = ADV_HOST_INACCESSIBLE;  

       } 

     } else  {                   // no load  information  about  SSL,  report  

                                // getLoadHTTP()  results  

       iLoad  = iLoadHTTP;  

     } 

   } 

   else  if (ADV_TWOP_PORT_SSL  == iPort)  {             // handle  an SSL  server  

     iLoadSSL  = getLoadSSL(iConnectTime,  caller);      // get load  for  SSL  

  

     ADV_nte  nteSSL  = new  ADV_nte(sCluster,  iPort,  sServer,  iLoadSSL);  

     putNte(htTwopSSL,  "SSL",  sHashKey,  nteSSL);       // save  SSL  load  info.  

  

     ADV_nte  nteHTTP  = getNte(htTwopHTTP,  "SSL",  sHashKey);    //  get HTTP  

                                                              // information  

     if (null  != nteHTTP)  { 

       if (true  == nteHTTP.isCurrent(this))  {                 // check  the  timestamp  

         if (ADV_HOST_INACCESSIBLE  != nteHTTP.getLoadValue())  {   // is HTTP  

                                                                  // working?  

           iLoad  = iLoadSSL;  

         } else  {             // HTTP  server  is not  working,  so mark  SSL  down  

           iLoad  = ADV_HOST_INACCESSIBLE;  

         } 

       } else  {     // expired  information  from  HTTP,  so mark  SSL  down  

         iLoad  = ADV_HOST_INACCESSIBLE;  

       } 

     } else  {                 // no load  information  about  HTTP,  report  

                              // getLoadSSL()  results  

       iLoad  = iLoadSSL;  

     } 

   } 

  

 //--------  

 // error  handler  

  

   else  { 

     iLoad  = ADV_HOST_INACCESSIBLE;  

   } 

   return  iLoad;  

  } 

} 

Example:  Implementing  the  WAS advisor:   

The  following  examples  show  how  custom  advisors  can  be  implemented.  

 A sample  custom  advisor  for  WebSphere  Application  Server  is included  in  the  

install_root/servers/samples/CustomAdvisors/  directory.  The  full  code  is not  

duplicated  in  this  document.  Ensure  that  the  following  will  be  implemented:  

v   ADV_was.java  is the  advisor  source  code  file  that  is compiled  and  run on  the  

Load  Balancer  machine.  

v   LBAdvisor.java.servlet  is the  servlet  source  code  that  must  be  renamed  to  

LBAdvisor.java,  compiled,  and  run on  the  WebSphere  Application  Server  

machine.

The  complete  advisor  is  only  slightly  more  complex  than  the  sample.  It adds  a 

specialized  parsing  routine  that  is more  compact  than  the  StringTokenizer  example  

shown  in  the  topic  “Example:  Using  data  returned  from  advisors”  on  page  78.  

 

Chapter  4. welcome_administering.html  77



The  more  complex  part  of the  sample  code  is in  the  Java  servlet.  Among  other  

methods,  the  servlet  contains  two  methods  required  by  the  servlet  specification:  

init()  and  service(),  and  one  method,  run(),  that  is required  by  the  Java.lang.thread  

class.  

v   init()  is  called  once  by  the  servlet  engine  at initialization  time.  This  method  

creates  a thread  named  _checker  that  runs independently  of  calls  from  the  

advisor  and  sleeps  for  a period  of  time  before  resuming  its  processing  loop.  

v   service()  is  called  by  the  servlet  engine  each  time  the  servlet  is invoked.  In  this  

case,  the  method  is called  by  the  advisor.  The  service()  method  sends  a stream  of  

ASCII  characters  to  an  output  stream.  

v   run() contains  the  core  of  the  code  execution.  It is called  by  the  start()  method  

that  is  called  from  within  the  init()  method.

The  relevant  fragments  of  the  servlet  code  appear  below:  

...  

  public  void  init(ServletConfig  config)  throws  ServletException  { 

    super.init(config);  

    ...  

    _checker  = new  Thread(this);  

    _checker.start();  

  } 

  

  public  void  run()  { 

    setStatus(GOOD);  

  

    while  (true)  { 

      if (!getKeepRunning())  

        return;  

      setStatus(figureLoad());  

      setLastUpdate(new  java.util.Date());  

  

    try  { 

      _checker.sleep(_interval  * 1000);  

    } catch  (Exception  ignore)  { ; } 

  } 

} 

  

public  void  service(HttpServletRequest  req,  HttpServletResponse  res)  

                    throws  ServletException,  IOException  { 

  ServletOutputStream  out  = null;  

  try  { 

    out  = res.getOutputStream();  

  } catch  (Exception  e) { ...  } 

  ...  

  res.setContentType("text/x-application-LBAdvisor");  

  out.println(getStatusString());  

  out.println(getLastUpdate().toString());  

  out.flush();  return;  

} 

...  

Example:  Using  data  returned  from  advisors:   

Whether  you  use  a standard  call  to an  existing  part  of  the  application  server  or  

add  a new  piece  of  code  to be  the  server-side  counterpart  of  your  custom  advisor,  

you  possibly  want  to  examine  the  load  values  returned  and  change  server  

behavior.  

 The  Java  StringTokenizer  class,  and  its  associated  methods,  make  this  investigation  

easy  to  do.  The  content  of a typical  HTTP  command  might  be  

GET  /index.html  HTTP/1.0  90 

 

78 Load Balancer  for IPv4 and IPv6 Administration  Guide



A typical  response  to this  command  might  be  the  following:  

HTTP/1.1  200  OK 

Date:  Mon,  20 November  2000  14:09:57  GMT 

Server:  Apache/1.3.12  (Linux  and  UNIX)  

Content-Location:  index.html.en  

Vary:  negotiate  

TCN:  choice  

Last-Modified:  Fri,  20  Oct  2000  15:58:35  GMT 

ETag:  "14f3e5-1a8-39f06bab;39f06a02"  

Accept-Ranges:  bytes  

Content-Length:  424  

Connection:  close  

Content-Type:  text/html  

Content-Language:  en 

  

<!DOCTYPE  HTML  PUBLIC  "-//w3c//DTD  HTML  3.2 Final//EN">  

<HTML><HEAD><TITLE>Test  Page</TITLE></HEAD>  

<BODY><H1>Apache  server</H1>  

<HR>  

<P><P>This  Web  server  is running  Apache  1.3.12.  

</P>  

<P><IMG  SRC="apache_pb.gif"  ALT="">  

</P></P>  

</HR>  

</BODY></HTML>  

The  items  of interest  are  contained  in  the  first  line,  specifically  the  HTTP  return  

code.  The  HTTP  specification  classifies  return  codes  that  can  be  summarized  as  

follows:  

v   2xx  return  codes  are  successes  

v   3xx  return  codes  are  redirections  

v   4xx  return  codes  are  client  errors  

v   5xx  return  codes  are  server  errors

If  you  know  precisely  what  codes  the  server  can  possibly  return,  your  code  might  

not  need  to  be  as detailed  as  this  example.  However,  keep  in  mind  that  limiting  

the  return  codes  you  detect  might  limit  the  future  flexibility  of  your  program.  

The  following  example  is a stand-alone  Java  program  that  contains  a minimal  

HTTP  client.  The  example  invokes  a simple,  general-purpose  parser  for  examining  

HTTP  responses.  

import  java.io.*;  

import  java.util.*;  

import  java.net.*;  

  

public  class  ParseTest  { 

   static  final  int  iPort  = 80;  

   static  final  String  sServer  = "www.ibm.com";  

   static  final  String  sQuery  = "GET  /index.html  HTTP/1.0\r\n\r\n";  

   static  final  String  sHTTP10  = "HTTP/1.0";  

   static  final  String  sHTTP11  = "HTTP/1.1";  

  

   public  static  void  main(String[]  Arg)  { 

     String  sHTTPVersion  = null;  

     String  sHTTPReturnCode  = null;  

     String  sResponse  = null;  int iRc  = 0; 

     BufferedReader  brIn  = null;  

     PrintWriter  psOut  = null;  

     Socket  soServer=  null;  

     StringBuffer  sbText  = new  

     StringBuffer(40);  

 

 

Chapter  4. welcome_administering.html  79



try  { 

     soServer  = new  Socket(sServer,  iPort);  

     brIn  = new  BufferedReader(new  InputStreamReader(  

                                   soServer.getInputStream()));  

     psOut  = new  PrintWriter(soServer.getOutputStream());  

     psOut.println(sQuery);  

     psOut.flush();  

     sResponse  = brIn.readLine();  

     try  { 

       soServer.close();  

     } catch  (Exception  sc) {;}  

   } catch  (Exception  swr)  {;}  

  

   StringTokenizer  st = new StringTokenizer(sResponse,  " ");  

   if (true  == st.hasMoreTokens())  { 

     sHTTPVersion  = st.nextToken();  

     if (sHTTPVersion.equals(sHTTP110)  || sHTTPVersion.equals(sHTTP11))  { 

       System.out.println("HTTP  Version:  " + sHTTPVersion);  

     } else  { 

       System.out.println("Invalid  HTTP  Version:  " + sHTTPVersion);  

     } 

   } else  { 

     System.out.println("Nothing  was  returned");  

     return;  

   } 

  

   if (true  == st.hasMoreTokens())  { 

     sHTTPReturnCode  = st.nextToken();  

     try  { 

       iRc  = Integer.parseInt(sHTTPReturnCode);  

     } catch  (NumberFormatException  ne) {;}  

  

     switch  (iRc)  { 

     case(200):  

       System.out.println("HTTP  Response  code:  OK, " + iRc);  

       break;  

     case(400):  case(401):  case(402):  case(403):  case(404):  

       System.out.println("HTTP  Response  code:  Client  Error,  " + iRc);  

       break;  

     case(500):  case(501):  case(502):  case(503):  

       System.out.println("HTTP  Response  code:  Server  Error,  " + iRc);  

       break;  

     default:  

       System.out.println("HTTP  Response  code:  Unknown,  " + iRc);  

       break;  

     } 

   } 

  

   if (true  == st.hasMoreTokens())  { 

     while  (true  == st.hasMoreTokens())  { 

       sbText.append(st.nextToken());  

       sbText.append("  "); 

       } 

     System.out.println("HTTP  Response  phrase:  " + sbText.toString());  

   } 

  } 

} 

Configuring high availability 

The  high  availability  feature  involves  the  use  of  a second  Dispatcher  machine.  The  

first  Dispatcher  machine  performs  load  balancing  for  all  the  client  traffic  as  it does  

in  a single  Dispatcher  configuration.  The  second  Dispatcher  machine  monitors  the  

″health″ of  the  first,  and  takes  over  the  task  of  load  balancing  if it  detects  that  the  

first  Dispatcher  machine  has  failed.  

 

80 Load Balancer  for IPv4 and IPv6 Administration  Guide



When  you  configure  high  availability,  each  of  the  two  machines  is assigned  a 

specific  role,  either  primary  or  backup.  The  primary  machine  sends  connection  

data  to  the  backup  machine  on  an  ongoing  basis.  While  the  primary  is active  (load  

balancing),  the  backup  is in  a standby  state,  continually  updated  and  ready  to  take  

over, if necessary.  

The  communication  sessions  between  the  two  machines  are  referred  to  as  

heartbeats.  The  heartbeats  allow  each  machine  to  monitor  the  health  of  the  other.  If 

the  backup  machine  detects  that  the  active  machine  has  failed,  it  will  take  over  and  

begin  load  balancing.  At  that  point  the  statuses  of  the  two  machines  are  reversed:  

the  backup  machine  becomes  active  and  the  primary  becomes  standby.

Note:  In  the  high  availability  configuration,  both  primary  and  backup  machines  

must  be  on  the  same  subnet  with  identical  configuration.  

For  the  complete  syntax  see  “dscontrol  highavailability”  on  page  144.  For  a more  

complete  discussion  of  many  of  the  tasks  below,  see  “Configuring  the  Load  

Balancer  machine”  on  page  33.  

Tips  for  configuring  high  availability:  

1.   To configure  a single  Dispatcher  machine  to  route  packets  without  a backup,  do  

not  issue  any  of  the  high  availability  commands  at startup.  

2.   To convert  two  Dispatcher  machines  configured  for  high  availability  to  one  

machine  running  alone,  stop  the  executor  on  one  of  the  machines,  then  delete  

the  high  availability  features  (the  heartbeats,  reach,  and  backup)  on  the  other. 

3.   

   

Linux  for  s390:  In  both  of the  two  cases  above,  you  must  alias  the  

network  interface  card  with  cluster  addresses,  as required.  

4.   When  running  two  Dispatcher  machines  in  a high  availability  configuration,  

unexpected  results  can  occur  if you  set  any  of the  parameters  for  the  executor,  

cluster,  port,  or  server  (for  example,  port  stickytime)  to  different  values  on  the  

two  machines.
 1.   

   

If  you  are  running  Linux  for  s390  operating  systems,  create  alias  

script  files  on  each  of the  two  Dispatcher  machines.  See  “Scripts  to  run with  

high  availability”  on  page  85  for  more  information.  

 2.   Start  the  server  on  both  Dispatcher  server  machines.  

 3.   Start  the  executor  on  both  machines.  

 4.   Ensure  that  the  non-forwarding  address  (NFA)  of each  Dispatcher  machine  is 

configured,  and  is a valid  IP  address  for  the  subnet  of  the  Dispatcher  

machines.  

 5.   Add  the  heartbeat  information  on  both  machines:  

dscontrol  highavailability  heartbeat  add  source_address  destination_address  

Source_address  and  destination_address  are  the  IP  addresses  (either  DNS  names  

or  IP  addresses)  of  the  Dispatcher  machines.  The  values  will  be  reversed  on  

each  machine.  For  example:  

Primary  - highavailability  heartbeat  add  9.67.111.3  9.67.186.8  

Backup  - highavailability  heartbeat  add  9.67.186.8  9.67.111.3  

At  least  one  heartbeat  pair  must  have  the  NFAs  of  the  pair  as  the  source  and  

destination  address.  If possible,  at  least  one  of the  heartbeat  pairs  should  be  

across  a separate  subnet  than  the  regular  cluster  traffic.  Keeping  the  heartbeat  

traffic  distinct  will  help  prevent  false  takeovers  during  very  heavy  network  

loads  and  also  improve  complete  recovery  times  after  a failover.  

 

Chapter  4. welcome_administering.html  81



a.   Optional:  Set  the  number  of seconds  that  the  executor  uses  to timeout  high  

availability  heartbeats.  The  default  is 2 seconds.  For  example:  

dscontrol  executor  set  hatimeout  3 

 6.   On  both  machines,  configure  the  list  of  IP  addresses  that  the  Dispatcher  must  

be  able  to  reach  in  order  to ensure  full  service,  using  the  reach  add  command.  

Reach  targets  are  recommended  but  not  required.  See  “Detecting  server  

failures  with  heartbeats  and  reach  targets”  on  page  83  for  more  information.  

For  example:  

 dscontrol  highavailability  reach  add  9.67.125.18  

 7.   Add  the  backup  information  to each  machine:  

a.    For  the  primary  machine:  

dscontrol  highavailability  backup  add  primary  [auto  | manual]  port  

b.   For  the  backup  machine:  

 dscontrol  highavailability  backup  add  backup  [auto  | manual]  port  

Note:  Select  an  unused  port  on  your  machines  as  the  port.  The  port  

number  entered  will  be  used  as  a key  to ensure  the  correct  host  is 

receiving  the  packet.
 8.   Check  the  high  availability  status  on  each  machine:  

 dscontrol  highavailability  status  

The  machines  should  each  have  the  correct  role  (backup  or  primary)  and  

states.  The  primary  should  be  active;  the  backup  should  be  in  standby  mode.  

The  recovery  strategies  must  be  the  same.  

 9.   Set  up  the  cluster,  port,  and  server  information  on  both  machines.  

10.   Start  the  manager  and  advisors  on  both  machines.

How high availability works 

   

To improve  Dispatcher  availability,  the  Dispatcher  high  availability  functions  as 

follows:  

1.   Two  Dispatchers  with  connectivity  to the  same  clients,  and  the  same  cluster  of 

servers,  as  well  as connectivity  between  the  Dispatchers.  Both  Dispatchers  must  

run on  the  same  type  of operating  system  and  platform.  

 

82 Load Balancer  for IPv4 and IPv6 Administration  Guide



2.   A “heartbeat”  mechanism  between  the  two  Dispatchers  detects  a Dispatcher  

failure.  At  least  one  heartbeat  pair  must  have  the  NFAs of  the  pair  as  the  

source  and  destination  address.  If possible,  at least  one  of  the  heartbeat  pairs  

should  be  across  a separate  subnet  than  the  regular  cluster  traffic.  Keeping  the  

heartbeat  traffic  distinct  will  help  prevent  false  takeovers  during  very  heavy  

network  loads  and  also  improve  complete  recovery  times  after  a failover.  

3.   A list  of  reach  targets,  addresses  that  both  Dispatcher  machines  must  be  able  to  

contact  in  order  to  load  balance  traffic  normally.  For  more  information,  see  

“Detecting  server  failures  with  heartbeats  and  reach  targets.”  

4.   Synchronization  of the  Dispatcher  information  

5.   Logic  to  elect  the  active  Dispatcher  which  is in  charge  of a given  cluster  of 

servers,  and  the  standby  Dispatcher  which  continuously  gets  synchronized  for  

that  cluster  of  servers.  

6.   A mechanism  to  perform  IP  takeover,  when  the  logic  or  an  operator  decides  to  

switch  active  and  standby.

Planning for high availability 

When  configuring  for  high  availability,  consider  that  the  Load  Balancer  machine  is  

supported  with  the  following  limitations  or  special  considerations:  

v   If you  are  using  IPv6  protocol  on  your  machine  and  want  to  use  high  

availability,  you  must  check  to  see  if protocol  58  is  defined  to  be  ICMPv6  in the  

protocol  file.  

v   In the  high  availability  configuration,  both  primary  and  backup  machines  must  

be  on  the  same  subnet  with  identical  configuration.  

v   The  heartbeat  pairs  (which  is the  mechanism  between  the  primary  and  standby  

Dispatchers  to  detect  Dispatcher  failure)  must  be  both  IPv4  format  or  both  IPv6  

format.  

v   In a high  availability  or  a stand-alone  environment,  you  must  not  alias  the  

cluster  address  against  the  network  adaptor.  

v   The  HighAvailChange  script  can  be  moved  from  the  install_root/servers/
samples  directory  to  the  install_root/servers/bin  directory  to  log  high  

availability  state  changes  for  the  Dispatcher  machine,  but  this  script  does  not  

need  to  be  changed.

Detecting server failures with heartbeats and reach targets 

Configure  heartbeats  and  reach  targets  to  detect  server  failures  and  control  when  

failovers  can  occur.  

Besides  the  basic  criteria  of  failure  detection  (the  loss  of connectivity  between  

active  and  standby  Dispatchers,  detected  through  the  heartbeat  messages),  there  is 

another  failure  detection  mechanism  named  reachability  criteria.  When  you  

configure  the  Dispatcher  you  can  provide  a list  of  hosts  that  each  of the  

Dispatchers  should  be  able  to  reach  in  order  to  work  correctly.  The  two  high  

availability  partners  continually  communicate  with  each  other  through  heartbeats,  

and  they  update  one  another  on  how  many  reach  targets  either  one  of them  can  

ping.  If  the  standby  pings  more  reach  targets  than  the  active,  a failover  occurs.  

Heartbeats:Heartbeats  are  sent  by  the  active  Dispatcher  and  are  expected  to  be  

received  by  the  standby  Dispatcher  every  half  second.  If the  standby  Dispatcher  

fails  to  receive  a heartbeat  within  2 seconds,  a failover  begins.  All  heartbeats  must  

break  for  a takeover  from  the  standby  Dispatcher  to  occur.  In  other  words,  when  

 

Chapter  4. welcome_administering.html  83



two  heartbeat  pairs  are  configured,  both  heartbeats  must  break.  To stabilize  a high  

availability  environment  and  to  avoid  failover,  add  more  than  one  heartbeat  pair. 

Reach  target  considerations:  For  reach  targets,  you  should  choose  at least  one  host  

for  each  subnet  your  Dispatcher  machine  uses.  The  hosts  could  be  routers,  IP  

servers  or  other  types  of  hosts.  Host  reachability  is obtained  by  the  reach  advisor,  

which  pings  the  host.  Failover  takes  place  either  if the  heartbeat  messages  cannot  

go  through,  or  if the  reachability  criteria  are  met  better  by  the  standby  Dispatcher  

than  by  the  primary  Dispatcher.  To make  the  decision  based  on  all  available  

information,  the  active  Dispatcher  regularly  sends  the  standby  Dispatcher  its  

reachability  capabilities.  The  standby  Dispatcher  then  compares  those  capabilities  

with  its  own  and  decides  whether  to  switch.

Note:  When  you  configure  the  reach  target,  the  reach  advisor  must  also  be  started.  

The  reach  advisor  starts  automatically  when  you  start  the  manager  function.  For  

more  information  on  the  reach  advisor,  see  “List  of  advisors”  on  page  52.  

v   Use  the  dscontrol  highavailability  command  to add  or  delete  a reach  target  to a 

server:  

dscontrol  highavailability  reach  add|delete  address  mask  

v   Use  the  dscontrol  highavailability  command  with  the  heartbeat  option  to  add  a 

heartbeat:  

dscontrol  highavailability  heartbeat  add srcaddress  dstaddress  

To delete  a heartbeat,  use  the  following:  

dscontrol  highavailability  heartbeat  delete  address  

High Availability recovery strategy for failed servers 

The  recovery  strategy  dictates  how  Load  Balancer  behaves  when  one  Dispatcher  

machine  fails  and  there  is another  configured  as a backup.  

Two  Dispatcher  machines  are  configured:  the  primary  machine,  and  a second  

machine  called  the  backup.  At  startup,  the  primary  machine  sends  all  the  

connection  data  to  the  backup  machine  until  that  machine  is synchronized.  The  

primary  machine  becomes  active,  that  is,  it begins  load  balancing.  The  backup  

machine,  meanwhile,  monitors  the  status  of the  primary  machine,  and  is said  to  be 

in  standby  state.  

If the  backup  Load  Balancer  machine  detects  that  the  primary  machine  has  failed,  

it performs  a takeover  load  balancing  functions  and  becomes  the  active  machine.  

After  the  primary  machine  has  once  again  become  operational,  the  machines  

respond  according  to  how  the  recovery  strategy  has  been  configured  by  the  user.  

There  are  two  kinds  of strategy:  

v    Automatic  - The  primary  machine  resumes  routing  packets  as  soon  as it  

becomes  operational  again.  

v   Manual  - intervention  is required  to return  the  primary  machine  to  active  state  

and  reset  the  backup  machine  to  standby.  The  manual  recovery  strategy  allows  

you  to  force  the  routing  of packets  to a particular  machine,  using  the  takeover  

command.  Manual  recovery  is useful  when  maintenance  is being  performed  on  

the  other  machine

Note:  The  strategy  parameter  must  be  the  same  for  both  machines.

 

84 Load Balancer  for IPv4 and IPv6 Administration  Guide



Scripts to run with high availability 

Before  using  a script,  remember  that  for  Dispatcher  to  route  packets,  each  cluster  

address  must  be  aliased  to  a network  interface  device.  

v   In a stand-alone  Dispatcher  configuration,  each  cluster  address  must  be  aliased  

to  a network  interface  card  (for  example,  en0,  tr0).  

v   In a high  availability  configuration:  

–   On  the  active  machine,  each  cluster  address  must  be  aliased  to  a network  

interface  card  (for  example,  en0,  tr0)  

–   On  the  standby  machine,  each  cluster  address  must  be  aliased  to  a loopback  

device  (for  example,  lo0).  

–   To customize  the  scripts  for  certain  situations,  read  Customizing  the  scripts  

for  high  availability.
v    In any  machine  in  which  the  executor  has  been  stopped,  all  aliases  should  be  

removed  to  prevent  conflicts  with  another  machine  that  may  be  started.  For  

information  on  aliasing  the  network  interface  card,  see  “Aliasing  the  network  

interface  card  or  loopback  device”  on  page  39.

The  following  sample  script  can  be  used:  

v   HighAvailChange  

The  HighAvailChange  script  runs whenever  the  high  availability  state  changes  

within  the  Dispatcher.  You can  create  this  script  to use  state  change  information,  

for  instance,  to  alert  an  Administrator  or  simply  record  the  event.

On  Linux  for  S/390:  Dispatcher  issues  a gratuitous  ARP  to  move  IP  addresses  from  

one  Dispatcher  to  another.  This  mechanism  is therefore  tied  to the  underlying  

network  type.  When  running  Linux  for  S/390,  Dispatcher  can  natively  do  high  

availability  takeovers  (complete  with  IP  address  moves)  only  on  those  interfaces  

which  can  issue  a gratuitous  ARP  and  configure  the  address  on  the  local  interface.  

This  mechanism  will  not  work  properly  on  point-to-point  interfaces  such  as  IUCV  

and  CTC  and  will  not  work  properly  in  certain  configurations  of  qeth/QDIO.  

   Related  tasks  

   “Configuring  high  availability”  on  page  80
The  high  availability  feature  involves  the  use  of  a second  Dispatcher  machine.  

The  first  Dispatcher  machine  performs  load  balancing  for  all  the  client  traffic  as 

it  does  in  a single  Dispatcher  configuration.  The  second  Dispatcher  machine  

monitors  the  ″health″ of the  first,  and  takes  over  the  task  of load  balancing  if it 

detects  that  the  first  Dispatcher  machine  has  failed.  

   Customizing  the  scripts  for  high  availability
Customize  your  scripts  to tune  the  performance  of the  high  availability  function  

for  Load  Balancer.  

   “Detecting  server  failures  with  heartbeats  and  reach  targets”  on  page  83
Configure  heartbeats  and  reach  targets  to  detect  server  failures  and  control  

when  failovers  can  occur.
   Related  reference  

   “High  Availability  recovery  strategy  for  failed  servers”  on  page  84
The  recovery  strategy  dictates  how  Load  Balancer  behaves  when  one  

Dispatcher  machine  fails  and  there  is another  configured  as  a backup.

 

Chapter  4. welcome_administering.html  85



Use encapsulation forwarding to forward traffic across network 

segments 

Use  encapsulation  forwarding  when  the  back-end  server  is not  located  on  the  same  

network  segment  or  if you  are  using  virtualization  technology  and  need  to  forward  

packets  that  are  otherwise  unable  to  be  forwarded.  

In  a typical  configuration,  Load  Balancer  receives  a packet,  P,  and  forwards  it as  

packet  P’,  where  only  the  time-to-live  (TTL)  has  been  decremented.  When  you  

enable  encapsulation,  Load  Balancer  receives  a packet  P,  and  forwards  it as  E(P’),  

where  the  encapsulated  packet  E contains  P’.  The  outer  packet  E has  a unique  IP 

header,  which  permits  Load  Balancer  to  forward  packets  across  routers  and  across  

some  types  of  virtualization  technology  that  you  could  not  otherwise  forward  

packets  across.  

Encapsulation  forwarding:  

v   Is  implemented  like  MAC  forwarding:  

–   Packets  from  server  to client  do  not  go  through  the  load  balancer  

–   Alias  the  loopback  device  to cluster  address  on  back-end  server
v    Requires  that  you  configure  an  IPIP  or  GRE  tunnel  only  on  the  back-end  server.  

v   Does  not  require  you  to add  routes  while  configuring  the  tunnel.

Load  Balancer  will  act  as  the  tunnel  on  the  other  end.

Client LB Backend Server

tunnel

GRE TCP/IP Stack

  

 

Additionally,  this  functionality  allows  you  to forward  packets  to Solaris  zones  or 

AIX  workload  partitions  that  are  on  the  same  host,  since  Load  Balancer  can  use  the  

existing  stack  configuration  instead  of  bypassing  it entirely.  

1.   On  the  Load  Balancer  machine,  add  a server  with  encapsulation  enabled.  When  

this  server  is  selected  to  forward  the  packet,  it is encapsulated.  Use  the  

dscontrol  server  command:  

dscontrol  server  set  encap_source_IP  encapforward  [yes/no]  encaptype  [ipip/gre]  encapcond  [auto/always]  

For  example,  you  can  type  the  following  at the  prompt:  

dscontrol  server  set  1.2.3.4@80@1.2.3.5  encapforward  yes  encaptype  ipip  encapcond  always  

2.   Configure  the  IPIP  or  GRE  tunnel  on  the  back-end  server  for  network  traffic.  

For  example,  you  can  type  the  following:  

v     

ifconfig  gre0  tunnel  9.184.119.242   9.184.118.200  # The  IP address  of the server  and  Load  Balancer  

ifconfig  gre0   inet  9.184.114.25       # Some  IP address  on this  subnet  

###  loopback...  

ifconfig  lo0  alias  9.184.114.24  netmask  255.255.255.255  

v   

   

To set  up  a GRE  tunnel,  use  the  following:  

 

86 Load Balancer  for IPv4 and IPv6 Administration  Guide



sysctl  -w net.ipv4.conf.all.arp_ignore=3  net.ipv4.conf.all.arp_announce=2  

  

# for  gre  

modprobe  ipgre  

ip  link  set  gre0  up 

ip  addr  add  <clusterip>  scope  host  dev  gre0  

To set  up  an  IPIP  tunnel,  use  the  following:  

sysctl  -w net.ipv4.conf.all.arp_ignore=3  net.ipv4.conf.all.arp_announce=2  

modprobe  ipip  

ip  link  set  tunl0  up 

ip  addr  add  <clusterip>  scope  host  dev  tunl0  

v     

/sbin/ifconfig  ip.tun0  plumb  9.184.114.25  netmask  255.255.255.255  up  #  Some  free  IP address  on this  subnet  

/sbin/ifconfig  ip.tun0  9.184.114.25   9.184.114.222  up   #  Some  free  IP address  on this  subnet  

/sbin/ifconfig  ip.tun0  up /sbin/ifconfig  ip.tun0  tsrc  9.184.112.183  tdst  9.184.118.203   # The IP address  of this  machine  and that  of the  server
###  loopback...  

ifconfig  lo0:1  plumb  9.184.114.24  netmask  255.0.0.0  up 

v     Tunneling  is not  supported  on  Windows  operating  systems.

Quiesce servers for server maintenance windows 

To remove  a server  from  the  Load  Balancer  configuration  for  any  reason  (updates,  

upgrades,  service,  etc.),  you  can  use  the  dscontrol  manager  quiesce  command.  

The  quiesce  subcommand  allows  existing  connections  to complete  without  being  

severed  and  disallows  any  new  connections  to  the  server.  

Note:  You can  quiesce  servers  on  a scheduled  time  to  perform  upgrades  or  general  

maintenance.  The  daily  option  specifies  to  quiesce  the  server  at a time  that  you  

specify.  

v   Quiesce  a server  immediately.  Use  the  following  command:  

dscontrol  manager  quiesce  server  

The  following  is  an  example  of  using  the  option  to  quiesce  server  9.40.25.67:  

dscontrol  manager  quiesce  9.40.25.67  

v   Quiesce  a server  on  a daily  schedule.  Use  the  following  command:  

dscontrol  manager  quiesce  server  daily  start_hour  end_hour  

Note:   

–   start  hour  and  end  hour  are  values  from  0 to 23.  For  example,  (0 0)  indicates  to 

quiesce  the  server  from  12:00  AM  to  12:59  AM.  (12  13)  indicates  to  quiesce  the  

server  from  12:00  PM  to  1:59  PM,  which  is a 2 hour  period.  

–   Specify  (-1  -1)  to disable  the  daily  quiesce  for  a particular  server.

The  following  is  an  example  of  using  the  daily  option  to  quiesce  server  

9.40.25.67  from  2:00  AM  to 5:59  AM:  

dscontrol  manager  quiesce  9.40.25.67  daily  2 5 

Optimize connections with client-to-server affinity 

The  Load  Balancer  affinity  feature  maps  a client  IP  address  to a back-end  server.  

Affinity  is  established  once  a packet’s  destination  IP  address  matches  the  cluster,  

the  destination  port  matches  the  Load  Balancer  port,  and  the  source  IP address  

matches.  

 

Chapter  4. welcome_administering.html  87



When  affinity  is  established,  subsequent  packets  are  sent  to  the  same  back-end  

server.  When  affinity  is broken,  due  to  a server  down  or  a server  removal,  all  

affinity  and  thus  connections  to  that  server  are  broken.  Also,  there  is no  

″connection″ information  reported  in  the  command  line  or  GUI  clients.  Only  the  

number  of  active  affinity  records  are  used.  

This  approach  has  the  advantages  of  providing  a hard  affinity  and  of  being  more  

efficient  for  Load  Balancer.  The  affinity  method  that  is used  decreases  memory  and  

CPU  utilization  as  compared  to connection  forwarding.

Note:  Because  the  removal  of an  affinity  record  also  breaks  connections,  when  you  

migrate  from  Load  Balancer  for  IPv4  to  Load  Balancer  for  IPv4  and  IPv6,  the  

maximum  staletimeout  value  should  be  used  as the  new  staletimeout  for  Load  

Balancer.  

v   Behavior  when  affinity  is enabled:  

With  the  affinity  feature  enabled,  if a subsequent  request  is received  from  the  

same  client,  the  request  is directed  to the  same  server.  

Over  time,  the  client  will  finish  sending  transactions,  and  the  affinity  record  will  

go  away.  Each  affinity  record  lives  for  the  ″staletimeout″ in  seconds.  When  

subsequent  connections  are  received  within  the  staletimeout,  the  affinity  record  

is still  valid  and  the  request  will  go  to the  same  server.  If  a subsequent  

connection  is  not  received  within  staletimeout,  the  record  is  purged;  a 

connection  that  is  received  after  that  time  will  have  a new  server  selected  for  it. 

The  server  down  command  (dscontrol  server  down)  is used  to bring  a server  

offline.  The  server  is not  taken  down  until  after  the  staletimeout  value  expires.  

v   Behavior  when  affinity  is disabled:  

With  the  affinity  feature  disabled,  whenever  a new  TCP  connection  is received  

from  a client,  Load  Balancer  picks  the  right  server  at that  moment  in  time  and  

forwards  the  packets  to it.  If a subsequent  connection  comes  in  from  the  same  

client,  Load  Balancer  treats  it as  an  unrelated  new  connection,  and  again  picks  

the  right  server  at  that  moment  in  time.
v    Optional:  Enable  affinity  by  adding  a port  and  setting  the  selection  algorithm  

and  stickytime  at  the  port  level  to some  number  of seconds  using  the  dscontrol  

port  command.  

Note:  There  are  now  three  selections  you  can  choose  from  for  selection  

algorithm:  

–   affinity:  specifies  that  the  server  selection  is based  on  client  affinity.  

–   connection:  specifies  that  the  server  selection  is based  on  weighted  

round-robin  selection  (default).  

–   conn+affin:  specifies  that  server  selection  is  based  on  the  relationship  to an  

existing  connection.  For  new  connections,  the  server  selection  is based  on  

affinity.

For  example,  use  the  following  command  to set  the  selection  algorithm  to 

affinity  and  stickytime  to  60  seconds:  

dscontrol  port  add  cluster@port selectionalgorithm  affinity  stickytime  60 

Note:  When  you  enable  affinity,  it cannot  be  disabled  unless  you  completely  

remove  the  port  and  add  it again  without  affinity  configured.  

v   Optional:  Enable  cross-port  affinity.  Cross  port  affinity  is the  affinity  feature  that  

has  been  expanded  to  cover  multiple  ports.  For  example,  if a client  request  is 

 

88 Load Balancer  for IPv4 and IPv6 Administration  Guide



first  received  on  one  port  and  the  next  request  is received  on  another  port,  cross  

port  affinity  allows  Load  Balancer  to  send  the  client  request  to  the  same  server.  

To use  this  feature,  the  ports  must:  

–   Share  the  same  cluster  address.  

–   Share  the  same  servers.  

–   Use  the  same  selection  algorithm,  which  must  be  affinity  or  conn+affin.  

–   Have  the  same  stickytime  value,  which  is not  zero.  After  cross  port  affinity  

has  been  established,  you  have  the  flexibility  to  modify  the  stickytime  value  

for  the  port.  However,  it is recommended  that  you  change  the  stickytime  

values  for  all  shared  ports  to the  same  value,  otherwise  results  might  occur  

that  are  not  expected.

More  than  one  port  can  link  to  the  same  crossport.  When  subsequent  

connections  arrive  from  the  same  client  on  the  same  port  or  a shared  port,  the  

same  server  will  be  accessed.  

1.   Configure  the  selection  algorithm  to  affinity  or  conn+affin  with  the  dscontrol  

port  command.  For  example,  use  the  following  command:  

dscontrol  port  add  cluster@port  selectionalgorithm  conn+affin  

2.   Configure  the  stickytime  value  with  the  dscontrol  port  command.  For  

example,  use  the  following  command  to set  the  stickytime  to  60  seconds:  

dscontrol  port  set  cluster@port  stickytime  60 

3.   Configure  the  crossport  value  with  the  dscontrol  port  add  command.  The  

following  is  an  example  of configuring  multiple  ports  with  a cross  port  

affinity  to  port  10:  

dscontrol  port  add  cluster@20 selectionalgorithm  conn+affin  stickytime  60  crossport  10 

dscontrol  port  add  cluster@30 selectionalgorithm  conn+affin  stickytime  60  crossport  10 

dscontrol  port  add  cluster@40 selectionalgorithm  conn+affin  stickytime  60  crossport  10 

Note:  You can  only  specify  a value  for  crossport  with  the  dscontrol  port  add  

command  and  cannot  be  modified  afterwards.  You cannot  use  the  dscontrol  

port  set  command  to  configure  the  crossport  value.

See  dscontrol  port  for  detailed  information  on  command  syntax  for  the  crossport  

option.

Restricting incoming traffic with ipchains and iptables 

Built  into  the  Linux  kernel  is a firewall  facility  called  ipchains.  When  Load  

Balancer  and  ipchains  run concurrently,  Load  Balancer  sees  packets  first,  followed  

by  ipchains.  This  allows  the  use  of  ipchains  to  harden  a Linux  Load  Balancer  

machine,  which  could  be,  for  example,  a Load  Balancer  machine  that  is  used  to  

load  balance  firewalls.  

In  general,  an  appropriate  ipchains  strategy  for  the  Load  Balancer  machines  is to 

disallow  all  traffic,  except  that  which  is to  or  from  the  back-end  servers,  the  

partner  high  availability  Load  Balancer,  any  reach  targets,  or  any  configuration  

hosts.  

   

It  is  not  recommended  to  activate  iptables  when  running  Load  Balancer  

on  Linux  kernel  version  2.4.10.x.  Activation  on  this  Linux  kernel  version  can  result  

in  performance  degradation  over  time.  

v   To activate  iptables  or  ipchains,  configure  them  to  be  completely  restricted,  so  no  

inbound  or  outbound  traffic  permitted.  The  packet-forwarding  portion  of  Load  

Balancer  continues  to function  normally.  

 

Chapter  4. welcome_administering.html  89



Some  additional  traffic  must  be  permitted  for  all  of  Load  Balancer  to  function  

properly.  Some  examples  of  this  communication  are:  

–   Advisors  communicate  between  the  Load  Balancer  machine  and  the  back-end  

servers.  

–   Load  Balancer  pings  back-end  servers,  reach  targets,  and  high  availability  

partner  Load  Balancer  machines.  

–   User  interfaces  (graphical  user  interface,  command  line,  and  wizards)  use  

RMI.  

–   Back-end  servers  must  respond  to  pings  from  the  Load  Balancer  machine.
v    To deactivate  iptables:  

1.   List  the  modules  which  are  using  ip_tables  and  ip_conntrack.  Issue  the  

following  command:  

lsmod  

2.   Remove  them  by  issuing  the  following  commands:  

rmmod  ip_tables  

rmmod  ip_conntrack  

When  you  reboot  the  machine  these  modules  will  be  added  again,  so  you  

need  to  repeat  these  steps  each  time  you  reboot.

Logging with Load Balancer 

Load  Balancer  posts  entries  to  a server  log,  a manager  log,  a metric  monitor  log  

(logging  communications  with  Metric  Server  agents),  and  a log  for  each  advisor  

you  use.  

You can  set  the  logging  level  to  define  the  expansiveness  of the  messages  written  

to  the  log.  At  level  0, errors  are  logged  and  Load  Balancer  also  logs  headers  and  

records  of  events  that  happen  only  once  (for  example,  a message  about  an  advisor  

starting  to  be  written  to  the  manager  log).  Level  1 includes  ongoing  information,  

and  so  on,  with  level  5 including  every  message  produced  to aid  in  debugging  a 

problem  if necessary.  The  default  for  the  manager,  advisor,  server,  or  subagent  logs  

is 1.  

You can  also  set  the  maximum  size  of  a log.  When  you  set  a maximum  size  for  the  

log  file,  the  file  will  wrap;  when  the  file  reaches  the  specified  size,  the  subsequent  

entries  are  written  at  the  top  of  the  file,  overwriting  the  previous  log  entries.  

Note:  You cannot  set  the  log  size  to  a value  that  is smaller  than  the  current  one.  

The  higher  you  set  the  log  level,  the  more  carefully  you  should  choose  the  log  size.  

At  level  0,  it is  probably  safe  to  leave  the  log  size  to  the  default  of  1MB;  however,  

when  logging  at  level  3 and  above,  you  should  limit  the  size  without  making  it too  

small  to  be  useful.  

Log  entries  are  time  stamped  so  you  can  tell  the  order  in which  they  were  written.  

v   Display  the  current  settings  for  the  server  log,  Use  the  dscontrol  logstatus  

command:  

dscontrol  logstatus  

v   Configure  the  logging  level  or  maximum  log  size  for  a server  log.  Use  the  

dscontrol  set  command:  

dscontrol  set  loglevel  level  logsize  size  

where:  

–   level  is  0-5.  

 

90 Load Balancer  for IPv4 and IPv6 Administration  Guide



–   size  is  unlimited  or  a file  size  in  bytes.
v    Configure  the  logging  level  or  maximum  log  size  for  a manager  log.  Use  the  

dscontrol  manager  command:  

dscontrol  manager  loglevel  level  

  

dscontrol  manager  logsize  size  

where:  

–   level  is  0-5.  

–   size  is  unlimited  or  a file  size  in  bytes.
v    Configure  the  logging  level  or  maximum  log  size  for  the  metric  monitor  log  that  

logs  communication  with  Metric  Server  agents.  Use  the  dscontrol  manager  

metric  set  command:  

dscontrol  manager  metric  set  loglevel  level  

  

dscontrol  manager  metric  set  logsize  size  

v   Configure  the  logging  level  or  maximum  log  size  for  an  advisor  log.  Use  the  

dscontrol  advisor  command:  

dscontrol  advisor  loglevel  name  cluster@port  level  

  

dscontrol  advisor  logsize  name  cluster@port  size  

where:  

–   cluster@port  the  cluster  is the  address  in  IP  address  format  or  symbolic  name.  

The  port  is the  number  of the  port  that  the  advisor  is monitoring.  The  cluster  

value  is  optional  on  the  advisor  commands,  but  the  port  value  is required.  If 

the  cluster  value  is not  specified,  then  the  advisor  will  start  running  on  the  

port  for  all  clusters.  If you  specify  a cluster,  then  the  advisor  will  start  

running  on  the  port,  but  only  for  the  cluster  you  have  specified.  See  

“Enabling  advisors  to  manage  load  balancing”  on  page  49  for  more  

information.  

   Related  tasks  

   “Enabling  advisors  to  manage  load  balancing”  on  page  49
Advisors  are  software  agents  that  work  within  Load  Balancer  to  provide  

information  about  the  load  on  a given  server.  A  different  advisor  exists  for  each  

standard  protocol  (HTTP,  SSL,  and  others).  Periodically,  the  Load  Balancer  base  

code  performs  an  advisor  cycle,  during  which  it individually  evaluates  the  

status  of  all  servers  in  its  configuration.
   Related  reference  

   “dscontrol  logstatus”  on  page  146
Use  this  command  to  display  the  log  settings  for  a server.  

   “dscontrol  metric”  on  page  150
You can  configure  system  metrics  with  the  dscontrol  metric  command.  

   “dscontrol  manager”  on  page  147
You  can  control  the  manager  function  with  the  dscontrol  manager  command.

Logging server statistics with binary logging 

The  binary  logging  feature  allows  server  information  to  be  stored  in binary  files.  

These  files  can  then  be  processed  to analyze  the  server  information  that  has  been  

gathered  over  time.  

The  following  information  is stored  in  the  binary  log  for  each  server  defined  in  the  

configuration.  

v   cluster  address  

 

Chapter  4. welcome_administering.html  91



v   port  number  

v   serverID  

v   server  address  

v   server  weight  

v   server  total  connections  

v   server  active  connections  

v   server  port  load  

v   server  system  load

Some  of  this  information  is retrieved  from  the  executor  as  part  of the  manager  

cycle.  Therefore  the  manager  must  be  running  in  order  for  the  information  to  be  

logged  to  the  binary  logs.  

A  sample  Java  program  and  command  file  have  been  provided  in  the  

install_root/servers/samples/BinaryLog  directory.  This  sample  shows  how  to  

retrieve  all  the  information  from  the  log  files  and  print  it to  the  screen.  It  can  be  

customized  to  do  any  type  of  analysis  you  want  with  the  data.  An  example  using  

the  supplied  script  and  program  to  get  a report  of the  Load  Balancer’s  server  

information  from  8:00  AM  to 5:00  PM  on  May  1, 2001:  

dslogreport  2001/05/01  8:00  2001/05/01  17:00  

Use  dscontrol  binlog  command  set  to  configure  binary  logging  

v   Start  binary  logging:  

dscontrol  binlog  start  

The  start  option  starts  logging  server  information  to  binary  logs  in  the  logs  

directory.  One  log  is  created  at the  start  of every  hour  with  the  date  and  time  as  

the  name  of  the  file.  

v   Stop  binary  logging:  

dscontrol  binlog  stop  

The  stop  option  stops  logging  server  information  to the  binary  logs.  The  log  

service  is stopped  by  default.  

v   Set  the  interval  value  to  control  how  often  information  is written  to  the  logs.  

dscontrol  binlog  interval  seconds  

The  manager  will  send  server  information  to the  log  server  every  manager  

interval.  The  information  is written  to  the  logs  only  if the  specified  log  interval  

seconds  have  elapsed  since  the  last  record  was  written  to  the  log.  By  default,  the  

log  interval  is  set  to  60  seconds.  There  is some  interaction  between  the  settings  

of  the  manger  interval  and  the  log  interval.  Since  the  log  server  is provided  with  

information  no  faster  than  manager  interval  seconds  setting  the  log  interval  less  

than  the  manager  interval  effectively  sets  it to  the  same  as  the  manager  interval.  

This  logging  technique  allows  you  to  capture  server  information  at any  

granularity.  You can  capture  all  changes  to server  information  that  are  seen  by  

the  manager  for  calculating  server  weights.  However,  this  amount  of  information  

is probably  not  required  to analyze  server  usage  and  trends.  Logging  server  

information  every  60  seconds  gives  you  snapshots  of server  information  over  

time.  Setting  the  log  interval  very  low  can  generate  huge  amounts  of data.  

v   Set  the  retention  option  to  control  how  long  log  files  are  kept.  

dscontrol  binlog  retention  hours  

 

92 Load Balancer  for IPv4 and IPv6 Administration  Guide



Log  files  older  than  the  retention  hours  specified  are  deleted  by  the  log  server.  

This  will  only  occur  if the  log  server  is being  called  by  the  manager,  so  stopping  

the  manager  will  cause  old  log  files  not  to  be  deleted.  

v   View  the  current  status  for  binary  logging:  

dscontrol  binlog  status  

The  status  option  returns  the  current  settings  of  the  log  service.  These  settings  

are  whether  the  service  is started,  what  the  interval  is,  and  what  the  retention  

hours  are.

Support for ICMP forwarding and messaging 

Load  Balancer  now  supports  forwarding  and  processing  ICMP  messages  to  

improve  the  robustness  of  connection  protocols  and  permit  Load  Balancer  to  

receive  ICMP  fragmentation  messages.  

Load  Balancer  will  forward  an  ICMP  message  based  on  the  following  guidelines:  

v   For  ICMP  packets  that  contain  headers  with  IP  and  TCP/UDP  fragments,  Load  

Balancer  will  forward  to packets  to  the  correct  back-end  server.  

v   For  ICMP  packets  that  do  not  contain  TCP/UDP  fragments,  Load  Balancer  will  

forward  the  packets  in  a round  robin  manner.  

v   For  ICMP  messages  that  are  for  an  IPGRE  or  an  IPIP  message  that  Load  

Balancer  generated,  Load  Balancer  will  limit  the  outbound  size  appropriately  for  

future  packets.  

v   If Load  Balancer  forwards  an  IP  packet,  but  the  time  to  live  (TTL)  for  the  packet  

becomes  zero  when  the  TTL  is  decremented,  Load  Balancer  will  send  an  ″ICMP  

Time  Exceeded″ message  to  the  client.  

v   When  Load  Balancer  cannot  forward  an  packet,  it will  generate  an  ICMP  

message  and  send  the  appropriate  message  back  to  the  client:  

–   The  outbound  interface  MTU  is too  small,  or  you  need  to  use  encapsulation.  

–   Load  Balancer  cleaned  up  a connection  record.  For  example,  the  cluster  and  

port  designation  match,  but  the  server  is not  present.

Configure rules to manage traffic to busy or unavailable servers 

Use  rules-based  load  balancing  to  fine  tune  when  and  why  packets  are  sent  to 

which  servers.  Load  Balancer  reviews  any  rules you  add  from  first  priority  to  last  

priority,  stopping  on  the  first  rule that  it finds  to  be  true, then  load  balancing  the  

traffic  between  any  servers  associated  with  the  rule. It  already  balances  the  load  

based  on  the  destination  and  port,  but  using  rules expands  your  ability  to  

distribute  connections.  

In  most  cases  when  configuring  rules,  you  should  configure  a default  always  true 

rule in  order  to  catch  any  request  that  is passed  by  other  higher  priority  rules. This  

default  can  be  a ″Sorry,  the  site  is currently  down,  try  again  later″ response  when  

all  other  servers  fail  for  the  client  request.  

All  rules  have  a name,  type,  priority,  and  might  have  a begin  range  and  end  range,  

along  with  a set  of servers.  Rules  are  evaluated  in priority  order.  A  rule with  a 

priority  of  1 (lower  number)  is evaluated  before  a rule with  a priority  of  2 (higher  

number).  The  first  rule that  is satisfied  will  be  used.  When  a rule has  been  

satisfied,  no  further  rules  are  evaluated.  For  a rule to be  satisfied,  it must  meet  two  

conditions:  

 

Chapter  4. welcome_administering.html  93



1.   The  predicate  of the  rule must  be  true. That  is,  the  value  it  is evaluating  must  

be  between  the  begin  and  end  ranges,  or the  content  must  match  the  regular  

expression  that  is  specified  in  the  rule’s  pattern.  For  rules of  type  ″true,″  the  

predicate  is  always  satisfied,  regardless  of the  begin  and  end  ranges.  If  a rule 

has  no  servers  that  are  associated  with  it,  the  rule only  needs  to  meet  this  first  

condition  to  be  satisfied.  In  this  case,  Load  Balancer  will  drop  the  connection  

request.  

2.   If  there  are  servers  associated  with  the  rule, at least  one  server  must  have  a 

weight  greater  than  0 to  forward  packets  so  Load  Balancer  will  have  a server  to  

which  connections  can  be  forwarded.

If  a connection  request  does  not  satisfy  any  rules,  Load  Balancer  will  select  a server  

from  the  full  set  of  servers  available  on  the  port.  

v   Configure  a rule that  is based  on  the  total  active  connections.  You may  want  to 

use  rules based  on  active  connections  total  on  a port  if your  servers  get  

overloaded  and  start  throwing  packets  away.  Certain  Web servers  will  continue  

to  accept  connections  even  though  they  do  not  have  enough  threads  to  respond  

to  the  request.  As  a result,  the  client  requests  time  out  and  the  customer  coming  

to  your  Web site  is not  served.  You can  use  rules based  on  active  connections  to 

balance  capacity  within  a pool  of  servers.  For  example,  you  know  from  

experience  that  your  servers  will  stop  serving  after  they  have  accepted  250  

connections.  

Note:  The  manager  must  be  running  for  the  rules to  work.  

Create  a rule using  the  dscontrol  rule command.  You would  then  add  to the  rule 

your  current  servers  plus  some  additional  servers,  which  will  otherwise  be  used  

for  other  processing.  For  example:  

dscontrol  rule  add  130.40.52.153:80:pool2  type  active  beginrange  250  endrange  500  

v   Create  a rule that  always  evaluates  as  true. Such  a rule will  always  be  selected,  

unless  all  the  servers  associated  with  it  are  down.  Therefore,  this  rule should  

ordinarily  be  at  a lower  priority  than  other  rules.  You can  even  have  multiple  

″always  true″ rules,  each  with  a set  of  servers  that  are  associated  with  it. Load  

Balancer  will  choose  a rule based  on  the  first  rule that  is true and  has  an  

available  server.  

For  example,  assume  you  have  six  servers.  You want  two  of  them  to  handle  

your  traffic  under  all  circumstances,  unless  they  are  both  down.  If  the  first  two  

servers  are  down,  you  want  a second  set  of servers  to  handle  the  traffic.  If all  

four  of  these  servers  are  down,  then  you  will  use  the  final  two  servers  to handle  

the  traffic.  You could  set  up  three  ″always  true″ rules,  then  the  first  set  of  servers  

will  always  be  chosen  as  long  as  at least  one  is up.  If both  servers  are  down,  one  

from  the  second  set  is chosen,  and  so  forth.  

As  another  example,  you  might  want  an  ″always  true″ rule to  ensure  that  if 

incoming  clients  do  not  match  any  of  the  rules you  have  set,  they  will  not  be  

served.  Then  you  would  not  add  any  servers  to  the  rule, causing  the  clients  

packets  to  be  dropped  with  no  response.  You can  define  more  than  one  ″always  

true″  rule, and  thereafter  adjust  which  one  gets  run by  changing  their  priority  

levels.  Create  a rule using  the  dscontrol  rule command:  

dscontrol  rule  add  130.40.52.153:80:jamais  type  true  priority  100  

You do  not  need  to  set  a beginrange  or  endrange  values  when  you  create  an  

always  true rule. 

v   Add  one  or  more  servers  to  a rule set.  You can  use  the  dscontrol  rule useserver  

command  to add  one  or  more  servers  to  a rule set  that  is already  defined.  For  

example:  

 

94 Load Balancer  for IPv4 and IPv6 Administration  Guide



dscontrol  rule  useserver  130.40.52.153:80:jamais  server1  

  

dscontrol  rule  useserver  130.40.52.153:80:jamais  server1+server2+server3  

   Related  reference  

   “dscontrol  rule” on  page  153
Control  the  executor  function  with  the  dscontrol  rule  command.

   Related  information  

   Tuning

Sample scripts to generate alerts and record server failure 

Load  Balancer  provides  user  exits  that  trigger  scripts  that  you  can  customize.  You 

can  create  the  scripts  to perform  automated  actions,  such  as  alerting  an  

Administrator  when  servers  are  marked  down  by  the  manager  or  simply  record  

the  event  of  the  failure.  

Sample  scripts,  which  you  can  customize,  are  in  the  install_root/servers/samples  

directory.  In  order  to run the  files,  you  must  move  them  to  the  

install_root/servers/bin  directory  and  remove  the  �sample�  file  extension.  The  

following  sample  scripts  are  provided:  

v   serverDown  —  a server  is marked  down  by  the  manager.  

v   serverUp  —  a server  is marked  back  up  by  the  manager.  

v   managerAlert  —  all  servers  are  marked  down  for  a particular  port.  

v   managerClear  —  at  least  one  server  is now  up,  after  all  were  marked  down  for  

a particular  port.

If  all  servers  on  a cluster  are  marked  down  (either  by  the  user  or  by  the  advisors),  

the  managerAlert  (if  configured)  starts,  and  Load  Balancer  attempts  to  route  traffic  

to  the  servers  using  a round-robin  technique.  The  serverDown  script  does  not  start  

when  the  last  server  in  the  cluster  is detected  as  offline.  By  design,  Load  Balancer  

attempts  to  continue  to route  the  traffic  in  case  a server  comes  back  online  and  

responds  to  the  request.  If  Load  Balancer  instead  dropped  all  traffic,  the  client  

would  receive  no  response.  When  Load  Balancer  detects  that  the  first  server  of a 

cluster  is  back  online,  the  managerClear  script  (if  configured)  starts,  but  the  

serverUp  script  (if  configured)  is not  run until  an  additional  server  is brought  back  

online.  

Here  are  some  considerations  for  using  the  serverUp  and  serverDown  scripts:  

v   If you  define  the  manager  cycle  to  be  less  than  25%  of  the  advisor  time,  false  

reports  of  servers  up  or  down  can  result.  By  default,  the  manager  runs every  2 

seconds,  but  the  advisor  runs every  7 seconds.  Therefore,  the  manager  expects  

new  advisor  information  within  4 cycles.  However,  removing  this  restriction  

(that  is,  defining  the  manager  cycle  to  be  greater  than  25%  of  the  advisor  time)  

significantly  decreases  performance  because  multiple  advisors  can  advise  on  a 

single  server.  

v   When  a server  goes  down,  the  serverDown  script  starts.  However,  if you  issue  a 

serverUp  command,  it  is assumed  that  the  server  is up  until  the  manager  

obtains  new  information  from  the  advisor  cycle.  If the  server  is still  down,  the  

serverDown  script  runs again.

 

Chapter  4. welcome_administering.html  95

welcome_tuning.html


96 Load Balancer  for IPv4 and IPv6 Administration  Guide



Chapter  5.  welcome_tuning.html  

The manager report 

The  manager  function  of  Load  Balancer  calculates  a weight  for  each  server.  These  

weights  are  used  to  determine  how  many  connections  a server  should  receive  as  

compared  with  the  other  servers  in  the  same  cluster  and  port  configuration.  

Understanding  the  manager  report  is  critical  to  understanding  how  the  network  

traffic  is distributed.  

The  manager  report  contains  a list  of  each  cluster,  port,  and  server  that  is defined  

to  that  cluster:port  combination.  Each  server  shows  two  weights,  now  and  new, 

and  four  columns  that  are  used  to  calculate  the  weight:  

v   Active  connections  (ACTV)  

v   New  connections  (NEWC)  

v   Port  Load  (PORT)  

v   System  load  (SYS)

Each  of  the  four  columns  is assigned  a percentage  that  is used  to calculate  the  

weight  for  the  server.  The  percentages  are  set  with  the  cluster  set  proportion  

command.  By  default,  only  the  active  connections  and  new  connections  are  

considered  when  calculating  the  weight  of  the  server.  When  an  advisor  is started,  

the  proportion  for  the  port  load  is  set  to  1%  so  that  the  port  load  is used  in the  

weight  calculation.  Similarly,  when  a metric  is added  the  proportion  for  the  system  

load  is set  to  1%.  The  manager  function  returns  the  following  values  for  each  

server:  

Active  connections  (ACTV)  

Active  connections  are  TCP  connections  that  are  closed  at the  start  of the  

manager  cycle.  

New  connections  (NEWC)  

New  connections  represent  the  increase  in  total  connections  from  the  start  

of  the  manager  cycle  to the  start  of  the  last  manager  cycle.  

Port  Load  (PORT)  

The  port  load  is the  value  that  is obtained  from  an  advisor  that  is defined  

on  this  cluster:port  combination.  If an  advisor  is not  started,  the  port  load  

is always  zero.  When  an  advisor  is defined,  the  port  load  typically  

represents  the  number  of milliseconds  for  the  advisor  to  receive  a response  

from  the  server.  

 When  the  port  load  is  shown  as -1,  the  advisor  did  not  receive  a successful  

response  to  its  query.  Increase  the  log  level  and  log  size  for  the  advisor  to  

investigate  why  the  server  did  not  respond.  If the  server  never  responds  to  

the  connection  request,  complete  the  following  steps:  

1.   Ensure  that  you  can  successfully  ping  the  server  from  the  Load  

Balancer  machine.  

2.   Verify  that  the  server  application  is started  and  listening  on  the  port  

that  is defined.  The  server  should  be  listening  on  the  wildcard  address  

(0.0.0.0),  or  both  the  cluster  IP  address  and  the  real  server  IP  address  to 

successfully  respond  to  the  advisor  requests.

If  the  server  responds  to the  connection,  then  it might  be  responding  to the  

query  in  a manner  that  is  different  from  what  Load  Balancer  is  expecting  

 

  97



to  see.  Check  the  advisorresponse  string  that  is defined  to  ensure  it 

matches  what  the  server  has  transmitted.  This  scenario  applies  to  both  http  

and  https  advisors.  

System  load  (SYS)  

The  system  load  represents  the  value  that  is returned  from  the  metric  

server.  If  metrics  have  not  been  added  for  this  cluster:port  combination,  the  

system  load  is zero  (0).  When  metrics  are  defined,  the  system  load  is a 

value  in  between  -1 and  100,  which  represents  the  status  of  the  server.  100  

is  very  busy  and  zero  (0)  is idle.  

 If  the  system  load  shows  -1,  Load  Balancer  cannot  communicate  with  the  

metric  server  on  the  back-end  machine.  Ensure  Load  Balancer  keys  are  

properly  distributed  to  the  server,  that  the  server  can  be  pinged  from  the  

Load  Balancer,  and  that  metric  server  is started  on  the  machine.  If the  

problem  persists,  complete  the  following  steps:  

1.   Edit  the  script  for  the  metric  server  on  the  back-end  machine  and  

increase  both  the  log  level  and  log  size.  

2.   Restart  the  metric  server.  

3.   Increase  the  the  log  size  and  the  log  level  for  the  metric  monitor  at  the  

Load  Balancer.  

4.   Examine  the  log  files  on  both  the  Load  Balancer  machine  and  the  

back-end  machine  to  determine  why  communication  is failing.

The  number  of  active  connections  and  new  connections  are  determined  based  upon  

the  number  of  connections  that  the  executor  has  forwarded  within  the  last  cycle  of 

the  last  manager  function.  The  manager  cycle  is two  seconds,  by  default.  

Configuring  server  weights  

Under  normal  circumstances,  Load  Balancer  uses  all  of the  values  that  have  

proportions  that  are  not  zero  to  calculate  the  new  weight.  For  example,  if the  

proporations  are  40  40  20  0, the  active  connections  and  new  connections  are  40%  of  

the  weight  calculation  each  and  the  port  load  is 20%.  

As  an  example,  assume  the  manager  function  returns  the  following  values:  

             ACTV       NEWC        PORT       SYS  

Server1        50        200         25        0 

Server2        25        100         50        0 

The  initial  weight  calculations  will  be:  

v   Server1  =  .40(50)  + .40(200)  + .2(25)  = 20  + 80  + 5 = 105  

v   Server2  =  .40(25)  + .40(100)  + .2(50)  = 10  + 40  + 10  = 60

The  initial  weights  are  scaled  to be  proportional  to the  weightbound  for  the  

cluster:port.  By  default,  the  weightbound  is 10.  Thus,  in  the  previous  example,  the  

final  weights,  which  are  rounded  to the  nearest  whole  number,  are:  

v   Server1  =  (105/165)  * 10  = 6 

v   Server2  =  ( 60/165)  * 10  = 4

The  calculated  weight  is shown  as  the  NEW  weight  in  the  manager  report.  The  

weight  is  only  pushed  to  the  executor  function  if it exceeds  the  sensitivity  level  

that  is configured  for  the  cluster:port  combination.  The  NOW  weight  represents  the  

weight  that  is  obtained  from  the  executor  at the  start  of  this  manager  cycle.  

 

98 Load Balancer  for IPv4 and IPv6 Administration  Guide



If  the  port  load  or  the  system  load  is  -1,  and  the  respective  proportion  for  the  port  

or  system  column  is greater  than  0, the  calculated  weight  is zero  (0).  Zero  (0)  

indicates  that  the  server  is  not  active  and  new  requests  are  not  sent  to the  server.  

If  you  quiesce  a server,  you  will  see  that  the  weight  is also  shown  as zero  (0),  but  

the  port  load  is positive  if the  server  is still  online.  If a quiesced  server  goes  offline,  

the  port  load  is -1.  

If  a user  issues  a ″server  down″ function  on  a server  to  prevent  Load  Balancer  

from  sending  requests  to  that  server,  the  weight  is -1  regardless  of  the  value  for  the  

port  load  and  system  load.  

Optimizing the manager interval 

To optimize  overall  performance,  the  manager  is restricted  in  how  often  it can  

interact  with  the  executor.  You can  make  changes  to  this  interval  by  entering  the  

dscontrol  manager  interval  and  dscontrol  manager  refresh  commands.  

The  manager  interval  specifies  how  often  the  manager  will  update  the  server  

weights  that  the  executor  uses  in routing  connections.  If the  manager  interval  is 

too  low, it can  mean  poor  performance  as a result  of the  manager  constantly  

interrupting  the  executor.  If the  manager  interval  is too  high,  it can  mean  that  the  

executor’s  request  routing  will  not  be  based  on  accurate,  up-to-date  information.  

The  manager  refresh  cycle  specifies  how  often  the  manager  will  ask  the  executor  

for  status  information.  The  refresh  cycle  is  based  on  the  interval  time.  

1.   Set  the  manager  interval  time,  in  seconds.  For  example,  to  set  the  manager  

interval  to  1 second,  enter  the  following  command:  

dscontrol  manager  interval  1 

2.   Set  the  manager  refresh  time,  in  seconds.  For  example,  to  set  the  manager  

refresh  cycle  to  3, enter  the  following  command:  

dscontrol  manager  refresh  3 

This  will  cause  the  manager  to  wait  for  3 intervals  before  asking  the  executor  

for  status.

Tuning  the proportion of importance given to status information 

The  manager  uses  ratios  to  determine  the  importance  of status  information  coming  

from  advisors  and  Load  Balancer.  You can  change  the  default  ratios  that  the  

manager  uses  to  weight  this  information.  

The  manager  can  use  some  or  all  of  the  following  external  factors  in  its  weighting  

decisions:  

v   Active  connections:  The  number  of  active  connections  on  each  load  balanced  

server  machine  (as  tracked  by  the  executor).  

v   New  connections:  The  number  of  new  connections  on  each  load  balanced  server  

machine  (as  tracked  by  the  executor).  

v   Port-specific:  The  input  from  advisors  listening  on  the  port.  

v   System  metric:  The  input  from  the  system  monitoring  tools,  such  as  Metric  Server  

or  WLM.

Along  with  the  current  weight  for  each  server  and  some  other  information  

required  for  its  calculations,  the  manager  gets  the  first  two  values  (active  and  new  

 

Chapter  5. welcome_tuning.html  99



connections)  from  the  executor.  These  values  are  based  on  information  that  is 

generated  and  stored  internally  in  the  executor.  

You can  change  the  relative  proportion  of importance  of the  four  values  on  a per  

cluster  basis.  Think  of  the  proportions  as  percentages;  the  sum  of  the  relative  

proportions  must  equal  100%.  The  default  ratio  is 50/50/0/0,  which  ignores  the  

advisor  and  system  information.  In  your  environment,  you  may  need  to  try  

different  proportions  to  find  the  combination  that  gives  the  best  performance.  

Note:   

v   When  adding  an  advisor  (other  than  WLM),  if the  port  proportion  is zero,  then  

the  manager  increases  this  value  to  1. Because  the  sum  of  the  relative  

proportions  must  total  100,  the  highest  value  is  then  decreased  by  1. 

v   When  adding  the  WLM  advisor,  if the  system  metric  proportion  is zero,  then  the  

manager  increases  this  value  to  1.  Because  the  sum  of the  relative  proportions  

must  total  100,  the  highest  value  is then  decreased  by  1.

The  number  of  active  connections  is dependent  upon  the  number  of  clients  as  well  

as  the  length  of  time  necessary  to  use  the  services  that  are  being  provided  by  the  

load  balanced  server  machines.  If the  client  connections  are  quick  (such  as  small  

Web pages  served  using  HTTP  GET),  then  the  number  of  active  connections  are  

fairly  low. If  the  client  connections  are  slower  (such  as  a database  query),  then  the  

number  of  active  connections  are  higher.  

You should  avoid  setting  active  and  new  connections  proportions  values  too  low. 

You will  disable  load  balancing  and  smoothing  unless  you  have  these  first  two  

values  set  to  at  least  20  each.  

To set  the  proportion  of  importance  that  is given  to the  different  factors,  use  the  

“dscontrol  cluster”  on  page  140  command.  For  example:  

dscontrol  cluster  set  cluster  proportions  value  

See  the  topic  on  the  “dscontrol  cluster”  on  page  140  command  for  more  

information.  

Managing traffic with server weights 

Weights  are  applied  to  all  servers  on  a port.  For  any  particular  port,  the  requests  

are  distributed  between  servers  based  on  their  weights  relative  to  each  other.  For  

example,  if one  server  is  set  to  a weight  of 10,  and  the  other  to 5,  the  server  set  to  

10  should  get  twice  as  many  requests  as the  server  set  to 5. 

Weights  are  set  by  the  manager  function  based  upon  internal  counters  in  the  

executor,  feedback  from  the  advisors,  and  feedback  from  a system-monitoring  

program,  such  as Metric  Server.  If  you  want  to set  weights  manually  while  running  

the  manager,  specify  the  fixedweight  option  on  the  dscontrol  server  command.  For  

a description  of  the  fixedweight  option,  see  “dscontrol  manager”  on  page  147.  

The  maximum  weight  boundary  affects  how  much  difference  there  can  be  between  

the  number  of  requests  each  server  will  get.  If  you  set  the  maximum  weightbound  

to  1,  then  all  the  servers  can  have  a weight  of 1,  0 if quiesced,  or  -1  if marked  

down.  As  you  increase  this  number,  the  difference  in  how  servers  can  be  weighted  

is increased.  At  a maximum  weightbound  of  2, one  server  could  get  twice  as  many  

requests  as  another.  At  a maximum  weightbound  of 10,  one  server  could  get  10  

times  as  many  requests  as  another.  The  default  maximum  weightbound  is 20.  

 

100 Load Balancer  for IPv4 and IPv6 Administration  Guide



If  an  advisor  finds  that  a server  has  gone  down,  it tells  the  manager,  which  sets  the  

weight  for  the  server  to zero.  As  a result,  the  executor  will  not  send  any  additional  

connections  to  that  server  as  long  as  that  weight  remains  zero.  If there  were  any  

active  connections  to that  server  before  the  weight  changed,  they  will  be  left  to  

complete  normally.  

If  all  the  servers  are  down,  the  manager  sets  the  weights  to  half  the  weightbound.  

v   To specify  the  maximum  weight  boundary  that  any  server  can  have,  use  the  

following  command:  

dscontrol  port  set  port  weightbound  weight  

v   Configure  fixed  weights  for  servers.  

1.   Turn on  the  fixedweight  option.  For  more  information,  see  “dscontrol  server”  

on  page  155.  

dscontrol  server  set cluster@port@server  fixedweight  yes  

The  server  weight  value  remains  fixed  while  the  manager  is running  until  

you  issue  another  dscontrol  server  command  with  fixedweight  set  to no.  

2.   After  fixedweight  is  set  to  yes,  use  the  dscontrol  server  set  weight  command  

to  set  the  weight  to  the  value  you  desire.  For  example:  

dscontrol  server  set cluster@port@server weight  value  

   Related  reference  

   “dscontrol  manager”  on  page  147
You  can  control  the  manager  function  with  the  dscontrol  manager  command.

   Related  information  

   Tuning

Optimizing the sensitivity threshold 

To work  at  top  speed,  updates  to  the  weights  for  the  servers  are  only  made  if the  

weights  have  changed  significantly.  Constantly  updating  the  weights  when  there  is 

little  or  no  change  in the  server  status  could  create  unnecessary  overhead.  

When  the  percentage  weight  change  for  the  total  weight  for  all  servers  on  a port  is 

greater  than  the  sensitivity  threshold,  the  manager  updates  the  weights  used  by  

the  executor  to  distribute  connections.  Consider,  for  example,  that  the  total  weight  

changes  from  100  to  105.  The  change  is 5%.  With  the  default  sensitivity  threshold  

of  5, the  manager  will  not  update  the  weights  used  by  the  executor,  because  the  

percentage  change  is not  above  the  threshold.  If,  however,  the  total  weight  changes  

from  100  to  106,  the  manager  will  update  the  weights.

Note:  In  most  cases,  you  will  not  need  to  change  this  value.  

To set  the  manager’s  sensitivity  threshold  to  a value  other  than  the  default  (for  

example,  6),  enter  the  following  command:  

dscontrol  manager  sensitivity  6 

Optimizing the smoothing index 

The  smoothing  index  limits  the  amount  that  a server’s  weight  can  change,  

effectively  smoothing  the  change  in  the  distribution  of requests.  

The  manager  calculates  the  server  weights  dynamically.  As  a result,  an  updated  

weight  can  be  very  different  from  the  previous  one.  Under  most  circumstances,  this  

will  not  be  a problem.  Occasionally,  however,  it  may  cause  an  oscillating  effect  in  

 

Chapter 5. welcome_tuning.html  101

welcome_tuning.html


the  way  the  requests  are  load  balanced.  For  example,  one  server  can  end  up  

receiving  most  of  the  requests  due  to  a high  weight.  The  manager  will  see  that  the  

server  has  a high  number  of active  connections  and  that  the  server  is responding  

slowly.  It will  then  shift  the  weight  over  to  the  free  servers  and  the  same  effect  will  

occur  there  too,  creating  an  inefficient  use  of  resources.  

To alleviate  this  problem,  the  manager  uses  a smoothing  index.  A  higher  

smoothing  index  will  cause  the  server  weights  to change  less  drastically.  A lower  

index  will  cause  the  server  weights  to  change  more  drastically.  The  default  value  

for  the  smoothing  index  is 1.5.  At  1.5,  the  server  weights  can  be  rather  dynamic.  

An  index  of  4 or  5 will  cause  the  weights  to be  more  stable.  

Note:  In  most  cases,  you  will  not  need  to  change  this  value.  

Set  the  smoothing  index,  in seconds.  For  example,  to set  the  smoothing  index  to 4 

enter  the  following  command:  

dscontrol  manager  smoothing  4 

Controlling connection records with the staletimeout value 

Connections  are  considered  stale  when  there  has  been  no  activity  on  that  

connection  for  the  number  of  seconds  specified  in stale  timeout.  When  the  number  

of  seconds  has  been  exceeded  with  no  activity,  Load  Balancer  will  remove  that  

connection  record  from  its  tables,  and  subsequent  traffic  for  that  connection  is 

discarded.  The  staletimeout  command  controls  the  way  Load  Balancer  handles  idle  

connections  and  the  associated  connection  records.  

Use  the  staletimeout  command  to control  the  period  during  which  Load  Balancer  

should  keep  connections  in  the  ″Established″ state  and  accept  traffic  when  no  

active  traffic  has  been  seen  in  the  Dispatcher  tables.  

A  client  sends  a FIN  packet  after  it has  sent  all  its  packets  so  that  the  server  will  

know  that  the  transaction  is finished.  When  Dispatcher  receives  the  FIN  packet,  it 

marks  the  transaction  from  active  state  to FIN  state.  When  a transaction  is marked  

FIN,  the  memory  that  is reserved  for  the  connection  can  be  cleared.  

To change  the  staletimeout  value,  use  the  dscontrol  executor  set  command.  Type  

the  following  at  a command  prompt:  

dscontrol  executor  set  staletimeout  time  

where  the  value  for  time  is in  seconds.  

Note:  Some  services  might  have  staletimeout  values  of  their  own.

Note:  For  example,  LDAP  (Lightweight  Directory  Access  Protocol)  has  a 

configuration  parameter  called  idletimeout.  When  idletimeout  seconds  have  been  

exceeded,  an  idle  client  connection  will  be  forcibly  closed.  Idletimeout  may  also  be  

set  to  0,  which  means  that  the  connection  will  never  be  forcibly  closed.  

Connectivity  problems  can  occur  when  Load  Balancer’s  stale  timeout  value  is 

smaller  than  the  service’s  timeout  value.  In  the  case  of LDAP,  the  Load  Balancer  

staletimeout  value  defaults  to  300  seconds.  If there  is no  activity  on  the  connection  

for  300  seconds,  Load  Balancer  will  remove  the  connection  record  from  its  tables.  If 

the  idletimeout  value  is larger  than  300  seconds  (or  set  to  0),  the  client  may  still  

 

102 Load Balancer  for IPv4 and IPv6 Administration  Guide



believe  that  it has  a connection  to the  server.  When  the  client  sends  packets,  the  

packets  will  be  discarded  by  Load  Balancer.  This  causes  LDAP  to  hang  when  a 

request  is made  to  the  server.  

To avoid  this  problem,  set  the  LDAP  idletimeout  to a nonzero  value  that  is the  

same  or  smaller  than  the  Load  Balancer  staletimeout  value.

 

Chapter 5. welcome_tuning.html  103



104 Load Balancer  for IPv4 and IPv6 Administration  Guide



Chapter  6.  Troubleshooting  Load  Balancer  

Use  the  information  that  is provided  to help  you  solve  problems  that  can  occur  in 

Load  Balancer.  

Click  a link  in  the  table  to  go  to a full  description  and  possible  solution  for  the  

problem  that  you  are  experiencing.  

 Table 11. Troubleshooting  table  for Load  Balancer  

Symptom  Possible  Cause  Go  to...  

Dispatcher  not  running  

correctly  

Conflicting  port  numbers  “Problem:  Load  Balancer  will  

not  run”  on page  109 

Connections  from  client  

machines  not  being  served  or 

connections  timing  out  

v   Wrong routing  

configuration  

v   Server  does  not  have  

loopback  device  aliased  to 

the  cluster  address  

v   Extra  route  not  deleted  

v   Port  not  defined  for  each  

cluster  

“Problem:  Load  Balancer  

requests  are  not  being  

balanced”  on page  109  

Server  not  serving  requests  

(Windows® platform)  

An  extra  route  has  been  

created  in the routing  table  

“Problem:  Extra  routes  

(Windows  2000)”  on page  

109 

Dispatcher,  Microsoft® IIS,  

and  SSL  are  not  working  or 

will  not  continue  

Unable  to send  encrypted  

data  across  protocols  

“Problem:  Dispatcher,  

Microsoft  IIS,  and  SSL  do  not  

work  (Windows  platform)”  

on page  110 

The  dscontrol  or  lbadmin  

command  fails  with  ‘Server  

not  responding’  or  ‘unable  to 

access  RMI  server’  message  

1.   Commands  fail  due  to 

socksified  stack.  Or 

commands  fail due  to not  

starting  dsserver  

2.   RMI  ports  are  not  set 

correctly  

3.   Host  file has  incorrect  

local  host  

“Problem:  dscontrol  or 

lbadmin  command  fails”  on  

page  110 

Advisors  not  working  

correctly  

Advisors  are  not  running  “Problem:  Advisors  not 

working  correctly”  on page  

110 

“Cannot  Find  the  File...″ 

error  message,  when  running  

Netscape  as default  browser  

to view  online  help  

(Windows  platform)  

Incorrect  setting  for  HTML  

file association  

“Problem:  “Cannot  find  the  

file...″ error  message  when  

trying  to view  online  Help  

(Windows  platform)”  on 

page  111 

Graphical  user  interface  does  

not  start  correctly  

Insufficient  paging  space  “Problem:  Graphical  user  

interface  (GUI)  does  not start  

correctly”  on page  111 

Graphical  user  interface  does  

not  display  correctly.  

Resolution  is incorrect.  “Problem:  Graphical  user  

interface  (GUI)  does  not 

display  correctly”  on page  

111 

 

  105



Table 11.  Troubleshooting  table  for  Load  Balancer  (continued)  

Symptom  Possible  Cause  Go  to...  

Help  panels  sometimes  

disappear  behind  other  

windows  

Java™ limitation  “Problem:  On  Windows  

platform,  help  windows  

sometimes  disappear  behind  

other  open  windows”  on 

page  111 

GUI  hangs  (or  unexpected  

behavior)  when  trying  to 

load  a large  configuration  

file.  

Java  does  not  have  access  to 

enough  memory  to handle  

such  a large  change  to the 

GUI  

“Problem:  GUI  hangs  (or 

unexpected  behavior)  when  

trying  to load  a large  

configuration  file”  on page  

111 

Korean  Load  Balancer  

interface  displays  

overlapping  or undesirable  

fonts  on  AIX® and  Linux® 

systems  

Default  fonts  must  be 

changed  

“Problem:  Korean  Load  

Balancer  interface  displays  

overlapping  or undesirable  

fonts  on  AIX  and  Linux  

systems”  on page  112 

Unexpected  GUI  behavior  

when  using  Windows  

platform  paired  with  Matrox  

AGP  video  card  

Problem  occurs  when  using  

Matrox  AGP  video  cards  

while  running  the Load  

Balancer  GUI  

“Problem:  On  Windows  

platform,  unexpected  GUI  

behavior  when  using  Matrox  

AGP  video  cards”  on page  

113 

Slow  response  time  when  

running  commands  on the  

Dispatcher  machine  

Slow  response  time  can  be 

due  to machine  overloading  

from  a high  volume  of client  

traffic  

“Problem:  Slow  response  

time  running  commands  on 

Dispatcher  machine”  on page  

113 

SSL  or  HTTPS  advisor  not  

registering  server  loads  

Problem  occurs  because  the 

SSL  server  application  not  

configured  with  the  cluster  

IP address  

“Problem:  SSL  or HTTPS  

advisor  not  registering  server  

loads”  on page  113 

Socket  pooling  is enabled  

and  the  Web server  is 

binding  to 0.0.0.0  

Configure  the Microsoft  IIS 

server  to be bind  specific  

“Problem:  Socket  pooling  is 

enabled  and  the  Web server  

is binding  to 0.0.0.0”  on page  

113 

On  Windows  platform,  

corrupted  Latin-1  national  

characters  appear  in 

command  prompt  

Change  font  properties  of 

command  prompt  window  

“Problem:  On  Windows  

systems,  corrupted  Latin-1  

national  characters  appear  in 

command  prompt  window”  

on page  114 

On  Windows  platform,  

advisors  and  reach  targets  

mark  all servers  down  

Task offloading  is not  

disabled  or may  need  to 

enable  ICMP.  

“Problem:  On  Windows  

systems,  advisors  and  reach  

targets  mark  all servers  

down”  on page  114 

On  Windows  platform,  

advisors  not  working  in a 

high  availability  setup  after  a 

network  outage  

When  the  system  detects  a 

network  outage,  it clears  its 

Address  Resolution  Protocol  

(ARP)  cache  

“Problem:  On  Windows  

systems,  after  network  

outage,  advisors  not  working  

in a high  availability  setup”  

on page  115 

On  Linux  systems,  ″IP  

address  add″  command  and  

multiple  cluster  loopback  

aliases  are  incompatible  

When  aliasing  more  than  one  

address  on the loopback  

device,  should  use  ifconfig  

command,  not  ip address  

add  

“Problem:  On  Linux  systems,  

do not  use  ″IP  address  add″  

command  when  aliasing  

multiple  clusters  on the 

loopback  device”  on page  

115 

 

106 Load Balancer  for IPv4 and IPv6 Administration  Guide



Table 11. Troubleshooting  table  for Load  Balancer  (continued)  

Symptom  Possible  Cause  Go  to...  

On  Solaris  systems,  Load  

Balancer  processes  end  when  

you  exit  the  terminal  session  

window  from  which  they  

started  

Use  the  nohup  command  to 

prevent  the  processes  that  

you  started  from  receiving  a 

hangup  signal  when  you  exit  

the  terminal  session.  

“Problem:  On  Solaris  

systems,  Load  Balancer  

processes  end  when  you  exit  

the terminal  window  from  

which  they  started”  on page  

115 

Slow  down  occurs  when  

loading  Load  Balancer  

configurations  

The  delay  might  be due  to 

Domain  Name  System  (DNS)  

calls  that  are  made  to resolve  

and  verify  the  server  

address.  

“Problem:  Delay  occurs  

while  loading  a Load  

Balancer  configuration”  on 

page  116 

On  Windows  systems,  the 

following  error  message  

appears:  There  is an IP 

address  conflict  with  another  

system  on  the  network  

If high  availability  is 

configured,  cluster  addresses  

may  be configured  on both  

machines  for a brief  period  

which  causes  this  error  

message  to appear. 

“Problem:  On  Windows  

systems,  an IP address  

conflict  error  message  

appears”  on page  116 

On  Windows  systems,  

″Server  not  responding″  error  

occurs  when  issuing  a 

dscontrol  or  lbadmin  

command  

When  more  than  one  IP 

address  exists  on  a Windows  

system  and  the  host  file  does  

not  specify  the  address  to 

associate  with  the  hostname.  

“Problem:  On  Windows  

systems,  ″Server  not  

responding″  error  occurs  

when  issuing  dscontrol  or 

lbadmin”  on page  116 

Dispatcher  MAC  forwarding  

configuration  limitations  

with  zSeries  and  S/390  

platforms  

On  Linux,  there  are  

limitations  when  using  

zSeries  or S/390  servers  that  

have  Open  System  Adapter  

(OSA)  cards.  Possible  

workarounds  are  provided.  

“Problem:  On  Linux,  

Dispatcher  configuration  

limitations  when  using  

zSeries  or S/390  servers  that 

have  Open  System  Adapter  

(OSA)  cards”  on page  117 

On  Linux  systems,  iptables  

can  interfere  with  the  routing  

of packets  

Linux  iptables  can  interfere  

with  load  balancing  of traffic  

and  must  be disabled  on the  

Load  Balancer  machine.  

“Problem:  Linux  iptables  can  

interfere  with  the  routing  of 

packets”  on page  118 

On  Solaris  systems,  when  

you  try  to configure  an IPv6  

server  on  the  Dispatcher  

machine,  the  message  

″unable  to add  server″ 

appears  

This  can  be caused  by the  

way  the  Solaris  operating  

system  handles  the  ping  

request  for  an IPv6  address.  

“Problem:  Unable  to add  an 

IPv6  server  to the  Load  

Balancer  configuration  on 

Solaris  systems”  on page  119 

A Java  fileset  warning  

message  appears  when  

installing  service  fixes  or 

installing  natively,  using  

system  packaging  tools  

The  product  installation  

consists  of several  packages  

which  are  not  required  to be 

installed  on the  same  

machine,  so each  of these  

packages  installs  a Java  

fileset.  When  installed  on the  

same  machine  a warning  

messages  stating  that  the  

Java  fileset  is also  owned  by 

another  fileset.  

“Problem:  Java  warning  

message  appears  when  

installing  service  fixes”  on 

page  119 

 

Chapter 6. Troubleshooting Load Balancer  107



Table 11.  Troubleshooting  table  for  Load  Balancer  (continued)  

Symptom  Possible  Cause  Go  to...  

Upgrading  the  Java  fileset  

provided  with  the  Load  

Balancer  installations  

If a problem  is found  with  

the  Java  file  set, you  should  

report  the  problem  to IBM  

Service  so that  you  can  

receive  an upgrade  for  the 

Java  file  set that  was  

provided  with  the Load  

Balancer  installation.  

“Upgrading  the  Java  file set 

provided  with  the Load  

Balancer  installation”  on 

page  119 

Client  requests  fail  when  

forwarding  to  HP-UX  

back-end  servers  

After  setting  up Load  

Balancer  for IPv6  on the  

HP-UX  operating  system,  

client  requests  to the  cluster  

address  fail. This  error  is a 

result  of the interaction  

between  the  neighbor  

discovery  function  for  the  

operating  system  and  the  

Load  Balancer.  

“Problem:  Client  requests  fail  

when  using  IPv6  MAC  

forwarding  with  HP-UX  

back-end  servers”  on page  

119 

Load  Balancer  for  IPv4  and  

IPv6  conflicts  with  IP 

security  (IPsec)  

If you  are  using  the  Load  

Balancer  for IPv4  and  IPv6  

with  IP security  (IPsec)  

enabled,  output  packets  

might  be incorrect  and  

dispatcher  configuration  

information  might  display  

incorrectly  in the  command  

line  interface  and  

administrative  console  for 

WebSphere  Application  

Server.  

Load  Balancer  reports  that  it 

is forwarding  connections,  

but clients  do not  receive  

responses.  

“Problem:  On  AIX systems,  

Load  Balancer  conflicts  with  

IP security  (IPsec)”  on page  

120  

Install  program  will  not  run  

on  the  32-bit  Linux  operating  

system  for  zSeries  

Installing  Load  Balancer  

using  ./install  on the  32-bit  

Linux  operating  system  for 

zSeries  produces  a ″JVM  Not  

Found″ message.  

“Problem:  Installing  

WebSphere  Edge  Server  

using  ./install  on the 32-bit  

Linux  operating  system  for  

zSeries  produces  a ″JVM  Not  

Found″ message”  on page  

120  

The  uninstall  process  does  

not  complete  successfully  on 

Linux  operating  systems  

The  uninstall  process  for 

WebSphere  Edge  Server  

hangs  on Linux  operating  

systems.  

“Problem:  The  uninstall  

process  for WebSphere  Edge  

Server  hangs  on Linux  

operating  systems”  on page  

120  

 

108 Load Balancer  for IPv4 and IPv6 Administration  Guide



Table 11. Troubleshooting  table  for Load  Balancer  (continued)  

Symptom  Possible  Cause  Go  to...  

The  serverUp  script  might  

run  when  you  issue  

commands  for  Load  Balancer  

that  affect  the  status  of 

servers  

You might  experience  

problems  if you run  a 

command  that  affects  the  

status  of a server,  such  as the  

dscontrol  server  up and  

dscontrol  server  down  

commands,  after  a manager  

cycle  has  already  retrieved  

the  weights  of the servers.  If 

you  run  these  commands,  it 

might  overwrite  the values  

that  are  saved  during  the  

manager  cycle  and  cause  the 

serverUp  script  to  run  

unexpectedly.  

“Problem:  The  serverUp  

script  might  run  when  you  

issue  commands  for Load  

Balancer  that  affect  the  status  

of servers”  on page  121

  

Problem: Load Balancer will not run 

This  problem  can  occur  when  another  application  is using  one  of the  ports  used  by  

the  Load  Balancer.  For  more  information,  go  to “Configuring  the  Load  Balancer  

machine”  on  page  33.  

Problem: Load Balancer requests are not being balanced 

This  problem  has  symptoms  such  as  connections  from  client  machines  not  being  

served  or  connections  timing  out.  Check  the  following  to diagnose  this  problem:  

1.   Have  you  configured  the  nonforwarding  address,  clusters,  ports,  and  servers  

for  routing?  Check  the  configuration  file.  

2.   Does  the  loopback  device  on  each  server  have  the  alias  set  to the  cluster  

address?  

    

   

  Use  netstat  -ni  to  check.  

3.   Is  the  extra  route  deleted?  

    

   

  Use  netstat  -nr  to  check.  

4.   Use  the  dscontrol  cluster  status  command  to  check  the  information  for  each  

cluster  you  have  defined.  Make  sure  you  have  a port  defined  for  each  cluster.  

5.   Use  the  dscontrol  server  report  :: command  to  make  sure  that  your  servers  are  

neither  down  nor  set  to  a weight  of  zero.

Problem: Extra routes (Windows 2000) 

After  setting  up  server  machines,  you  may  find  that  you  have  inadvertently  

created  one  or  more  extra  routes.  If not  removed,  these  extra  routes  will  prevent  

the  Load  Balancer  from  operating.  

 

Chapter 6. Troubleshooting Load Balancer  109



Problem: Dispatcher, Microsoft IIS, and SSL do not work (Windows 

platform) 

When  using  Dispatcher,  Microsoft  IIS,  and  SSL,  if they  do  not  work  together,  there  

may  be  a problem  with  enabling  SSL  security.  For  more  information  about  

generating  a key  pair, acquiring  a certificate,  installing  a certificate  with  a key  pair,  

and  configuring  a directory  to  require  SSL,  see  the  Microsoft  Information  and  Peer  

Web  Services  documentation.  

Problem: dscontrol or lbadmin command fails 

1.   The  dscontrol  command  returns:  Error:  Server  not  responding. Or, the  lbadmin  

command  returns:  Error:  unable  to  access  RMI  server. These  errors  can  result  

when  your  machine  has  a socksified  stack.  To correct  this  problem,  edit  the  

socks.cnf  file  to  contain  the  following  lines:  

EXCLUDE-MODULE  java  

EXCLUDE-MODULE  javaw  

2.   The  administration  consoles  for  Load  Balancer  interfaces  (command  line,  

graphical  user  interface,  and  wizards)  communicate  with  dsserver  using  remote  

method  invocation  (RMI).  The  default  communication  uses  three  ports;  each  

port  is set  in  the  dsserver  start  script:  

v   10099  to  receive  commands  from  dscontrol  

v   10004  to  send  metric  queries  to Metric  Server  

v   10199  for  the  RMI  server  port  

This  can  cause  problems  when  one  of the  administration  consoles  runs on  the  

same  machine  as  a firewall  or  through  a firewall.  For  example,  when  Load  

Balancer  runs on  the  same  machine  as  a firewall,  and  you  issue  dscontrol  

commands,  you  might  see  errors  such  as  Error:  Server  not  responding. 

To avoid  this  problem,  edit  the  dsserver  script  file  to  set  the  port  used  by  RMI  

for  the  firewall  (or  other  application).  Change  the  line:  

LB_RMISERVERPORT=10199  to  LB_RMISERVERPORT=yourPort. Where  

yourPort  is a different  port.  

When  complete,  restart  dsserver  and  open  traffic  for  ports  10099,  10004,  10199,  

and  10100,  or  for  the  chosen  port  for  the  host  address  from  which  the  

administration  console  will  be  run. 

3.   These  errors  can  also  occur  if you  have  not  already  started  dsserver.  

4.   If  there  are  multiple  adapters  on  the  machine,  you  must  designate  which  

adapter  that  dsserver  is to use  by  adding  the  following  in  the  dsserver  

script:java.rmi.server.hostname=<host_name  or  IPaddress>  

For  example:  java  -Djava.rmi.server.hostname=″10.1.1.1″

Problem: Advisors not working correctly 

An  ICMP  ping  is  issued  to  the  servers  before  the  advisor  request.  If a firewall  

exists  between  Load  Balancer  and  the  servers,  ensure  that  pings  are  supported  

across  the  firewall.  If  this  setup  poses  a security  risk  to  your  network,  modify  the  

java  statement  in  dsserver  to turn  off  all  pings  to  the  servers  by  adding  the  java  

property:  

LB_ADV_NO_PING="true"  

java   -DLB_ADV_NO_PING="true"  

 

110  Load Balancer  for IPv4 and IPv6 Administration  Guide



Problem: “Cannot find the file...″ error message when trying to view 

online Help (Windows platform) 

For  Windows  platforms,  when  using  Netscape  as  your  default  browser,  the  

following  error  message  may  result:  “Cannot  find  the  file  ’<filename>.html’  (or  one  

of  its  components).  Make  sure  the  path  and  filename  are  correct  and  that  all  

required  libraries  are  available.″ 

The  problem  is  due  to  an  incorrect  setting  for  HTML  file  association.  The  solution  

is  the  following:  

1.   Click  My  Computer, click  Tools, select  Folder  Options,  and  click  File  Types 

tab  

2.   Select  “Netscape  Hypertext  Document″ 

3.   Click  Advanced  button,  select  open, click  Edit  button  

4.   Enter  NSShell  in  the  Application:  field  (not  the  Application  Used  to Perform  

Action:  field),  and  click  OK

Problem: Graphical user interface (GUI) does not start correctly 

The  graphical  user  interface  (GUI),  which  is lbadmin,  requires  a sufficient  amount  

of  paging  space  to function  correctly.  If insufficient  paging  space  is available,  the  

GUI  might  not  start  up  completely.  If  this  occurs,  check  your  paging  space  and  

increase  it if necessary.  

Problem: Graphical user interface (GUI) does not display correctly 

If  you  experience  a problem  with  the  appearance  of  the  Load  Balancer  GUI,  check  

the  setting  for  the  operating  system’s  desktop  resolution.  The  GUI  is best  viewed  

at  a resolution  of 1024x768  pixels.  

Problem: On Windows platform, help windows sometimes disappear 

behind other open windows 

On  Windows  platform,  when  you  first  open  help  windows,  they  sometimes  

disappear  into  the  background  behind  existing  windows.  If this  occurs,  click  on  the  

window  to  bring  it forward  again.  

Problem: GUI hangs (or unexpected behavior) when trying to load a 

large configuration file 

When  using  lbadmin  or  Web administration  (lbwebaccess)  to  load  a large  

configuration  file  (roughly  200  or  more  add  commands),  the  GUI  may  hang  or  

display  unexpected  behavior,  such  as  responding  to  screen  changes  at an  extremely  

slow  rate  of  speed.  

This  occurs  because  Java  does  not  have  access  to  enough  memory  to  handle  such  a 

large  configuration.  

There  is  an  option  on  the  runtime  environment  that  can  be  specified  to  increase  the  

memory  allocation  pool  available  to  Java.  

The  option  is  -Xmxn where  n is the  maximum  size,  in  bytes,  for  the  memory  

allocation  pool.  n must  be  a multiple  of 1024  and  must  be  greater  than  2MB.  The  

 

Chapter 6. Troubleshooting Load Balancer  111



value  n may  be  followed  by  k or  K  to  indicate  kilobytes,  or  m  or  M  to  indicate  

megabytes.  For  example,  -Xmx128M  and  -Xmx81920k  are  both  valid.  The  default  

value  is 64M.  Solaris  8 has  a maximum  value  of 4000M.  

For  example,  to  add  this  option,  edit  the  lbadmin  script  file,  modifying  ″javaw″ to  

″javaw  -Xmxn″ as  follows.  For  AIX  systems,  modify  ″java″ to  ″java  -Xmxn″. 

v   AIX  systems  

java  -Xmx256m  -cp  $LB_CLASSPATH  $LB_INSTALL_PATH  $LB_CLIENT_KEYS  

com.ibm.internet.nd.framework.FWK_Main  1>/dev/null  2>&1  & 

v   HP-UX  systems  

java  -Xmx256m  -cp  $LB_CLASSPATH  $LB_INSTALL_PATH  $LB_CLIENT_KEYS  

com.ibm.internet.nd.framework.FWK_Main  1>/dev/null  2>&1  & 

v   Linux  systems  

javaw  -Xmx256m  -cp  $LB_CLASSPATH  $LB_INSTALL_PATH  $LB_CLIENT_KEYS  

com.ibm.internet.nd.framework.FWK_Main  1>/dev/null  2>&1  & 

v   Solaris  systems  

java  -Xmx256m  -cp  $LB_CLASSPATH  $LB_INSTALL_PATH  $LB_CLIENT_KEYS  

com.ibm.internet.nd.framework.FWK_Main  1>/dev/null  2>&1  & 

v   Windows  systems  

START  javaw  -Xmx256m  -cp  %LB_CLASSPATH%  %LB_INSTALL_PATH%  

 %LB_CLIENT_KEYS%  com.ibm.internet.nd.framework.FWK_Main  

There  is  no  recommended  value  for  n , but  it should  be  greater  than  the  default  

option.  A  good  place  to  start  would  be  with  twice  the  default  value.  

Problem: Korean Load Balancer interface displays overlapping or 

undesirable fonts on AIX and Linux systems 

To correct  overlapping  or  undesirable  fonts  in the  Korean  Load  Balancer  interface:  

v   On  AIX  systems  

1.   Stop  all  Java  processes  on  the  AIX  system.  

2.   Open  the  font.properties.ko  file  in  an  editor.  This  file  is located  in  

home/jre/lib  where  home  is the  Java  home.  

3.   Search  for  this  string:  

-Monotype-TimesNewRomanWT-medium-r-normal  

--*-%d-75-75-*-*-ksc5601.1987-0  

4.   Replace  all  instances  of the  string  with:  

-Monotype-SansMonoWT-medium-r-normal  

--*-%d-75-75-*-*-ksc5601.1987-0  

5.   Save  the  file.
v    On  Linux  systems  

1.   Stop  all  Java  processes  on  the  system.  

2.   Open  the  font.properties.ko  file  in  an  editor.  This  file  is located  in  

home/jre/lib  where  home  is the  Java  home.  

3.   Search  for  this  string  (with  no  spaces):  

-monotype-  

timesnewromanwt-medium-r-normal--*-%d-75-75-p-*-microsoft-symbol  

4.   Replace  all  instances  of the  string  with:  

-monotype-sansmonowt-medium-r-normal--*-%d-75-75-p-*-microsoft-symbol  

5.   Save  the  file.

 

112  Load Balancer  for IPv4 and IPv6 Administration  Guide



Problem: On Windows platform, unexpected GUI behavior when using 

Matrox AGP video cards 

On  Windows  platform  when  using  a Matrox  AGP  card,  unexpected  behavior  can  

occur  in  the  Load  Balancer  GUI.  When  clicking  the  mouse,  a block  of space  slightly  

larger  than  the  mouse  pointer  can  become  corrupted  causing  possible  highlighting  

reversal  or  images  to shift  out  of  place  on  the  screen.  Older  Matrox  cards  have  not  

shown  this  behavior.  There  is no  known  fix  when  using  Matrox  AGP  cards.  

Problem: Slow response time running commands on Dispatcher 

machine 

If  you  are  running  the  Dispatcher  component  for  load  balancing,  it is  possible  to  

overload  the  computer  with  client  traffic.  The  Load  Balancer  kernel  module  has  the  

highest  priority,  and  if it  is constantly  handling  client  packets,  the  rest  of the  

system  may  become  unresponsive.  Running  commands  in  user  space  may  take  a 

very  long  time  to  complete,  or  may  never  complete.  

If  this  happens,  you  should  begin  to restructure  your  setup  to avoid  overloading  

the  Load  Balancer  machine  with  traffic.  Alternatives  include  spreading  the  load  

across  several  Load  Balancer  machines,  or  replacing  the  machine  with  a stronger  

and  faster  computer.  

When  trying  to  decide  if the  slow  response  time  on  the  machine  is due  to  high  

client  traffic,  consider  whether  this  occurs  during  client  peak  traffic  times.  

Misconfigured  systems  that  cause  routing  loops  can  also  cause  the  same  

symptoms.  But  before  changing  the  Load  Balancer  setup,  determine  whether  the  

symptoms  may  be  due  to  high  client  load.  

Problem: SSL or HTTPS advisor not registering server loads 

Load  Balancer  will  send  packets  to the  servers  using  the  cluster  address  that  is 

aliased  on  the  loopback.  Some  server  applications  (such  as  SSL)  require  that  

configuration  information,  such  as  certificates,  are  based  on  the  IP  address.  The  IP  

address  must  be  the  cluster  address  which  is configured  on  the  loopback  in  order  

to  match  the  contents  of the  incoming  packets.  If the  IP  address  of  the  cluster  is 

not  used  when  configuring  the  server  application,  then  the  client  request  will  not  

get  properly  forwarded  to  the  server.  

Problem: Socket pooling is enabled and the Web  server is binding to 

0.0.0.0 

When  running  Microsoft  IIS  server,  version  5.0  on  Windows  back-end  servers,  you  

must  configure  the  Microsoft  IIS  server  to  be  bind  specific.  Otherwise,  socket  

pooling  is enabled  as  the  default,  and  the  Web server  binds  to 0.0.0.0  and  listens  

for  all  traffic,  rather  than  binding  to  the  virtual  IP  addresses  configured  as  multiple  

identities  for  the  site.  If  an  application  on  the  local  host  goes  down  while  socket  

pooling  is enabled,  AIX  or  Windows  ND  server  advisors  detect  this;  however,  if an  

application  on  a virtual  host  goes  down  while  the  local  host  stays  up,  the  advisors  

do  not  detect  the  failure  and  Microsoft  IIS  continues  to respond  to all  traffic,  

including  that  of  the  downed  application.  

To determine  whether  socket  pooling  is  enabled  and  the  Web server  is binding  to  

0.0.0.0,  issue  the  following  command:  

 

Chapter  6. Troubleshooting Load Balancer 113



netstat  -an  

The  instructions  for  how  to configure  the  Microsoft  IIS  server  to  be  bind-specific  

(disable  socket  pooling),  are  located  on  the  Microsoft  Product  Support  Services  

Web site.  You can  also  go  to  one  of  these  URLs  for  this  information:  

IIS5:  Hardware  Load  Balance  Does  Not  Detect  a Stopped  Web Site  (Q300509)  

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q300509  

How  to  Disable  Socket  Pooling  (Q238131)  

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q238131

Problem: On Windows systems, corrupted Latin-1 national characters 

appear in command prompt window 

In  a command  prompt  window  on  the  Windows  operating  system,  some  national  

characters  of  the  Latin-1  family  might  appear  corrupted.  For  example,  the  letter  ″a″  

with  a tilde  may  display  as  a pi  symbol.  To fix  this,  you  must  change  the  font  

properties  of  the  command  prompt  window.  To change  the  font,  do  the  following:  

1.   Click  the  icon  in  the  upper  left  corner  of the  command  prompt  window  

2.   Select  Properties,  then  click  the  Font  tab  

3.   The  default  font  is Raster  fonts;  change  this  to Lucida  Console  and  click  OK

Problem: On Windows systems, advisors and reach targets mark all 

servers down 

When  configuring  your  adapter  on  a Load  Balancer  machine,  you  must  ensure  that  

the  following  two  settings  are  correct  for  the  advisor  to work:  

v   Disable  Task Offloading.  

–   To disable  Task offloading:  Go  to  Start  > Settings  > Control  Panel  > Network  

and  Dial-up  Connections,  then  select  the  adapter.  

–   In the  pop-up  window,  click  Properties.  

–   Click  Configure,  then  select  the  Advanced  tab.  

–   In the  property  pane,  select  the  Task Offload  property,  then  select  disable  in 

the  value  field.
v    Enable  Protocol  1 (ICMP)  for  IP  protocols  if you  are  enabling  TCP/IP  filtering.  If 

ICMP  is  not  enabled,  the  ping  test  to  the  back-end  server  will  not  succeed.  To 

check  whether  ICMP  is enabled:  

–   Go  to  Start  >  Settings  > Control  Panel  > Network  and  Dial-up  Connections,  

then  select  the  adapter.  

–   In the  pop-up  window,  click  Properties.  

–   From  the  components  pane,  select  Internet  Protocol  (TCP/IP),  then  click  

Properties.  

–   Click  Advanced,  then  select  the  Options  tab.  

–   Select  TCP/IP  filtering  in  the  options  pane,  then  click  Properties.  

–   If  you  have  selected  Enable  TCP/IP  Filtering  and  permit  only  for  IP  

protocols,  you  must  add  IP  Protocol  1.  This  must  be  added  in  addition  to the  

existing  TCP  and  UDP  ports  that  you  enabled.

 

114  Load Balancer  for IPv4 and IPv6 Administration  Guide



Problem: On Windows systems, after network outage, advisors not 

working in a high availability setup 

By  default,  when  the  Windows  operating  system  detects  a network  outage,  it clears  

its  address  resolution  protocol  (ARP)  cache,  including  all  static  entries.  After  the  

network  is  available,  the  ARP  cache  is repopulated  by  ARP  requests  sent  on  the  

network.  

With  a high  availability  configuration,  both  servers  take  over  primary  operations  

when  a loss  of  network  connectivity  affects  one  or  both.  When  the  ARP  request  is 

sent  to  repopulate  the  ARP  cache,  both  servers  respond,  which  causes  the  ARP  

cache  to  mark  the  entry  as  not  valid.  Therefore,  the  advisors  are  not  able  to  create  

a socket  to  the  backup  servers.  

Preventing  the  Windows  operating  system  from  clearing  the  ARP  cache  when  there  

is  a loss  of  connectivity  solves  this  problem.  Microsoft  has  published  an  article  that  

explains  how  to  accomplish  this  task.  This  article  is on  the  Microsoft  Web site,  

located  in  the  Microsoft  Knowledge  Base,  article  number  239924:  

http://support.microsoft.com/default.aspx?scid=kb;en-us;239924.  

The  following  is a summary  of the  steps,  described  in  the  Microsoft  article,  to  

prevent  the  system  from  clearing  the  ARP  cache:  

1.   Use  the  Registry  editor  (regedit  or  regedit32)  to  open  the  registry.  

2.   View  the  following  key  in  the  registry:  

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Tcpip\Parameters  

3.   Add  the  following  registry  value:  Value Name:  DisableDHCPMediaSense  Value 

Type:  REG_DWORD.  

4.   After  the  key  is added,  edit  the  value  and  set  it to 1. 

5.   Reboot  the  machine  for  the  change  to take  effect.

Note:  This  affects  the  ARP  cache  regardless  of  the  DHCP  setting.  

Problem: On Linux systems, do not use ″IP address add″ command 

when aliasing multiple clusters on the loopback device 

Certain  considerations  must  be  taken  when  using  Linux  kernel  2.4.x  servers.  If the  

server  has  a cluster  address  configured  on  the  loopback  device  using  the  ip 

address  add  command,  only  one  cluster  address  can  be  aliased.  

When  aliasing  multiple  clusters  to  the  loopback  device  use  the  ifconfig  command,  

for  example:  

ifconfig  lo:num  clusterAddress  netmask  255.255.255.255  up 

Additionally,  there  are  incompatibilities  between  the  ifconfig  method  of  configuring  

interfaces  and  the  ip  method  of  configuring  interfaces.  Best  practice  suggests  that  a 

site  choose  one  method  and  use  that  method  exclusively.  

Problem: On Solaris systems, Load Balancer processes end when you 

exit the terminal window from which they started 

On  Solaris  systems,  after  starting  Load  Balancer  scripts  (such  as  dsserver  or  

lbadmin)  from  a terminal  window,  if you  exit  from  that  window,  the  Load  Balancer  

process  also  exits.  

 

Chapter  6. Troubleshooting Load Balancer 115



To resolve  this  problem,  start  the  Load  Balancer  scripts  with  the  nohup  command.  

For  example:  nohup  dsserver.  This  command  prevents  the  processes  started  from  

the  terminal  session  from  receiving  a hangup  signal  from  the  terminal  when  it 

exits,  allowing  the  processes  to continue  even  after  the  terminal  session  has  ended.  

Use  the  nohup  command  in  front  of  any  Load  Balancer  scripts  that  you  want  to  

continue  to  process  beyond  the  end  of a terminal  session.  

Problem: Delay occurs while loading a Load Balancer configuration 

Loading  a Load  Balancer  configuration  might  take  a long  time  due  to Domain  

Name  System  (DNS)  calls  that  are  made  to resolve  and  verify  the  server  address.  

If the  DNS  of  the  Load  Balancer  machine  is  configured  incorrectly,  or  if DNS  in  

general  takes  a long  time,  this  will  cause  a slow  down  in loading  the  configuration  

due  to  the  Java  processes  that  are  sending  DNS  requests  on  the  network.  

A  workaround  for  this  is to  add  your  server  addresses  and  hostnames  to  your  local  

/etc/hosts  file.  

Problem: On Windows systems, an IP address conflict error message 

appears 

If high  availability  is  configured,  the  cluster  addresses  may  be  configured  on  both  

machines  for  a brief  period  and  cause  the  following  error  message  to  occur:  There  

is an  IP  address  conflict  with  another  system  on  the  network.  In  this  case,  you  can  

safely  ignore  the  message.  It is possible  for  a cluster  address  to  be  briefly  

configured  on  both  high  availability  machines  at the  same  time,  especially  during  

startup  of  either  machine,  or  when  a takeover  has  been  initiated.  

Problem: On Windows systems, ″Server not responding″ error occurs 

when issuing dscontrol or lbadmin 

When  more  than  one  IP  address  is on  a Windows  system  and  the  hosts  file  does  

not  specify  the  address  to associate  with  the  host  name,  the  operating  system  

chooses  the  smallest  address  to  associate  with  the  host  name.  

To resolve  this  problem,  update  the  c:\Windows\system32\drivers\etc\hosts file  

with  your  machine  host  name  and  the  IP address  that  you  want  to  associate  with  

the  host  name.  

If you  are  using  dscontrol,  you  can  specify  the  connection  address  using  the  

following  command:  

dscontrol  host::<ip_address  or host_name>  <command>  

IMPORTANT:  The  IP  address  cannot  be  a cluster  address.  

 

116  Load Balancer  for IPv4 and IPv6 Administration  Guide



Problem: On Linux, Dispatcher configuration limitations when using 

zSeries or S/390 servers that have Open System Adapter (OSA) cards 

In  general,  servers  in  the  Load  Balancer  configuration  must  all  be  on  the  same  

network  segment  regardless  of  the  platform.  Active  network  devices  such  as  router,  

bridges,  and  firewalls  interfere  with  Load  Balancer.  This  is because  Load  Balancer  

functions  as  a specialized  router,  modifying  only  the  link-layer  headers  to its  next  

and  final  hop.  Any  network  topology  in  which  the  next  hop  is not  the  final  hop  is  

not  valid  for  Load  Balancer.  

Note:  Tunnels,  such  as  channel-to-channel  (CTC)  or  inter-user  communication  

vehicle  (IUCV),  are  often  supported.  However,  Load  Balancer  must  forward  across  

the  tunnel  directly  to  the  final  destination,  it cannot  be  a network-to-network  

tunnel.  

There  is  a limitation  for  zSeries  and  S/390  servers  that  share  the  OSA  card,  because  

this  adapter  operates  differently  than  most  network  cards.  The  OSA  card  has  its  

own  virtual  link  layer  implementation,  which  has  nothing  to  do  with  ethernet,  that  

is  presented  to  the  Linux  and  z/OS  hosts  behind  it.  Effectively,  each  OSA  card  

looks  just  like  ethernet-to-ethernet  hosts  (and  not  to  the  OSA  hosts),  and  hosts  that  

use  it will  respond  to it  as  if it is ethernet.  

The  OSA  card  also  performs  some  functions  that  relate  to the  IP  layer  directly.  

Responding  to  ARP  (address  resolution  protocol)  requests  is one  example  of  a 

function  that  it performs.  Another  is that  shared  OSA  routes  IP  packets  based  on  

destination  IP  address,  instead  of  on  ethernet  address  as  a layer  2 switch.  

Effectively,  the  OSA  card  is a bridged  network  segment  unto  itself.  

Load  Balancer  that  runs on  an  S/390  Linux  or  zSeries  Linux  host  can  forward  to  

hosts  on  the  same  OSA  or  to hosts  on  the  ethernet.  All  the  hosts  on  the  same  

shared  OSA  are  effectively  on  the  same  segment.  

Load  Balancer  can  forward  out  of a shared  OSA  because  of the  nature  of the  OSA  

bridge.  The  bridge  knows  the  OSA  port  that  owns  the  cluster  IP.  The  bridge  knows  

the  MAC  address  of hosts  directly  connected  to  the  ethernet  segment.  Therefore,  

Load  Balancer  can  MAC-forward  across  one  OSA  bridge.  

However,  Load  Balancer  cannot  forward  into  a shared  OSA.  This  includes  the  Load  

Balancer  on  an  S/390  Linux  when  the  back-end  server  is on  a different  OSA  card  

than  the  Load  Balancer.  The  OSA  for  the  back-end  server  advertises  the  OSA  MAC  

address  for  the  server  IP,  but  when  a packet  arrives  with  the  ethernet  destination  

address  of  the  server’s  OSA  and  the  IP  of  the  cluster,  the  server’s  OSA  card  does  

not  know  which  of  its  hosts,  if any,  should  receive  that  packet.  The  same  principles  

that  permit  OSA-to-ethernet  MAC-forwarding  to work  out  of  one  shared  OSA  do  

not  hold  when  trying  to forward  into  a shared  OSA.  

Workaround:  

In  Load  Balancer  configurations  that  use  zSeries  or  S/390  servers  that  have  OSA  

cards,  there  are  two  approaches  you  can  take  to work  around  the  problem  that  has  

been  described.  

1.   Using  platform  features  

If  the  servers  in  the  Load  Balancer  configuration  are  on  the  same  zSeries  or  

S/390  platform  type,  you  can  define  point-to-point  (CTC  or  IUCV)  connections  

between  Load  Balancer  and  each  server.  Set  up  the  endpoints  with  private  IP 

 

Chapter  6. Troubleshooting Load Balancer 117



addresses.  The  point-to-point  connection  is used  for  Load  Balancer-to-server  

traffic  only.  Then  add  the  servers  with  the  IP  address  of the  server  endpoint  of  

the  tunnel.  With  this  configuration,  the  cluster  traffic  comes  through  the  Load  

Balancer  OSA  card  and  is forwarded  across  the  point-to-point  connection  where  

the  server  responds  through  its  own  default  route.  The  response  uses  the  

server’s  OSA  card  to  leave,  which  might  or  might  not  be  the  same  card.  

2.   Using  Load  Balancer’s  encapsulation  feature.  

If  the  servers  in  the  Load  Balancer  configuration  are  not  on  the  same  zSeries  or  

S/390  platform  type,  or  if it is not  possible  to  define  a point-to-point  connection  

between  Load  Balancer  and  each  server,  it is recommended  that  you  use  Load  

Balancer’s  encapsulation  feature,  which  is a protocol  that  permits  Load  Balancer  

to  forward  across  routers.  

When  using  encapsulation,  the  client->cluster  IP  packet  is received  by  Load  

Balancer,  encapsulated,  and  sent  to  the  server.  At  the  server,  the  original  

client->cluster  IP  packet  is excapsulated,  and  the  server  responds  directly  to the  

client.  The  advantage  with  using  GRE  is that  Load  Balancer  sees  only  the  

client-to-server  traffic,  not  the  server-to-client  traffic.  The  disadvantage  is that  it 

lowers  the  maximum  segment  size  (MSS)  of  the  TCP  connection  due  to  

encapsulation  overhead.  

Refer  to  the  topic  “Use  encapsulation  forwarding  to  forward  traffic  across  

network  segments”  on  page  86  for  more  information  on  how  to  configure  Load  

Balancer  to  forward  with  encapsulation.

Problem: Linux iptables can interfere with the routing of packets 

Linux  iptables  can  interfere  with  load  balancing  of  traffic  and  must  be  disabled  on  

the  Dispatcher  machine.  

Issue  the  following  command  to  determine  if iptables  are  loaded:  

lsmod  | grep  ip_tables  

The  output  from  the  preceding  command  might  be  similar  to  this:  

ip_tables          22400    3 

iptable_mangle,iptable_nat,iptable_filter  

Issue  the  following  command  for  each  iptable  listed  in  the  output  to  display  the  

rules  for  the  tables:  

iptables  -t  <short_name>  -L 

For  example:  

iptables  -t  mangle  -L  

iptables  -t  nat     -L 

iptables  -t  filter  -L  

If iptable_nat  is  loaded,  it must  be  unloaded.  Because  iptable_nat  has  a 

dependency  on  iptable_conntrack,  iptable_conntrack  also  must  be  removed.  Issue  

the  following  command  to  unload  these  two  iptables:  

rmmod  iptable_nat  iptable_conntrack  

 

118  Load Balancer  for IPv4 and IPv6 Administration  Guide



Problem: Unable to add an IPv6 server to the Load Balancer 

configuration on Solaris systems 

On  Solaris  systems,  when  you  try  to  configure  an  IPv6  server  on  a installation,  the  

message  unable  to  add  server  appears.  This  can  be  caused  by  the  way  the  Solaris  

operating  system  handles  the  ping  request  for  an  IPv6  address.  

On  Solaris  systems,  when  adding  a server  to the  configuration,  Load  Balancer  tries  

to  ping  the  server  to  obtain  the  MAC  address  of the  server.  The  Solaris  machine  

might  choose  a configured  cluster  address  as the  source  address  of the  ping  

request,  instead  of  using  the  NFA address  of  the  machine.  If the  cluster  address  is 

configured  on  the  server  loopback,  the  ping  response  is  not  received  at the  Load  

Balancer  machine;  therefore,  it does  not  add  the  server  to the  configuration.  

The  solution  is  to  configure  another  IPv6  address  on  the  Load  Balancer  machine  

either  before  or  after  configuring  the  IPv6  cluster  address.  This  address  must  be  an  

address  that  is  not  aliased  on  the  loopback  of  the  back-end  server  on  which  you  

are  trying  to  add  to the  Load  Balancer  configuration.  Then  add  the  server  to  the  

Load  Balancer  configuration.  

Problem: Java warning message appears when installing service fixes 

Load  Balancer  provides  a Java  file  set  along  with  the  product  installation.  The  

product  installation  consists  of several  packages  that  are  not  required  to  be  

installed  on  the  same  machine.  Examples  of  this  are  the  Metric  Server  package,  the  

administration  package,  and  the  base  package.  All  of these  code  packages  require  a 

Java  file  set  to  operate  but  each  of  the  three  packages  could  be  installed  on  

separate  machines.  As  such,  each  of these  packages  installs  a Java  file  set.  When  

installed  on  the  same  machine,  the  Java  file  set  will  be  owned  by  each  of  these  file  

sets.  When  you  install  the  second  and  third  Java  file  set,  you  will  receive  a 

warning  messages  stating  that  the  Java  file  set  is also  owned  by  another  file  set.  

When  installing  code  using  the  native  installation  methods  (for  example,  installp  

on  AIX),  you  should  ignore  the  warning  messages  that  the  Java  file  set  is owned  

by  another  fileset.  

Upgrading the Java file set provided with the Load Balancer 

installation 

During  the  Load  Balancer  installation  process,  a Java  file  set  also  gets  installed.  

Load  Balancer  will  be  the  only  application  that  uses  the  Java  version  which  installs  

with  the  product.  You should  not  upgrade  this  version  of the  Java  file  set  on  your  

own.  If  there  are  problem  which  requires  an  upgrade  for  the  Java  file  set,  you  

should  report  the  problem  to IBM  Service  so  the  Java  file  set  which  is shipped  

within  Load  Balancer  will  be  upgraded  with  an  official  fix  level.  

Problem: Client requests fail when using IPv6 MAC forwarding with 

HP-UX back-end servers 

After  setting  up  Load  Balancer  for  IPv6  on  the  HP-UX  operating  system,  client  

requests  to  the  cluster  address  fail.  This  error  is a result  of  the  interaction  between  

the  neighbor  discovery  function  for  the  operating  system  and  the  Load  Balancer.  

 

Chapter  6. Troubleshooting Load Balancer 119



When  a back-end  server  is added  to  the  configuration,  Load  Balancer  tries  to  ping  

the  new  server  for  the  MAC  address.  The  HP-UX  server  might  choose  a configured  

cluster  address  as the  source  address  of  the  ping  request,  instead  of using  the  

nonforwarding  address  (NFA)  of  the  machine.  In  this  case,  a new  entry  is created  

for  the  cluster  address  in  the  routing  table  of  the  back-end  HP-UX  server  in  

addition  to  the  local  loopback  entry.  The  new  entry  has  a higher  routing  priority  

than  the  local  loopback.  Thus,  the  client  requests  that  reach  the  back-end  server  are  

then  redirected  back  to  the  Load  Balancer  server,  which  does  not  respond.  

To work  around  this  problem,  after  Load  Balancer  is set  up  completely,  configure  

the  loopback  alias  on  the  back-end  server  as  a final  step.  If the  cluster  address  is 

aliased  on  the  loopback  when  the  Load  Balancer  configuration  is loaded,  remove  

the  cluster  loopback  alias  on  the  back-end  server  completely  and  then  re-alias  it.  To 

bring  down  the  loopback  alias,  use  the  ifconfig  lo0:1  inet6  command  from  the  

terminal  window.  Re-alias  the  loopback  alias.  

Problem: On AIX systems, Load Balancer conflicts with IP security 

(IPsec) 

If you  are  using  Load  Balancer  with  IP  security  (IPsec)  enabled,  output  packets  

might  be  incorrect  and  dispatcher  configuration  information  might  display  

incorrectly  in the  command  line  interface  and  administrative  console  for  

WebSphere  Application  Server.  Load  Balancer  reports  that  it is forwarding  

connections,  but  clients  do  not  receive  responses.  

If you  are  using  Load  Balancer  function  and  IP  security  on  the  same  host,  there  

might  be  communication  problems  between  Load  Balancer  and  the  application  

server.  The  Load  Balancer  component  is not  fully  compatible  with  IPsec  features  

and  it  transmits  data  from  both  sides  of the  security  layer. Load  Balancer  receives  

packets  below  IPsec  and,  as  a result,  receives  encrypted  packets  that  it does  not  

decrypt.  When  sending  data,  Load  Balancer  transmits  them  above  IPsec,  so  it sends  

unencrypted  packets  to  the  application  server  that  are  encrypted  on  the  other  end  

by  IPsec.  The  application  server,  therefore,  receives  encrypted  data  that  cannot  be 

used.  

Problem: Installing WebSphere  Edge Server using ./install on the 32-bit 

Linux operating system for zSeries produces a ″JVM Not Found″ 

message 

This  problem  is  caused  by  a limitation  of the  Edge  Installer  on  zSeries  32-bit  Linux  

operating  systems.  

You can  work  around  this  problem  by  performing  a manual  installation  for  32-bit  

zSeries  Linux  operating  system.  See  “Installing  Load  Balancer  on  Linux  operating  

systems”  on  page  16  for  more  information.  

Problem: The uninstall process for WebSphere  Edge Server hangs on 

Linux operating systems 

This  problem  is  the  result  of  a limitation  in  the  Edge  Installer  on  Linux  operating  

systems.  

 

120 Load Balancer  for IPv4 and IPv6 Administration  Guide



To uninstall  WebSphere  Edge  Server  on  a Linux  operating  system,  you  need  to  

manually  uninstall  the  product.  To uninstall  the  entire  product,  enter  the  

command:  

rpm  -e ’rpm  -qa  | grep  ibmlb’  

To uninstall  an  individual  package,  enter  the  command  rpm  -e  <package  name>. 

The  package  names  can  be  found  in  “Installing  Load  Balancer  on  Linux  operating  

systems”  on  page  16.  Remember  to  uninstall  the  packages  in  the  reverse  order  of 

which  they  were  installed.  

Problem: The serverUp script might run when you issue commands 

for Load Balancer that affect the status of servers 

Weights  are  set  by  the  manager  during  a manager  cycle.  At  the  start  of the  

manager  cycle,  the  manager  retrieves  the  current  weights  from  the  executor  

function.  The  manager  uses  these  values  as  the  last  known  weight  to determine  if 

the  status  of  a server  has  changed.  

If  you  issue  a server  down  command,  for  example,  dscontrol  server  down,  the  

executor  function  saves  the  current  weight  of the  server  and  associates  a new  

weight  to  the  server  with  a value  of  -1.  When  you  issue  a server  up  command,  for  

example,  dscontrol  server  up,  a call  is  made  to  the  executor  function  to  revert  the  

weight  of  the  server  to  the  saved  value.  The  system  sets  a flag  to indicate  that  the  

server  is  no  longer  marked  down  by  the  user. 

If  the  server  up  command  occurs  after  the  manager  has  retrieved  the  weights,  the  

executor  function  overwrites  the  weight  that  is used  to determine  if the  server  state  

has  changed.  This  process  does  not  cause  any  side  effects  unless  the  server  is also  

quiesced.  

A quiesced  server  has  a weight  of  0, which  is  the  same  value  as a server  that  is 

detected  down  by  the  advisor.  If  you  run a server  up  command  on  a quiesced  

server,  the  executor  function  saves  a value  of 0 for  the  weight  that  determines  if 

the  state  of  the  server  has  changed.  When  the  server  is unquiesced,  the  serverUp  

script  might  run because  of this  saved  value.  

The  chances  of  experiencing  this  problem  increase  with  larger  configurations  

because  the  manager  cycle  takes  longer  to run. Also,  there  is a higher  probability  

that  the  manager  cycle  will  be  in  progress  when  the  server  up  command  is issued.  

 

Chapter 6. Troubleshooting Load Balancer  121



122 Load Balancer  for IPv4 and IPv6 Administration  Guide



Chapter  7.  welc_reference.html  

Advanced configuration 

Settings  are  properties  that  you  can  configure  using  the  configuration  files,  or  by  

other  means..  

To open  the  information  center  table  of contents  to  the  location  of  this  reference  

information,  click  the  Show  in  Table  of  Contents  button  ( ) on  your  information  

center  border.  

Directory conventions 

References  in product  information  to install_root  and  other  directories  infer  specific  

default  directory  locations.  This  topic  describes  the  conventions  in use  for  IBM  

WebSphere  Edge  Components.  

These  file  paths  are  default  locations.  You can  install  the  product  and  other  

components  in  any  directory  where  you  have  write  access.  You can  create  profiles  

in  any  valid  directory  where  you  have  write  access.  

    

   

  

install_root  - the  root  directory  in  which  the  product  was  installed  

Load  Balancer  install  paths  include  the  following:  

v   Administration  - /opt/ibm/edge/ulb/admin  

v   Load  Balancer  - /opt/ibm/edge/ulb/servers  

v   Metric  Server  - /opt/ibm/edge/ulb/ms  

v   Documentation  - /opt/ibm/edge/ulb/docs/

  

install_root  - the  root  directory  in  which  the  product  was  installed  

Load  Balancer  install  paths  include  the  following:  

v   Administration  - C:\Program  Files\IBM\edge\ulb\admin  

v   Load  Balancer  - C:\Program  Files\IBM\edge\ulb\servers  

v   Metric  Server  - C:\Program  Files\IBM\edge\ulb\ms  

v   Documentation  - C:\Program  Files\IBM\edge\ulb\docs

Types  of cluster, port, and server configurations 

There  are  many  ways  that  you  can  configure  Load  Balancer  to support  your  site.  

1 cluster with 2 ports 

If  you  have  only  one  host  name  for  your  site  to  which  all  of  your  customers  will  

connect,  you  can  define  a single  cluster  of  servers.  For  each  of  these  servers,  

configure  a port  through  which  Load  Balancer  communicates.  

 

  123



Dispatcher
cluster

port
80

port
443

InternetClient

Server 1

Server 2

Server 3

Server 4

In  this  example  for  the  Dispatcher  component,  one  cluster  is defined  at 

www.productworks.com.  This  cluster  has  two  ports:  port  80  for  HTTP  and  port  443  

for  SSL.  A client  making  a request  to  http://www.productworks.com  (port  80)  

goes  to  a different  server  than  a client  requesting  https://www.productworks.com  

(port  443).  

2 clusters, each with 1 port 

Another  way  of  configuring  Load  Balancer  might  be  appropriate  if you  have  a 

very  large  site  with  many  servers  dedicated  to each  protocol  supported.  In  this  

case,  you  might  want  to define  a cluster  for  each  protocol  with  a single  port  but  

with  many  servers.  

cluster   port 80

www.productworks.com

www.testworks.com

cluster   port 443

InternetClient

Server 1

Server 4

Server 3

Server 6

Server 2

Server 5

Dispatcher

   

In  this  example  for  the  Dispatcher  component,  two  clusters  are  defined:  

www.productworks.com  for  port  80  (HTTP)  and  www.testworks.com  for  port  443  

(SSL).  A third  way  of configuring  Load  Balancer  might  be  necessary  if your  site  

does  content  hosting  for  several  companies  or  departments,  each  one  coming  into  

your  site  with  a different  URL.  In this  case,  you  might  want  to define  a cluster  for  

each  company  or  department  and  then  define  any  ports  to  which  you  want  to  

 

124 Load Balancer  for IPv4 and IPv6 Administration  Guide



receive  connections  at that  URL,  as  shown  in the  configuration  for  2 clusters,  each  

with  two  ports.  

2 clusters, each with 2 ports 

Cluster

Cluster

www.productworks.com

www.testworks.com

port

80

port

80

port

23

port

23

Server 5

Server 1

Server 6

Server 2

Server 7

Server 3

Server 8

Server 4

DISPATCHER
InternetClient

   

In  this  example  for  the  Dispatcher  component,  two  clusters  are  defined  with  port  

80  for  HTTP  and  port  23  for  Telnet  for  each  of the  sites  at www.productworks.com  

and  www.testworks.com.  

Custom advisor methods and function calls 

Use  the  following  advisor  methods  and  function  calls  in  your  custom  advisors.  

Be  aware  that  custom  advisors  need  to have  all  the  required  routines.  Advisors  

must  have  the  following  base  class  methods:  

v   A constructor  routine.  The  constructor  calls  the  base  class  constructor.  

v   An  ADV_AdvisorInitialize  method.  This  method  provides  a way  to  perform  

additional  steps  after  the  base  class  completes  its  initialization.  

v   A getLoad  routine.  The  base  advisor  class  performs  the  socket  opening;  the  

getLoad  function  only  needs  to  issue  the  appropriate  send  and  receive  requests  

to  complete  the  advising  cycle.

Constructor (provided by advisor base) 

public  <advisor_name> { 

  String  sName;  

  String  sVersion;  

  int  iDefaultPort;

 

Chapter 7. welc_reference.html  125



int  iInterval;  

  String  sDefaultLogFileName;  

  boolean  replace  

) 

sName  

The  name  of  the  custom  advisor  

sVersion  

The  version  of  the  custom  advisor.  

iDefaultPort  

The  port  number  on  which  to contact  the  server  if no  port  number  is  specified  

in  the  call.  

iInterval   

The  interval  at  which  the  advisor  will  query  the  servers.  

sDefaultLogFileName  

This  parameter  is required  but  not  used.  The  only  acceptable  value  is a null  

string,  ″″ 

replace  

Whether  or  not  this  advisor  functions  in  replace  mode.  Possible  values  are  the  

following:  

v   true  – Replace  the  load  calculated  by  the  advisor  base  code  with  the  value  

reported  by  the  custom  advisor.  

v   false  – Add  the  load  value  reported  by  the  custom  advisor  to  the  load  value  

calculated  by  the  advisor  base  code.

ADV_AdvisorInitialize() method 

void  ADV_AdvisorInitialize()  

This  method  is  provided  to perform  any  initialization  that  might  be  required  for  

the  custom  advisor.  This  method  is  called  after  the  advisor  base  module  starts.  In  

many  cases,  including  the  standard  advisors,  this  method  is not  used  and  its  code  

consists  of  a return  statement  only.  This  method  can  be  used  to call  the  

“suppressBaseOpeningSocket()”  on  page  66  method,  which  is  valid  only  from  

within  this  method.  

In  many  cases,  including  the  standard  advisors,  this  method  is not  used  and  its  

code  consists  of  a return  statement  only.  You can  use  this  method  to  call  the  

suppressBaseOpeningSocket  method,  which  is valid  only  from  within  the  

ADV_AdvisorInitialize  method.  

ADVLOG() method 

The  ADVLOG  function  allows  a custom  advisor  to write  a text  message  to  the  

advisor  base  log  file.  The  format  follows:  

void  ADVLOG  (int  logLevel,  String  message) 

This  command  has  the  following  parameters:  

logLevel  

The  status  level  at which  the  message  is written  to  the  log  file.  The  advisor  log  

file  is  organized  in  stages;  the  most  urgent  messages  are  given  status  level  0 

and  less  urgent  messages  receive  higher  numbers.  The  most  verbose  type  of 

message  is given  status  level  5.  These  levels  are  used  to  control  the  types  of 

 

126 Load Balancer  for IPv4 and IPv6 Administration  Guide



messages  that  the  user  receives  in  real  time  (The  dscontrol  command  is  used  to  

set  verbosity).  Catastrophic  errors  should  always  be  logged  at level  0. 

message  

The  message  to  write  to the  log  file.  The  value  for  this  parameter  is a standard  

Java  string.

getAdvisorName function 

The  getAdvisorName  function  returns  a Java  string  with  the  suffix  portion  of  your  

custom  advisor  name.  For  example,  for  an  advisor  named  ADV_cdload.java,  this  

function  returns  the  value  cdload.  

This  function  does  not  take  parameters.  

Note:  It  is not  possible  for  this  value  to change  during  one  instantiation  of  an  

advisor.  

caller.getCurrentServerId() 

The  getCurrentServerId  function  returns  a Java  string  which  is a unique  

representation  for  the  current  server.  Typically,  this  value  changes  each  time  you  

call  your  custom  advisor,  because  the  advisor  base  code  queries  all  server  

machines  in  series.  

This  function  takes  no  parameters.  

caller.getCurrentClusterId() 

The  getCurrentClusterId  function  call  returns  a Java  string  which  is a unique  

representation  for  the  current  cluster.  Typically,  this  value  changes  each  time  you  

call  your  custom  advisor,  because  the  advisor  base  queries  all  clusters  in  series.  

This  function  takes  no  parameters.  

caller.getSocket() 

The  getSocket  function  call  returns  a Java  socket  which  represents  the  socket  

opened  to  the  current  server  for  communication.  

This  function  takes  no  parameters.  

caller.getLatestLoad() 

The  getLatestLoad  function  allows  a custom  advisor  to  obtain  the  latest  load  value  

for  a given  server  object.  The  load  values  are  maintained  in  internal  tables  by  the  

advisor  base  code  and  the  manager  daemon.  This  function  call  is useful  if you  

want  to  make  the  behavior  of one  protocol  or  port  dependent  on  the  behavior  of  

another.  For  example,  you  might  use  this  function  call  in  a custom  advisor  that  

disabled  a particular  application  server  if the  Telnet server  on  that  same  machine  

was  disabled.  

The  syntax  is:  

int  caller.getLatestLoad  (String  clusterId, int port, String  serverId) 

The  three  arguments  together  define  one  server  object.  

 

Chapter 7. welc_reference.html  127



This  command  has  the  following  parameters:  

clusterId  

The  cluster  identifier  of  the  server  object  for  which  to  obtain  the  current  load  

value.  This  argument  must  be  a Java  string.  

port  

The  port  number  of the  server  object  for  which  to  obtain  the  current  load  

value.  

serverId  

The  server  identifier  of  the  server  object  for  which  to  obtain  the  current  load  

value.  This  argument  must  be  a Java  string.  The  return  value  is an  integer.  

v   A positive  return  value  represents  the  actual  load  value  assigned  for  the  

object  that  was  queried.  

v   The  value  -1  indicates  that  the  server  asked  about  is down.  

v   The  value  -2  indicates  that  the  status  of  the  server  asked  about  is unknown.

caller.receive() 

The  receive  function  gets  information  from  the  socket  connection.  The  syntax  is:  

caller.receive(StringBuffer  *response)  

This  command  has  the  following  parameters:  

response  

This  is  a string  buffer  into  which  the  retrieved  data  is placed.  Additionally,  the  

function  returns  an  integer  value  with  the  following  significance:  

v   0 indicates  data  was  sent  successfully.  

v   A negative  number  indicates  an  error.

caller.send() 

The  send  function  uses  the  established  socket  connection  to  send  a packet  of  data  

to  the  server,  using  the  specified  port.  The  syntax  is as  follows:  

caller.send(String  command) 

This  command  has  the  following  parameters:  

command  

This  is  a string  containing  the  data  to  send  to  the  server.  The  function  returns  

an  integer  value  with  the  following  significance:  

v   0 indicates  data  was  sent  successfully.  

v   A negative  number  indicates  an  error.

getLoad() 

int  getLoad(  int  iConnectTime;  ADV_Thread  *caller  ) 

This  function  has  the  following  parameters:  

iConnectTime  

The  length  of  time,  in  milliseconds,  that  it took  the  connection  to  complete.  

This  load  measurement  is performed  by  the  advisor  base  code  and  passed  to 

the  custom  advisor  code,  which  can  use  or  ignore  the  measurement  when  

returning  the  load  value.  If the  connection  fails,  this  value  is set  to  -1.  

 

128 Load Balancer  for IPv4 and IPv6 Administration  Guide



caller  

The  instance  of  the  advisor  base  class  where  advisor  base  methods  are  

provided.Function  calls  available  to  custom  advisors:  The  methods,  or  

functions,  described  in  the  following  sections  can  be  called  from  custom  

advisors.  These  methods  are  supported  by  the  advisor  base  code.  Some  of  

these  function  calls  can  be  made  directly,  for  example,  function_name(),  but  

others  require  the  prefix  caller. Caller  represents  the  base  advisor  instance  that  

supports  the  custom  advisor  that  is being  executed.

getAdviseOnPort() 

The  getAdviseOnPort  function  returns  the  port  number  on  which  the  calling  

custom  advisor  is  running.  

The  return  value  is a Java  integer  (int),  and  the  function  does  not  take  parameters.

Note:  It  is not  possible  for  this  value  to change  during  one  instantiation  of  an  

advisor.  

getAdvisorName() 

The  getAdvisorName  function  returns  a Java  string  with  the  suffix  portion  of  your  

custom  advisor’s  name.  For  example,  for  an  advisor  named  ADV_cdload.java,  this  

function  returns  the  value  cdload.  This  function  takes  no  parameters.  Note  that  it  

is  not  possible  for  this  value  to  change  during  one  instantiation  of  an  advisor.  

getInterval() 

The  getInterval  function  returns  the  advisor  interval,  that  is, the  number  of seconds  

between  advisor  cycles.  This  value  is equal  to  the  default  value  set  in  the  custom  

advisor’s  constructor,  unless  the  value  has  been  modified  at run time  by  using  the  

dscontrol  command.  The  return  value  is a Java  integer  (int).  

The  function  takes  no  parameters.  

suppressBaseOpeningSocket() 

The  suppressBaseOpeningSocket  function  call  allows  a custom  advisor  to  specify  

whether  the  base  advisor  code  opens  a TCP  socket  to the  server  on  the  custom  

advisor’s  behalf.  If your  advisor  does  not  use  direct  communication  with  the  

server  to  determine  its  status,  it might  not  be  necessary  to  open  this  socket.  This  

function  call  can  be  issued  only  once,  and  it  must  be  issued  from  the  

“ADV_AdvisorInitialize()  method”  on  page  63  routine.  

The  function  takes  no  parameters.  

   Related  tasks  

   “Creating  a custom  advisor”  on  page  60
A  custom  advisor  is a small  piece  of  Java  code,  provided  as  a class  file,  that  is 

called  by  the  Load  Balancer  base  code  to  determine  the  load  on  a server.  The  

base  code  provides  all  necessary  administrative  services,  including  starting  and  

stopping  an  instance  of  the  custom  advisor,  providing  status  and  reports,  

recording  history  information  in a log  file,  and  reporting  advisor  results  to  the  

manager  component.
   Related  reference  

 

Chapter 7. welc_reference.html  129



“Example:  Sample  advisor”  on  page  67
This  is  a sample  advisor  file  called  ADV_sample.

List of advisors 

Advisors  are  agents  within  Load  Balancer.  Their  purpose  is to  assess  the  health  

and  loading  of  server  machines.  This  list  of  advisors  are  already  provided  with  

Load  Balancer,  but  you  can  also  write  a custom  advisor  to  suit  specific  needs.  

 Table 12.  List  of advisors  

Advisor  Name  Description  

connect  The  connect  advisor  does  not  exchange  any  

protocol-specific  data  with  the  server.  It 

simply  measures  the  time  it takes  to open  

and  close  a TCP  connection  with  the server.  

This  advisor  is useful  for  server  applications  

which  use TCP,  but  with  a higher-level  

protocol  for  which  an IBM-supplied  or 

custom  advisor  is not  available.  

Custom  advisors  Dispatcher  provides  the  ability  for a 

customer  to write  a custom  (customizable)  

advisor.  This  enables  support  for  proprietary  

protocols  (on  top  of TCP)  for  which  IBM  has 

not  developed  a specific  advisor.  For more  

information,  see “Creating  a custom  

advisor”  on page  60. 

db2  The  DB2  advisor  works  in conjunction  with  

the DB2  servers.  Dispatcher  has  the  built  in 

capability  of checking  the  health  of DB2  

servers  without  the  need  for customers  to 

write  their  own  custom  advisors.  The  DB2  

advisor  communicates  with  the  DB2  

connection  port  only,  not  the  Java  connection  

port.  

dns  The  DNS  advisor  opens  a connection,  sends  

a pointer  query  for  DNS,  waits  for a 

response,  closes  the  connection  and  returns  

the elapsed  time  as a load.  

ftp  The  FTP  advisor  opens  a connection,  sends  a 

SYST  request,  waits  for a response,  closes  

the connection,  and  returns  the  elapsed  time  

as a load.  

http  The  HTTP  advisor  opens  a connection,  sends  

a HEAD  request  by default,  waits  for  a 

response  connection,  and  returns  the  elapsed  

time  as a load.  See  “Getting  service-specific  

advice  with  the  advisor  request  or response  

option”  on page  55for  more  information  on 

how  to change  the type  of request  sent  by 

the HTTP  advisor.  

 

130 Load Balancer  for IPv4 and IPv6 Administration  Guide



Table 12.  List  of advisors  (continued)  

Advisor  Name  Description  

https  The  HTTPS  advisor  is a �heavyweight� 

advisor  for  SSL  connections.  It performs  a 

full SSL  socket  connection  with  the  server.  

The  HTTPS  advisor  opens  an SSL  

connection,  sends  an  HTTPS  request,  waits  

for a response,  closes  the  connnection,  and  

returns  the  elapsed  time  as a load.  (See  also  

the SSL  advisor,  which  is a �lightweight�  

advisor  for  SSL  connections.)  

Note:  The  HTTPS  advisor  has no 

dependency  upon  server  key  or certificate  

content,  but  they  must  not  be expired.  

imap  The  IMAP  advisor  opens  a connection,  waits  

for an initial  message  from  the server, sends  

a quit  command,  closes  the connection,  and  

returns  the  elapsed  time  as a load.  

ldap  The  LDAP  advisor  opens  a connection,  

sends  an anonymous  BIND  request,  waits  

for a response,  closes  the  connection,  and  

returns  the  elapsed  time  as a load.  

ldapuri  Note:  The  LDAP  URI  advisor  allows  you  

better  gauge  LDAP  availability  by 

processing  a complete  request  to the LDAP  

server.  

The  advisor:  

1.   Opens  a connection.  

2.   Sends  a BIND  request,  which  is based  on 

the  advisorrequest  field  that  you  define  

on the  server  object.  

3.   Waits for a response.  

4.   Closes  the  connection.  

5.   Returns  the  elapsed  time  as a load.

Read  “Configuring  the LDAP  URI  advisor”  

on page  56 for more  information  on 

configuring  this  advisor.  

nntp  The  NNTP  advisor  opens  a connection,  

waits  for  an initial  message  from  the server,  

sends  a quit  command,  closes  the 

connection,  and  returns  the  elapsed  time  as 

a load.  

ping  The  ping  advisor  does  not  open  a TCP  

connection  with  the  servers,  but  instead  

reports  whether  the  server  responds  to a 

ping.  While  the  ping  advisor  may  be used  

on any  port,  it is also  designed  for 

configurations  using  the  wildcard  port,  over  

which  multiple  protocol  traffic  may  be 

flowing.  It is also  useful  for configurations  

using  non-TCP  protocols  with  their  servers.  

 

Chapter 7. welc_reference.html  131



Table 12.  List  of advisors  (continued)  

Advisor  Name  Description  

pop3  The  POP3  advisor  opens  a connection,  waits  

for an initial  message  from  the  server,  sends  

a quit  command,  closes  the  connection,  and  

returns  the  elapsed  time  as a load.  

reach  The  reach  advisor  pings  its target  machines.  

This  advisor  is also  designed  for the  

Dispatcher’s  high  availability  components  to 

determine  reachability  of its reach  targets.  Its 

results  flow  to high  availability  component  

and  do  not  appear  in the manager  report.  

Unlike  the  other  advisors,  the  reach  advisor  

starts  automatically  by  the  manager  function  

of the Dispatcher  component.  

sip  The  SIP  advisor  opens  a connection,  sends  

an OPTIONS  request,  waits  for a response,  

closes  the connection,  and  returns  the  

elapsed  time  as a load.  The  SIP advisor  that  

is supported  runs  on TCP  only  and  requires  

an application  to be installed  on a server  

that  responds  to an OPTIONS  request.  

smtp  The  SMTP  advisor  opens  a connection,  waits  

for an initial  message  from  the  server,  sends  

a quit,  closes  the connection,  and  returns  the 

elapsed  time  as a load.  

ssl  The  SSL  advisor  is a �lightweight�  advisor  

for SSL  connections.  It does  not  establish  a 

full SSL  socket  connection  with  the server.  

The  SSL  advisor  opens  a connection,  sends  

an SSL  CLIENT_HELLO  request,  waits  for a 

response,  closes  the  connection,  and  returns  

the elapsed  time  as a load.  (See  also  the  

HTTPS  advisor,  which  is a �heavyweight� 

advisor  for  SSL  connections.)  

Note:  The  SSL  advisor  has  no dependency  

upon  key  management  or certificates.  

ssl2http  The  ssl2http  advisor  starts  and  advises  on 

the servers  listed  under  port  443,  but  the  

advisor  will  open  a socket  to the  “mapport� 

for HTTP  requests.  

self  The  self  advisor  collects  load  status  

information  on back-end  servers.  You can 

use  the  self  advisor  when  using  Dispatcher  

in a two–tiered  configuration,  where  the 

Dispatcher  furnishes  information  from  the  

self  advisor  to  the top-tiered  Load  Balancer.  

The  self  advisor  specifically  measures  the 

connections  per  second  rate  on back-end  

servers  of the  Dispatcher  at the  executor  

level.  See  rprf_selfadv2tier.dita  for more  

information.  

telnet  The  Telnet advisor  opens  a connection,  waits  

for an initial  message  from  the  server,  closes  

the connection,  and  returns  the  elapsed  time  

as a load.  

 

132 Load Balancer  for IPv4 and IPv6 Administration  Guide



Table 12.  List  of advisors  (continued)  

Advisor  Name  Description  

was  The  WAS (WebSphere  Application  Server)  

advisor  works  in conjunction  with  the 

WebSphere  Application  servers.  

Customizable  sample  files  for  this  advisor  

are  provided  in the  installation  directory.  For  

more  information,  see “Example:  

Implementing  the  WAS advisor”  on page  77. 

wlm  The  WLM  (Workload  Manager)  advisor  is 

designed  to work  in conjunction  with  

servers  on  OS/390  mainframes  running  the 

MVS™ Workload  Manager  (WLM)  

component.  For  more  information,  see  “The  

Workload  Management  Advisor”  on page  

59.
  

Sample scripts to generate alerts and record server failure 

Load  Balancer  provides  user  exits  that  trigger  scripts  that  you  can  customize.  You 

can  create  the  scripts  to perform  automated  actions,  such  as  alerting  an  

Administrator  when  servers  are  marked  down  by  the  manager  or  simply  record  

the  event  of  the  failure.  

Sample  scripts,  which  you  can  customize,  are  in  the  install_root/servers/samples  

directory.  In  order  to run the  files,  you  must  move  them  to  the  

install_root/servers/bin  directory  and  remove  the  �sample�  file  extension.  The  

following  sample  scripts  are  provided:  

v   serverDown  —  a server  is marked  down  by  the  manager.  

v   serverUp  —  a server  is marked  back  up  by  the  manager.  

v   managerAlert  —  all  servers  are  marked  down  for  a particular  port.  

v   managerClear  —  at  least  one  server  is now  up,  after  all  were  marked  down  for  

a particular  port.

If  all  servers  on  a cluster  are  marked  down  (either  by  the  user  or  by  the  advisors),  

the  managerAlert  (if  configured)  starts,  and  Load  Balancer  attempts  to  route  traffic  

to  the  servers  using  a round-robin  technique.  The  serverDown  script  does  not  start  

when  the  last  server  in  the  cluster  is detected  as  offline.  By  design,  Load  Balancer  

attempts  to  continue  to route  the  traffic  in  case  a server  comes  back  online  and  

responds  to  the  request.  If  Load  Balancer  instead  dropped  all  traffic,  the  client  

would  receive  no  response.  When  Load  Balancer  detects  that  the  first  server  of a 

cluster  is  back  online,  the  managerClear  script  (if  configured)  starts,  but  the  

serverUp  script  (if  configured)  is not  run until  an  additional  server  is brought  back  

online.  

Here  are  some  considerations  for  using  the  serverUp  and  serverDown  scripts:  

v   If you  define  the  manager  cycle  to  be  less  than  25%  of  the  advisor  time,  false  

reports  of  servers  up  or  down  can  result.  By  default,  the  manager  runs every  2 

seconds,  but  the  advisor  runs every  7 seconds.  Therefore,  the  manager  expects  

new  advisor  information  within  4 cycles.  However,  removing  this  restriction  

(that  is,  defining  the  manager  cycle  to  be  greater  than  25%  of  the  advisor  time)  

significantly  decreases  performance  because  multiple  advisors  can  advise  on  a 

single  server.  

 

Chapter 7. welc_reference.html  133



v   When  a server  goes  down,  the  serverDown  script  starts.  However,  if you  issue  a 

serverUp  command,  it is assumed  that  the  server  is up  until  the  manager  

obtains  new  information  from  the  advisor  cycle.  If the  server  is still  down,  the  

serverDown  script  runs again.

High Availability recovery strategy for failed servers 

The  recovery  strategy  dictates  how  Load  Balancer  behaves  when  one  Dispatcher  

machine  fails  and  there  is another  configured  as a backup.  

Two  Dispatcher  machines  are  configured:  the  primary  machine,  and  a second  

machine  called  the  backup.  At  startup,  the  primary  machine  sends  all  the  

connection  data  to  the  backup  machine  until  that  machine  is synchronized.  The  

primary  machine  becomes  active,  that  is,  it begins  load  balancing.  The  backup  

machine,  meanwhile,  monitors  the  status  of the  primary  machine,  and  is said  to  be 

in  standby  state.  

If the  backup  Load  Balancer  machine  detects  that  the  primary  machine  has  failed,  

it performs  a takeover  load  balancing  functions  and  becomes  the  active  machine.  

After  the  primary  machine  has  once  again  become  operational,  the  machines  

respond  according  to  how  the  recovery  strategy  has  been  configured  by  the  user.  

There  are  two  kinds  of strategy:  

v    Automatic  - The  primary  machine  resumes  routing  packets  as  soon  as it  

becomes  operational  again.  

v   Manual  - intervention  is required  to return  the  primary  machine  to  active  state  

and  reset  the  backup  machine  to  standby.  The  manual  recovery  strategy  allows  

you  to  force  the  routing  of packets  to a particular  machine,  using  the  takeover  

command.  Manual  recovery  is useful  when  maintenance  is being  performed  on  

the  other  machine

Note:  The  strategy  parameter  must  be  the  same  for  both  machines.  

Scripts to run with high availability 

Before  using  a script,  remember  that  for  Dispatcher  to  route  packets,  each  cluster  

address  must  be  aliased  to  a network  interface  device.  

v   In  a stand-alone  Dispatcher  configuration,  each  cluster  address  must  be  aliased  

to  a network  interface  card  (for  example,  en0,  tr0).  

v   In  a high  availability  configuration:  

–   On  the  active  machine,  each  cluster  address  must  be  aliased  to a network  

interface  card  (for  example,  en0,  tr0)  

–   On  the  standby  machine,  each  cluster  address  must  be  aliased  to  a loopback  

device  (for  example,  lo0).  

–   To customize  the  scripts  for  certain  situations,  read  Customizing  the  scripts  

for  high  availability.
v    In  any  machine  in  which  the  executor  has  been  stopped,  all  aliases  should  be 

removed  to  prevent  conflicts  with  another  machine  that  may  be  started.  For  

information  on  aliasing  the  network  interface  card,  see  “Aliasing  the  network  

interface  card  or  loopback  device”  on  page  39.

The  following  sample  script  can  be  used:  

v   HighAvailChange  

 

134 Load Balancer  for IPv4 and IPv6 Administration  Guide



The  HighAvailChange  script  runs whenever  the  high  availability  state  changes  

within  the  Dispatcher.  You can  create  this  script  to use  state  change  information,  

for  instance,  to  alert  an  Administrator  or  simply  record  the  event.

On  Linux  for  S/390:  Dispatcher  issues  a gratuitous  ARP  to  move  IP  addresses  from  

one  Dispatcher  to  another.  This  mechanism  is therefore  tied  to the  underlying  

network  type.  When  running  Linux  for  S/390,  Dispatcher  can  natively  do  high  

availability  takeovers  (complete  with  IP  address  moves)  only  on  those  interfaces  

which  can  issue  a gratuitous  ARP  and  configure  the  address  on  the  local  interface.  

This  mechanism  will  not  work  properly  on  point-to-point  interfaces  such  as  IUCV  

and  CTC  and  will  not  work  properly  in  certain  configurations  of  qeth/QDIO.  

   Related  tasks  

   “Configuring  high  availability”  on  page  80
The  high  availability  feature  involves  the  use  of  a second  Dispatcher  machine.  

The  first  Dispatcher  machine  performs  load  balancing  for  all  the  client  traffic  as 

it  does  in  a single  Dispatcher  configuration.  The  second  Dispatcher  machine  

monitors  the  ″health″ of the  first,  and  takes  over  the  task  of load  balancing  if it 

detects  that  the  first  Dispatcher  machine  has  failed.  

   Customizing  the  scripts  for  high  availability
Customize  your  scripts  to tune  the  performance  of the  high  availability  function  

for  Load  Balancer.  

   “Detecting  server  failures  with  heartbeats  and  reach  targets”  on  page  83
Configure  heartbeats  and  reach  targets  to  detect  server  failures  and  control  

when  failovers  can  occur.
   Related  reference  

   “High  Availability  recovery  strategy  for  failed  servers”  on  page  84
The  recovery  strategy  dictates  how  Load  Balancer  behaves  when  one  

Dispatcher  machine  fails  and  there  is another  configured  as  a backup.

Commands 

Look  up  a command  by  its  name  to  find  detailed  syntax  and  usage  of the  

command.  

To open  the  information  center  table  of contents  to  the  location  of  this  reference  

information,  click  the  Show  in  Table  of  Contents  button  ( ) on  your  information  

center  border.

Note:    You need  to  follow  different  syntax  conventions  depending  upon  the  

location  from  which  you  issue  the  command.  In  most  cases,  you  can  use  one  of the  

following  options:  

v   Issue  the  command  from  within  the  dscontrol  shell.  For  example,  

enter  dscontrol  

Press  Enter,  and  you  will  enter  the  command  shell.  

v   Issue  the  command  through  a configuration  file.  

v   Enter  the  command  from  the  command  prompt.  For  example,  enter:  

dscontrol  rule  add  

The  following  syntax  is applicable  for  any  rule add  command  if you  are  using  the  

dscontrol  shell:  

v   If you  are  entering  the  command  from  the  dscontrol  shell  or a configuration  file,  

place  quotation  marks  around  the  special  characters,  as  shown  in  the  reference  

topics.  The  following  example  is for  a configuration  file:  

 

Chapter 7. welc_reference.html  135



dscontrol  rule  add  10.1.203.4@80@true  type  true  

v   If  you  are  entering  the  same  the  same  command  from  a Windows  prompt,  

surround  the  entire  command  with  quotation  marks.  For  example:  

dscontrol  "rule  add  10.1.203.4@80@true  type  true"  

dscontrol advisor 

Use  this  command  to control  various  features  of  the  advisor  function.  

Syntax 

�� dscontrol advisor connecttimeout name port seconds 

cluster@port
 

interval

 

name

 

port

 

seconds

 

cluster@port

 

list

 

loglevel

 

name

 

port

 

level

 

cluster@port

 

logsize

 

name

 

port

 

unlimited

 

cluster@port

 

number of records

 

receivetimeout

 

name

 

port

 

seconds

 

cluster@port

 

report

 

name

 

port

 

cluster@port

 

retries

 

name

 

port

 

number of retries

 

cluster@port

 

start

 

name

 

port

 

cluster@port

 

status

 

name

 

port

 

cluster@port

 

log file

 

stop

 

name

 

port

 

cluster@port

 

timeout

 

name

 

port

 

unlimited

 

cluster@port

 

seconds

 

version

 

name

 

port

 

cluster@port

 ��

 

Parameters 

connecttimeout  

Set  how  long  an  advisor  waits  before  reporting  that  a connect  to  a server  for  a 

particular  port  on  a server  (a  service)  fails.  For  more  information,  see  

“Enabling  advisors  to  manage  load  balancing”  on  page  49.  

v   name  

The  name  of  the  advisor.  Possible  values  include  connect,  db2, dns, ftp,  

http, https, cachingproxy, imap, ldap, ldapuri, nntp, ping, pop3, self, sip, 

smtp, ssl,  ssl2http,  telnet, and  wlm. 

See  the  topic  “List  of  advisors”  on  page  52 for  more  information  on  the  

advisors  that  Load  Balancer  provides.  

Names  of  customized  advisors  are  of  the  format  ADV_xxxx, where  xxxx  is 

the  name  of the  class  that  implements  the  custom  advisor.  See  “Creating  a 

custom  advisor”  on  page  60  for  more  information.  

v   port  

The  number  of the  port  that  the  advisor  is monitoring.  

v   cluster@port  

The  cluster  value  is optional  on  the  advisor  commands,  but  the  port  value  is 

required.  If  the  cluster  value  is not  specified,  then  the  advisor  will  start  

running  on  the  port  for  all  clusters.  If you  specify  a cluster,  then  the  advisor  

will  start  running  on  the  port,  but  only  for  the  cluster  you  have  specified.  

 

136 Load Balancer  for IPv4 and IPv6 Administration  Guide



See  the  topic  “Enabling  advisors  to manage  load  balancing”  on  page  49 for  

more  information  on  starting  and  stopping  advisors.  

The  cluster  is the  address  in  IP  address  format  or  symbolic  name.  The  port  is 

the  number  of the  port  that  the  advisor  is monitoring.  

v   seconds  

A  positive  integer  representing  the  timeout  in  seconds  at which  the  advisor  

waits  before  reporting  that  a connect  to  a server  fails.  The  default  is  3 times  

the  value  specified  for  the  advisor  interval.

interval  

Set  how  often  the  advisor  will  query  the  servers  for  information.  

v   seconds  

A  positive  integer  representing  the  number  of  seconds  between  requests  to 

the  servers  about  their  current  status.  The  default  is  7.

list  

Show  list  of  advisors  that  are  currently  providing  information  to the  manager.  

loglevel  

Set  the  logging  level  for  an  advisor  log.  

v   level  

The  number  of  the  level  (0 to 5).  The  default  is 1.  The  higher  the  number,  

the  more  information  that  is written  to  the  advisor  log.  The  following  are  the  

possible  values:  0 is None,  1 is Minimal,  2 is Basic,  3 is Moderate,  4 is 

Advanced,  5 is Verbose.

logsize  

Set  the  maximum  size  of  an  advisor  log.  When  you  set  a maximum  size  for  the  

log  file,  the  file  will  wrap;  when  the  file  reaches  the  specified  size,  the  

subsequent  entries  are  written  from  the  top  of  the  file,  overwriting  the  

previous  log  entries.  Log  size  cannot  be  set  smaller  than  the  current  size  of  the  

log.  Log  entries  are  time–stamped  so  you  can  tell  the  order  in  which  they  were  

written.  The  higher  you  set  the  log  level,  the  more  carefully  you  should  choose  

the  log  size,  because  you  can  quickly  run out  of space  when  logging  at the  

higher  levels.  

v   number  of  records  

The  maximum  size  in  bytes  for  the  advisor  log  file.  You can  specify  either  a 

positive  number  greater  than  zero,  or  the  word  unlimited.  The  log  file  may  

not  reach  the  exact  maximum  size  before  overwriting  because  the  log  entries  

themselves  vary  in  size.  The  default  value  is 1 MB.

receivetimeout  

Set  how  long  an  advisor  waits  before  reporting  that  a receive  from  a particular  

port  on  a server  (a service)  fails.  For  more  information,  see  “Enabling  advisors  

to  manage  load  balancing”  on  page  49.  

 v   seconds  

A  positive  integer  representing  the  timeout  in  seconds  at which  the  advisor  

waits  before  reporting  that  a receive  from  a server  fails.  The  default  is 3 

times  the  value  specified  for  the  advisor  interval.

report  

Display  a report  on  the  state  of  the  advisor.  

retry  

Retry  sets  the  number  of retries  that  an  advisor  can  make  before  marking  a 

server  down.  

 

Chapter 7. welc_reference.html  137



v   number  of retries  

An  integer  greater  than  or  equal  to  zero.  This  value  should  be  no  larger  than  

3. If  retries  keyword  is not  configured,  the  number  of retries  defaults  to  zero.

start  

Start  the  advisor.  There  are  advisors  for  each  protocol.  The  default  ports  are  as  

follows:  

 Table 13.  Default  ports  for advisors  

Advisor  Name  Protocol  Port  

connect  ICMP  12345  

db2  private  50000  

dns  DNS  53 

ftp  FTP  21 

Note:  The  FTP  advisor  

should  advise  only  on the 

FTP  control  port  (21).  Do not 

start  an  FTP  advisor  on the 

FTP  data  port  (20).  

http  HTTP  80 

https  SSL  443  

imap  IMAP  143  

ldap  LDAP  389  

ldapuri  LDAP  389  

nntp  NNTP  119 

ping  PING  0 

pop3  POP3  110 

self  private  12345  

sip  SIP  5060  

smtp  SMTP  25 

ssl  SSL  443  

ssl2http  SSL  443  

telnet  Telnet 23 

WLM  private  10007
  

v   log  file  

File  name  to  which  the  management  data  is logged.  Each  record  in  the  log  is 

time–stamped.  

The  default  file  is advisorname_port.log,  for  example,  http_80.log.  To change  

the  directory  where  the  log  files  are  kept,  see  “Logging  with  Load  Balancer”  

on  page  90.  The  default  log  files  for  cluster  (or  site)  specific  advisors  are  

created  with  the  cluster  address,  for  example,  http_127.40.50.1_80.log.

status  

Display  the  current  status  of all  the  values  in an  advisor  that  can  be  set  

globally  and  their  defaults.  

stop  

Stop  the  advisor.  

 

138 Load Balancer  for IPv4 and IPv6 Administration  Guide



timeout  

Set  the  number  of  seconds  for  which  the  manager  will  consider  information  

from  the  advisor  as valid.  If the  manager  finds  that  the  advisor  information  is 

older  than  this  timeout  period,  the  manager  will  not  use  that  information  in  

determining  weights  for  the  servers  on  the  port  the  advisor  is monitoring.  An  

exception  to  this  timeout  is when  the  advisor  has  informed  the  manager  that  a 

specific  server  is down.  The  manager  will  use  that  information  about  the  

server  even  after  the  advisor  information  has  timed  out.  

v   seconds  

A  positive  number  representing  the  number  of  seconds,  or  the  word  

unlimited.  The  default  value  is unlimited.

version  

Display  the  current  version  of the  advisor.

Samples 

v   To start  the  http  advisor  on  port  80  for  cluster  127.40.50.1:  

dscontrol  advisor  start  http  127.40.50.1@80  

v   To start  the  http  advisor  on  port  88  for  all  clusters:  

dscontrol  advisor  start  http  88 

v   To stop  the  http  advisor  at port  80  for  cluster  127.40.50.1:  

dscontrol  advisor  stop  http  127.40.50.1@80  

v   To set  the  time  (30  seconds)  an  HTTP  advisor  for  port  80  waits  before  reporting  

that  a connect  to  a server  fails:  

dscontrol  advisor  connecttimeout  http  80 30 

v   To set  the  time  (20  seconds)  an  HTTP  advisor  for  port  80  on  cluster  127.40.50.1  

waits  before  reporting  that  a connect  to  a server  fails:  

dscontrol  advisor  connecttimeout  http  127.40.50.1@80  20 

v   To set  the  interval  for  the  FTP  advisor  (for  port  21)  to  6 seconds:  

dscontrol  advisor  interval  ftp  21 6 

v   To display  the  list  of  advisors  currently  providing  information  to the  manager:  

dscontrol  advisor  list  

v   To change  the  log  level  of the  advisor  log  to  0 for  better  performance:  

dscontrol  advisor  loglevel  http  80 0 

v   To change  the  ftp  advisor  log  size  for  port  21  to  5000  bytes:  

dscontrol  advisor  logsize  ftp  21 5000  

v   To set  the  time  (60  seconds)  an  HTTP  advisor  (for  port  80)  waits  before  reporting  

that  a receive  from  a server  fails:  

dscontrol  advisor  receivetimeout  http  80 60 

v   To display  a report  on  the  state  of  the  ftp  advisor  (for  port  21):  

dscontrol  advisor  report  ftp  21 

v   To display  the  current  status  of  values  associated  with  the  http  advisor  for  port  

80:  

dscontrol  advisor  status  http  80 

v   To set  the  timeout  value  for  the  ftp  advisor  information  on  port  21  to  5 seconds:  

dscontrol  advisor  timeout  ftp  21 5 

v   To display  the  current  version  number  of the  ssl  advisor  for  port  443:  

dscontrol  advisor  version  ssl  443  

This  command  produces  output  similar  to the  following:  

 

Chapter 7. welc_reference.html  139



Version:  04.00.00.00  - 07/12/2001-10:09:56-EDT  

dscontrol binlog 

You can  control  the  settings  and  operation  of the  binary  log  file  with  the  dscontrol  

binlog  command.  

Syntax 

�� dscontrol binlog start 

stop
 

set

 

retention

 

hours

 

interval

 

seconds

 

status

 ��

 

Parameters 

start  

Starts  the  binary  log.  

stop  

Stops  the  binary  log.  

set  

v   retention  hours  

The  number  of hours  that  binary  log  files  are  kept.  The  default  value  for  

retention  is  24.  

v   interval  seconds  

The  number  of seconds  between  log  entries.  The  default  value  for  interval  is 

60.

status  

Shows  the  retention  and  intervals  of the  binary  log.

dscontrol cluster 

Configure  clusters  and  cluster  properties  with  the  dscontrol  cluster  command.  

Syntax 

�� dscontrol cluster add cluster + c2... address address 

proportions
 

active
 

new
 

port
 

system
 

set

 

cluster

 

+

 

c2...

 

proportions

 

active

 

new

 

port

 

system

 

remove

 

cluster

 

report

 

cluster

 

status

 

cluster

 ��

 

Parameters 

add  

v   cluster  

The  cluster  name  or  address  to which  clients  connect.  The  cluster  value  is  

either  a symbolic  name  or  in  IP  address  format.  

With  the  exception  of the  dscontrol  cluster  add  command,  you  can  use  the  

colon  (:) symbol  to  act  as a wild  card.  For  example,  the  following  command,  

dscontrol  cluster  set  : weightbound  80 

will  result  in  setting  a weightbound  of  80  to  all  clusters.

 

140 Load Balancer  for IPv4 and IPv6 Administration  Guide



Note:  Additional  clusters  are  separated  by  a plus  sign  (+).
v    address  address  

The  unique  IP  address  of the  TCP  machine  as  either  a host  name  or  in  IP 

address  format.  If  the  cluster  value  is unresolvable,  you  must  provide  the  IP 

address  of  the  physical  machine.  

v   proportions  

At  the  cluster  level,  set  the  proportion  of importance  for  active  connections  

(active),  new  connections  (new),  information  from  any  advisors  (port),  and  

information  from  a system  monitoring  program  such  as  Metric  Server  

(system)  that  are  used  by  the  manager  to  set  server  weights.  Each  of  these  

values,  described  below,  is expressed  as  a percentage  of  the  total  and  they  

therefore  always  total  100.  For  more  information  see  “Tuning  the  proportion  

of  importance  given  to  status  information”  on  page  99.  

–   active  

A number  from  0–100  representing  the  proportion  of weight  to be  given  

to  the  active  connections.  The  default  is 50.  

–   new  

A number  from  0–100  representing  the  proportion  of weight  to be  given  

to  new  connections.  The  default  is 50.  

–   port  

A number  from  0–100  representing  the  proportion  of weight  to be  given  

to  the  information  from  the  advisors.  The  default  is 0.

Note:  When  an  advisor  is started  and  if the  port  proportion  is 0,  Load  

Balancer  automatically  sets  this  value  to 1 in  order  for  the  manager  to  use  

the  advisor  information  as input  for  calculating  server  weight.  

–   system  

A number  from  0–100  representing  the  proportion  of weight  to be  given  

to  the  information  from  the  system  metrics,  such  as  from  Metric  Server.  

The  default  is 0.

set  

Set  the  properties  of the  cluster.  

remove  

Remove  this  cluster.  

report  

Show  the  internal  fields  of  the  cluster.  

status  

Show  current  status  of  a specific  cluster.

Samples 

v   To add  cluster  address  130.40.52.153:  

dscontrol  cluster  add  130.40.52.153  

v   To remove  cluster  address  130.40.52.153:  

dscontrol  cluster  remove  130.40.52.153  

v   To set  the  relative  importance  placed  on  input  (active,  new, port,  system)  

received  by  the  manager  for  servers  residing  on  cluster  9.6.54.12:  

dscontrol  cluster  set  9.6.54.12  proportions  60 35 5 0 

v   To show  the  status  for  cluster  address  9.67.131.167:  

dscontrol  cluster  status  9.67.131.167  

 

Chapter 7. welc_reference.html  141



dscontrol executor 

Control  the  executor  function  with  the  dscontrol  executor  command.  

Syntax 

�� dscontrol executor report 

set
 

nfa
 

IP address
 

hatimeout

 

time

 

start

 

status

 

stop

 ��

 

Parameters 

report  

Display  a statistics  snapshot  report.  

set  

Set  the  fields  of  the  executor.  

v   nfa  IP  address  

Set  the  non-forwarding  address.  Any  packet  sent  to this  address  will  not  be 

forwarded  by  the  Dispatcher  machine.  

The  Internet  Protocol  address  as  either  a symbolic  name  or  in dotted  decimal  

format.  

v   hatimeout  seconds  

The  number  of seconds  that  the  executor  uses  to timeout  high  availability  

heartbeats.  The  default  value  is 2.

start  

Start  the  executor.  

status  

Display  the  current  status  of the  values  in  the  executor  that  can  be  set  and  

their  defaults.  

stop  

Stop  the  executor.

Samples 

v   To display  the  internal  counters  for  Dispatcher:  

dscontrol  executor  status  

v   To set  the  non-forwarding  address  to  130.40.52.167:  

dscontrol  executor  set  nfa  130.40.52.167  

v   To start  the  executor:  

dscontrol  executor  start  

v   To stop  the  executor:  

dscontrol  executor  stop  

dscontrol file 

Manage  your  configuration  files  with  the  dscontrol  file  command.  

 

142 Load Balancer  for IPv4 and IPv6 Administration  Guide



Syntax 

�� dscontrol file appendload file[.ext] 

delete
 

file[.ext]
 

newload

 

file[.ext]

 

report

 

save

 

file[.ext]

 

force

 ��

 

Parameters 

appendload  

To update  the  current  configuration,  the  appendload  command  runs the  

executable  commands  from  your  script  file.  

v   file[.ext]  

A  configuration  file  consisting  of dscontrol  commands.  The  file  extension  

(.ext)  can  be  anything  you  like  and  can  be  omitted.

delete  

Delete  the  file.  

newload  

Loads  and  runs a new  configuration  file  into  the  Load  Balancer.  The  new  

configuration  file  replaces  the  current  configuration.  

report  

Report  on  the  available  file  or  files.  

save  

Save  the  current  configuration  for  Load  Balancer  to  the  file.

Note:  Files  are  saved  into  and  loaded  from  the  install_root/servers/
configurations/dispatcher  directory.  

v   force  

To save  your  file  to  an  existing  file  of  the  same  name,  use  force  to  delete  the  

existing  file  before  saving  the  new  file.  If you  do  not  use  the  force  option,  

the  existing  file  is not  overwritten.

Samples 

v   To delete  a file:  

dscontrol  file  delete  file3  

v   To load  a new  configuration  file  to replace  the  current  configuration:  

dscontrol  file  newload  file1.sv  

v   To append  a configuration  file  to  the  current  configuration  and  load:  

dscontrol  file  appendload  file2.sv  

v   To view  a report  of your  files  (files  that  you  saved  earlier):  

dscontrol  file  report  

v   To save  your  configuration  into  a file  named  file3:  

dscontrol  file  save  file3  

dscontrol help 

Display  or  print  help  for  any  dscontrol  command  with  the  dscontrol  help  

command.  

 

Chapter 7. welc_reference.html  143



Syntax 

�� dscontrol help advisor 

binlog
 

cluster

 

executor

 

file

 

help

 

highavailability

 

logstatus

 

manager

 

metric

 

port

 

rule

 

server

 

set

 

status

 ��

 

Sample 

To get  help  on  the  dscontrol  command:  

dscontrol  help  

dscontrol highavailability 

You can  control  high  availability  functions  with  the  dscontrol  highavailability  

command.  

Syntax 

�� dscontrol highavailability backup add primary auto port 

backup
 

manual
 

delete

 

heartbeat

 

add

 

srcaddress

 

dstaddress

 

delete

 

address

 

reach

 

add

 

address

 

delete

 

status

 

takeover

 

address

 ��

 

Parameters 

backup  

Specify  information  for  either  the  primary  or  backup  machine.  

v   add  

Defines  and  runs the  high  availability  functions  for  this  machine.  

–   primary  

Identifies  the  Dispatcher  machine  that  has  a primary  role.  

–   backup  

Identifies  the  Dispatcher  machine  that  has  a backup  role.  

–   auto  

Specifies  an  automatic  recovery  strategy,  in which  the  primary  machine  

will  resume  routing  packets  as soon  as  it comes  back  into  service.  

–   manual  

 

144 Load Balancer  for IPv4 and IPv6 Administration  Guide



Specifies  a manual  recovery  strategy,  in  which  the  primary  machine  does  

not  resume  routing  packets  until  the  administrator  issues  a takeover  

command.
v   delete  

Removes  this  machine  from  high  availability,  so  that  it  will  no  longer  be  

used  as  a backup  or  primary  machine.  

v   port  

An  unused  TCP  port  on  both  machines,  to  be  used  by  Dispatcher  for  its  

heartbeat  messages.  The  port  must  be  the  same  for  both  the  primary  and  

backup  machines.

heartbeat  

Defines  a communication  session  between  the  primary  and  backup  Dispatcher  

machines.  

v   add  

Tell the  source  Dispatcher  the  address  of  its  partner  (destination  address).  

–    source_address  

Source  address.  The  address  (IP  or  symbolic)  of  this  Dispatcher  machine.  

–   destination_address  

Destination  address.  The  address  (IP  or  symbolic)  of the  other  Dispatcher  

machine.

The  source_address  and  destination_address  must  be  the  NFAs  of the  machines  

for  at  least  one  heartbeat  pair. 

v   delete  address  

Removes  the  address  pair  from  the  heartbeat  information.  You can  specify  

either  the  destination  or  source  address  of the  heartbeat  pair. The  address  (IP  

or  symbolic)  of  either  the  destination  or  the  source.

reach  

Add  or  delete  target  address  for  the  primary  and  backup  Dispatchers,  the  

reach  advisor  sends  out  pings  from  both  the  backup  and  the  primary  

Dispatchers  to  determine  how  reachable  their  targets  are.  

v   add  address  

Adds  a target  address  for  the  reach  advisor.  address  is the  IP  address,  format  

or  symbolic,  of  the  target  node.  

v   delete  address  

Removes  a target  address  from  the  reach  advisor.  address  is the  IP  address,  

format  or  symbolic,  of  the  target  node.

Note:  When  configuring  the  reach  target,  you  must  also  start  the  reach  advisor.  

The  reach  advisor  starts  automatically  when  you  use  the  dscontrol  manager  

reach  command.

status  

Return  a report  on  high  availability.  Machines  are  identified  as having  one  of  

three  status  conditions  or states:  

v   Active:  A given  machine  (either  a primary,  backup,  or  both)  is routing  

packets.  

v   Standby:  A  given  machine  (either  a primary,  backup,  or  both)  is not  routing  

packets;  it is monitoring  the  state  of an  active  Dispatcher.  

v   Idle:  A  given  machine  is routing  packets,  and  is not  trying  to  establish  

contact  with  its  partner  Dispatcher.

 

Chapter 7. welc_reference.html  145



takeover  

Simple  high  availability  configuration  (role  of the  Dispatcher  machines  are  

either  primary  or  backup).  

 Takeover  instructs  a standby  Dispatcher  to  become  active  and  to  begin  routing  

packets.  This  will  force  the  currently  active  Dispatcher  to become  standby.  The  

takeover  command  must  be  issued  on  the  standby  machine  and  works  only  

when  the  strategy  is manual.  The  substate  must  be  synchronized.  

v   address  

The  takeover  address  value  is optional.  It should  only  be  used  when  the  role  

of the  machine  is both  primary  and  backup  (mutual  high  availability  

configuration).  The  address  specified  is  the  NFA of the  Dispatcher  machine  

which  normally  routes  this  cluster’s  traffic.  When  there  is a takeover  of both  

clusters,  specify  the  Dispatcher’s  own  NFA address.

Note:   

v   The  roles  of  the  machines  (primary  and  backup)  do  not  change.  Only  their  

relative  status  (active  or  standby)  changes.  

v   There  are  three  possible  takeover  scripts,  which  are  goActive,  goStandby,  

and  goInOp.  See  “Scripts  to  run with  high  availability”  on  page  85  for  more  

information  on  these  scripts.

Samples 

v   To check  the  high  availability  status  of a machine:  

dscontrol  highavailability  status  

v   To add  the  backup  information  to the  primary  machine  using  the  automatic  

recovery  strategy  and  port  80:  

dscontrol  highavailability  backup  add  primary  auto  80 

v   To add  an  address  that  the  Dispatcher  must  be  able  to reach:  

dscontrol  highavailability  reach  add  9.67.125.18  

v   To add  heartbeat  information  for  the  primary  and  backup  machines  

Primary  - highavailability  heartbeat  add  9.67.111.3  9.67.186.8  

  

Backup  - highavailability  heartbeat  add 9.67.186.8  9.67.111.3  

v   To tell  the  standby  Dispatcher  to  become  active,  forcing  the  active  machine  to 

become  standby:  

dscontrol  highavailability  takeover  

dscontrol logstatus 

Use  this  command  to display  the  log  settings  for  a server.  

Syntax 

�� dscontrol logstatus ��

 

Parameters 

There  are  no  parameters  for  this  command.  

 

146 Load Balancer  for IPv4 and IPv6 Administration  Guide



Sample 

To display  the  log  status:  

dscontrol  logstatus  

dscontrol manager 

You can  control  the  manager  function  with  the  dscontrol  manager  command.  

Syntax 

�� dscontrol manager interval seconds 

loglevel
 

level
 

logsize

 

unlimited

 

bytes

 

metric set

 

loglevel

 

level

 

logsize

 

unlimited

 

bytes

 

quiesce

 

server

 

daily

 

start_hour

 

end_hour

 

reach set

 

interval

 

seconds

 

loglevel

 

level

 

logsize

 

unlimited

 

bytes

 

refresh

 

refresh cycle

 

report

 

cluster+cluster2...

 

restart

 

Message

 

sensitivity

 

weight

 

smoothing

 

index

 

start

 

log file

 

metric_port

 

status

 

stop

 

unquiesce

 

server

 

version

 ��

 

Parameters 

interval  

Set  how  often  the  manager  will  update  the  weights  of the  servers  to the  

executor,  updating  the  criteria  that  the  executor  uses  to  route  client  requests.  

v   seconds  

A  positive  number  representing  in  seconds  how  often  the  manager  will  

update  weights  to  the  executor.  The  default  is 2.

loglevel  

Set  the  logging  level  for  the  manager  log.  

v   level  

The  number  of  the  level  (0 to 5).  The  higher  the  number,  the  more  

information  that  is written  to  the  manager  log.  The  default  is 1. The  

following  are  the  possible  values:  0 is None,  1 is Minimal,  2 is Basic,  3 is 

Moderate,  4 is Advanced,  5 is Verbose.

logsize  

Set  the  maximum  size  of  the  manager  log.  When  you  set  a maximum  size  for  

the  log  file,  the  file  will  wrap;  when  the  file  reaches  the  specified  size,  the  

subsequent  entries  are  written  from  the  top  of  the  file,  overwriting  the  

previous  log  entries.  Log  size  cannot  be  set  smaller  than  the  current  size  of  the  

log.  Log  entries  are  time  stamped  so you  can  tell  the  order  in  which  they  were  

 

Chapter 7. welc_reference.html  147



written.  The  higher  you  set  the  log  level,  the  more  carefully  you  should  choose  

the  log  size,  because  you  can  quickly  run out  of space  when  logging  at the  

higher  levels.  

v   bytes  

The  maximum  size  in  bytes  for  the  manager  log  file.  You can  specify  either  a 

positive  number  greater  than  zero,  or  the  word  unlimited.  The  log  file  may  

not  reach  the  exact  maximum  size  before  overwriting  because  the  log  entries  

themselves  vary  in  size.  The  default  value  is  1 MB.

metric  set  

Sets  the  loglevel  and  logsize  for  the  metric  monitor  log.  The  loglevel  is the  

metric  monitor  logging  level  (0 - None,1  - Minimal,2  - Basic,3  - Moderate,  4 - 

Advanced,  or  5 - Verbose).  The  default  log  level  is 1.  The  log  size  is the  

maximum  number  of  bytes  to be  logged  in the  metric  monitor  log  file.  You can  

specify  either  a positive  number  greater  than  zero,  or  unlimited.  The  default  

logsize  is  1 MB.  

quiesce  

Specify  no  more  connections  to be  sent  to  a server  except  subsequent  new  

connections  from  the  client  to  the  quiesced  server  if the  connection  is 

designated  as  sticky  and  stickytime  has  not  expired.  The  manager  sets  the  

weight  for  that  server  to  0 in  every  port  to which  it is  defined.  Use  this  

command  if you  want  to do  some  quick  maintenance  on  a server  and  then  

unquiesce  it.  If  you  delete  a quiesced  server  from  the  configuration  and  then  

add  it  back,  it will  not  retain  its  status  prior  to being  quiesced.  For  more  

information,  see  “Quiesce  servers  for  server  maintenance  windows”  on  page  

87.  

v   server  

The  IP  address  of  the  server  as  either  a symbolic  name  or  in  dotted  decimal  

format.  

v   daily  start_hour  end_hour

Note:   This  setting  specifies  to quiesce  the  server  at a time  of  day,  start_hour, 

and  unquiesce  the  server  at a later  point,  end_hour.  The  values  for  start_hour  

and  end_hour  are  can  range  from  0 to 23.  For  example,  (0  0) indicates  to 

quiesce  the  server  from  12:00  AM  to  12:59  AM.  (12  13)  indicates  to  quiesce  

the  server  from  12:00  PM  to 1:59  PM,  which  is a 2 hour  period.  Specify  (-1  

-1)  to  disable  the  daily  quiesce  for  a particular  server.

reach  set  

Sets  the  interval,  loglevel,  and  logsize  for  the  reach  advisor.  

refresh  

Set  the  number  of  intervals  before  querying  the  executor  for  a refresh  of 

information  about  new  and  active  connections.  

v   refresh  cycle  

A positive  number  representing  the  number  of intervals.  The  default  is 2.

report  

Display  a statistics  snapshot  report.  

v   cluster  

The  address  of  the  cluster  you  want  displayed  in  the  report.  The  address  can  

be  either  a symbolic  name  or  in IP  address  format.  The  default  is a manager  

report  display  for  all  the  clusters.

Note:  Additional  clusters  are  separated  by  a plus  sign  (+).

 

148 Load Balancer  for IPv4 and IPv6 Administration  Guide



restart  

Restart  all  servers  (that  are  not  down)  to  normalized  weights  (1/2  of maximum  

weight).  

v    message  

A  message  that  you  want  written  to  the  manager  log  file.

sensitivity  

Set  minimum  sensitivity  to which  weights  update.  This  setting  defines  when  

the  manager  should  change  its  weighting  for  the  server  based  on  external  

information.  

v    weight  

A  number  from  1 to  100  to  be  used  as the  weight  percentage.  The  default  of  

5 creates  a minimum  sensitivity  of  5%.

smoothing  

Set  an  index  that  smooths  the  variations  in  weight  when  load  balancing.  A  

higher  smoothing  index  will  cause  server  weights  to  change  less  drastically  as 

network  conditions  change.  A  lower  index  will  cause  server  weights  to  change  

more  drastically.  

v   index  

A  positive  floating  point  number.  The  default  is 1.5.

start  

Start  the  manager.  

v   log  file  

File  name  to  which  the  manager  data  is logged.  Each  record  in  the  log  is  

time  stamped.  The  default  file  is installed  in  the  logs  directory.  See  

“Examples”  on  page  158.  To change  the  directory  where  the  log  files  are  

kept,  see  “Logging  with  Load  Balancer”  on  page  90.  

v   metric_port  

Port  that  Metric  Server  will  use  to  report  system  loads.  If you  specify  a 

metric  port,  you  must  specify  a log  file  name.  The  default  metric  port  is 

10004.

status  

Display  the  current  status  of all  the  values  in the  manager  that  can  be  set  

globally  and  their  defaults.  

stop  

Stop  the  manager.  

unquiesce  

Specify  that  the  manager  can  begin  to  give  a weight  higher  than  0 to a server  

that  was  previously  quiesced,  in  every  port  to which  it is defined.  

v   server  

The  IP  address  of  the  server  as  either  a symbolic  name  or  in  dotted  decimal  

format.

version  

Display  the  current  version  of the  manager.

Samples 

v   To set  the  updating  interval  for  the  manager  to  every  5 seconds:  

dscontrol  manager  interval  5 

v   To set  the  level  of logging  to  0 for  better  performance:  

dscontrol  manager  loglevel  0 

 

Chapter 7. welc_reference.html  149



v   To set  the  manager  log  size  to  1,000,000  bytes:  

dscontrol  manager  logsize  1000000  

v   To specify  that  no  more  connections  be  sent  to the  server  at 130.40.52.153:  

dscontrol  manager  quiesce  130.40.52.153  

v   To set  the  number  of  updating  intervals  before  the  weights  are  refreshed  to  3:  

dscontrol  manager  refresh  3 

v   To get  a statistics  snapshot  of  the  manager:  

dscontrol  manager  report  

v   To restart  all  the  servers  to  normalized  weights  and  write  a message  to  the  

manager  log  file:  

dscontrol  manager  restart  Restarting  the  manager  to update  code  

v   To set  the  sensitivity  to  weight  changes  to  10:  

dscontrol  manager  sensitivity  10 

v   To set  the  smoothing  index  to  2.0:  

dscontrol  manager  smoothing  2.0 

v   To start  the  manager  and  specify  the  log  file  named  ndmgr.log  (paths  cannot  be  

set):  

dscontrol  manager  start  ndmgr.log  

v   To display  the  current  status  of  the  values  associated  with  the  manager:  

dscontrol  manager  status  

v   To stop  the  manager:  

dscontrol  manager  stop  

v   To specify  that  no  more  new  connections  be  sent  to  a server  at 130.40.52.153  

between  2:00  AM  and  4:59  PM:  

dscontrol  manager  quiesce  130.40.52.153  daily  2 16 

v   To specify  that  the  manager  can  begin  to  give  a weight  higher  than  0 to  a server  

at  130.40.52.153  that  was  previously  quiesced:  

dscontrol  manager  unquiesce  130.40.52.153  

v   To display  the  current  version  number  of the  manager:  

dscontrol  manager  version  

dscontrol metric 

You can  configure  system  metrics  with  the  dscontrol  metric  command.  

Syntax 

�� dscontrol metric add cluster1 + cluster2 + c3...cN @ metric1 + metric2 + metricN 

remove
 

cluster1
 

+
 

cluster2
 

+
 

c3...cN
 

@
 

metric1
 

+
 

metric2
 

+
 

metricN
 

proportions

 

cluster1

 

+

 

cluster2

 

+

 

c3...cN

 

@

 

proportion1

 

+

 

proportion2

 

+

 

propN

 

status

 

cluster1

 

+

 

cluster2

 

+

 

c3...cN

 

@

 

metric1

 

+

 

metric2

 

+

 

metricN

 ��

 

Parameters 

add  

Add  the  specified  metric.  

v   cluster  

The  address  to  which  clients  connect.  The  address  can  be  either  the  host  

name  of  the  machine,  or  the  IP  address  notation  format.  Additional  clusters  

are  separated  by  a plus  sign  (+).  

v   metric  

 

150 Load Balancer  for IPv4 and IPv6 Administration  Guide



The  system  metric  name.  This  must  be  the  name  of  an  executable  or  script  

file  in  the  metric  server’s  script  directory.

remove  

Remove  the  specified  metric.  

proportions  

Set  the  proportions  for  all  the  metrics  associated  with  this  object.  

status  

Display  the  current  values  of this  metric.

Samples 

v   To add  a system  metric:  

dscontrol  metric  add site1@metric1  

v   To set  proportions  for  a sitename  with  two  system  metrics:  

dscontrol  metric  proportions  site1  0 100 

v   To display  the  current  status  of  values  associated  with  the  specified  metric:  

dscontrol  metric  status  site1@metric1  

dscontrol port 

Configure  ports  and  port  settings  with  the  dscontrol  port  command.  

Syntax 

�� dscontrol port add crossport other_port 

stickytime
 

value
 

staletimeout

 

value

 

weightbound

 

value

 

selectionalgorithm

 

connection

 

affinity

 

conn+affin

 

set

 

stickytime

 

value

 

staletimeout

 

value

 

weightbound

 

value

 

remove

 

cluster@port

 

report

 

cluster@port

 

status

 

cluster@port

 ��

 

Parameters 

add  

Add  a port  to  a cluster.  You must  add  a port  to a cluster  before  you  can  add  

any  servers  to  that  port.  If  there  are  no  ports  for  a cluster,  all  client  requests  are  

processed  locally.  You can  add  more  than  one  port  at one  time  using  this  

command.  

v   crossport  

Crossport  affinity  allows  you  to  expand  the  affinity  feature  across  multiple  

ports  so  that  client  requests  received  on  different  ports  can  still  be  sent  to  

the  same  server  for  subsequent  requests.  For  the  crossport  value,  specify  the  

other_port  number  for  which  you  want  to share  the  cross  port  affinity  feature.  

In  order  to  use  this  feature,  the  ports  must:  

–   Share  the  same  cluster  address  

–   Share  the  same  servers  

–   Use  the  affinity  or  conn+aff  selection  algorithm  

 

Chapter 7. welc_reference.html  151



–   Have  the  same  stickytime  value,  which  is not  zero  

To remove  the  crossport  feature,  set  the  crossport  value  back  to  its  own  port  

number.  

–   other_port: specifies  the  value  of crossport.  The  default  value  is the  same  

as  its  own  port  number.
v    stickytime  value  

The  interval  between  the  closing  of  one  connection  and  the  opening  of  a 

new  connection  during  which  a client  will  be  sent  back  to  the  same  server  

used  during  the  first  connection.  After  the  sticky  time  value  has  elapsed,  the  

client  might  be  sent  to  a server  different  from  the  first.

Note:  The  stickytime  value  is  only  valid  for  the  conn+aff  selection  

algorithm.  For  other  selection  algorithms,  the  stickytime  value  will  be  set  to  

the  same  value  as the  staletimeout  value.  

–   value  can  be:  

-   yes  

-   no
v   staletimeout  

The  number  of seconds  during  which  there  can  be  no  activity  on  a 

connection  before  that  connection  is removed.  For  the  Dispatcher  

component,  the  default  value  is 900  for  port  21  (FTP)  and  32,000,000  for  port  

23  (Telnet).  For  all  other  Dispatcher  ports,  the  default  is 300.  Staletimeout  

can  also  be  set  at the  executor  or  cluster  level.  

–   value  

The  value  of  staletimeout  in number  of  seconds.

weightbound  

Set  the  maximum  weight  for  servers  on  this  port.  This  affects  how  much  

difference  there  can  be  between  the  number  of requests  the  executor  will  give  

each  server.  The  default  value  is 20.  

v   weight  

A number  from  1–100  representing  the  maximum  weight  bound.

selectionalgorithm  

Defines  the  method  for  selecting  the  next  server.  

v   affinity  

Specifies  that  the  server  selection  is based  on  client  affinity.  

v   connection  

Specifies  that  the  server  selection  is based  on  simple  round-robin  selection  

(default).  

v   conn+affin  

Note:  Specifies  that  server  selection  is based  on  an  existing  connection.  For  

new  connections,  the  server  selection  is based  on  affinity.

set  

Set  the  fields  of  a port.  

remove  

Remove  this  port.  

report  

Report  on  this  port.  

 

152 Load Balancer  for IPv4 and IPv6 Administration  Guide



status  

Show  status  of  servers  on  this  port.  If  you  want  to  see  the  status  on  all  ports,  

do  not  specify  a port  with  this  command,  but  remember  to  still  include  the  @ 

symbol.

Sample 

v   To set  the  selection  algorithm  for  a port:  

dscontrol  port  add  cluster@port  selectionalgorithm  affinity  

v   To add  port  80  and  23  to  a cluster  address  130.40.52.153:  

dscontrol  port  add  130.40.52.153@80+23  

v   To set  the  maximum  weight  of  10  to  port  80  at a cluster  address  of  130.40.52.153:  

dscontrol  port  set  130.40.52.153@80  weightbound  10 

v   To set  the  stickytime  value  to  60  seconds  for  port  80  and  port  23  at a cluster  

address  of  130.40.52.153:  

dscontrol  port  set  130.40.52.153@80+23  stickytime  60 

v   To set  the  cross  port  affinity  of  port  80  to  port  23  at a cluster  address  of  

130.40.52.153:  

dscontrol  port  add  130.40.52.153@80  crossport  23 

v   To remove  port  23  from  a cluster  address  of 130.40.52.153:  

dscontrol  port  remove  130.40.52.153@23  

v   To get  the  status  of  port  80  at a cluster  address  of 9.67.131.153:  

dscontrol  port  status  9.67.131.153@80  

v   To get  the  report  of  port  80  at  a cluster  address  of 9.62.130.157:  

dscontrol  port  report  9.62.130.157@80  

dscontrol rule 

Control  the  executor  function  with  the  dscontrol  rule  command.  

Syntax 

�� dscontrol rule add cluster@port@rule type active options 

true
 

dropserver

 

cluster@port@rule

 

server

 

remove

 

cluster@port@rule

 

report

 

cluster@port@rule

 

set

 

cluster@port@rule

 

options

 

status

 

useserver

 

cluster@port@rule

 

server+s2+

 ��

 

The  following  options  are  available  for  this  command:  

�� beginrange endrange 

priority
 

value
 

evaluate

 

port

 

rule

 ��

 

Parameters 

add  

Add  this  rule to  a port.  

 

Chapter 7. welc_reference.html  153



v   cluster: specifies  the  address  of  the  cluster  as  either  a symbolic  name  or  in IP 

address  format.  You can  use  a colon  (:)  to act  as  a wild  card.  For  instance,  

the  following  command  will  result  in  adding  RuleA  to  port  80  for  all  

clusters:  

dscontrol  rule  add :80:RuleA  type  type  

Separate  additional  clusters  with  a plus  sign  (+).  

v   port: specifies  the  number  of  the  port.  You can  use  a colon  (:)  to act  as  a wild  

card.  For  instance,  the  following  command,  dscontrol  rule add  

clusterA::RuleA  type  type,  will  result  in  adding  RuleA  to  all  ports  for  

ClusterA.  Separate  additional  ports  with  a plus  sign  (+).  

v   rule: specifies  the  name  that  you  choose  for  the  rule. This  name  can  contain  

any  alphanumeric  character,  underscore,  hyphen,  or  period.  It can  be  from  1 

to  20  characters  and  cannot  contain  any  blanks.  Separate  additional  rules 

with  a plus  sign  (+).  

v   type  value  

–   active: based  on  the  number  of active  connections  total  for  the  port.  This  

rule will  work  only  if the  manager  is running.  

–   true: specifies  that  this  rule will  always  evaluate  as  true.
v    beginrange: specifies  the  lower  value  in the  range  used  to  determine  whether  

or  not  the  rule is true. This  is an  integer  with  a default  value  of  0. 

v   endrange:  specifies  the  higher  value  in  the  range  used  to  determine  whether  

or  not  the  rule is true. This  is an  integer  with  a default  value  of  2 to  the  

32nd  power  minus  1.  

v   priority  value: The  order  in  which  the  rules are  reviewed,  where  value  is  an  

integer.  

If you  do  not  specify  the  priority  of the  first  rule you  add,  Load  Balancer  

will  set  it to  1 by  default.  When  a subsequent  rule is  added,  by  default  its  

priority  is calculated  to  be  10  + the  current  lowest  priority  of  any  existing  

rule. For  example,  assume  you  have  an  existing  rule whose  priority  is 30.  

You add  a new  rule and  set  its  priority  at  25  (which,  remember,  is a higher  

priority  than  30).  Then  you  add  a third  rule without  setting  a priority.  The  

priority  of the  third  rule is calculated  to be  40  (30  + 10).  

v   evaluate  value: specifies  whether  to  evaluate  the  rule’s  condition  across  all  

servers  within  the  port  or  across  servers  within  the  rule. Value  can  be:  

–   port: specifies  to evaluate  rule’s condition  across  all  the  servers  on  the  

port.  This  is  the  default  value.  

–   rule: specifies  to evaluate  the  rule’s  condition  across  the  servers  within  

the  rule. 

Evaluate  servers  within  the  rule  

The  option  to  measure  the  rule’s  condition  across  the  servers  within  the  rule 

allows  you  to  configure  two  rules with  the  following  characteristics:  

1.   The  first  rule that  gets  evaluated  contains  all  the  servers  maintaining  the  

Web site  content,  and  the  evaluate  option  is set  to  rule (evaluate  the  

rule’s  condition  across  the  servers  within  the  rule).  

2.   The  second  rule is  an  always  true rule that  contains  a single  server  that  

responds  with  a ″site  busy″ type  response.

The  result  is that  when  traffic  exceeds  the  threshold  of  the  servers  within  the  

first  rule, traffic  is sent  to the  ″site  busy″ server  within  the  second  rule. 

When  traffic  falls  below  the  threshold  of  the  servers  within  the  first  rule, 

new  traffic  continues  once  again  to  the  servers  in  the  first  rule. 

 

154 Load Balancer  for IPv4 and IPv6 Administration  Guide



Evaluate  servers  on  the  port  

Using  the  two  rules described  above,  if you  set  the  evaluate  option  to  port  

for  the  first  rule (evaluate  rule’s  condition  across  all  the  servers  on  the  port),  

when  traffic  exceeds  the  threshold  of  that  rule, traffic  is  sent  to  the  ″site  

busy″ server  associated  to  the  second  rule. The  first  rule measures  all  server  

traffic  (including  the  ″site  busy″ server)  on  the  port  to  determine  whether  

the  traffic  exceeds  the  threshold.  As  congestion  decreases  for  the  servers  

associated  to  the  first  rule, an  unintentional  result  may  occur  where  traffic  

continues  to  the  ″site  busy″ server  because  traffic  on  the  port  still  exceeds  

the  threshold  of  the  first  rule.

dropserver  

Remove  a server  from  a rule set.  

v   server: specifies  the  name  of  the  server  to remove.  This  is  the  IP  address  of  

the  TCP  server  machine  as  either  a symbolic  name  or  in  IP  address  format.  

Or, if you  used  server  partitioning,  use  the  logical  server’s  unique  name.  See  

cprf_serverpart.dita  for  more  information.  Separate  additional  servers  with  a 

plus  sign  (+).

remove  

Remove  one  or  more  rules, separated  from  one  another  by  plus  signs.  

report  

Display  the  internal  values  of  one  or  more  rules.  

set  

Set  values  for  this  rule. 

useserver  

Insert  servers  into  a rule set.  

status  

Display  the  values  that  are  configured  of one  or  more  rules.

Samples 

v   For  example,  to  route  a range  of  connections  to a certain  cluster  and  port:  

dscontrol  rule  add  130.40.52.153@80@pool2  type  active  beginrange  250  endrange  500 

v   Create  a rule that  always  evaluates  as  true with  a priority  of  100:  

dscontrol  rule  add  130.40.52.153@80@jamais  type  true  priority  100  

dscontrol server 

Configure  servers  and  modify  existing  server  configurations  with  the  dscontrol  

server  command.  

Syntax 

�� dscontrol server add cluster@port@server address address 

advisorrequest
 

string
 

advisorresponse

 

string

 

encapforward

 

yes

 

encaptype

 

ipip

 

encapcond

 

always

 

no

 

gre

 

auto

 

fixedweight

 

value

 

weight

 

value

 

set

 

cluster@port@server

 

advisorrequest

 

string

 

advisorresponse

 

string

 

encapforward

 

yes

 

encaptype

 

ipip

 

encapcond

 

always

 

no

 

gre

 

auto

 

fixedweight

 

value

 

weight

 

value

 

remove

 

cluster@port@server

 

report

 

cluster@port@server

 

status

 

cluster@port@server

 ��

 

 

Chapter 7. welc_reference.html  155



Parameters 

add  

Add  this  server.  

v   cluster  

The  address  of  the  cluster  as either  a symbolic  name  or  in  IP  address  format.  

You can  use  a colon  (:)  to act  as  a wild  card.  For  instance,  the  following  

command,  dscontrol  server  add  :80:ServerA,  will  result  in adding  ServerA  to 

port  80  on  all  clusters.

Note:  Additional  clusters  are  separated  by  a plus  sign  (+)
.  

v   port  

The  number  of the  port.  You can  use  a colon  (:)  to  act  as a wild  card.  For  

instance,  the  following  command,  dscontrol  server  add  ::ServerA,  will  result  

in  adding  ServerA  to all  clusters  on  all  ports.

Note:  Additional  ports  are  separated  by  a plus  sign  (+).  

v   server  

The  server  is the  unique  IP  address  of  the  TCP  server  machine  as either  a 

symbolic  name  or  in  IP  address  format.  Or, if you  use  a unique  name  that  

does  not  resolve  to  an  IP  address,  you  must  provide  the  server  address  

parameter  on  the  dscontrol  server  add  command.

Note:  Additional  servers  are  separated  by  a plus  sign  (+).  

v   address  

The  unique  IP  address  of  the  TCP  server  machine  as  either  a host  name  or in  

IP  address  format.  If the  server  is not  able  to  be  resolved,  you  must  provide  

the  address  of  the  physical  server  machine.  

–   address  

Value  of the  address  of  the  server.
v    advisorrequest  

String  

v   advisorresponse  

String  

v   encapforward  value  

Specifies  to  enable  encapsulation  forwarding.  Value can  be  yes  or  no.  

Note:  Use  encapsulation  forwarding  when  the  back-end  server  is not  located  

on  the  same  network  segment  or  if you  are  using  virtualization  technology  

and  need  to  forward  packets  that  are  otherwise  unable  to  be  forwarded.  

–   encaptype  value  

Specifies  the  type  of  encapsulation  forwarding.  Value can  be:  

-   ipip  

-   gre
–   encapcond  value  

Specifies  the  conditions  in  which  to enable  encapsulation  forwarding.  

Value can  be:  

-   always  

-   auto

 

156 Load Balancer  for IPv4 and IPv6 Administration  Guide



v   fixedweight  

The  fixedweight  option  allows  you  to  specify  whether  you  want  the  

manager  to  modify  the  server  weight  or  not.  If  you  set  the  fixedweight  value  

to  yes,  when  the  manager  runs it will  not  be  allowed  to  modify  the  server  

weight.  For  more  information,  see  “Managing  traffic  with  server  weights”  on  

page  100.  

–   value  

Specifies  the  value  of  fixedweight.  The  value  can  be  yes  or  no.  Default  is 

no.  

–   portvalue  

Value  of the  map  port  number.  The  default  is the  client  request’s  

destination  port  number.
v    weight  

A  number  from  0–100  (but  not  to  exceed  the  specified  port’s  weightbound  

value)  representing  the  weight  for  this  server.  Setting  the  weight  to  zero  will  

prevent  any  new  requests  from  being  sent  to the  server,  but  will  not  end  any  

currently  active  connections  to  that  server.  The  default  is one-half  the  

specified  port’s  maximum  weightbound  value.  If  the  manager  is running,  

this  setting  will  be  quickly  overwritten.  

–   value  

Value  of the  server  weight.

remove  

Remove  this  server.  

report  

Report  on  this  server.  The  report  contains  the  following  information  per  server:  

current  number  of connections  per  second  (CPS),  kilobytes  transferred  in  a one  

second  interval  (KBPS),  total  number  of connections  (Total),  number  of  

connections  that  are  in the  active  state  (Active),  number  of connections  that  are  

in  the  FIN  state  (FINed),  and  number  of completed  connections  (Comp).  

set  

Set  values  for  this  server.  

status  

Show  status  of  the  servers.

 Samples 

v   To add  the  server  at 27.65.89.42  to port  80  on  a cluster  address  130.40.52.153:  

dscontrol  server  add 130.40.52.153@80@27.65.89.42  

v   To remove  the  server  at 27.65.89.42  on  all  ports  on  all  clusters:  

dscontrol  server  remove  @@27.65.89.42  

v   To set  the  weight  to  10  for  server  27.65.89.42  at port  80  on  cluster  address  

130.40.52.153:  

dscontrol  server  set 130.40.52.153@80@27.65.89.42  weight  10  

v   To allow  the  HTTP  advisor  to query  an  HTTP  URL  request  HEAD  / HTTP/1.0  

for  server  27.65.89.42  on  HTTP  port  80:  

dscontrol  server  set 130.40.52.153@80@27.65.89.42  advisorrequest  "\"HEAD  / HTTP/1.0\""  

v   To show  the  status  for  server  9.67.143.154  on  port  80:  

dscontrol  server  status  9.67.131.167@80@9.67.143.154  

 

Chapter 7. welc_reference.html  157



dscontrol set 

Configure  the  settings  for  the  server  log  file  with  the  dscontrol  set  command.  

Syntax 

�� dscontrol set loglevel level 

logsize
 

unlimited
 

size

 ��

 

Parameters 

loglevel  

The  level  at  which  the  dsserver  logs  its  activities.  

v   level  

The  default  value  of loglevel  is 0. The  range  is 0–5.  The  following  are  the  

possible  values:  0 is None,  1 is Minimal,  2 is Basic,  3 is Moderate,  4 is  

Advanced,  5 is Verbose.

logsize  

The  maximum  number  of bytes  to  be  logged  in  the  log  file.  

v   size  

The  default  value  of logsize  is 1 MB.

dscontrol status 

You can  display  status  for  the  managers  or  advisors  with  the  dscontrol  status  

command.  

Syntax 

�� dscontrol status ��

 

Parameters 

There  are  no  parameters  for  this  command.  

Sample 

To see  which  managers  and  advisors  are  running:  

dscontrol  status  

Examples 

This  section  provides  examples  of  code  snippets,  command  syntax,  and  

configuration  values  that  are  relevant  to  performing  tasks  with  Load  Balancer.  

To open  the  information  center  table  of  contents  to  the  location  of this  reference  

information,  click  the  Show  in  Table  of  Contents  button  ( ) on  your  information  

center  border.  

Example: Sample advisor 

This  is  a sample  advisor  file  called  ADV_sample.  

 

158 Load Balancer  for IPv4 and IPv6 Administration  Guide



/ * * 

 * ADV_sample:  The  Load  Balancer  HTTP  advisor  

 * 

 * 

 * This  class  defines  a sample  custom  advisor  for  Load  Balancer.  Like  all 

 * advisors,  this  custom  advisor  extends  the  function  of the  advisor  base,  

 * called  ADV_Base.  It is the  advisor  base  that  actually  performs  most  of 

 * the  advisor’s  functions,  such  as reporting  loads  back  to the Load  Balancer  

 * for  use  in the  Load  Balancer’s  weight  algorithm.  The advisor  base  also  

 * performs  socket  connect  and  close  operations  and  provides  send  and receive  

 * methods  for  use  by the advisor.  The advisor  itself  is used  only  for  

 * sending  and  receiving  data  to and  from  the  port  on  the server  being  

 * advised.  The  TCP  methods  within  the advisor  base  are timed  to calculate  

 * the  load.  A flag  within  the  constructor  in the ADV_base  overwrites  the 

 * existing  load  with  the  new  load  returned  from  the  advisor  if desired.  

 * 

 * Note:  Based  on a value  set  in the  constructor,  the  advisor  base  supplies  

 * the  load  to the  weight  algorithm  at specified  intervals.  If the  actual  

 * advisor  has  not  completed  so that  it can  return  a valid  load,  the advisor  

 * base  uses  the  previous  load.  

 * 

 * NAMING  

 * 

 * The  naming  convention  is as follows:  

 * 

 *  - The  file  must  be located  in the following  Load  Balancer  directory:  

 * 

 *     ulb/servers/lib/CustomAdvisors/  (ulb\servers\lib\CustomAdvisors  on Windows)  

 * 

 *  - The  Advisor  name  must  be preceded  with  "ADV_".  The  advisor  can be 

 *    started  with  only  the name,  however;  for  instance,  the  "ADV_sample"  

 *    advisor  can  be started  with  "sample".  

 * 

 *  - The  advisor  name  must  be in lowercase.  

 * 

 * With  these  rules  in mind,  therefore,  this  sample  is referred  to as:  

 * 

 *     <base  directory="">/lib/CustomAdvisors/ADV_sample.class  

 * 

 * 

 * Advisors,  as with  the  rest  of Load  Balancer,  must  be compiled  with  the  

 * prerequisite  version  of Java.  To ensure  access  to Load  Balancer  classes,  make  

 * sure  that  the  ibmlb.jar  file  (located  in the  lib  subdirectory  of the  base  

 * directory)  is included  in the system’s  CLASSPATH.  

 * 

 * Methods  provided  by ADV_Base:  

 * 

 * - ADV_Base  (Constructor):  

 * 

 *   - Parms  

 *     - String  sName  = Name  of the  advisor  

 *     - String  sVersion  = Version  of the  advisor  

 *     - int  iDefaultPort  = Default  port  number  to advise  on 

 *     - int  iInterval  = Interval  on which  to  advise  on the  servers  

 *     - String  sDefaultName  = Unused.  Must  be passed  in as "". 

 *     - boolean  replace  = True  - replace  the  load  value  being  calculated  

 *                                by the  advisor  base  

 *                         False  - add  to the  load  value  being  calculated  

 *                                 by the  advisor  base  

 *   - Return  

 *     - Constructors  do not  have  return  values.  

 * 

 * Because  the  advisor  base  is thread  based,  it has  several  other  methods  

 * available  for  use  by an advisor.  These  methods  can  be referenced  using  

 * the  CALLER  parameter  passed  in getLoad().  

 * 

 * These  methods  are  as follows:

 

Chapter 7. welc_reference.html  159



* 

 * - send  - Send  a packet  of  information  on the  established  socket  connection  

 *          to the  server  on the  specified  port.  

 * - Parms  

 *   - String  sDataString  - The data  to  be sent  in the form  of a string  

 * - Return  

 *   - int  RC - Whether  the  data  was sucessfully  sent  or not:  zero  indicates  

 *              data  was  sent;  a negative  integer  indicates  an error.  

 * 

 * - receive  - Receive  information  from  the  socket  connection.  

 *   - Parms  

 *     - StringBuffer  sbDataBuffer  - The data  received  during  the  receive  call  

 *   - Return  

 *     - int  RC - Whether  the data  was  successfully  received  or not;  zero  

 *                indicates  data  was  sent;  a negative  integer  indicates  

 *                an error.  

 * 

 * If the  function  provided  by the  advisor  base  is not  sufficient,  

 * you  can  create  the  appropriate  function  within  the  advisor  and  

 * the  methods  provided  by the  advisor  base  will  then  be ignored.  

 * 

 * An important  question  regarding  the  load  returned  is whether  to apply  

 * it to the  load  being  generated  within  the advisor  base,  

 * or to replace  it;  there  are  valid  instances  of both  situations.  

 * 

 * This  sample  is essentially  the Load  Balancer  HTTP  advisor.  It functions  

 * very  simply:  a send  request--an  http  head  request--is  issued.  Once  a 

 * response  is received,  the getLoad  method  terminates,  flagging  the advisor  

 * base  to stop  timing  the  request.  The method  is then  complete.  The  

 * information  returned  is not  parsed;  the  load  is based  on the  time  

 * required  to perform  the  send  and  receive  operations.  

 */ 

  

package  CustomAdvisors;  

import  com.ibm.internet.nd.advisors.*;  

  public  class  ADV_sample  extends  ADV_Base  implements  ADV_MethodInterface  

  { 

    String  COPYRIGHT  = 

              "(C)  Copyright  IBM Corporation  1997,  All  Rights  Reserved.\n";  

    static  final  String  ADV_NAME  = "Sample";  

    static  final  int  ADV_DEF_ADV_ON_PORT  = 80;  

    static  final  int  ADV_DEF_INTERVAL  = 7; 

  

    //  Note:  Most  server  protocols  require  a carriage  return  ("\r")  and line  

    //  feed  ("\n")  at the  end  of messages.  If so, include  them  in 

    //  your  string  here.  

  

    static  final  String  ADV_SEND_REQUEST  = 

       "HEAD  / HTTP/1.0\r\nAccept:   */ *\r\nUser-Agent:  " + 

       "IBM_Load_Balancer_HTTP_Advisor\r\n\r\n";  

  

    /**  

     * Constructor.  

     * 

     * Parms:  None;  but  the  constructor  for  ADV_Base  has several  parameters  

     *        that  must  be passed  to it. 

     * 

     */ 

     public  ADV_sample()  

     { 

       super(  ADV_NAME,  

          "2.0.0.0-03.27.98",  

               ADV_DEF_ADV_ON_PORT,  

               ADV_DEF_INTERVAL,  

               "",  // not  used  false);  

       super.setAdvisor(  this  ); 

     }

 

160 Load Balancer  for IPv4 and IPv6 Administration  Guide



/**  

      * ADV_AdvisorInitialize  

      * 

      * Any  Advisor-specific  initialization  that  must  take  place  after  the 

      * advisor  base  is  started.  This  method  is called  only  once  and  is 

      * typically  not  used.  

      */ 

      public  void  ADV_AdvisorInitialize()  

      { 

        return;  

      } 

  

      /**  

       * getLoad()  

       * 

       * This  method  is called  by the advisor  base  to complete  the advisor’s  

       * operation,  based  on details  specific  to the  protocol.  In this  sample  

       * advisor,  only  a single  send  and  receive  are  necessary;  if more  complex  

       * logic  is necessary,  multiple  sends  and  receives  can be  issued.  For 

       * example,  a response  might  be received  and parsed.  Based  on the  

       * information  learned  thereby,  another  send  and receive  could  be issued.  

       * 

       * Parameters:  

       * 

       * - iConnectTime  - The current  load  as it refers  to the  length  of time  it  

       *                  took  to  complete  the connection  to the server  through  

       *                  the specified  port.  

       * 

       * - caller  - A reference  to the  advisor  base  class  where  the  Load  

       *            Balancer-supplied  methods  are  to perform  simple  TCP requests,  

       *            mainly  send  and  receive.  

       * 

       * Results:  

       * 

       * - The  load  - A value,  expressed  in milliseconds,  that  can either  be added  

       *   to the  existing  load,  or that  can replace  the  existing  load,  as  

       *   determined  by the  constructor’s  "replace"  flag.  

       * 

       *   The  larger  the load,  the longer  it took  the  server  to respond;  

       *   therefore,  the lower  the  weight  will  become  within  the Load  Balancer.  

       * 

       *   If the  value  is negative,  an error  is assumed.  An error  from  an 

       *   advisor  indicates  that  the server  the advisor  is trying  to reach  is not  

       *   accessible  and has  been  identified  as being  down.  Load  Balancer  will  

       *   not  attempt  to load  balance  to a server  that  is down.  Load  Balancer  will  

       *   resume  load  balancing  to the  server  when  a positive  value  is received.  

       * 

       */ 

      public  int  getLoad(int  iConnectTime,  ADV_Thread  caller)  

      { 

        int  iRc;  

        int  iLoad  = ADV_HOST_INACCESSIBLE;  // -1 

  

        // Send  tcp  request  iRc = caller.send(ADV_SEND_REQUEST);  

        if (iRc  >= 0) 

        { 

            // Perform  a receive  

            StringBuffer  sbReceiveData  = new  StringBuffer("");  

            iRc  = caller.receive(sbReceiveData);  

  

         /**  

          * In the  normal  advisor  mode  ("replace"  flag  is false),  the load  

          * returned  is either  0 or 1 indicating  the  server  is up or down.  

          * If the  receive  is successful,  a load  of zero  is returned  

          * indicating  that  the load  built  within  the base  advisor  is to be used.

 

Chapter 7. welc_reference.html  161



* 

          * Otherwise  ("replace"  flag  is true),  return  the  desired  load  value.  

          */ 

  

          if (iRc  >= 0) 

          { 

             iLoad  = 0; 

          } 

        } 

        return  iLoad;  

      } 

  } // End  - ADV_sample  

Example: Implementing custom advisors 

The  following  examples  show  how  custom  advisors  can  be  implemented.  

Examples  for  the  following  types  of custom  advisors  are  provided:  

v   Standard  advisor  

v   Side  stream  advisor  

v   Two-port  advisor  

v   WebSphere  Application  Server  (WAS)  advisor

Example: Using data returned from advisors 

Whether  you  use  a standard  call  to an  existing  part  of  the  application  server  or  

add  a new  piece  of  code  to be  the  server-side  counterpart  of  your  custom  advisor,  

you  possibly  want  to  examine  the  load  values  returned  and  change  server  

behavior.  

The  Java  StringTokenizer  class,  and  its  associated  methods,  make  this  investigation  

easy  to  do.  The  content  of a typical  HTTP  command  might  be  

GET  /index.html  HTTP/1.0  90 

A  typical  response  to  this  command  might  be  the  following:  

HTTP/1.1  200  OK 

Date:  Mon,  20 November  2000  14:09:57  GMT  

Server:  Apache/1.3.12  (Linux  and  UNIX)  

Content-Location:  index.html.en  

Vary:  negotiate  

TCN:  choice  

Last-Modified:  Fri,  20 Oct 2000  15:58:35  GMT 

ETag:  "14f3e5-1a8-39f06bab;39f06a02"  

Accept-Ranges:  bytes  

Content-Length:  424  

Connection:  close  

Content-Type:  text/html  

Content-Language:  en 

  

<!DOCTYPE  HTML  PUBLIC  "-//w3c//DTD  HTML  3.2  Final//EN">  

<HTML><HEAD><TITLE>Test  Page</TITLE></HEAD>  

<BODY><H1>Apache  server</H1>  

<HR>  

<P><P>This  Web  server  is running  Apache  1.3.12.  

</P>  

<P><IMG  SRC="apache_pb.gif"  ALT="">  

</P></P>  

</HR>  

</BODY></HTML>  

 

162 Load Balancer  for IPv4 and IPv6 Administration  Guide



The  items  of interest  are  contained  in  the  first  line,  specifically  the  HTTP  return  

code.  The  HTTP  specification  classifies  return  codes  that  can  be  summarized  as  

follows:  

v   2xx  return  codes  are  successes  

v   3xx  return  codes  are  redirections  

v   4xx  return  codes  are  client  errors  

v   5xx  return  codes  are  server  errors

If  you  know  precisely  what  codes  the  server  can  possibly  return,  your  code  might  

not  need  to  be  as detailed  as  this  example.  However,  keep  in  mind  that  limiting  

the  return  codes  you  detect  might  limit  the  future  flexibility  of  your  program.  

The  following  example  is a stand-alone  Java  program  that  contains  a minimal  

HTTP  client.  The  example  invokes  a simple,  general-purpose  parser  for  examining  

HTTP  responses.  

import  java.io.*;  

import  java.util.*;  

import  java.net.*;  

  

public  class  ParseTest  { 

   static  final  int  iPort  = 80;  

   static  final  String  sServer  = "www.ibm.com";  

   static  final  String  sQuery  = "GET  /index.html  HTTP/1.0\r\n\r\n";  

   static  final  String  sHTTP10  = "HTTP/1.0";  

   static  final  String  sHTTP11  = "HTTP/1.1";  

  

   public  static  void  main(String[]  Arg)  { 

     String  sHTTPVersion  = null;  

     String  sHTTPReturnCode  = null;  

     String  sResponse  = null;  int iRc  = 0; 

     BufferedReader  brIn  = null;  

     PrintWriter  psOut  = null;  

     Socket  soServer=  null;  

     StringBuffer  sbText  = new  

     StringBuffer(40);  

  

   try  { 

     soServer  = new  Socket(sServer,  iPort);  

     brIn  = new  BufferedReader(new  InputStreamReader(  

                                   soServer.getInputStream()));  

     psOut  = new  PrintWriter(soServer.getOutputStream());  

     psOut.println(sQuery);  

     psOut.flush();  

     sResponse  = brIn.readLine();  

     try  { 

       soServer.close();  

     } catch  (Exception  sc) {;}  

   } catch  (Exception  swr)  {;}  

  

   StringTokenizer  st = new StringTokenizer(sResponse,  " ");  

   if (true  == st.hasMoreTokens())  { 

     sHTTPVersion  = st.nextToken();  

     if (sHTTPVersion.equals(sHTTP110)  || sHTTPVersion.equals(sHTTP11))  { 

       System.out.println("HTTP  Version:  " + sHTTPVersion);  

     } else  { 

       System.out.println("Invalid  HTTP  Version:  " + sHTTPVersion);  

     } 

   } else  { 

     System.out.println("Nothing  was  returned");  

     return;  

   } 

  

   if (true  == st.hasMoreTokens())  {

 

Chapter 7. welc_reference.html  163



sHTTPReturnCode  = st.nextToken();  

     try  { 

       iRc  = Integer.parseInt(sHTTPReturnCode);  

     } catch  (NumberFormatException  ne) {;}  

  

     switch  (iRc)  { 

     case(200):  

       System.out.println("HTTP  Response  code:  OK, " + iRc);  

       break;  

     case(400):  case(401):  case(402):  case(403):  case(404):  

       System.out.println("HTTP  Response  code:  Client  Error,  " + iRc);  

       break;  

     case(500):  case(501):  case(502):  case(503):  

       System.out.println("HTTP  Response  code:  Server  Error,  " + iRc);  

       break;  

     default:  

       System.out.println("HTTP  Response  code:  Unknown,  " + iRc);  

       break;  

     } 

   } 

  

   if (true  == st.hasMoreTokens())  { 

     while  (true  == st.hasMoreTokens())  { 

       sbText.append(st.nextToken());  

       sbText.append("  "); 

       } 

     System.out.println("HTTP  Response  phrase:  " + sbText.toString());  

   } 

  } 

} 

Example: Implementing a side stream advisor 

The  following  example  demonstrates  how  a side  stream  advisor  can  be  

implemented.  This  sample  illustrates  suppressing  the  standard  socket  opened  by  

the  advisor  base.  Instead,  this  advisor  opens  a side  stream  Java  socket  to query  a 

server.  This  procedure  can  be  useful  for  servers  that  use  a different  port  from  

normal  client  traffic  to  listen  for  an  advisor  query.  

In  this  example,  a server  is listening  on  port  11999  and  when  queried  returns  a 

load  value  with  a hexadecimal  int  ″4″.  This  sample  runs in  replace  mode,  that  is,  

the  last  parameter  of  the  advisor  constructor  is set  to true and  the  advisor  base  

code  uses  the  returned  load  value  rather  than  the  elapsed  time.  

Note  the  call  to  supressBaseOpeningSocket()  in  the  initialization  routine.  

Suppressing  the  base  socket  when  no  data  will  be  sent  is not  required.  For  

example,  you  might  want  to  open  the  socket  to ensure  that  the  advisor  can  contact  

the  server.  Examine  the  needs  of  your  application  carefully  before  making  this  

choice.  

package  CustomAdvisors;  

import  java.io.*;  

import  java.net.*;  

import  java.util.*;  

import  java.util.Date;  

import  com.ibm.internet.lb.advisors.*;  

import  com.ibm.internet.lb.common.*;  

import  com.ibm.internet.lb.server.SRV_ConfigServer;  

  

public  class  ADV_sidea  extends  ADV_Base  implements  ADV_MethodInterface  { 

  static  final  String  ADV_NAME  = "sidea";  

  static  final  int  ADV_DEF_ADV_ON_PORT  = 12345;  

  static  final  int  ADV_DEF_INTERVAL  = 7; 

  

  // create  an array  of bytes  with  the  load  request  message

 

164 Load Balancer  for IPv4 and IPv6 Administration  Guide



static  final  byte[]  abHealth  = {(byte)0x00,  (byte)0x00,  (byte)0x00,  

                                  (byte)0x04};  

  

  public  ADV_sidea()  { 

    super(ADV_NAME,  "3.0.0.0-03.31.00",  ADV_DEF_ADV_ON_PORT,  

          ADV_DEF_INTERVAL,  "",  

          true);                      // replace  mode  parameter  is true  

    super.setAdvisor(  this  ); 

  } 

  

//--------  

// ADV_AdvisorInitialize  

  public  void  ADV_AdvisorInitialize()  

  { 

    suppressBaseOpeningSocket();         // tell  base  code  not  to open  the 

                                        //  standard  socket  

    return;  

  } 

  

//--------  

// getLoad  

  public  int  getLoad(int  iConnectTime,  ADV_Thread  caller)  { 

    int  iRc;  

    int  iLoad  = ADV_HOST_INACCESSIBLE;     // -1 

    int  iControlPort  = 11999;              // port  on which  to communicate  

                                          // with  the  server  

    String  sServer  = caller.getCurrentServerId();  // address  of server  to query  

    try  { 

      socket  soServer  = new  Socket(sServer,  iControlPort);    // open  socket  to 

                                                             // server  

      DataInputStream  disServer  = new  DataInputStream(  

                                                      soServer.getInputStream());  

      DataOutputStream  dosServer  = new  DataOutputStream(  

                                                      soServer.getOutputStream());  

      int  iRecvTimeout  = 10000;            // set timeout  (in  milliseconds)  

                                          // for  receiving  data  

      soServer.setSoTimeout(iRecvTimeout);  

      dosServer.writeInt(4);               // send  a message  to the  server  

      dosServer.flush();  

      iLoad  = disServer.readByte();        // receive  the  response  from  the  server  

  

    } catch  (exception  e) { 

      system.out.println("Caught  exception  " + e);  

    } 

    return  iLoad;                          // return  the  load  reported  from  the server  

  } 

} 

Example: Implementing standard advisors 

The  following  example  demonstrates  how  to  use  a standard  custom  advisor.  

This  sample  source  code  is similar  to the  standard  Load  Balancer  HTTP  advisor.  It 

functions  as  follows:  

1.   A send  request,  a ″HEAD/HTTP″  command,  is issued.  

2.   A response  is  received.  The  information  is not  parsed,  but  the  response  causes  

the  getLoad  method  to  terminate.  

3.   The  getLoad  method  returns  0 to indicate  success  or  -1 to  indicate  a failure.

This  advisor  operates  in  normal  mode,  so  the  load  measurement  is based  on  the  

elapsed  time  in  milliseconds  required  to perform  the  socket  open,  send,  receive,  

and  close  operations.  

 

Chapter 7. welc_reference.html  165



package  CustomAdvisors;  

import  com.ibm.internet.lb.advisors.*;  

public  class  ADV_sample  extends  ADV_Base  implements  ADV_MethodInterface  { 

  static  final  String  ADV_NAME  ="Sample";  

  static  final  int  ADV_DEF_ADV_ON_PORT  = 80; 

  static  final  int  ADV_DEF_INTERVAL  = 7; 

  static  final  String  ADV_SEND_REQUEST  = 

    "HEAD  / HTTP/1.0\r\nAccept:  */*\r\nUser-Agent:  " + 

    "IBM_Load_Balancer_HTTP_Advisor\r\n\r\n";  

  

  //--------  

  // Constructor  

    public  ADV_sample()  { 

      super(ADV_NAME,  "3.0.0.0-03.31.00",  

            ADV_DEF_ADV_ON_PORT,  ADV_DEF_INTERVAL,  "", 

            false);  

      super.setAdvisor(  this  ); 

   } 

  

  //--------  

  // ADV_AdvisorInitialize  

    public  void  ADV_AdvisorInitialize()  { 

      return;                                // usually  an empty  routine  

    } 

  

  //--------  

  // getLoad  

  

    public  int  getLoad(int  iConnectTime,  ADV_Thread  caller)  { 

      int  iRc;  

      int  iLoad  = ADV_HOST_INACCESSIBLE;            // initialize  to inaccessible  

  

      iRc  = caller.send(ADV_SEND_REQUEST);          // send  the  HTTP  request  to 

                                                   // the  server  

      if (0 <= iRc)  {                              //  if the  send  is successful  

        StringBuffer  sbReceiveData  = new  StringBuffer("");       // allocate  a buffer  

                                                                //  for  the  response  

      iRc  = caller.receive(sbReceiveData);          // receive  the result  

  

      // parse  the  result  here  if you  need  to 

  

      if (0 <= iRc)  {                              //  if the  receive  is successful  

        iLoad  = 0;                                  //  return  0 for  success  

      }                                            // (advisor’s  load  value  is ignored  by 

    }                                              // base  in normal  mode)  

    return  iLoad;  

  } 

} 

Example: Implementing the WAS advisor 

The  following  examples  show  how  custom  advisors  can  be  implemented.  

A  sample  custom  advisor  for  WebSphere  Application  Server  is included  in  the  

install_root/servers/samples/CustomAdvisors/  directory.  The  full  code  is not  

duplicated  in  this  document.  Ensure  that  the  following  will  be  implemented:  

v   ADV_was.java  is  the  advisor  source  code  file  that  is compiled  and  run on  the  

Load  Balancer  machine.  

v   LBAdvisor.java.servlet  is the  servlet  source  code  that  must  be  renamed  to  

LBAdvisor.java,  compiled,  and  run on  the  WebSphere  Application  Server  

machine.

 

166 Load Balancer  for IPv4 and IPv6 Administration  Guide



The  complete  advisor  is  only  slightly  more  complex  than  the  sample.  It adds  a 

specialized  parsing  routine  that  is more  compact  than  the  StringTokenizer  example  

shown  in  the  topic  “Example:  Using  data  returned  from  advisors”  on  page  78.  

The  more  complex  part  of the  sample  code  is  in the  Java  servlet.  Among  other  

methods,  the  servlet  contains  two  methods  required  by  the  servlet  specification:  

init()  and  service(),  and  one  method,  run(),  that  is required  by  the  Java.lang.thread  

class.  

v   init()  is  called  once  by  the  servlet  engine  at initialization  time.  This  method  

creates  a thread  named  _checker  that  runs independently  of calls  from  the  

advisor  and  sleeps  for  a period  of time  before  resuming  its  processing  loop.  

v   service()  is  called  by  the  servlet  engine  each  time  the  servlet  is  invoked.  In  this  

case,  the  method  is called  by  the  advisor.  The  service()  method  sends  a stream  of 

ASCII  characters  to  an  output  stream.  

v   run() contains  the  core  of  the  code  execution.  It is  called  by  the  start()  method  

that  is  called  from  within  the  init()  method.

The  relevant  fragments  of the  servlet  code  appear  below:  

...  

  public  void  init(ServletConfig  config)  throws  ServletException  { 

    super.init(config);  

    ...  

    _checker  = new  Thread(this);  

    _checker.start();  

  } 

  

  public  void  run()  { 

    setStatus(GOOD);  

  

    while  (true)  { 

      if (!getKeepRunning())  

        return;  

      setStatus(figureLoad());  

      setLastUpdate(new  java.util.Date());  

  

    try  { 

      _checker.sleep(_interval  * 1000);  

    } catch  (Exception  ignore)  { ; } 

  } 

} 

  

public  void  service(HttpServletRequest  req,  HttpServletResponse  res)  

                    throws  ServletException,  IOException  { 

  ServletOutputStream  out = null;  

  try  { 

    out  = res.getOutputStream();  

  } catch  (Exception  e) { ...  } 

  ...  

  res.setContentType("text/x-application-LBAdvisor");  

  out.println(getStatusString());  

  out.println(getLastUpdate().toString());  

  out.flush();  return;  

} 

...  

Example: Implementing a two-port advisor 

The  following  example  shows  how  to  implement  a two-port  advisor.  This  custom  

advisor  sample  demonstrates  the  capability  to detect  failure  for  one  port  of a 

server  based  upon  both  its  own  status  and  on  the  status  of a different  server  

daemon  that  is  running  on  another  port  on  the  same  server  machine.  

 

Chapter 7. welc_reference.html  167



For  example,  if the  HTTP  daemon  on  port  80  stops  responding,  you  might  also  

want  to  stop  routing  traffic  to  the  SSL  daemon  on  port  443.  

This  advisor  is more  aggressive  than  standard  advisors,  because  it considers  any  

server  that  does  not  send  a response  to  have  stopped  functioning,  and  marks  it as  

down.  Standard  advisors  consider  unresponsive  servers  to  be  very  slow. This  

advisor  marks  a server  as down  for  both  the  HTTP  port  and  the  SSL  port  based  on  

a lack  of  response  from  either  port.  

To use  this  custom  advisor,  the  administrator  starts  two  instances  of  the  advisor:  

one  on  the  HTTP  port,  and  one  on  the  SSL  port.  The  advisor  instantiates  two  static  

global  hash  tables,  one  for  HTTP  and  one  for  SSL.  Each  advisor  tries  to  

communicate  with  its  server  daemon  and  stores  the  results  of this  event  in  its  hash  

table.  The  value  that  each  advisor  returns  to  the  base  advisor  class  depends  on  

both  the  ability  to  communicate  with  its  own  server  daemon  and  the  ability  of  the  

partner  advisor  to  communicate  with  its  daemon.  

The  following  custom  methods  are  used.  

v   ADV_nte()  is  a simple  container  object  to  hold  information  about  a server.  These  

objects  are  stored  in  the  hash  table  as  table  elements.  Each  object  has  a time  

stamp  that  is  used  to determine  whether  the  element  is current.  

v   putNte()  and  getNte()  are  synchronized  methods  that  ensure  that  the  two  

advisor  instances  access  the  hash  table  in  a controlled  fashion.  

v   getLoadHTTP  is  a method  that  queries  the  responsiveness  of  an  HTTP  server.  It 

is a low-level  routine  and  does  not  gather  or  use  information  about  SSL.  

v   getLoadSSL()  is a method  that  queries  the  responsiveness  of an  SSL  server.  It is a 

low-level  routine  and  does  not  gather  or  use  information  about  HTTP.  

v   getLoad()  is  the  entry  point  routine  for  this  custom  advisor.  It can  handle  both  

protocols  and  can  store  and  fetch  information  from  the  hash  table.  This  is the  

routine  that  links  the  two  ports.

The  following  error  conditions  are  detected:  

v   Unresponsive  server  machine  - The  base  advisor  classes  periodically  send  a ping  

signal  to  the  server  address.  If the  address  is not  reachable,  the  base  advisor  

classes  marks  the  server  down.  Neither  of  the  two  instances  of the  custom  

advisor  is called,  and  both  servers  on  that  machine  are  marked  down.  

v   One  daemon  on  a server  machine  becomes  unresponsive,  but  the  other  is 

working  - When  the  base  code  attempts  to  open  a socket  with  the  server,  the  

connection  is  refused,  and  the  base  advisor  for  this  protocol  marks  the  server  as  

down.  The  custom  advisor  code  for  that  protocol  is not  called.  Although  the  

custom  advisor  for  the  other  protocol  continues  communicating  with  its  server,  it  

learns  from  the  hash  table  that  the  other  custom  advisor  cannot  communicate  

with  its  server  daemon.  Therefore,  the  second  protocol’s  advisor  also  marks  its  

server  as  down.  

v   One  daemon  does  not  send  a response,  but  the  other  daemon  does  - The  custom  

advisor  for  the  unresponsive  protocol  detects  the  failure  to  communicate,  marks  

the  server  as  down,  and  stores  the  data  in  the  hash  table.  The  custom  advisor  for  

the  other  port  learns  that  information  from  the  hash  table  and  marks  its  server  

as  down.

This  sample  is written  to  link  ports  80  for  HTTP  and  443  for  SSL,  but  it can  be  

tailored  to  any  combination  of  ports:  

 

168 Load Balancer  for IPv4 and IPv6 Administration  Guide



package  CustomAdvisors;  

import  java.io.*;  

import  java.net.*;  

import  java.util.*;  

import  java.util.Date;  

import  com.ibm.internet.lb.advisors.*;  

import  com.ibm.internet.lb.common.*;  

import  com.ibm.internet.lb.manager.*;  

import  com.ibm.internet.lb.server.SRV_ConfigServer;  

  

//--------  

// Define  the  table  element  for  the  hash  tables  used  in  this  custom  advisor  

  

class  ADV_nte  implements  Cloneable  { 

  private  String  sCluster;  

  private  int  iPort;  

  private  String  sServer;  

  private  int  iLoad;  

  private  Date  dTimestamp;  

  

//--------  

// constructor  

  

  public  ADV_nte(String  sClusterIn,  int  iPortIn,  String  sServerIn,  

                 int  iLoadIn)  { 

    sCluster  = sClusterIn;  

    iPort  = iPortIn;  

    sServer  = sServerIn;  

    iLoad  = iLoadIn;  

    dTimestamp  = new  Date();  

  } 

  

//--------  

// check  whether  this  element  is current  or expired  

  public  boolean  isCurrent(ADV_twop  oThis)  { 

    boolean  bCurrent;  

    int  iLifetimeMs  = 3 * 1000  * oThis.getInterval();      // set  lifetime  as 

                                                          // 3 advisor  cycles  

    Date  dNow  = new  Date();  

    Date  dExpires  = new  Date(dTimestamp.getTime()  + iLifetimeMs);  

  

    if (dNow.after(dExpires))  { 

      bCurrent  = false;  

    } else  { 

      bCurrent  = true;  

    } return  bCurrent;  

  } 

  

//--------  

// value  accessor(s)  

  

 public  int  getLoadValue()  { return  iLoad;  } 

  

//--------  

// clone  (avoids  corruption  between  threads)  

  

 public  synchronized  Object  Clone()  { 

   try  { 

     return  super.clone();  

   } catch  (cloneNotSupportedException  e) { 

     return  null;  

    } 

  } 

  

} 

  

//--------

 

Chapter 7. welc_reference.html  169



// define  the  custom  advisor  

  

public  class  ADV_twop  extends  ADV_Base  

   implements  ADV_MethodInterface,  ADV_AdvisorVersionInterface  { 

   static  final  int  ADV_TWOP_PORT_HTTP  = 80; 

   static  final  int  ADV_TWOP_PORT_SSL  = 443;  

  

   //--------  

   // define  tables  to  hold  port-specific  history  information  

  

   static  HashTable  htTwopHTTP  = new  Hashtable();  

   static  HashTable  htTwopSSL  = new  Hashtable();  

   static  final  String  ADV_TWOP_NAME  = "twop";  

   static  final  int  ADV_TWOP_DEF_ADV_ON_PORT  = 80;  

   static  final  int  ADV_TWOP_DEF_INTERVAL  = 7; 

   static  final  String  ADV_HTTP_REQUEST_STRING  = 

      "HEAD  / HTTP/1.0\r\nAccept:  */*\r\nUser-Agent:  " + 

      "IBM_LB_Custom_Advisor\r\n\r\n";  

  

   //--------  

   // create  byte  array  with  SSL  client  hello  message  

  

   public  static  final  byte[]  abClientHello  = { 

     (byte)0x80,  (byte)0x1c,  

     (byte)0x01,                                 // client  hello  

     (byte)0x03,  (byte)0x00,                     // SSL  version  

     (byte)0x00,  (byte)0x03,                     // cipher  spec  len  (bytes)  

     (byte)0x00,  (byte)0x00,                     // session  ID len  (bytes)  

     (byte)0x00,  (byte)0x10,                     // challenge  data  len  (bytes)  

     (byte)0x00,  (byte)0x00,  (byte)0x03,         //  cipher  spec  

     (byte)0x1A,  (byte)0xFC,  (byte)0xE5,  (byte)Ox20,     //  challenge  data  

     (byte)0xFD,  (byte)0x3A,  (byte)0x3C,  (byte)0x18,  

     (byte)0xAB,  (byte)0x67,  (byte)0xB0,  (byte)0x52,  

     (byte)0xB1,  (byte)0x1D,  (byte)0x55,  (byte)0x44,  (byte)0x0D,  (byte)0x0A  }; 

  

  //--------  

  // constructor  

  

  public  ADV_twop()  { 

    super(ADV_TWOP_NAME,  VERSION,  ADV_TWOP_DEF_ADV_ON_PORT,  

          ADV_TWOP_DEF_INTERVAL,  "", 

          false);                          // false  = load  balancer  times  the response  

    setAdvisor  ( this  ); 

  } 

  

  //--------  

  // ADV_AdvisorInitialize  

  

  public  void  ADV_AdvisorInitialize()  { 

    return;  } 

  

  //--------  

  // synchronized  PUT  and  GET  access  routines  for  the  hash  tables  

  

  synchronized  ADV_nte  getNte(Hashtable  ht,  String  sName,  String  sHashKey)  { 

    ADV_nte  nte  = (ADV_nte)(ht.get(sHashKey));  

    if  (null  != nte)  { 

      nte  = (ADV_nte)nte.clone();  

    } 

    return  nte;  

  } 

 synchronized  void  putNte(Hashtable  ht,  String  sName,  String  sHashKey,  

                          ADV_nte  nte)  { ht.put(sHashKey,nte);  return;  

} 

  

  

  //--------

 

170 Load Balancer  for IPv4 and IPv6 Administration  Guide



//  getLoadHTTP  - determine  HTTP  load  based  on server  response  

  

  int  getLoadHTTP(int  iConnectTime,  ADV_Thread  caller)  { 

    int  iLoad  = ADV_HOST_INACCESSIBLE;  

    int  iRc  = caller.send(ADV_HTTP_REQUEST_STRING);    // send  request  message  

                                                    // to server  

    if (0 <= iRc)  {                                 // did  the request  return  a failure?  

      StringBuffer  sbReceiveData  = new  StringBuffer("")  // allocate  a buffer  

                                                        // for the response  

      iRc  = caller.receive(sbReceiveData);               // get response  from  server  

  

      if (0 <=  iRc)  {                             // did  the  receive  return  a failure?  

        if (0 < sbReceiveData.length())  {         // is data  there?  

          iLoad  = SUCCESS;                         // ignore  retrieved  data  and 

                                                  // return  success  code  

      } 

    } 

  } 

  return  iLoad;  

} 

  

  

//--------  

// getLoadSSL()  - determine  SSL load  based  on server  response  

  

int  getLoadSSL(int  iConnectTime,  ASV_Thread  caller)  { 

  int  iLoad  = ADV_HOST_INACCESSIBLE;  

  int  iRc;  

  

  CMNByteArrayWrapper  cbawClientHello  = new CMNByteArrayWrapper(  

                                                  abClientHello);  

  Socket  socket  = caller.getSocket();  

  

  try  { 

      socket.getOutputStream().write(abClientHello);  //  Perform  a receive.  

      socket.getInputStream().read();                 // If receive  is successful,  

                                                     //  return  load  of 0. We are  not 

                                                     //  concerned  with  data’s  contents,  

                                                     //  and the  load  is calculated  by 

                                                     //  the ADV_Thread  thread.  

      iLoad  = 0; 

  } catch  (IOException  e) {           // Upon  error,  iLoad  will  default  to it.  

  } 

  return  iLoad;  

} 

  

  

//--------  

// getLoad  - merge  results  from  the  HTTP  and SSL  methods  

  

public  int  getLoad(int  iConnectTime,  ADV_Thread  caller)  { 

  int  iLoadHTTP;  

  int  iLoadSSL;  

  int  iLoad;  

  int  iRc;  

  

  String  sCluster  = caller.getCurrentClusterId();   // current  cluster  address  

  int  iPort  = getAdviseOnPort();  

  String  sServer  = caller.getCurrentServerId();  

  String  sHashKey  = sCluster  = ":"  + sServer;       // hash  table  key  

  

  if  (ADV_TWOP_PORT_HTTP  == iPort)  {                //  handle  an  HTTP  server  

    iLoadHTTP  = getLoadHTTP(iConnectTime,  caller);   // get  the  load  for  HTTP  

  

    ADV_nte  nteHTTP  = newADV_nte(sCluster,  iPort,  sServer,  iLoadHTTP);  

    putNte(htTwopHTTP,  "HTTP",  sHashKey,  nteHTTP);      // save  HTTP  load  

                                                       // information

 

Chapter 7. welc_reference.html  171



ADV_nte  nteSSL  = getNte(htTwopSSL,  "SSL",  sHashKey);   // get  SSL  

                                                          // information  

      if (null  != nteSSL)  { 

        if (true  == nteSSL.isCurrent(this))  {              // check  the time  stamp  

          if (ADV_HOST_INACCESSIBLE  != nteSSL.getLoadValue())  {    // is  SSL  

                                                                   // working?  

            iLoad  = iLoadHTTP;  

          } else  {                      // SSL  is not working,  so mark  the  HTTP server  down  

            iLoad=  ADV_HOST_INACCESSIBLE;  

          } 

        } else  {                 // SSL information  is expired,  so mark  the  

                                 // HTTP  server  down  

          iLoad  = ADV_HOST_INACCESSIBLE;  

       } 

     } else  {                   // no load  information  about  SSL,  report  

                                //  getLoadHTTP()  results  

       iLoad  = iLoadHTTP;  

     } 

   } 

   else  if  (ADV_TWOP_PORT_SSL  == iPort)  {             // handle  an SSL  server  

     iLoadSSL  = getLoadSSL(iConnectTime,  caller);      // get  load  for  SSL  

  

     ADV_nte  nteSSL  = new  ADV_nte(sCluster,  iPort,  sServer,  iLoadSSL);  

     putNte(htTwopSSL,  "SSL",  sHashKey,  nteSSL);       // save  SSL  load  info.  

  

     ADV_nte  nteHTTP  = getNte(htTwopHTTP,  "SSL",  sHashKey);    //  get  HTTP  

                                                              // information  

     if (null  != nteHTTP)  { 

       if (true  == nteHTTP.isCurrent(this))  {                 // check  the  timestamp  

         if (ADV_HOST_INACCESSIBLE  != nteHTTP.getLoadValue())  {   // is HTTP  

                                                                  // working?  

           iLoad  = iLoadSSL;  

         } else  {             //  HTTP  server  is not  working,  so mark  SSL  down  

           iLoad  = ADV_HOST_INACCESSIBLE;  

         } 

       } else  {     //  expired  information  from  HTTP,  so mark  SSL down  

         iLoad  = ADV_HOST_INACCESSIBLE;  

       } 

     } else  {                 //  no load  information  about  HTTP,  report  

                              // getLoadSSL()  results  

       iLoad  = iLoadSSL;  

     } 

   } 

  

 //--------  

 // error  handler  

  

   else  { 

     iLoad  = ADV_HOST_INACCESSIBLE;  

   } 

   return  iLoad;  

  } 

} 

Glossary 

 

ACK  A  control  bit  (acknowledge)  occupying  no  sequence  space,  which  indicates  

that  the  acknowledgment  field  of  this  segment  specifies  the  next  sequence  

number  the  sender  of  this  segment  is expecting  to  receive,  hence  

acknowledging  receipt  of  all  previous  sequence  numbers.  

address  

The  unique  code  assigned  to each  device  or  workstation  connected  to  a 

network.  A standard  IPv4  address  is a 32-bit  address  field  containing  two  

 

172 Load Balancer  for IPv4 and IPv6 Administration  Guide



parts.  The  first  part  is the  network  address,  and  the  second  part  is the  host  

number.  An  IPv6  address  is  a 128-bit  address  field  that  supports  a much  

higher  number  of addresses  than  IPv4,  and  IPv6  addresses  also  support  

additional  features  like  multicast  and  anycast  addressing.  

advisor  

Advisors  collect  and  analyze  feedback  from  individual  servers,  and  inform  

the  manager  function.  

agent  In  systems  management,  a user  that,  for  a particular  interaction,  has  

assumed  an  agent  role.  

 An  entity  that  represents  one  or  more  managed  objects  by  (a)  emitting  

notifications  regarding  the  objects  and  (b)  handling  requests  from  

managers  for  management  operations  to  modify  or  query  the  objects.  

alias  An  additional  name  assigned  to a server.  The  alias  makes  the  server  

independent  of the  name  of  its  host  machine.  The  alias  must  be  defined  in 

the  domain  name  server.  

API  Application  programming  interface.  The  interface  (calling  conventions)  by  

which  an  application  program  accesses  operating  system  and  other  

services.  An  API  is defined  at source  code  level  and  provides  a level  of 

abstraction  between  the  application  and  the  kernel  (or  other  privileged  

utilities)  to  ensure  the  portability  of  the  code.  

 

backup  

In  a high  availability  configuration,  this  is the  partner  of the  primary  

machine.  It  monitors  the  status  of  the  primary  machine  and  takes  over  if 

necessary.  See  also  high  availability,  primary.  

bandwidth  

The  difference  between  the  highest  and  lowest  frequencies  of  a 

transmission  channel.  This  is the  amount  of data  that  can  be  sent  through  a 

given  communication  circuit  per  second.  

begin  range  

In  rules-based  load  balancing,  a lower  value  specified  on  a rule. The  

default  for  this  value  depends  on  the  type  of  rule. 

binary  logging  

Allows  server  information  to be  stored  in  binary  files,  and  then  be  

processed  to  analyze  the  server  information  that  is gathered  over  time.  

 

Caching  proxy  

A  caching  proxy  server  that  can  help  speed  up  end-user  response  time  

through  highly-efficient  caching  schemes.  Flexible  PICS  filtering  helps  

network  administrators  control  access  to  Web-based  information  at one  

central  location.  

CGI  Common  Gateway  Interface.  A standard  for  the  exchange  of  information  

between  a Web server  and  an  external  program.  The  external  program  can  

be  written  in  any  language  supported  by  the  operating  system,  and  

performs  tasks  not  usually  done  by  the  server,  such  as  forms  processing.  

CGI  script  

A  CGI  program  written  in  a scripting  language  such  as  Perl  or  REXX  that  

uses  the  Common  Gateway  Interface  to perform  tasks  not  usually  done  by  

the  server,  such  as  forms  processing.  

 

Chapter 7. welc_reference.html  173



client  A  computer  system  or  process  that  requests  a service  of  another  computer  

system  or  process.  For  example,  a workstation  or  personal  computer  

requesting  HTML  documents  from  a Lotus® Domino® Go  Webserver  is a 

client  of  that  server.  

cluster  

A  group  of  TCP  or  UDP  servers  that  are  used  for  the  same  purpose  and  

are  identified  by  a single  hostname.  See  also  cell.  

cluster  address  

The  address  to  which  clients  connect.  

clustered  server  

A  server  that  Load  Balancer  groups  with  other  servers  into  a single,  virtual  

server.  Load  Balancer  balances  TCP  or  UDP  traffic  among  these  clustered  

servers.  

consultant  

Collects  server  metrics  from  the  servers  that  are  being  load  balanced  and  

sends  server  weight  information  to  the  switch  that  performs  the  load  

balancing.  

controller  

A  collection  of  one  or  more  consultants.  

cross  port  affinity  

Cross  port  affinity  is the  affinity  (sticky)  feature  expanded  to  cover  across  

multiple  ports.  See  also  sticky  time.  

 

daemon  

Disk  And  Execution  Monitor.  A  program  that  is not  involved  explicitly,  but  

lies  dormant  waiting  for  some  condition(s)  to  occur. The  idea  is that  the  

perpetrator  of  the  condition  need  not  be  aware  that  a daemon  is lurking  

(though  often  a program  will  commit  an  action  only  because  it knows  that  

it  will  implicitly  invoke  a daemon).  

default  

A  value,  attribute,  or option  that  is assumed  when  none  is explicitly  

specified.  

destination  address  

The  address  of  the  high  availability  partner  machine  to  which  heartbeats  

and  responses  are  sent.  

Dispatcher  

A  component  of  Load  Balancer  that  efficiently  balances  TCP  or  UDP  traffic  

among  groups  of  individual  linked  servers.  The  Dispatcher  machine  is the  

server  running  the  Dispatcher  code.  

domain  name  server  

DNS.  A general-purpose  distributed,  replicated,  data  query  service  chiefly  

used  on  Internet  for  translating  hostnames  into  Internet  addresses.  Also,  

the  style  of  hostname  used  on  the  Internet,  though  such  a name  is properly  

called  a fully  qualified  domain  name.  DNS  can  be  configured  to use  a 

sequence  of  name  servers,  based  on  the  domains  in  the  name  being  looked  

for, until  a match  is found.  

 

174 Load Balancer  for IPv4 and IPv6 Administration  Guide



dotted-decimal  notation  

The  syntactical  representation  for  a 32-bit  integer  that  consists  of  four  8-bit  

numbers,  written  in base  10 and  separated  by  periods  (dots).  It  is used  to  

represent  IPv4  addresses.  

dscontrol  

Provides  the  interface  to  the  Dispatcher  component  of  Load  Balancer.  

dsserver  

Handles  the  requests  from  the  command  line  to  the  executor,  manager,  and  

advisors.  

 

end  range  

In  rules-based  load  balancing,  a higher  value  specified  on  a rule. The  

default  for  this  value  depends  on  the  type  of  rule. 

Ethernet  

A  standard  type  of local  area  network  (LAN).  It allows  multiple  stations  to 

access  the  transmission  medium  at will  without  prior  coordination,  avoids  

contention  by  using  carrier  sense  and  deference,  and  resolves  contention  by  

using  collision  detection  and  transmission.  Software  protocols  used  by  

Ethernet  systems  vary,  but  include  TCP/IP.  

executor  

One  of  several  functions.  The  executor  routes  requests  to  the  TCP  or  UDP  

servers,  and  also  monitors  the  number  of  new, active,  and  finished  

connections  and  does  garbage  collection  of completed  or  reset  connections.  

The  executor  supplies  the  new  and  active  connections  to  the  manager  

function.  

 

FIN  A  control  bit  (finis)  occupying  one  sequence  number,  which  indicates  that  

the  sender  will  send  no  more  data  or  control  occupying  sequence  space.  

FIN  state  

The  status  of a transaction  that  has  finished.  When  a transaction  is in  FIN  

state,  the  garbage  collector  can  clear  the  memory  reserved  for  the  

connection.  

Firewall  

A  computer  that  connects  a private  network,  such  as a business,  to  a public  

network,  such  as  the  Internet.  It  contains  programs  that  limit  the  access  

between  two  networks.  See  also  proxy  gateway.  

FQDN  

Fully  Qualified  Domain  Name.  The  full  name  of a system,  consisting  of  its  

local  hostname  and  its  domain  name,  including  a top-level  domain  (tld).  

For  example,  ″venera″  is a hostname  and  ″venera.isi.edu″  is an  FQDN.  An  

FQDN  should  be  sufficient  to  determine  a unique  Internet  address  for  any  

host  on  the  Internet.  This  process,  called  ″name  resolution″, uses  the  

Domain  Name  System  (DNS).  

FTP  (File  Transfer  Protocol)  

An  application  protocol  used  for  transferring  files  to and  from  network  

computers.  FTP  requires  a user  ID  and  sometimes  a password  to  allow  

access  to  files  on  a remote  host  system.  

 

 

Chapter 7. welc_reference.html  175



gateway  

A  functional  unit  that  interconnects  two  computer  networks  with  different  

architectures.  

GRE  Generic  Routing  Encapsulation.  A protocol  which  allows  an  arbitrary  

network  protocol  A to  be  transmitted  over  any  other  arbitrary  protocol  B, 

by  encapsulating  the  packets  of A  within  GRE  packets,  which  in  turn  are  

contained  within  packets  of B.  

 

heartbeat  

A  simple  packet  sent  between  two  machines  in  high  availability  mode  used  

by  the  standby  machine  to monitor  the  health  of the  active  machine.  

high  availability  

A  feature  in  which  one  Load  Balancer  machine  can  take  over  the  function  

of  another,  if the  primary  machine  is no  longer  available.  

host  A  computer,  connected  to  a network,  that  provides  an  access  point  to  that  

network.  A host  can  be  a client,  a server,  or  both  simultaneously.  

host  name  

The  symbolic  name  assigned  to  a host.  Host  names  are  resolved  to  IP  

addresses  through  a domain  name  server.  

HTML  (Hypertext  Markup  Language)  

The  language  that  is used  to  create  hypertext  documents.  Hypertext  

documents  include  links  to  other  documents  that  contain  additional  

information  about  the  highlighted  term  or  subject.  HTML  controls  the  

format  of  text  and  position  of form  input  areas,  for  example,  as  well  as the  

navigable  links.  

HTTP  (Hypertext  Transfer  Protocol)  

The  protocol  used  to  transfer  and  display  hypertext  documents.  

HTTPS  (Hypertext  Transfer  Protocol,  Secure)  

The  protocol  used  to  transfer  and  display  hypertext  documents  using  SSL.  

 

ICMP  Internet  Control  Message  Protocol.  A  message  control  and  error-reporting  

protocol  between  a host  server  and  a gateway  to  the  Internet.  

IMAP  Internet  Message  Access  Protocol.  A protocol  allowing  a client  to access  

and  manipulate  electronic  mail  messages  on  a server.  It  permits  

manipulation  of  remote  message  folders  (mailboxes),  in a way  that  is 

functionally  equivalent  to  local  mailboxes.  

Internet  

The  worldwide  collection  of  interconnected  networks  that  use  the  Internet  

suite  of  protocols  and  permit  public  access.  

intranet  

A  secure,  private  network  that  integrates  Internet  standards  and  

applications  (such  as  Web browsers)  with  an  organization’s  existing  

computer  networking  infrastructure.  

IP  Internet  Protocol.  A  connectionless  protocol  that  routes  data  through  a 

network  or  interconnected  networks.  IP  acts  as  an  intermediary  between  

the  higher  protocol  layers  and  the  physical  layer. 

 

176 Load Balancer  for IPv4 and IPv6 Administration  Guide



IP  address  

Internet  Protocol  address.  The  unique  address  that  specifies  the  actual  

location  of  each  device  or  workstation  in  a network.  It is  also  known  as  an  

Internet  address.  

IPSEC  Internet  Protocol  Security.  A developing  standard  for  security  at the  

network  or  packet  processing  layer  of  network  communication.  

 

LAN  Local  Area  Network.  A  computer  network  of devices  connected  within  a 

limited  geographical  area  for  communication  and  which  can  be  connected  

to  a larger  network.  

loopback  alias  

An  alternative  IP  address  associated  with  the  loopback  interface.  The  

alternative  address  has  the  useful  side  affect  of not  advertising  on  a real  

interface.  

loopback  interface  

An  interface  that  bypasses  unnecessary  communications  functions  when  

the  information  is addressed  to an  entity  within  the  same  system.  

 

MAC  address  

Media  Access  Control  address.  The  hardware  address  of a device  

connected  to  a shared  network  medium.  

managed  node  

In  Internet  communications,  a workstation,  server,  or  router  that  contains  a 

network  management  agent.  In  the  Internet  Protocol  (IP),  the  managed  

node  usually  contains  a Simple  Network  Management  Protocol  (SNMP)  

agent.  

manager  

Sets  weights  of servers  based  on  internal  counters  in  the  executor  and  

feedback  that  is provided  by  the  advisors.  The  executor  then  uses  the  

weights  to  perform  load  balancing.  

mark  down  

To break  all  active  connections  to  a server  and  stop  any  new  connections  

or  packets  from  being  sent  to that  server.  

mark  up  

To allow  a server  to receive  new  connections.  

metric  A  process  or  command  that  returns  a numeric  value  that  can  be  used  in 

load  balancing  on  the  network,  for  example,  the  number  of  users  currently  

logged  on.  

metric  address  

The  address  where  the  metric  server  connects.  

metric  collector  

Resides  in  the  consultant  and  is responsible  for  collecting  a metric  or  

metrics.  

Metric  Server  

Formerly  known  as  Server  Monitor  Agent  (SMA).  Metric  server  provides  

system  specific  metrics  to  the  manager.  

MIB  Management  Information  Base.  A  collection  of  objects  that  can  be  accessed  

by  means  of a network  management  protocol.  

 

Chapter 7. welc_reference.html  177



A  definition  for  management  information  that  specifies  the  information  

available  from  a host  or  gateway  and  the  operations  allowed.  

 

netmask  

For  IPv4,  a 32–bit  mask  used  to  identify  the  subnetwork  address  bits  in  the  

host  portion  of  an  IP  address.  

network  

Hardware  and  software  data  communication  system.  Networks  are  often  

classified  according  to their  geographical  extent,  local  area  network  (LAN),  

metropolitan  area  network  (MAN),  wide  area  network  (WAN)  and  also  

according  to  the  protocols  used.  

Network  Address  Translation  

NAT, or  Network  Address  Translator, Virtual  LAN.  A  hardware  device  

currently  being  developed  and  used  to  extend  the  Internet  addresses  

already  in  use.  It allows  duplicate  IP  addresses  to  be  used  within  a 

corporation  and  unique  addresses  outside.  

Network  Address  Port  Translation  

NAPT,  also  known  as  port  mapping.  This  allows  you  to  configure  multiple  

server  daemons  within  one  physical  server  to listen  on  different  port  

numbers.  

network  management  station  

In  the  Simple  Network  Management  Protocol  (SNMP),  a station  that  runs 

management  application  programs  that  monitor  and  control  network  

elements.  

network  proximity  

The  proximity  of two  networked  entities,  such  as  a client  and  server,  which  

determines  by  measuring  round-trip  time.  

NFA  (nonforwarding  address)  

The  primary  IP address  of the  machine,  used  for  administration  and  

configuration.  

NIC  Network  Interface  Card.  An  adapter  circuit  board  installed  in  a computer  

to  provide  a physical  connection  to  a network.  

NNTP  Network  News  Transfer  Protocol.  A TCP/IP  protocol  for  transferring  news  

items.  

 

packet  The  unit  of  data  that  is routed  between  an  origin  and  a destination  on  the  

Internet  or  any  other  packet-switched  network.  

PICS  Platform  for  Internet  Content  Selection.  PICS-enabled  clients  allow  the  

users  to  determine  which  rating  services  they  want  to  use  and,  for  each  

rating  service,  which  ratings  are  acceptable  and  which  are  unacceptable.  

ping  A  command  that  sends  Internet  Control  Message  Protocol  (ICMP)  

echo-request  packets  to a host,  gateway,  or  router  with  the  expectation  of  

receiving  a reply.  

POP3  Post  Office  Protocol  3. A protocol  used  for  exchanging  network  mail  and  

accessing  mailboxes.  

port  A  number  that  identifies  an  abstracted  communication  device.  Web servers  

use  port  80  by  default.  

 

178 Load Balancer  for IPv4 and IPv6 Administration  Guide



primary  

In  a high  availability  configuration,  the  machine  that  starts  out  as  the  

machine  actively  routing  packets.  Its  partner,  the  backup  machine,  

monitors  the  status  of the  primary  machine  and  takes  over  if necessary.  See  

also  backup,  high  availability.  

priority  

In  rules-based  load  balancing,  the  level  of  importance  placed  upon  any  

given  rule. The  evaluates  rules from  the  first  priority  level  to the  last  

priority  level.  

private  network  

A  separate  network  on  which  Load  Balancer  communicates  with  clustered  

servers  for  performance  reasons.  

protocol  

The  set  of  rules  governing  the  operation  of functional  units  of  a 

communication  system  if communication  is to  take  place.  Protocols  can  

determine  low-level  details  of machine-to-machine  interfaces,  such  as  the  

order  in  which  bits  from  a byte  are  sent;  they  can  also  determine  high-level  

exchanges  between  application  programs,  such  as file  transfer.  

 

Quality  of  Service  (QoS)  

The  performance  properties  of  a network  service,  including  throughput,  

transit  delay  and  priority.  Some  protocols  allow  packets  or  streams  to  

include  QoS  requirements.  

quiesce  

To end  a process  by  allowing  operations  to  complete  normally.  

 

reach  An  advisor  that  issues  pings  to  a given  target  and  reports  whether  that  

target  is responding.  

reach  address  

In  a high  availability  configuration,  the  address  of  the  target  to which  the  

advisor  should  issue  pings  to see  if the  target  is responding.  

return  address  

A  unique  IP  address  or  hostname.  It is configured  on  the  Load  Balancer  

machine  and  used  as  its  source  address  when  load  balancing  the  client’s  

request  to  the  server.  

RMI  Remote  Method  Invocation.  Part  of  the  Java  programming  language  library  

which  enables  a Java  program  running  on  one  computer  to access  the  

objects  and  methods  of  another  Java  program  running  on  a different  

computer.  

root  user  

The  unrestricted  authority  to access  and  modify  any  part  of the  AIX,  Red  

Hat  Linux,  or  Solaris  operating  system,  usually  associated  with  the  user  

who  manages  the  system.  

route  The  path  of  network  traffic  from  origin  to destination.  

router  A  device  which  forwards  packets  between  networks.  The  forwarding  

decision  is based  on  network  layer  information  and  routing  tables,  often  

constructed  by  routing  products.  

RPM  Red  Hat  Package  Manager.  

 

Chapter 7. welc_reference.html  179



rule  In  rules-based  load  balancing,  a mechanism  for  grouping  servers  such  that  

a server  can  be  chosen  based  on  information  other  than  the  destination  

address  and  port.  

rule  type  

In  rules-based  load  balancing,  an  indicator  of the  information  that  should  

be  evaluated  to  determine  whether  a rule is true. 

 

scalable  

Pertaining  to  the  capability  of  a system  to  adapt  readily  to  a greater  or  

lesser  intensity  of use,  volume,  or  demand.  For  example,  a scalable  system  

can  efficiently  adapt  to  work  with  larger  or  smaller  networks  performing  

tasks  of  varying  complexity.  

server  A  computer  that  provides  shared  services  to  other  computers  over  a 

network;  for  example,  a file  server,  a print  server,  or  a mail  server.  

server  address  

The  unique  code  assigned  to each  computer  that  provides  shared  services  

to  other  computers  over  a network;  for  example,  a file  server,  a print  

server,  or  a mail  server.  The  server  address  can  be  either  the  IP  address  or  

the  host  name.  

server  machine  

A  server  that  Load  Balancer  groups  with  other  servers  into  a single,  virtual  

server.  Load  Balancer  balances  traffic  among  the  server  machines.  

Synonymous  with  clustered  server.  

service  

A  function  provided  by  one  or  more  nodes;  for  example,  HTTP,  FTP,  

Telnet.  

shell  The  software  that  accepts  and  processes  command  lines  from  a user’s  

workstation.  The  bash  shell  is one  of several  UNIX® shells  available.  

site  name  

A  site  name  is  an  unresolvable  host  name  that  the  client  will  request.  For  

example,  a web  site  has  3 servers  (1.2.3.4,  1.2.3.5,  and  1.2.3.6)  configured  

for  site  name  www.dnsload.com. When  a client  requests  this  site  name,  one  

of  the  three  server  IP  addresses  will  be  returned  as  the  resolution.  The  site  

name  must  be  a fully  qualified  domain  name,  for  example:  dnsload.com. An  

unqualified  name,  for  example,  dnsload  is invalid  for  a site  name.  

Site  Selector  

A  DNS-based  load  balancing  component  of  . Site  Selector  balances  the  load  

on  servers  within  a wide  area  network  (WAN)  using  measurements  and  

weights  that  are  gathered  from  the  Metric  Server  component  running  on  

those  servers.  

SMTP  Simple  Mail  Transfer  Protocol.  In  the  Internet  suite  of  protocols,  an  

application  protocol  for  transferring  mail  among  users  in the  Internet  

environment.  SMTP  specifies  the  mail  exchange  sequences  and  message  

format.  It assumes  that  the  Transmission  Control  Protocol  (TCP)  is the  

underlying  protocol.  

SNMP  

Simple  Network  Management  Protocol.  The  Internet  standard  protocol,  

defined  in  STD  15,  RFC  1157,  developed  to manage  nodes  on  an  IP  

 

180 Load Balancer  for IPv4 and IPv6 Administration  Guide



network.  SNMP  is not  limited  to  TCP/IP.  It  can  be  used  to manage  and  

monitor  all  sorts  of  equipment  including  computers,  routers,  wiring  hubs,  

toasters  and  jukeboxes.  

source  address  

In  a high  availability  configuration,  the  address  of  the  high  availability  

partner  machine  that  sends  heartbeats.  

SPARC  

Scalable  processor  architecture.  

sscontrol  

Provides  the  interface  to  the  Site  Selector  component  of . 

SSL  Secure  Sockets  Layer.  A  popular  security  scheme  developed  by  Netscape  

Communications  Corp.  along  with  RSA  Data  Security  Inc.  SSL  allows  the  

client  to  authenticate  the  server  and  all  data  and  requests  to  be  encrypted.  

The  URL  of a secure  server  protected  by  SSL  begins  with  https  (rather  than  

HTTP).  

sticky  time  

The  interval  between  the  closing  of one  connection  and  the  opening  of  a 

new  connection  during  which  a client  will  be  sent  back  to  the  same  server  

used  during  the  first  connection.  After  the  sticky  time,  the  client  may  be  

sent  to  a server  different  from  the  first.  

strategy  

In  a high  availability  configuration,  a keyword  for  specifying  how  recovery  

takes  place  following  the  failure  of the  active  machine.  

subnet  mask  

For  IPv4,  a 32–bit  mask  used  to  identify  the  subnetwork  address  bits  in  the  

host  portion  of  an  IP address.  

SYN  A  control  bit  in  the  incoming  segment,  occupying  one  sequence  number,  

used  at  the  initiation  of  a connection,  to  indicate  where  the  sequence  

numbering  will  start.  

 

TCP  Transmission  Control  Protocol.  A communications  protocol  used  on  the  

Internet.  TCP  provides  reliable  host-to-host  exchange  of information.  It 

uses  IP  as  the  underlying  protocol.  

TCP/IP   

Transmission  Control  Protocol/Internet  Protocol.  A  suite  of protocols  

designed  to allow  communication  between  networks  regardless  of  the  

communication  technologies  used  in  each  network.  

TCP  server  machine  

A  server  that  links  with  other  servers  into  a single,  virtual  server.  balances  

TCP  traffic  among  the  TCP  server  machines.  Synonymous  with  clustered  

server.  

Telnet  Terminal  emulation  protocol,  a TCP/IP  application  protocol  for  remote  

connection  service.  Telnet  allows  a user  at  one  site  to  gain  access  to a 

remote  host  as  if the  user’s  workstation  were  connected  directly  to  that  

remote  host.  

timeout  

The  time  interval  allotted  for  an  operation  to occur.  

TOS  Type  of  service.  A  one  byte  field  in  the  IP  header  of the  SYN  packet.  

 

Chapter 7. welc_reference.html  181



TTL  A  DNS  TTL  (time  to  live)  is the  number  of seconds  a client  can  cache  the  

name  resolution  response.  

 

UDP  User  Datagram  Protocol.  In  the  Internet  suite  of protocols,  a protocol  that  

provides  unreliable,  connectionless  datagram  service.  It  enables  an  

application  program  on  one  machine  or  process  to  send  a datagram  to  an  

application  program  on  another  machine  or  process.  UDP  uses  the  Internet  

Protocol  (IP)  to  deliver  datagrams.  

URI  Universal  Resource  Identifier.  The  encoded  address  for  any  resource  on  the  

Web, such  as  HTML  document,  image,  video  clip,  program,  and  so  forth.  

URL  Uniform  Resource  Locator.  A standard  way  of specifying  the  location  of  an  

object,  typically  a web  page,  on  the  Internet.  URLs  are  the  form  of address  

used  on  the  World-Wide  Web. They  are  used  in HTML  documents  to 

specify  the  target  of  a hyperlink  which  is often  another  HTML  document  

(possibly  stored  on  another  computer).  

 

VPN  Virtual  Private  Network  (VPN).  A network  comprised  of one  or  more  

secure  IP  tunnels  connecting  two  or  more  networks.  

 

WAN Wide  Area  Network.  A network  that  provides  communication  services  to  a 

geographic  area  larger  than  that  served  by  a local  area  network  or  a 

metropolitan  area  network,  and  that  may  use  or  provide  public  

communication  facilities.  

WAP Wireless  Application  Protocol.  This  is an  open  international  standard  for  

applications  that  use  wireless  communication.  For  example,  this  standard  

includes  internet  access  from  a mobile  phone.  

WAS WebSphere® Application  Server.  

Web The  network  of  HTTP  servers  that  contain  programs  and  files,  many  of  

them  hypertext  documents  that  contain  links  to  other  documents  on  HTTP  

servers.  Also  World  Wide  Web. 

wizard  

A  dialog  within  an  application  that  uses  step-by-step  instructions  to guide  

a user  through  a specific  task.  

WLM  Workload  Manager.  An  advisor  that  is  provided  with  Load  Balancer.  It is  

designed  to  work  only  in  conjunction  with  servers  on  OS/390® mainframes  

running  the  MVS™ Workload  Manager  (WLM)  component.

 

182 Load Balancer  for IPv4 and IPv6 Administration  Guide


	Contents
	Chapter 1. Product overview
	New in this release
	Functions that provide load balancing
	High availability with Load Balancer
	Managing servers
	Types of cluster, port, and server configurations


	Chapter 2. welcome_installing.html
	Installing Load Balancer
	Installing Load Balancer on AIX systems
	Installing Load Balancer on HP-UX systems
	Installing Load Balancer on Linux operating systems
	Installing Load Balancer on Solaris operating systems
	Installing Load Balancer on Windows operating systems

	Uninstalling Load Balancer
	Updating Load Balancer
	Updating Load Balancer for AIX, HP-UX, Linux, or Solaris operating systems
	Updating Load Balancer for Windows operating systems

	Directory conventions

	Chapter 3. welcome_config.html
	Methods of configuration
	Configuring the Load Balancer machine
	Configuring the server machines
	Aliasing the network interface card or loopback device
	Configuring loopbacks with alternative methods

	Quick start configuration
	Load balancing a private network

	Chapter 4. welcome_administering.html
	Enabling advisors to manage load balancing
	Advisors
	List of advisors
	Getting service-specific advice with the advisor request or response option
	Configuring the LDAP URI advisor
	Getting advice with Metric Server
	The Workload Management Advisor
	Creating a custom advisor
	Custom advisor methods and function calls
	Example: Sample advisor


	Configuring high availability
	How high availability works
	Detecting server failures with heartbeats and reach targets
	High Availability recovery strategy for failed servers
	Scripts to run with high availability

	Use encapsulation forwarding to forward traffic across network segments
	Quiesce servers for server maintenance windows
	Optimize connections with client-to-server affinity
	Restricting incoming traffic with ipchains and iptables
	Logging with Load Balancer
	Logging server statistics with binary logging

	Support for ICMP forwarding and messaging
	Configure rules to manage traffic to busy or unavailable servers
	Sample scripts to generate alerts and record server failure

	Chapter 5. welcome_tuning.html
	The manager report
	Optimizing the manager interval
	Tuning the proportion of importance given to status information
	Managing traffic with server weights
	Optimizing the sensitivity threshold
	Optimizing the smoothing index
	Controlling connection records with the staletimeout value

	Chapter 6. Troubleshooting Load Balancer
	Problem: Load Balancer will not run
	Problem: Load Balancer requests are not being balanced
	Problem: Extra routes (Windows 2000)
	Problem: Dispatcher, Microsoft IIS, and SSL do not work (Windows platform)
	Problem: dscontrol or lbadmin command fails
	Problem: Advisors not working correctly
	Problem: “Cannot find the file..." error message when trying to view online Help (Windows platform)
	Problem: Graphical user interface (GUI) does not start correctly
	Problem: Graphical user interface (GUI) does not display correctly
	Problem: On Windows platform, help windows sometimes disappear behind other open windows
	Problem: GUI hangs (or unexpected behavior) when trying to load a large configuration file
	Problem: Korean Load Balancer interface displays overlapping or undesirable fonts on AIX and Linux systems
	Problem: On Windows platform, unexpected GUI behavior when using Matrox AGP video cards
	Problem: Slow response time running commands on Dispatcher machine
	Problem: SSL or HTTPS advisor not registering server loads
	Problem: Socket pooling is enabled and the Web server is binding to 0.0.0.0
	Problem: On Windows systems, corrupted Latin-1 national characters appear in command prompt window
	Problem: On Windows systems, advisors and reach targets mark all servers down
	Problem: On Windows systems, after network outage, advisors not working in a high availability setup
	Problem: On Linux systems, do not use "IP address add" command when aliasing multiple clusters on the loopback device
	Problem: On Solaris systems, Load Balancer processes end when you exit the terminal window from which they started
	Problem: Delay occurs while loading a Load Balancer configuration
	Problem: On Windows systems, an IP address conflict error message appears
	Problem: On Windows systems, "Server not responding" error occurs when issuing dscontrol or lbadmin
	Problem: On Linux, Dispatcher configuration limitations when using zSeries or S/390 servers that have Open System Adapter (OSA) cards
	Problem: Linux iptables can interfere with the routing of packets
	Problem: Unable to add an IPv6 server to the Load Balancer configuration on Solaris systems
	Problem: Java warning message appears when installing service fixes
	Upgrading the Java file set provided with the Load Balancer installation
	Problem: Client requests fail when using IPv6 MAC forwarding with HP-UX back-end servers
	Problem: On AIX systems, Load Balancer conflicts with IP security (IPsec)
	Problem: Installing WebSphere Edge Server using ./install on the 32-bit Linux operating system for zSeries produces a "JVM Not Found" message
	Problem: The uninstall process for WebSphere Edge Server hangs on Linux operating systems
	Problem: The serverUp script might run when you issue commands for Load Balancer that affect the status of servers

	Chapter 7. welc_reference.html
	Advanced configuration
	Directory conventions
	Types of cluster, port, and server configurations
	Custom advisor methods and function calls
	List of advisors
	Sample scripts to generate alerts and record server failure
	High Availability recovery strategy for failed servers
	Scripts to run with high availability

	Commands
	dscontrol advisor
	dscontrol binlog
	dscontrol cluster
	dscontrol executor
	dscontrol file
	dscontrol help
	dscontrol highavailability
	dscontrol logstatus
	dscontrol manager
	dscontrol metric
	dscontrol port
	dscontrol rule
	dscontrol server
	dscontrol set
	dscontrol status

	Examples
	Example: Sample advisor
	Example: Implementing custom advisors
	Example: Using data returned from advisors
	Example: Implementing a side stream advisor
	Example: Implementing standard advisors
	Example: Implementing the WAS advisor
	Example: Implementing a two-port advisor


	Glossary


